TensorFI: A Flexible Fault Injection Framework for TensorFlow Applications

Zitao Chen & Niranjhana Narayanan, Bo Fang, Guanpeng (Justin) Li, Karthik Pattabiraman, Nathan DeBardeleben
Motivation

- ML is increasingly deployed in safety critical systems
- ML reliability becomes important
 - Soft errors or transient hardware faults: Occur every 53m in 1m nodes*
 - ISO26262 safety standard requires low FIT (10 for ASIL-D level 4) for road vehicles

Error Consequences: Autonomous Vehicles

- Single-bit fault → Misclassification of image
 - Guanpeng Li et al., “Understanding Error Propagation in Deep Learning Neural Network (DNN) Accelerators and Applications”, SC’17
Current Solutions: Fault Injection

- **Generic Fault Injection (FI)**
 - Non-optimal for DNN applications, costly performance
 - Low level, not readily accessible to users

- **ML specific FI**
 - ML models coupled with hardware faults or the platforms used
 - Limited number of ML models supported
Our Goal

- Inject faults into any generic ML program
- Emulate both hardware and software faults
- High level, easy to use and understand
- Highly portable across platforms

TensorFlow is an open source, popular framework
TensorFlow v1 Workflow

- ML algorithms are expressed as dataflow graphs

```python
#!usr/bin/python
import tensorflow as tf

W = b = tf.Variable([0.3], dtype=tf.float32)
X = Y = tf.placeholder(tf.float32)
linear_model = W*X + b
...
train = tf.train.GradientDescentOptimizer(0.01).minimize(error)
...
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(1000):
        sess.run(train, {X: x, Y: y})
```
Fault Model

- Faults injected only during the inference phase
- Faults injected at TF operator output level (interface-level injection)
- Emulates faults occurring at processor’s datapath
 - Arithmetic operators (add, matmul, concat, conv2d, ..)
 - Operators dealing with shape of tensor excluded
- Faults can be
 - Single bit-flips (now multi-bitflips too)
 - Random value changes
 - Zeroed out tensor values
Fault Injection Challenges

- **Problem:** Tapping into particular node during runtime is not possible
TensorFI Approach

- **Solution:** Duplicate graph and choose the node at runtime!
TensorBoard Visualization: Linear Regression

Before calling TensorFI: Original graph

After calling TensorFI: Duplicate FI nodes inserted
TensorFI Usage Example

```python
#usr/bin/python

import tensorflow as tf
import TensorFI as tfi

W = b = tf.Variable([0.3], dtype=tf.float32)
X = Y = tf.placeholder(tf.float32)

linear_model = W*X + b

... 
train = tf.train.GradientDescentOptimizer(0.01).minimize(error)

... 
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(1000):
        sess.run(train, {X: x, Y: y})

fi = tfi.TensorFI(sess, name="linear_reg", logLevel=50, disableInjections=True)

W_, b_, e_ = sess.run([W, b, error], {X: x, Y: y})

fi.turnOnInjections()

W_i, b_i, e_i = sess.run([W, b, error], {X: x, Y: y})
```
Example Output for a GAN model

- Generated images of the digit 8 in the MNIST data-set under different fault configurations for Generative Adversarial Networks (GANs)

No faults

Rand-element

Single bit-flips

oneFaultPerRun dynamicInstance errorRate=0.25 errorRate=0.5 errorRate=1.0

Increasing number of faults
Benchmarks & Experimental Setup

- 12 ML models used
 - Basic, DNNs: NN, CNN, FCN, LeNet, AlexNet, Highway CNN, RNN, VGG-11, ResNet-18, SqueezeNet
 - Driving: Comma.ai driving model
 - Unsupervised: GAN

- 4 open source datasets
 - MNIST, GTSRB (traffic sign), ImageNet, driving frame dataset

- $10000*(15*11 + 3*6*2 + 13) \approx 2$ million fault injections

- Silent Data Corruption (SDC) chosen as the standard metric
 - Output mismatch from the fault-free execution
Research Questions

- Fault tolerance of different operators in a single ML model
- Fault tolerance of different ML models under different error modes
- Fault tolerance of different ML models under different error rates
- Instrumentation and injection overheads of TensorFI
Results: Fault Tolerance of Different Operators

- Faults in the convolution layers are more likely to propagate and amplify.
- Faults in output layers (softmax, argmax, equal) almost always result in SDC.
Results: Different Models under Different Error Modes

- RNN exhibits the highest resilience in single fault mode, but loses to more faults
- AlexNet has overall high resilience as it has more operators that mask faults (RQ1)
- Comma.ai models have higher SDC rates than most classifier models
Case Study: Effect of Hyperparameter Variations (NN)

- SDC rates decrease with increase in number of neurons
- Layer redundancy has an optimal point (here, 3 layers)

Key: Choose redundancy carefully
Summary: TensorFI

- Built a flexible fault injector for injecting h/w and s/w faults in the TF graph
 - High level representation of faults
 - Portable, configurable, compatible with third-party libraries that use TF

- Used TensorFI to evaluate and study the resilience of 12 ML applications under different fault configurations, including ones used in AVs

- Demonstrated the utility of the tool to improve resilience of selected applications via hyperparameter optimization and selective layer protection
 - Try out TensorFI: https://github.com/DependableSystemsLab/TensorFI
 - For information, doubts and clarifications, contact: nniranjhana@ece.ubc.ca