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Background

Distributed systems widely deployed in various sectors

With the increasing scale and complexity, distributed systems suffering from
frequent software and hardware faults

The early detection of the symptoms of failures, i.e. anomalies, can mitigate or
even prevent severe failures
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The evolvement of faults in distributed systems (Hadoop)
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Background

m A variety of Anomaly Detection(AD) methods
m Log-based methods: Deeplog!?l, PCA approach®!, etc.
m Metrics-based methods: LSTM-AD!*, Information-theoretic approach®!, ezc.
m Trace-based methods: READ!®!, Path similarity approach!”), efc.

What are the advantages and the disadvantages of various anomaly detectors?

No one has tried to systematically evaluate anomaly detectors of distributed systems

to explore how far we have come and how we should move forward.
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Motivation

A fault injection method that can simulate realistic faults to generate a wide
variety of anomalies is the prerequisite for comprehensively evaluating anomaly
detectors

m Bit-flip FI techniques, inefficient in distributed systems

m Injecting failures cannot simulate realistic faults

m Existing code-change FI techniques, only covering few types of faults
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prlvate static class DeprecatedKeyInfo {

Limited coarse-grained failures cannot private final String[] newKeys;
'lﬁPresent the H lanoma private final String getWarningMessage(String key) {
€ process o 2 aultevolving m String warningMessage;
failure is missing if(customMessage == null) {

StringBuilder message = new StringBuilder(key);

message .append(deprecatedKeySuffix);

for (int 1 = @; 1 < newKeys.length; i++) {
message .append(newKeys[i]);

}

warningMessage = message.toString(Q);

}

return warningMessage;

}
i

);

A code snippet from Hadoop
A code snippet from Hadoop(NodeManager)
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Overview

A systematic approach to evaluate the efficacy of anomaly detectors
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An overview of the evaluation approach

RQ1: What’s the pattern of anomalies in distributed systems?

Record faults

Injection
Information

RQ2: To what extent do distributed systems, by themselves, report the anomalies?

RQ3: To what extent do state-of-the-art anomaly detectors detect anomalies of
different types?
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Fault Injection Methodology

m Fault Model

m Faults on a single statement : based on an analysis of elements of 8 fundamental statements

m Faults on multiple statements : based on an analysis of the real software bugs found in the recent

bug study'® of Openstack

The fault model of SSFI
Fault Type Fault Source Statements Description Corresponding Bugs in Openstack [.8.]
VALUE_CHANGE left/right operand AssignStmt Add/subtract/zero/negative/change a vari- Wrong SQL Value, Wrong Parameter

able to a certain value

Value, Wrong SQL Where, Wrong SQL
Column, Wrong Value, Missing Parame-
ters, Wrong Parameter Order, Wrong Ta-
ble, HOG

NULLIFY left/right operand AssignStmt Set an object/pointer to NULL Missing Key Value Pair, Missing Dict
Value
EXCEPTION_SHORTCIRCUIT the only operand ThrowStmt Directly throw one of the declared excep-  Wrong Return Value
tions or the exceptions in try-catch block
INVOKE_REMOVAL - InvokeStmt Remove a method invoking statement  Missing Function Call, Missing Method
without return values Call
ATTRIBUTE_SHADOWED the left operand AssignStmt Exchange the field and the local variable =~ Wrong Variable Value
( with same name and type)
CONDITION_INVERSED binary logical operation IfStmt Inverse the if-else block Wrong API use
CONDITION_BORDER binary logical operation IfStmt Replace the logical operation with one =~ Wrong Access Method
arithmetic operation including/excluding
the border value
SWITCH_FALLTHROUGH destination label/address GotoStmt Add/Remove a break between two cases  Wrong SQL Column
of the switch structure
SWITCH_MISS_DEFAULT destination label/address SwitchStmt Remove the default case process block of Wrong Acess Key
the switch structure
SYNCHRONIZATION - SyncStmt Delete the synchronization modifier for a ~ Missing Sync Annotation
method/block
EXCEPTION_UNCAUGHT bugs in Openstack ThrowStmt Directly throw an undeclared exception for =~ Missing Exception Handlers
GotoStmt a method or a try-catch block
EXCEPTION_UNHANDLED bugs in Openstack AssignStmt Remove all the statements in the catch  Inject Resource Leak
ThrowStmt block
GoToStmt
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Fault Injection Methodology

m SSFI Overview
SSFI(Statement-level Software FI), able to inject 12 different types of software faults into

software systems that can be compiled into Bytecode. SSFI also provides always/random

activation mode for each fault

e SSFI-
C— !
Egecm:tables i Bytecode - Jimple IR . Fault
(*.jar *.class) | Parser Weaver
| —
Y
Configuration | Config _| Fault type, Jimple IR Converter — If:sﬁ Lg?:lﬁ[s
file | Parser location, etc. with a fault | (jar *.class)
. >4

An overview of SSFI’s fault injection process
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Fault Injection Methodology

public long calculate(int testNumber)

{
for(int 1=0;i<5;1i++) {
testNumber=testNumber+1l;
}
return testNumber:; public long calculate(int)
{
} A: Source code WorkBench this;
long $stacks;
int testNumber, 1i;
this := @this: WorkBench;
public long calculate(int); testNumber := @parameter®: int;
Code: i=0;
; Bytecode P ?
0: iconst_0 , yreeore —arer N goto label2;
1: istore_2 parses runnable bytecode labell:
2: goto 11 into Jimple code testNumber = testNumber + 1,
Dt 1166 1, 1 1=1+1;
8: iinc Zy 1 label2:
11: iload_2 if 1 < 5 goto labell;
12: iconst_5 $stack5 = (long) testNumber;
13: if_icmplt 5 return $stacks;
16: iload_1 ¥
Fault/hjdton parameters _
from & ohfigtBarser (fault C: Jimple code
t location, etc.
P %ytecode
An example fault injected using SSFI
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Fault Injection Methodology

public long calculate(int)
{
WorkBench this;
long $stacks5;
int testNumber, 1i;
this := @this: WorkBench;

pt public long calculate(int);

{

testNumber := @parameter®: int;

1i=0;

goto label?2;

labell:
testNumber = testNumber + 1;
i=1+1;

label2:
if 1 < 5 goto labell;
$stack5 = (long) testNumber;
return $stackS;

C: Jimple code

Fault injection parameters

Converter compiles thq)
L

modified Jimple code into
runnable bytecode with an

FAREWE e
modifies the Jimple

code to injected a
specified fault }

{

from Config Parser (fautt
type, location, etc.

}

Code:

@: iconst_0

1: istore_0

2. goto 11

5: iinc 1, d g
i ine;

8: 1inc 9, 1

11: iload_0

12: iconst_5

13: if_icmple 5 k-
16: iload_1

17: i2l

18: lreturn

BeMedifedBytecode

D Modified Timnle code

public long calculate(int testNumber)

for(int i=0;1<=5;1i++) {
testNumber=testNumber+l;

}

return testNumber;

Source code

An example fault injected using SSFI
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Evaluation Results

m Evaluation Setup

Systems used for evaluation
m Three anomaly detectors

Systems Workload Descrition

Hadoop Wordcount A data processing system with MapRe- Deeplog (lOg based)
duce programming model and HDFS — MRD (metrics—based)

HaloDB CRUD A key-value store written in Java

Weka Bayes Classifica- A program that implements a collection of — READ (trace_based)

tion machine learning algorithms

Spark Wordcount A cluster-computing framework with
HDFS

Flink Wordcount A stream-processing framework
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Weka HaloDB Hadoop Spark Flink
Fig.6 An overview of the injected faults Fig. 7 Different types of anomalies
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Evaluation Results

m Silent Early Exit anomalies, more frequent in distributed systems due to
incomplete error-resilience mechanisms

public class DefaultSpeculator extends AbstractService

0-6 _ implements Speculator {
0.5 I protected void serviceStart() throws Exception {

' 1N Runnable speculationBackgroundCore
0.4 = new Runnable() {

1 i @0verride
0.3 M public void run() {
"y ’ ’ } o
H b

0.1 speculationBackgroundThread = new Thread

g A ,,.Hrﬂ 1 ’ \]J s H o (speculationBackgroundCore, "processing");

SBE DBE SEE DEE  SHANG DHANG SDC  DDC speculationBackgroundThread.start();
_ super.serviceStart();
OWeka OHaoDB OHadoop OSpak OFlink }

The anomaly distribution in target systems The anomaly distribution in target systems
Explicitly record the error messages when designing the error-handling
mechanisms, regardless of whether the error is believed to be tolerated
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Evaluation Results

m The error reporting mechanisms, able to report the majority of the anomalies
(recall ranging from 82.1% to 92.8%) but with a high false alarm rate (26.6%)

100 92.8 94.8
90 82.1

80 68.99 71.3
70 63.6

60
50

40 31.2
30 23.81

20 |_‘ 10.8
10
. [ ]

Hadoop Spark Flink

DAnomalies reported Anomalies reported by logging
DAnomalies reported by JVM

Anomalies reported by distributed systems’ error reporting mechanisms

Simple methods are feasible, but get ready for frequent false alarms
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Evaluation Results

Log-based method, better overall detection results than trace-based and
metrics-based methods, but not for all anomaly types

State-of-the-art anomaly detectors, able to detect the existence of anomalies with
99.08% precision and 90.60% recall

100.00% — = P
90.00%
80.00%

The detection result of three anomaly detectors 10.00%
60.00%

50.00%

detector  precision recall f1-measure AT 0

Deeplog  99.08%  90.60% 94.65% 30-0024’
MRD 68.85%  79.52% 71.77% 200

10.00%

READ 87.13%  90.10% 88.59% i | |

0.00%

DEE DB SEE DB DBE DB DHANG DB SHANG DB

ODeeplog-precision D Deeplog-recall RE AD-precision READ-recall
The detection precision and recall for each anomaly type

Existing AD methods are powerful to decide whether there are anomalies
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Evaluation Results

m There is still a long way to go to pinpoint the accurate location of the detected
anomalies

The detection latency and locating accuracy of Deeplog and READ

detector detection  locating accuracy at locating accuracy at
latency class-level component-level
Deeplog 3.42% 29.34% 71.23%
READ 2.11% - 78.32%
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Summary

m A systematic approach to evaluating existing anomaly detectors

m A realistic software fault injection method for distributed systems

m Findings from the comprehensive evaluation give inspiration
for developers and researchers
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Q&A

SSFI project: https://github.com/alexvanc/ssfi
Email: yang.yong@pku.edu.cn
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