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ABSTRACT 

 

Modern architectures have made considerable increases in 
processor speed and performance. However, Database 
Management Systems (DBMSs) fall far short from 
achieving their ideal performance. DBMSs are widely used 
in almost every large organization. Therefore, it is important 
to achieve fast data retrieval and processing. Recent studies 
have shown that more than 50% of the execution time in 
database operations is spent waiting for data. CSB+-trees 
were introduced to speedup index structure operations, 
mainly the search and update. In this paper we propose a 
multithreading technique to utilize the two threads available 
in an Intel Pentium 4 Hyperthreaded (HT) platform. Our 
technique gains speedup ranging from 29% to 70% for dual-
threaded CSB+-tree on an HT enabled platform compared 
to a single-thread version running on HT disabled 
architecture. 
 
1. INTODUCTION 

 

Hiding the gap between the memory hierarchy and CPU 
speeds has been the aspiration of many prior researches. As 
DRAM sizes are getting larger, more research is targeting 
memory-resident data, i.e. datasets reside entirely in main 
memory. Considerable efforts have been made to hide cache 
access latency by either reducing the number of cache 
misses [14] or overlapping latencies with other useful work 
[16]. DBMS, in particular, data retrieval and update is an 
attractive candidate for these optimizations since it usually 
undergoes high memory load and store miss rates. Modern 
architectures such as Simultaneous Multithreaded 
architectures (SMT) aids the use of multiple threads 
executing the same program. Therefore, special 
understanding of the underlying architecture should pave 
the way onto generating more cache-friendly programs. 
Cache Conscious B+-trees (CSB+-trees) improve the 
traditional B+ tree by storing the child nodes sequentially. 
Therefore, only the address of the first child has to be kept 
in the node, while other child nodes will be accessed 
implicitly by using the first child address. This improves 
cache line utilization. While CSB+-tree proves to have 
significant speedup over B+-trees, experiments show that 
large fraction of its execution time is still spent waiting for 
data. SMT allows multiple execution streams to share some 
resources in one physical processor. Although several 
papers have studied the CSB+-tree behavior, there have 
been few papers studying the interaction of multiple threads 
running CSB+-tree on SMT platform. In this paper we 

evaluate the CSB+-trees widely used search operation on 
Intel Pentium 4 Hyperthreaded (dual thread SMT) 
architecture. Our dual-threaded CSB+-tree search achieves 
speedup ranging from 29% to 70% compared to a single 
thread with HT-off architecture. Most of the performance 
we gained is due to constructive patterns observed between 
threads at the unified secondary cache level. The rest of the 
paper is arranged as follows: Section 2 gives a background 
about B+-tree and CSB+-tree index structure. Section 3 
surveys the previous work done to improve CSB+-trees. In 
Section 4 we propose our multithreaded CSB+-tree. Section 
5 explains our experimental methodology. In Section 6 we 
analyze our results. Finally we conclude in Section 7. 
 

2. BACKGROUND 

 

B+-tree [7] is an index data structure. It consists of a root, 
internal nodes and leaves. It’s designed to manage data 
efficiently and supports entry retrieval, addition and 
removal. In a B+-tree, which is a variant of the B-tree, each 
internal node is of the form <key k, pointer ptr>, where the 
k directs the search operation towards the next proper node, 
and ptr points to a child node in the tree. The leaf is of the 
same structure; given that k is the key for the tuple, and ptr 
is the tuple pointer. Therefore, the actual data resides on 
leaves (external nodes) only. All leaves are connected 
together by forward and backward pointers. If a B+-tree is 
of x order, then each internal node has between x and 2x+1 
keys. A node with y keys has y+1 children. To insert into a 
B+-tree, a search for the proper leaf to which the new item 
should be inserted occurs. If the leaf has enough space then 
the new item is added to it and the insert function 
terminates. Otherwise, another leaf needs to be allocated 
and the entries redistributed between the two leaves equally. 
A copy of the middle key and the new leaf pointer is saved 
in the parent node. If the parent node is full then it is split 
using the same technique. To delete an item, usually lazy 
deletion is used, since other operations (e.g. search) are used 
more frequently. In lazy deletion a search for the specified 
entry occurs, and it is de-allocated. No further tree 
adjustment is needed. In contrast to lazy deletion, other 
deletion algorithms might require keys redistribution to 
ensure that each node has at least x (where x is the order of 
the tree) keys. This can be done by borrowing from a sibling 
node. Toward making B+-tree more cache conscious for in-
memory indexing techniques, Rao and Ross [14] introduced 
Cache-Sensitive B+-tree (CSB+). In contrast to the B+-tree, 
each internal node in a CSB+-tree has one pointer to the 
first child in a group of children nodes. Each node in the 



group is of size one cache line (e.g. 128 byte). Thus, keys 
inside the node are stored physically adjacent in one cache 
line. The head of each group is found explicitly by 
referencing its pointer in a parent node, other nodes are 
visited by offsetting this address. This technique reduces the 
number of child node pointers in internal nodes. As result, 
search, insert and delete operations will process using a 
lower number of cache lines and the tree consumes less 
memory. Leaf nodes in CSB+ trees are similar to B+-trees. 
In SMT architectures [15] multiple logical processors share 
or duplicate the resources of one physical processor. The 
efficiency of this technology is largely dependent on the 
application properties; this is essentially identified by how 
these programs utilize the available resources. For example, 
if one application is computation-intensive meaning that it 
uses execution units heavily, while the other thread is 
spending most of its time waiting for data from disk storage, 
then we expect SMT to show high throughput compared to 
a same environment used by one application only. Intel’s 
implementation of SMT is called Hyper-Threading 
Technology (HTT) [4]; it allows two threads to issue their 
instructions simultaneously, sharing mainly L1 and L2 
caches, the Trace Cache (TC), the Data Translation 
Lookaside Buffer (DTLB), and execution units. The 
Instruction Translation Lookaside Buffer (ITLB) and some 
other buffers are duplicated. 
 
3. RELATED WORK ON IMPROVING CSB+-TREE 

 
This section provides a survey on the related work that has 
been made to enhance the performance of cache conscious 
index structures. Rao and Ross [13] presents a Cache 
Sensitive Search (CSS), they eliminate all child pointers to 
effectively increase cache line utilization by storing the tree 
in an array data structure called directory. Therefore, nodes 
are accessed by performing computation on array offsets 
rather than dereferencing child pointer as in B+-trees. As a 
CSS-tree has to rebuild the whole tree on every insert 
operation, Rao and Ross in [14] propose CSB+-tree, which 
is an update-friendly cache conscious B+-tree. For both CSS 
and CSB+-trees, the authors argue that cache line size is the 
optimal node size. Whereas R. Hankins et al in [9] show 
that a CSB+-tree with a node size of 512 bytes and more 
will be optimal for a machine with 32 byte cache line size. 
Chen, Gibbons and Mowry in [6] proposed pB+-tree. They 
rely on creating larger node sizes and arrays of pointers to 
children nodes to assist prefetching data ahead of its usage. 
All previous papers present algorithms and memory access 
methodologies to improve index structure, mainly CSB+-
tree, assuming that their code will be executed by a single 
thread. Current hardware platforms often have more than 
one processor working in one system. These systems can be 
in a form of Symmetric Multiprcocessors (SMP), or 
Simultaneous Multithreading (SMT). Authors in [5] present 
a latch-free index traversal (OLFIT) concurrency control 
design to facilitate the execution of multiple search and 
insert operations running concurrently on an SMP platform. 

Their results for search operation show good scaling while 
increasing the number of CPUs. However, we expect SMT 
platform to have different memory behavior since some 
vital resources such as L1, L2 and execution units are 
shared between running threads. J. Zhou et al in [16] use a 
prefeching thread that works simultaneously with the main 
thread which executes a staged version from CSB+-tree, 
they were able to decrease main thread cache misses by 
transferring them to the helper one. In this research we use 
SMT environment to allow two threads to access the same 
memory index data structure simultaneously to perform data 
retrieval, depending on the fact that multiple data reads will 
not create any type of data-hazards. 

 

4. MULTI-THREADED CSB+-TREE  

 

A CSB+-tree is designed to force serialized execution of 
any requested queries. When using the SMT environment, 
running CSB+-tree queries serially neglects the fact that 
there are two streams of execution that can be initiated 
simultaneously to carry out multiple operations. If one 
thread is used in an SMT enabled platform, resources 
divided between the two threads will be significantly 
underutilized. On the other hand, some shared resources 
such as caches and execution units might be contended 
when serving two threads, possibly resulting in slowdowns 
for both. This paper presents a dual-threaded CSB+-tree 
implementation optimized for SMT architectures. The 
OpenMP Application Program Interface (API) [1] is 
designed to assist FORTRAN and C/C+ programmers to 
parallelize applications in a shared memory environment, by 
providing a set of compiler directives, functions and 
environment variables. We use the OpenMP library to 
initiate two threads to execute queries that arrive to the 
CSB+-tree. To be fair when comparing any potential 
improvement SMT would give, we run our experiment on 
the same machine with SMT enabled and disabled. In this 
way we ensure that for the case of one thread, all the 
machine resources will be devoted to process instructions 
which belong to this thread only, while when enabling 
SMT, we use our multithreaded version of the CSB+-tree. 
To implement our dual-threaded version of the CSB+-tree 
we use the following steps: (1) Since the bulkloading is 
done only once when building the tree and before any 
queries appear, therefore one thread is enough to perform 
bulkloading. (2) We implement simultaneous execution of 
multiple searches. Similar to B+-tree, searches involve 
reading keys and computing which route to traverse until 
the target leave is reached, then the tuple pointer is 
dereferenced. Multiple concurrent reads of the tree do not 
generate hazards of any kind. For inserts, first we have to 
locate the appropriate node for the new entry in the tree, 
which is achieved by a search operation, if this node has 
space then the new key is added, otherwise the node is split 
as described earlier. This means that a new node might be 
allocated and some keys will be moved during an insert, so 
the tree will appear in a non-stable condition to the other 



thread. Unless some synchronization directives are used, we 
don’t carry out multiple inserts at the same time. For 
deletes, CSB+-tree uses a lazy deletion technique, where the 
target key is found then removed. Previous research [8] 
shows that semaphores have a positive effect on 
performance when used to limit memory access to one 
thread at a time. In this research we illustrate CSB+-tree 
simultaneous search operations, we used basic search 
approach [14]. Basic search implemented using a while loop 
to perform a binary search [12]. Rao and Ross analyze other 
search techniques depending on code expansion. We 
concentrate on the basic approach, since it’s widely used in 
index searches due to its simplicity and small code size.  
 
5. EXPERIMENTAL METHODOLOGY 

 

We conduct our experiments on a 3.4GHz Pentium 4 
processor with HyperThreading technology (HT). Our 
Pentium 4 processor has a 64KB on-chip data cache, a 12K 
micro-operation instruction trace cache, and a unified 2MB 
secondary cache with 128 byte cache lines. Our machine 
has a 1GB 533MHz DDR2 SDRAM memory, an 800MHz 
front side bus, and a 160GB SATA, 7200 RPM hard disk 
drive. All our experiments fit in main-memory. We use the 
Scientific Linux version 4.1 operating system which is 
based on the Redhat Linux Enterprise version 4.0. We 
implement CSB+-tree bulkload and search operations in C 
and use the OpenMP API. We compile our code using the 
Intel C++ Compiler for Linux version 9.1 [2] with full 
optimizations. The Intel compiler supports OpenMP C/C++ 
[1] version 2.5. Our bulkload implementation is similar to 
[14], where the tree is filled level by level. The keys are 
generated randomly from 1 to 10 million. The node size is 
128 bytes (one cache line). Each internal node has 30 keys, 
the number of keys used, and one pointer to the first child 
node in a group that has a maximum of 31 children. A leaf 
node contains a maximum of 14 pairs of <tuple pointer, 
key>, the number of items in the current leaf, and backward 
and forward pointers. All keys, pointers, and tuple 
identifiers are 4 bytes each. We use the VTune Performance 
Analyzer 3.0 for Linux [3] to collect our events using the 
performance counters available in the Pentium 4 processor. 
We repeat every run five times, remove the outliers and take 
the average. Timing measurements are done through our 
CSB+-tree program and use wall-clock time. We switch 
hyperthreading on and off using the system BIOS. 
 
6. RESULTS 

 

To compare our dual-threaded CSB+-search operation 
against the original single-threaded version, we perform 
experiments similar to those done by [14]. First we bulkload 
the CSB+-tree with a number of items (records) ranging 
from 100 and up to 107, then we run 200,000 searches; 
100,000 on each thread. Figure 1 shows that the proposed 
dual-threaded CSB+-tree has a speedup ranging from 29% 

for a 100-item tree and up to 70% for a 1000-item tree. For 
107 entries, we obtained a speedup of approx. 67%. 
 

 
Figure 1: CSB+-tree search timing. 

 

Figure 2 shows mostly a constructive effect for the 2MB 
unified L2 cache load miss rate. For trees bulkloaded with 
items less than 106, the space used is less than 2MB (refer to 
[14] for memory space equations), so most loads generated 
by the search function hit either in the L1 or the L2 cache. 
While for trees with large number of entries (>106), we can 
see that having two threads working on the same dataset 
(CSB+-tree in our case) will result in one thread pre-
fetching data for the other, this agrees with results in [10] 
showing constructive behavior at L2 cache level. 
 

 
Figure 2: L2$ Load Miss Rate 

 

Figure 3 shows the L1 data cache load miss rate. Using two 
threads gives a slightly worse results than a single thread 
version for large datasets. We expect that the 64KB L1 data 
cache is too small to store data fetched by thread one until 
the data used by thread two. Trees with items less than 103 
are using memory space less than 64KB. Therefore, they are 
exhibiting very small L1 data cache miss rates. The Trace 
Cache (TC), used as the L1 instruction cache, stores 
decoded instructions. Figure 4 shows the trace cache miss 
rates. Although the TC is a shared resource, access to the 
TC is granted to one thread at a time in a clock-cycle 
alternating fashion [4]. This fact together with the 
destructive behavior of the two threads create a significant 
increase in the TC miss rates for the two-thread version of 
the search operation. However, the absolute values of the 
TC miss rates are small. Temporal locality plays a good role 
in reducing these effects for large trees. 
The Pentium 4 Processor has a 64 fully associative Data 
Translation Lookaside Buffer (DTLB); it’s used to translate 
virtual memory addresses to physical addresses. It is also a 
shared component in the memory subsystem [4]. Figure 5 
shows an increase in the DTLB miss rates using dual 



threads while using items more than 104. Figure 6 shows the 
Instruction Translation Lookaside Buffer (ITLB) miss rates. 
The ITLB is visited on a TC miss. Our results show that the 
two-thread version is experiencing low ITLB miss rates 
since each thread has its own ITLB component. 
 

 
Figure 3: L1$ Load Miss Rate 

 

 
Figure 4: L1-I Trace Cache Miss Rate 

 

 
Figure 5: DTLB Load Miss Rate 

 

 
Figure 6: ITLB Miss Rate 

 

In summary, we analyzed the behavior of a dual-threaded 
search operation on CSB+-tree using HT technology. We 
concentrate on the memory system activities since CSB+-
tree spends it’s time mainly loading and storing data [14]. 
We find that HT slightly decreases the performance of L1 
data cache and DTLB. Our results show a larger 

performance degradation for the TC. However, the thread 
constructive pattern in the L2 cache (saving in L2 load miss 
rate is up to 26% for 106 items) of the dual thread CSB+-
tree creates a speedup from 29% to 70% over the single 
threaded version. 
 

7. CONCLUSION 

 

In this paper we propose a parallelized version of CSB+-tree 
for the search operation, where two threads share the same 
memory index structure and retrieve data in parallel. We 
compare our dual-threaded CSB+-tree while HT is enabled 
to a single thread version from CSB+-tree while HT is 
disabled for the same architecture. Our results show a 
constructive behavior between the two threads at the L2 
cache level and ITLB, and destructive pattern in Trace 
Cache and DTLB. The L2 and ITLB constructive behavior 
is able to outweigh other negative effects and result in a 
speedup from 29% to 70%. 
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