
Evaluating the Performance of CSB+-Trees on Multithreaded Architectures

Layali K. Rashid and Wessam M. Hassanein
Department of Electrical and Computer Engineering

University of Calgary

{lrashid@, hassanein@enel.}ucalgary.ca

ABSTRACT

Modern architectures have made considerable increases in
processor speed and performance. However, Database
Management Systems (DBMSs) fall far short from
achieving their ideal performance. DBMSs are widely used
in almost every large organization. Therefore, it is important
to achieve fast data retrieval and processing. Recent studies
have shown that more than 50% of the execution time in
database operations is spent waiting for data. CSB+-trees
were introduced to speedup index structure operations,
mainly the search and update. In this paper we propose a
multithreading technique to utilize the two threads available
in an Intel Pentium 4 Hyperthreaded (HT) platform. Our
technique gains speedup ranging from 29% to 70% for dual-
threaded CSB+-tree on an HT enabled platform compared
to a single-thread version running on HT disabled
architecture.

1. INTODUCTION

Hiding the gap between the memory hierarchy and CPU
speeds has been the aspiration of many prior researches. As
DRAM sizes are getting larger, more research is targeting
memory-resident data, i.e. datasets reside entirely in main
memory. Considerable efforts have been made to hide cache
access latency by either reducing the number of cache
misses [14] or overlapping latencies with other useful work
[16]. DBMS, in particular, data retrieval and update is an
attractive candidate for these optimizations since it usually
undergoes high memory load and store miss rates. Modern
architectures such as Simultaneous Multithreaded
architectures (SMT) aids the use of multiple threads
executing the same program. Therefore, special
understanding of the underlying architecture should pave
the way onto generating more cache-friendly programs.
Cache Conscious B+-trees (CSB+-trees) improve the
traditional B+ tree by storing the child nodes sequentially.
Therefore, only the address of the first child has to be kept
in the node, while other child nodes will be accessed
implicitly by using the first child address. This improves
cache line utilization. While CSB+-tree proves to have
significant speedup over B+-trees, experiments show that
large fraction of its execution time is still spent waiting for
data. SMT allows multiple execution streams to share some
resources in one physical processor. Although several
papers have studied the CSB+-tree behavior, there have
been few papers studying the interaction of multiple threads
running CSB+-tree on SMT platform. In this paper we

evaluate the CSB+-trees widely used search operation on
Intel Pentium 4 Hyperthreaded (dual thread SMT)
architecture. Our dual-threaded CSB+-tree search achieves
speedup ranging from 29% to 70% compared to a single
thread with HT-off architecture. Most of the performance
we gained is due to constructive patterns observed between
threads at the unified secondary cache level. The rest of the
paper is arranged as follows: Section 2 gives a background
about B+-tree and CSB+-tree index structure. Section 3
surveys the previous work done to improve CSB+-trees. In
Section 4 we propose our multithreaded CSB+-tree. Section
5 explains our experimental methodology. In Section 6 we
analyze our results. Finally we conclude in Section 7.

2. BACKGROUND

B+-tree [7] is an index data structure. It consists of a root,
internal nodes and leaves. It’s designed to manage data
efficiently and supports entry retrieval, addition and
removal. In a B+-tree, which is a variant of the B-tree, each
internal node is of the form <key k, pointer ptr>, where the
k directs the search operation towards the next proper node,
and ptr points to a child node in the tree. The leaf is of the
same structure; given that k is the key for the tuple, and ptr
is the tuple pointer. Therefore, the actual data resides on
leaves (external nodes) only. All leaves are connected
together by forward and backward pointers. If a B+-tree is
of x order, then each internal node has between x and 2x+1
keys. A node with y keys has y+1 children. To insert into a
B+-tree, a search for the proper leaf to which the new item
should be inserted occurs. If the leaf has enough space then
the new item is added to it and the insert function
terminates. Otherwise, another leaf needs to be allocated
and the entries redistributed between the two leaves equally.
A copy of the middle key and the new leaf pointer is saved
in the parent node. If the parent node is full then it is split
using the same technique. To delete an item, usually lazy
deletion is used, since other operations (e.g. search) are used
more frequently. In lazy deletion a search for the specified
entry occurs, and it is de-allocated. No further tree
adjustment is needed. In contrast to lazy deletion, other
deletion algorithms might require keys redistribution to
ensure that each node has at least x (where x is the order of
the tree) keys. This can be done by borrowing from a sibling
node. Toward making B+-tree more cache conscious for in-
memory indexing techniques, Rao and Ross [14] introduced
Cache-Sensitive B+-tree (CSB+). In contrast to the B+-tree,
each internal node in a CSB+-tree has one pointer to the
first child in a group of children nodes. Each node in the

group is of size one cache line (e.g. 128 byte). Thus, keys
inside the node are stored physically adjacent in one cache
line. The head of each group is found explicitly by
referencing its pointer in a parent node, other nodes are
visited by offsetting this address. This technique reduces the
number of child node pointers in internal nodes. As result,
search, insert and delete operations will process using a
lower number of cache lines and the tree consumes less
memory. Leaf nodes in CSB+ trees are similar to B+-trees.
In SMT architectures [15] multiple logical processors share
or duplicate the resources of one physical processor. The
efficiency of this technology is largely dependent on the
application properties; this is essentially identified by how
these programs utilize the available resources. For example,
if one application is computation-intensive meaning that it
uses execution units heavily, while the other thread is
spending most of its time waiting for data from disk storage,
then we expect SMT to show high throughput compared to
a same environment used by one application only. Intel’s
implementation of SMT is called Hyper-Threading
Technology (HTT) [4]; it allows two threads to issue their
instructions simultaneously, sharing mainly L1 and L2
caches, the Trace Cache (TC), the Data Translation
Lookaside Buffer (DTLB), and execution units. The
Instruction Translation Lookaside Buffer (ITLB) and some
other buffers are duplicated.

3. RELATED WORK ON IMPROVING CSB+-TREE

This section provides a survey on the related work that has
been made to enhance the performance of cache conscious
index structures. Rao and Ross [13] presents a Cache
Sensitive Search (CSS), they eliminate all child pointers to
effectively increase cache line utilization by storing the tree
in an array data structure called directory. Therefore, nodes
are accessed by performing computation on array offsets
rather than dereferencing child pointer as in B+-trees. As a
CSS-tree has to rebuild the whole tree on every insert
operation, Rao and Ross in [14] propose CSB+-tree, which
is an update-friendly cache conscious B+-tree. For both CSS
and CSB+-trees, the authors argue that cache line size is the
optimal node size. Whereas R. Hankins et al in [9] show
that a CSB+-tree with a node size of 512 bytes and more
will be optimal for a machine with 32 byte cache line size.
Chen, Gibbons and Mowry in [6] proposed pB+-tree. They
rely on creating larger node sizes and arrays of pointers to
children nodes to assist prefetching data ahead of its usage.
All previous papers present algorithms and memory access
methodologies to improve index structure, mainly CSB+-
tree, assuming that their code will be executed by a single
thread. Current hardware platforms often have more than
one processor working in one system. These systems can be
in a form of Symmetric Multiprcocessors (SMP), or
Simultaneous Multithreading (SMT). Authors in [5] present
a latch-free index traversal (OLFIT) concurrency control
design to facilitate the execution of multiple search and
insert operations running concurrently on an SMP platform.

Their results for search operation show good scaling while
increasing the number of CPUs. However, we expect SMT
platform to have different memory behavior since some
vital resources such as L1, L2 and execution units are
shared between running threads. J. Zhou et al in [16] use a
prefeching thread that works simultaneously with the main
thread which executes a staged version from CSB+-tree,
they were able to decrease main thread cache misses by
transferring them to the helper one. In this research we use
SMT environment to allow two threads to access the same
memory index data structure simultaneously to perform data
retrieval, depending on the fact that multiple data reads will
not create any type of data-hazards.

4. MULTI-THREADED CSB+-TREE

A CSB+-tree is designed to force serialized execution of
any requested queries. When using the SMT environment,
running CSB+-tree queries serially neglects the fact that
there are two streams of execution that can be initiated
simultaneously to carry out multiple operations. If one
thread is used in an SMT enabled platform, resources
divided between the two threads will be significantly
underutilized. On the other hand, some shared resources
such as caches and execution units might be contended
when serving two threads, possibly resulting in slowdowns
for both. This paper presents a dual-threaded CSB+-tree
implementation optimized for SMT architectures. The
OpenMP Application Program Interface (API) [1] is
designed to assist FORTRAN and C/C+ programmers to
parallelize applications in a shared memory environment, by
providing a set of compiler directives, functions and
environment variables. We use the OpenMP library to
initiate two threads to execute queries that arrive to the
CSB+-tree. To be fair when comparing any potential
improvement SMT would give, we run our experiment on
the same machine with SMT enabled and disabled. In this
way we ensure that for the case of one thread, all the
machine resources will be devoted to process instructions
which belong to this thread only, while when enabling
SMT, we use our multithreaded version of the CSB+-tree.
To implement our dual-threaded version of the CSB+-tree
we use the following steps: (1) Since the bulkloading is
done only once when building the tree and before any
queries appear, therefore one thread is enough to perform
bulkloading. (2) We implement simultaneous execution of
multiple searches. Similar to B+-tree, searches involve
reading keys and computing which route to traverse until
the target leave is reached, then the tuple pointer is
dereferenced. Multiple concurrent reads of the tree do not
generate hazards of any kind. For inserts, first we have to
locate the appropriate node for the new entry in the tree,
which is achieved by a search operation, if this node has
space then the new key is added, otherwise the node is split
as described earlier. This means that a new node might be
allocated and some keys will be moved during an insert, so
the tree will appear in a non-stable condition to the other

thread. Unless some synchronization directives are used, we
don’t carry out multiple inserts at the same time. For
deletes, CSB+-tree uses a lazy deletion technique, where the
target key is found then removed. Previous research [8]
shows that semaphores have a positive effect on
performance when used to limit memory access to one
thread at a time. In this research we illustrate CSB+-tree
simultaneous search operations, we used basic search
approach [14]. Basic search implemented using a while loop
to perform a binary search [12]. Rao and Ross analyze other
search techniques depending on code expansion. We
concentrate on the basic approach, since it’s widely used in
index searches due to its simplicity and small code size.

5. EXPERIMENTAL METHODOLOGY

We conduct our experiments on a 3.4GHz Pentium 4
processor with HyperThreading technology (HT). Our
Pentium 4 processor has a 64KB on-chip data cache, a 12K
micro-operation instruction trace cache, and a unified 2MB
secondary cache with 128 byte cache lines. Our machine
has a 1GB 533MHz DDR2 SDRAM memory, an 800MHz
front side bus, and a 160GB SATA, 7200 RPM hard disk
drive. All our experiments fit in main-memory. We use the
Scientific Linux version 4.1 operating system which is
based on the Redhat Linux Enterprise version 4.0. We
implement CSB+-tree bulkload and search operations in C
and use the OpenMP API. We compile our code using the
Intel C++ Compiler for Linux version 9.1 [2] with full
optimizations. The Intel compiler supports OpenMP C/C++
[1] version 2.5. Our bulkload implementation is similar to
[14], where the tree is filled level by level. The keys are
generated randomly from 1 to 10 million. The node size is
128 bytes (one cache line). Each internal node has 30 keys,
the number of keys used, and one pointer to the first child
node in a group that has a maximum of 31 children. A leaf
node contains a maximum of 14 pairs of <tuple pointer,
key>, the number of items in the current leaf, and backward
and forward pointers. All keys, pointers, and tuple
identifiers are 4 bytes each. We use the VTune Performance
Analyzer 3.0 for Linux [3] to collect our events using the
performance counters available in the Pentium 4 processor.
We repeat every run five times, remove the outliers and take
the average. Timing measurements are done through our
CSB+-tree program and use wall-clock time. We switch
hyperthreading on and off using the system BIOS.

6. RESULTS

To compare our dual-threaded CSB+-search operation
against the original single-threaded version, we perform
experiments similar to those done by [14]. First we bulkload
the CSB+-tree with a number of items (records) ranging
from 100 and up to 107, then we run 200,000 searches;
100,000 on each thread. Figure 1 shows that the proposed
dual-threaded CSB+-tree has a speedup ranging from 29%

for a 100-item tree and up to 70% for a 1000-item tree. For
107 entries, we obtained a speedup of approx. 67%.

Figure 1: CSB+-tree search timing.

Figure 2 shows mostly a constructive effect for the 2MB
unified L2 cache load miss rate. For trees bulkloaded with
items less than 106, the space used is less than 2MB (refer to
[14] for memory space equations), so most loads generated
by the search function hit either in the L1 or the L2 cache.
While for trees with large number of entries (>106), we can
see that having two threads working on the same dataset
(CSB+-tree in our case) will result in one thread pre-
fetching data for the other, this agrees with results in [10]
showing constructive behavior at L2 cache level.

Figure 2: L2$ Load Miss Rate

Figure 3 shows the L1 data cache load miss rate. Using two
threads gives a slightly worse results than a single thread
version for large datasets. We expect that the 64KB L1 data
cache is too small to store data fetched by thread one until
the data used by thread two. Trees with items less than 103
are using memory space less than 64KB. Therefore, they are
exhibiting very small L1 data cache miss rates. The Trace
Cache (TC), used as the L1 instruction cache, stores
decoded instructions. Figure 4 shows the trace cache miss
rates. Although the TC is a shared resource, access to the
TC is granted to one thread at a time in a clock-cycle
alternating fashion [4]. This fact together with the
destructive behavior of the two threads create a significant
increase in the TC miss rates for the two-thread version of
the search operation. However, the absolute values of the
TC miss rates are small. Temporal locality plays a good role
in reducing these effects for large trees.
The Pentium 4 Processor has a 64 fully associative Data
Translation Lookaside Buffer (DTLB); it’s used to translate
virtual memory addresses to physical addresses. It is also a
shared component in the memory subsystem [4]. Figure 5
shows an increase in the DTLB miss rates using dual

threads while using items more than 104. Figure 6 shows the
Instruction Translation Lookaside Buffer (ITLB) miss rates.
The ITLB is visited on a TC miss. Our results show that the
two-thread version is experiencing low ITLB miss rates
since each thread has its own ITLB component.

Figure 3: L1$ Load Miss Rate

Figure 4: L1-I Trace Cache Miss Rate

Figure 5: DTLB Load Miss Rate

Figure 6: ITLB Miss Rate

In summary, we analyzed the behavior of a dual-threaded
search operation on CSB+-tree using HT technology. We
concentrate on the memory system activities since CSB+-
tree spends it’s time mainly loading and storing data [14].
We find that HT slightly decreases the performance of L1
data cache and DTLB. Our results show a larger

performance degradation for the TC. However, the thread
constructive pattern in the L2 cache (saving in L2 load miss
rate is up to 26% for 106 items) of the dual thread CSB+-
tree creates a speedup from 29% to 70% over the single
threaded version.

7. CONCLUSION

In this paper we propose a parallelized version of CSB+-tree
for the search operation, where two threads share the same
memory index structure and retrieve data in parallel. We
compare our dual-threaded CSB+-tree while HT is enabled
to a single thread version from CSB+-tree while HT is
disabled for the same architecture. Our results show a
constructive behavior between the two threads at the L2
cache level and ITLB, and destructive pattern in Trace
Cache and DTLB. The L2 and ITLB constructive behavior
is able to outweigh other negative effects and result in a
speedup from 29% to 70%.

 REFERENCES

[1] http://www.openmp.org/drupal/
[2]http://www.intel.com/cd/software/products/asmo-
na/eng/compilers/277618.htm
[3] http://www.intel.com/software/products/vtune/.
[4]http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hy
per_threading_technology.pdf
[5] S. Cha, S. Hwang, K. Kim, K. Kwon. “Cache-Conscious Concurrency
Control of Main-Memory Indexes on Shared-Memory Multiprocessor
Systems”. In Proceedings of Very Large Data Base (VLDB), 2001.
[6] S. Chen, P. Gibbons, T. Mowry. “Improving Index Performance
through Prefetching”. In Proceedings of Special Interest Group on
Management of Data (SIGMOD), 2001.
[7] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2),
1979.
[8] P. Garcia, H. Korth. “Multithreaded Architectures and The Sort
Benchmark”. First International Workshop on the Data Management on
New Hardware (DaMoN) ,2005.
[9] R. Hankins, J. Patel. “Effect of Node Size on the Performance of Cache
Conscious B+trees”. In Proceedings of Special Interest Group On
Management of Data (SIGMOD), 2003.
[10] W. Hassanein, M. Hammad, L. Rashid. "Characterizing the
Performance of Data Management Systems on Hyper-Threaded
Architectures". Proceedings of the 18th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD)
,2006.
[12] D. Knuth. “The Art of Computer Programming”. Volume 3: Sorting
and Searching, Third Edition. Addison-Wesley, 1997.
[13] J. Rao and K. Ross. “Cache Conscious Indexing for Decision-Support
in Main Memory”. In Proceedings of the Very Large Data Base
(VLDB),1999.
[14] J. Rao and K. Ross. “Making B+-trees Cache Conscious in Main
Memory”. In Proceedings of Special Interest Group on Management of
Data (SIGMOD), 2000.
[15] D. Tullsen, S. Eggers, H. Levy, "Simultaneous Multithreading:
Maximizing on-Chip Parallelism", In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, (ISCA),1995.
[16] J. Zhou, J. Cieslewicz, K.Ross, M. Shah “Improving Database
Performance on Simultaneous Multithreading Processors”. In Proceedings
of Very Large Data Base (VLDB), 2005.

