Among the most important drug molecules in use today are organic compounds isolated from organisms such as bacteria, plants, and fungi. These molecules, known as natural products, have an incredible diversity of chemical structures and biological activities. These compounds include well-known antibiotics such as vancomycin and penicillin, and the newest generation of antibacterial agents such as daptomycin. The most important anti-cancer drugs, including taxol, doxorubicin, and vinblastine are also compounds isolated from living organisms.

My research group seeks to understand how natural products are made. Living organisms synthesize complex molecules without any of the ostensible advantages of an organic chemist, such as access to high temperatures and to solvents. Critical to the assembly of these molecules are enzymes, protein catalysts, that construct these complex natural product molecules from simple and biologically available precursors. Recent technological advances in chemical biology have provided us with the tools to ask fundamental questions about how these molecules are made. For instance, which genes encode the necessary enzymes? What are the underlying mechanisms of these enzymes? Can we re-engineer these enzymes to catalyze the production of derivatives of the original natural products?

My research team is working to isolate new biosynthetic pathways from microbes, to engineer enzymes to catalyze new reactions, and to generate natural product derivatives through combinatorial engineering and chemo-enzymatic synthesis. One of our major tools is macromolecular X-ray crystallography. We crystallize biosynthetic enzymes and determine their three-dimensional structures to provide a structural basis for understanding the catalytic mechanisms of these powerful protein machines. Overall, our research leverages a wide range of tools from chemistry and biology: structural biology, protein engineering, microbial genetics, natural product extraction, enzymology, and genomic analysis.

We are currently seeking outstanding postdoctoral fellows to join our group. Please email me ( with your CV and statement of interest. Postdoctoral fellows with experience in bacterial genetics, chemistry, and X-ray crystallography are especially welcomed to apply.

Graduate student inquiries are welcome. A prerequisite to admission into my group is admission into Chemistry – please see the Chemistry homepage for more information (