How Far Have We Come in Detecting
Anomalies in Distributed Systems? An
Empirical Study with a Statement-level Fault
Injection Method

Yong Yang', Yifan Wu', Karthik Pattabiraman? , Long Wang?, Ying Li’

Peking University’
University of British Columbia?
IBM Watson?®

!
N

W IBM Watson

Background

Distributed systems widely deployed in various sectors

With the increasing scale and complexity, distributed systems suffering from
frequent software and hardware faults

The early detection of the symptoms of failures, i.e. anomalies, can mitigate or
even prevent severe failures

‘| _ DataNode Instance ! _NameNode Instance .
Component|
pependency Instance | :
: - - < - - :
Error Error Error Error
Reporting Retilience Reporting Resilience
Error 4[
Error Propagation ‘@
Hardware
The Evolvement The Dependency between
: -
of Faults Services/Components

The evolvement of faults in distributed systems (Hadoop)

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault P2
Injection Method

Background

m A variety of Anomaly Detection(AD) methods
m Log-based methods: Deeplog!?l, PCA approach®!, etc.
m Metrics-based methods: LSTM-AD!*, Information-theoretic approach®!, ezc.
m Trace-based methods: READ!®!, Path similarity approach!”), efc.

What are the advantages and the disadvantages of various anomaly detectors?

No one has tried to systematically evaluate anomaly detectors of distributed systems

to explore how far we have come and how we should move forward.

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

Motivation

A fault injection method that can simulate realistic faults to generate a wide
variety of anomalies is the prerequisite for comprehensively evaluating anomaly
detectors

m Bit-flip FI techniques, inefficient in distributed systems

m Injecting failures cannot simulate realistic faults

m Existing code-change FI techniques, only covering few types of faults

L.'|.“- al oo Mavwlhanvanatival cacallaadV aa

prlvate static class DeprecatedKeyInfo {

Limited coarse-grained failures cannot private final String[] newKeys;
'lﬁPresent the H lanoma private final String getWarningMessage(String key) {
€ process o 2 aultevolving m String warningMessage;
failure is missing if(customMessage == null) {

StringBuilder message = new StringBuilder(key);

message .append(deprecatedKeySuffix);

for (int 1 = @; 1 < newKeys.length; i++) {
message .append(newKeys[i]);

}

warningMessage = message.toString(Q);

}

return warningMessage;

}
i

);

A code snippet from Hadoop
A code snippet from Hadoop(NodeManager)

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault P4
Injection Method

Overview

A systematic approach to evaluate the efficacy of anomaly detectors

Workload Resource Distributed
Generator Monitor tracer
Start service Monitor Trace request
reqiests resource usage processing
1 FaEJIt ’ ‘ ' : ' Request
Injection Component 1 Component 2 | execution
with SSFI ¢) . path—

Inject faults Fault o Detect
Activated Error __.| Resource . dAe e:: lon
Run i Error usage and Analysis

Executables @ Propagation - | | Ysage |

Error Error I:l I:l — Log

Reporting Resilience messages

N J . 4
| senvice 2.1: Anom_aly
A targeting system . output Characterizat

An overview of the evaluation approach

RQ1: What’s the pattern of anomalies in distributed systems?

Record faults

Injection
Information

RQ2: To what extent do distributed systems, by themselves, report the anomalies?

RQ3: To what extent do state-of-the-art anomaly detectors detect anomalies of
different types?

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault P5
Injection Method

Fault Injection Methodology

m Fault Model

m Faults on a single statement : based on an analysis of elements of 8 fundamental statements

m Faults on multiple statements : based on an analysis of the real software bugs found in the recent

bug study'® of Openstack

The fault model of SSFI
Fault Type Fault Source Statements Description Corresponding Bugs in Openstack [.8.]
VALUE_CHANGE left/right operand AssignStmt Add/subtract/zero/negative/change a vari- Wrong SQL Value, Wrong Parameter

able to a certain value

Value, Wrong SQL Where, Wrong SQL
Column, Wrong Value, Missing Parame-
ters, Wrong Parameter Order, Wrong Ta-
ble, HOG

NULLIFY left/right operand AssignStmt Set an object/pointer to NULL Missing Key Value Pair, Missing Dict
Value
EXCEPTION_SHORTCIRCUIT the only operand ThrowStmt Directly throw one of the declared excep- Wrong Return Value
tions or the exceptions in try-catch block
INVOKE_REMOVAL - InvokeStmt Remove a method invoking statement Missing Function Call, Missing Method
without return values Call
ATTRIBUTE_SHADOWED the left operand AssignStmt Exchange the field and the local variable =~ Wrong Variable Value
(with same name and type)
CONDITION_INVERSED binary logical operation IfStmt Inverse the if-else block Wrong API use
CONDITION_BORDER binary logical operation IfStmt Replace the logical operation with one =~ Wrong Access Method
arithmetic operation including/excluding
the border value
SWITCH_FALLTHROUGH destination label/address GotoStmt Add/Remove a break between two cases Wrong SQL Column
of the switch structure
SWITCH_MISS_DEFAULT destination label/address SwitchStmt Remove the default case process block of Wrong Acess Key
the switch structure
SYNCHRONIZATION - SyncStmt Delete the synchronization modifier for a ~ Missing Sync Annotation
method/block
EXCEPTION_UNCAUGHT bugs in Openstack ThrowStmt Directly throw an undeclared exception for =~ Missing Exception Handlers
GotoStmt a method or a try-catch block
EXCEPTION_UNHANDLED bugs in Openstack AssignStmt Remove all the statements in the catch Inject Resource Leak
ThrowStmt block
GoToStmt
How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault P6

Injection Method

Fault Injection Methodology

m SSFI Overview
SSFI(Statement-level Software FI), able to inject 12 different types of software faults into

software systems that can be compiled into Bytecode. SSFI also provides always/random

activation mode for each fault

e SSFI-
C— !
Egecm:tables i Bytecode - Jimple IR . Fault
(*.jar *.class) | Parser Weaver
| —
Y
Configuration | Config _| Fault type, Jimple IR Converter — If:sﬁ Lg?:lﬁ[s
file | Parser location, etc. with a fault | (jar *.class)
. >4

An overview of SSFI’s fault injection process

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault P7
Injection Method

Fault Injection Methodology

public long calculate(int testNumber)

{
for(int 1=0;i<5;1i++) {
testNumber=testNumber+1l;
}
return testNumber:; public long calculate(int)
{
} A: Source code WorkBench this;
long $stacks;
int testNumber, 1i;
this := @this: WorkBench;
public long calculate(int); testNumber := @parameter®: int;
Code: i=0;
; Bytecode P ?
0: iconst_0 , yreeore —arer N goto label2;
1: istore_2 parses runnable bytecode labell:
2: goto 11 into Jimple code testNumber = testNumber + 1,
Dt 1166 1, 1 1=1+1;
8: iinc Zy 1 label2:
11: iload_2 if 1 < 5 goto labell;
12: iconst_5 $stack5 = (long) testNumber;
13: if_icmplt 5 return $stacks;
16: iload_1 ¥
Fault/hjdton parameters _
from & ohfigtBarser (fault C: Jimple code
t location, etc.
P %ytecode
An example fault injected using SSFI
How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault PS8

Injection Method

Fault Injection Methodology

public long calculate(int)
{
WorkBench this;
long $stacks5;
int testNumber, 1i;
this := @this: WorkBench;

pt public long calculate(int);

{

testNumber := @parameter®: int;

1i=0;

goto label?2;

labell:
testNumber = testNumber + 1;
i=1+1;

label2:
if 1 < 5 goto labell;
$stack5 = (long) testNumber;
return $stackS;

C: Jimple code

Fault injection parameters

Converter compiles thq)
L

modified Jimple code into
runnable bytecode with an

FAREWE e
modifies the Jimple

code to injected a
specified fault }

{

from Config Parser (fautt
type, location, etc.

}

Code:

@: iconst_0

1: istore_0

2. goto 11

5: iinc 1, d g
i ine;

8: 1inc 9, 1

11: iload_0

12: iconst_5

13: if_icmple 5 k-
16: iload_1

17: i2l

18: lreturn

BeMedifedBytecode

D Modified Timnle code

public long calculate(int testNumber)

for(int i=0;1<=5;1i++) {
testNumber=testNumber+l;

}

return testNumber;

Source code

An example fault injected using SSFI

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault

Injection Method

P9

Evaluation Results

m Evaluation Setup

Systems used for evaluation
m Three anomaly detectors

Systems Workload Descrition

Hadoop Wordcount A data processing system with MapRe- Deeplog (lOg based)
duce programming model and HDFS — MRD (metrics—based)

HaloDB CRUD A key-value store written in Java

Weka Bayes Classifica- A program that implements a collection of — READ (trace_based)

tion machine learning algorithms

Spark Wordcount A cluster-computing framework with
HDFS

Flink Wordcount A stream-processing framework

Dinactivated Oactivated

T 138 15150 2075 1121 1220

90%
80%
70%
60%

N
50% 19862 108780 Y Y
47 19925 20847 $ $
? 43122 g g

30%
20%
10%

0%

Weka HaloDB Hadoop Spark Flink
Fig.6 An overview of the injected faults Fig. 7 Different types of anomalies
How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault P10

Injection Method

Evaluation Results

m Silent Early Exit anomalies, more frequent in distributed systems due to
incomplete error-resilience mechanisms

public class DefaultSpeculator extends AbstractService

0-6 _ implements Speculator {
0.5 I protected void serviceStart() throws Exception {

' 1N Runnable speculationBackgroundCore
0.4 = new Runnable() {

1 i @0verride
0.3 M public void run() {
"y ’ ’ } o
H b

0.1 speculationBackgroundThread = new Thread

g A ,,.Hrﬂ 1 ’ \]J s H o (speculationBackgroundCore, "processing");

SBE DBE SEE DEE SHANG DHANG SDC DDC speculationBackgroundThread.start();
_ super.serviceStart();
OWeka OHaoDB OHadoop OSpak OFlink }

The anomaly distribution in target systems The anomaly distribution in target systems
Explicitly record the error messages when designing the error-handling
mechanisms, regardless of whether the error is believed to be tolerated

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault P11

Injection Method

Evaluation Results

m The error reporting mechanisms, able to report the majority of the anomalies
(recall ranging from 82.1% to 92.8%) but with a high false alarm rate (26.6%)

100 92.8 94.8
90 82.1

80 68.99 71.3
70 63.6

60
50

40 31.2
30 23.81

20 |_‘ 10.8
10
. []

Hadoop Spark Flink

DAnomalies reported Anomalies reported by logging
DAnomalies reported by JVM

Anomalies reported by distributed systems’ error reporting mechanisms

Simple methods are feasible, but get ready for frequent false alarms

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault P12
Injection Method

Evaluation Results

Log-based method, better overall detection results than trace-based and
metrics-based methods, but not for all anomaly types

State-of-the-art anomaly detectors, able to detect the existence of anomalies with
99.08% precision and 90.60% recall

100.00% — = P
90.00%
80.00%

The detection result of three anomaly detectors 10.00%
60.00%

50.00%

detector precision recall f1-measure AT 0

Deeplog 99.08% 90.60% 94.65% 30-0024’
MRD 68.85% 79.52% 71.77% 200

10.00%

READ 87.13% 90.10% 88.59% i | |

0.00%

DEE DB SEE DB DBE DB DHANG DB SHANG DB

ODeeplog-precision D Deeplog-recall RE AD-precision READ-recall
The detection precision and recall for each anomaly type

Existing AD methods are powerful to decide whether there are anomalies

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault P13
Injection Method

Evaluation Results

m There is still a long way to go to pinpoint the accurate location of the detected
anomalies

The detection latency and locating accuracy of Deeplog and READ

detector detection locating accuracy at locating accuracy at
latency class-level component-level
Deeplog 3.42% 29.34% 71.23%
READ 2.11% - 78.32%
How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault P14

Injection Method

Summary

m A systematic approach to evaluating existing anomaly detectors

m A realistic software fault injection method for distributed systems

m Findings from the comprehensive evaluation give inspiration
for developers and researchers

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault
Injection Method

Q&A

SSFI project: https://github.com/alexvanc/ssfi
Email: yang.yong@pku.edu.cn

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault P16
Injection Method

References

[1] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet services fail, and what can be done about it?” in
USENIX symposium on internet technologies and systems, vol. 67. Seattle, WA, 2003.

[2] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and diagnosis from system logs through deep
learning,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017,
pp. 1285—-1298.

[3] Wei Xu, Ling Huang, Armando Fox, David Paerson, and Michael I Jordan. 2009. Detecting large-scale system problems
by mining console logs. In Proc. ACM Symposium on Operating Systems Principles (SOSP). 117-132.

[4] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term memory networks for anomaly detection in time series,”
in Proceedings. Presses universitaires de Louvain, 2015, p. 89.

[5] M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. Ward, “Effi- cient fault detection and diagnosis in complex software
systems with information-theoretic monitoring,” IEEE Transactions on Dependable and Secure Computing, vol. 8, no. 4, pp.
510-522, 2011.

[6] Y. Yang, L. Wang, J. Gu, and Y. Li, “Transparently capturing request execution path for anomaly detection,” 2020.

[7]1 Y.-Y. M. Chen, A. J. Accardi, E. Kiciman, D. A. Patterson, A. Fox, and
E.A.Brewer,Path-basedfailureandevolutionmanagement. University of California, Berkeley, 2004.

[8] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti, “How bad can a bug get? an empirical analysis of
software failures in the openstack cloud computing platform,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2019, pp.
200-211.

How Far Have We Come in Detecting Anomalies in Distributed Systems? An Empirical Study with a Statement-level Fault P17
Injection Method

