
Exploiting Multithreaded Architectures to Improve the Hash
Join Operation

Layali Rashid, Wessam M. Hassanein and Moustafa A. Hammad*

Department of Electrical and Computer Engineering,*Department of Computer Science
University of Calgary

{lrashid@ucalgary.ca, hassanein@enel.ucalgary.ca, hammad@cpsc.ucalgary.ca}

ABSTRACT

As database management systems gain importance in our everyday

life, it is essential to have efficient implementations of important

database operations such as the hash join. Improvements in

processor architectures including simultaneous multithreaded

architectures and Chip Multiprocessors have opened opportunities

for taking advantage of the new multithreaded hardware. Recently,

several efforts have been done to enhance database performance

through architecture-aware data management. In this paper, we

present a new architecture-aware hash join (AA_HJ) algorithm for

main memory database systems, where all the data resides in

memory. AA_HJ relies on sharing critical structures at the cache

level, and distributing the load evenly between threads. Our timing

results show a performance improvement up to 2.9x for the Intel®

Pentium®4 HT and up to 4.6x on the Intel® Quad Xeon® Dual-Core

machine, compared to single-threaded hash join. The L2 load miss

rate is reduced by up 82%.

1. INTRODUCTION
As information management becomes an integral part of our

everyday life, database management systems (DBMSs) gain further

importance as a critical commercial application. The performance of

DBMSs has been less than optimal due to their poor memory

performance [3]. Main memory database systems (MMDB) [26]

suffer from large cache misses and low CPU utilization [1]. At the

hardware level, multithreaded architectures are considered among

the significant advances in processor architectures. In Simultaneous

Multithreaded architectures (SMT) [23] multiple threads execute

concurrently sharing the same hardware. Whereas in Chip

Multiprocessors (CMP) [27]; one chip contains multiple processor

cores usually sharing the second level cache and the bus. Such

sharing can result in either performance improvements (e.g., one

thread prefetching data for another) or performance degradation

(e.g., two threads conflict in the shared caches). Exploiting

multithreaded architectures create new opportunities for improving

essential DBMSs operations. Hash join (an optimized join operation

that uses hash table data structures) is one of the most important

operations commonly used in current commercial DBMSs [22].

Therefore, revisiting the join implementation to take advantage of

state-of-the-art hardware improvements is an important direction to

boost the performance of DBMSs. Significant work has been done

on the improvement of hash join operations ([4], [6], [9], [16], [20],

[21], [24], [25]). Parallel hash Join has been extensively examined

by Shatdal [20] for SMP architectures. Shatdal [20] also presented a

hybrid between hash join algorithm designed for shared-nothing

multiprocessors and SMP systems. Database operations have been

investigated on SMT architectures in many papers ([9], [15], [18],

[24]), including hash join operations ([9], [24]). In [9] Garcia and

Korth conclude that prefetching techniques in [4] are useful for the

probing phase only in the hash join on real SMT hardware. J. Zhou

et al in [24] use a helper-thread approach to exploit the two threads

available in an SMT architecture. Work on database operations and

CMP architectures include [28] in which researchers evaluate the

On-Line Transaction Processing (OLTP) benchmark TPC-C and the

decision-support database benchmark TPC-H on a CMP simulator.

They find that most stalls are due to data misses mainly in the Level

2 cache. In [29] Colohan et al. use speculative threads to parallelize

database queries for a CMP 4-processors simulator, and achieve

speedups ranging from 36% up to 74% for some TPC-C

transactions. Other work on tuning software on CMP environments

include [3], which presents a general theoretical justification of

upper and lower bounds on cache misses for a system consisting of

p processors with shared memory hierarchy. However, previous

work does not take advantage of the sharing in the underlying

hardware structures, has less than optimal work division among

threads, and does not provide insights into the memory hierarchy

performance. In this paper we present the following main

contributions: (1) we analyze and study the different phases of

traditional hash join algorithms using one of the most popular join

algorithms (the Grace Algorithm [13]) and highlight existing

problems. (2) We apply improvements to the different hash join

phases to enhance their single thread performance. (3) We propose a

multithreaded hash join algorithm that takes advantage of the

underlying multithreaded architecture by sharing data between

threads in the same processor. Thus, reducing cache conflicts and

using one thread to prefetch data for the other. We refer to our

algorithm as an Architecture-Aware Hash Join (AA_HJ). (5) We

show that our proposed algorithm can be easily integrated with the

recent (yet orthogonal) improvements to the single threaded hash

join operation to achieve high performance. In particular, we take

advantage of the software group prefetching technique proposed by

[4]. To the best of our knowledge, no other work has proposed a

multithreaded hash join algorithm that takes advantage of the

underlying SMT and CMP hardware. In this paper we conduct our

experiments on the Intel® Pentium® 4 HT (SMT, dual-threaded)

processor and the Intel® Quad Xeon® Dual Core server

(combination of SMT, CMP and Symmetric processors (SMP), up

to 16 threads). On the first machine we achieve speedups ranging

from 2.1 to 2.9 times compared to the Grace hash join. While on the

second machine our speedups range from 2 to 4.6 times depending

on the tuple size. The rest of this paper is organized as follows:

Section 2 describes the concepts of databases and hash join. In

Section 3 we present the details of our proposed dual-threaded and

multi-threaded AA_HJ. Section 4 describes the experimental

methodology. In Section 5 we present the timing and memory-

characterizing results on the Intel® Pentium® 4 HT processor for the

dual-threaded AA_HJ. In Section 6 we show the results on the

Intel® Quad Xeon® Dual Core server for more than two threads and

characterize the hardware performance for AA_HJ and analyze its

memory behavior using the Intel® VTune Performance Analyzer.

Finally, conclusions are presented in Section 7.

2. BACKGROUND
This section introduces database management systems (DBMSs)

and hash join operations [2]. The relational database management

system (RDBMS) model is the traditional DBMS originally

presented by Edgar F. Codd [6]. RDBMS is a tabular representation

of a database, where records (tuples) represent the rows and

attributes represent the columns. As an example Figure 1 has three

relational tables.

Figure 1: Database Join

Queries initiated to the RDBMS include retrieving tuples that

satisfy some conditions, updating, and deleting tuples. Some queries

request data that exists in two relations (tables), Figure 1 shows an

example of joining two tables. The datasets are organized such that

some employees have their names and salaries stored in one table,

while the departments and provinces are stored in another table. To

retrieve all the data for any employee whose ID is in both tables, we

perform a natural-join. Natural join is one variation of a join in

which we ask to retrieve all tuples from both relations whose join-

key (ID in Figure 1) matches. This is one of the most popular types

of joins. In its simplest form, joining two relations can be processed

by two nested loops, where the outer loop reads a tuple from the

large relation, and the inner loop scans the smaller relation looking

for tuples with keys equal to that for the outer tuple. A more

efficient (and the most popular) implementation for the join query is

the hash join which is shown in Figure 2. In a hash join, a hash

table is constructed from the smaller relation (usually called R or

build relation).

Figure 2: Hash Natural-join Process

Next, tuples are probed from the larger relation (usually called S or

probe relation) one by one using the hash table. A hash table

structure is shown in Figure 3. It is an array of buckets, where each

bucket has a pointer to a linked list of cells. Each cell has a pointer

to a tuple in the build relation, and a hash value generated from the

joining key of this tuple. After building the hash table, the probe

relations’ tuples are read one by one. For each S tuple read, the

joining key hash value is computed, and then the bucket number is

calculated from the hash value. The proper bucket (cells array) is

accessed, and each cell’s hash value is compared against the S

tuple’s hash value for a match. If a match occurs, the pointer in that

cell is dereferenced so as to load the build relation R tuple, whose

key will be compared against the probe S tuple’s key for a match. If

we have a match then both the build and probe tuples are projected

into the output buffer. A hash join requires random accesses to the

hash table during the probing phase, and random accesses to the R-

relation to retrieve the matched tuples. To reduce the memory

access latency resulting from these random accesses, previous

efforts have concentrated on storing the data tables as close to the

CPU as possible. For disk-resident databases (DRDBs) ([2], [8])

both the R and S-relations are partitioned into clusters (partitions)

that fit in the main memory.

Figure 3: Hash Table Structure

This algorithm is widely known as the “Grace Hash Join”. While for

MMDB, a similar partition-based approach called “cache

partitioning” (a.k.a. Direct Cache, DC) is used. In DC partitioning

([4], [9], [14], [17], [21]) the R and S-relations are partitioned into

clusters such that each R cluster and its corresponding hash table fit

in the highest level cache (largest cache) in the machine. This is

done prior to any hash join processing. The partition-based hash

join algorithm is shown in Figure 4.

partition R into R0, R1,…, Rn-1

partition S into S0, S1,…, Sn-1

for i = 0 until i = n-1

 use Ri to build hash-tablei

for i = 0 until i = n-1

 probe Si using hash-tablei

Figure 4: Hash Join Base Algorithm

In the parallel hash join [16] both relations are partitioned among

the available processors p in a multi-processor system, for example.

This is done by dividing the S and R-relation into p clusters

(blocks), such that each cluster has approximately the same number

of tuples. Then each processor uses its R-relation-cluster to build

one global hash table. Multiple writes to the same memory location

are synchronized by latches. In the final step of the parallel hash

join, each processor probes its cluster using the global hash table.

3. ARCHITECTURE AWARE HASH JOIN
In this section we propose a dual-threaded architecture-aware hash

join (AA_HJ) database operation, then we extend it to use more

than two threads. Our algorithm takes advantage of the following

two main features in SMT architectures: (1) two threads are

available to run simultaneously, (2) the full memory hierarchy is

shared between these two threads (i.e. the cache sharing feature of

SMT architectures). MMDB systems suffer from high L2 cache

miss rates and therefore, reducing/hiding the memory access latency

is an important performance factor for hash join operations.

The Build Index Partition Phase: We use the OpenMP library

([7], [19]) to initiate two threads, where each thread is assigned a

unique ID. To minimize thread creation and killing overhead, we

initiate the two threads only once when the hash join begins, and

kill the threads only when the join is completed. Our algorithm

starts by creating structures to hold the R-relation index clusters

(partitions) for each thread. Each entry in the index structures

consists of 8Bytes; 4Bytes for the tuple index, which is a pointer to

the tuple in the R-relation, and 4Bytes to store the hash value for

that tuple. We partition the R-relation by first splitting it between

the two threads, such that the first thread processes the first half (R0-

R(n/2)-1) and the second thread processes the second half (Rn/2-Rn-1).

The R-relation is accessed sequentially by each thread. Therefore,

the hardware prefetcher is able to capture the memory address

patterns and prefetch the needed data. This eliminates the need for

explicit software prefetch instructions. Each thread in this stage

reads a tuple from its half and calculates the tuple's key mod number

of clusters that belong to this thread. Therefore, it chooses the

cluster where it should store the tuple. The thread saves the tuple’s

pointer together with its hash value, which is calculated from the

tuple's key. We are using 1024 clusters for the index partition. This

generates L1 cache size clusters (L1 cache size is 64KByte). Later

in this section we explain an automated method to determine

numbers of clusters prior to actual execution.

The Build and the Probe Index Partition Phase: Before we begin

this stage, we make sure that both threads finish the build index

partition phase completely by using a barrier synchronization

pragma. Our hash tables are described in Figure 3. We study several

possible multithreaded implementations. 1) Use the two threads

simultaneously, each building a hash table. This approach resulted

in contention over the cache between the two threads hash tables.

Thus resulting in cache misses for most accesses in the two hash

tables and highly degrading performance. 2) Use the two threads to

build the same hash table simultaneously. We use atomic

synchronization pragmas to restrict writing to the same memory

location to one thread at a time. ��� � � � ��� �	 � � ���
 	����
������� 	����������� � � � ��� �	 � � ����
����� �	��� 	����������
��������������������� ����
����� �	��� 	���������� 	�� ���� �
����

 	����� � � � ��� �	 � � ����
����� �	��� 	����������
��������������������� ����
����� �	��� 	���������� 	�� ���� �
����

 	��
Figure 5: AA_HJ Build Phase Executed by one Thread

However, this type of synchronization limits the performance of the

two threads, resulting in slowdowns rather than speedups. 3)

Devoting one thread to create the hash tables of the build phase and

use the second thread to perform the S-relation index partitioning

phase simultaneously. This method gives us the best performance

and therefore, is our method of choice.

The build phase algorithm is shown in Figure 5. Each two clusters

generate one hash table, where both of these two clusters have the

same key-range. For example, both thread0.Build-cluster1 (cluster1

generated by thread0 from the first phase) and thread1.Build-cluster1

(cluster1 generated by thread1 from the first phase) generate hash-

table1 in Figure 5. While the first thread is building the hash tables,

we use the second thread to perform the S-relation index

partitioning simultaneously. The R-relation structures will be

accessed repeatedly to probe tuples in the probe phase, thus they

need to fit in one of our caches. While for S-relation, each tuple will

be read once during the probing phase to search for its match, so the

S-relation clusters do not need to fit in the caches. Also, since tuples

are read sequentially, the hardware prefetcher is able to prefetch the

S-relation tuples. Each entry in the S-relation clusters has a similar

form to that used for the R-relation clusters. We create two sets of

clusters, one for each thread. The first set of clusters store the

indexes resulting from tuples ranging from 0 to (n/2)-1, where n is

the total number of tuples in the S-relation. While the second set of

clusters stores indexes from (n/2) to n-1. Therefore, each key-range

has two clusters, one from the first S-relation half and the other

from the second half. The algorithm used for the S-relation indexing

phase is shown in Figure 6 (where S means S-relation).

x=0

do{

 read S.tuplex

 z = appropriate-cluster-number depending on

S.tuplex.key

 insert S.tuplex into thread0.Probe-clusterz

 read S.tuplex+(n/2)

 z = appropriate-cluster-number depending on

S.tuplex+n/2.key

 insert S.tuplex+(n/2) into thread1.Probe-clusterz

 increment x by 1

} while (x < n/2)

Figure 6: AA_HJ Probe Index Partitioning Phase Executed by

one Thread

The Probe Phase: As the probing phase uses both the hash tables

and the S-relation clusters, we can not begin this phase until both

threads of the previous phase are done. Thus, a barrier pragma is

implemented between the two phases. One of the large challenges

for the probe phase is the random accesses to the hash table

whenever there is search for a potential match. As described in

Section 2: Figure 3, each access to the hash table will result in a

sequence of pointers dereferenced. The probe phase begins by

accessing the appropriate bucket, reading the cell array’s pointer,

accessing the cell array and dereferencing every cell’s pointer so as

to read this tuple’s key and test for a match with the probed tuple.

Consequently, the goal of optimizing this phase concentrates on

proposing a solution for the sequence of random accesses to the

hash tables. Architectural Aware Hash Join (AA_HJ) controls both

threads such that each thread is probing tuples from its cluster

whose key-range is similar to another cluster that is being probed by

the other thread concurrently. As an example, in Figure 7, we show

the process of generating four clusters from the S-relation in the S-

relation index partitioning phase by Thread1. Thread2 will be busy

in hash tables building (not shown in the figure). Next, in the probe

phase the two clusters that belong to the same key-range are probed

by the two threads simultaneously and one hash table is visited

during each key-range’s iteration. To prevent race conditions that

might arise from one thread probing its cluster faster than the other

thread, we divide each key-range probe iteration with a barrier

pragma from the other iterations. However, since keys are randomly

distributed throughout the S-relation, each cluster from thread0’s set

of clusters will result in almost the same number of matches as those

resulted from the corresponding cluster from thread1’s set of

clusters. Thus, probing both clusters requires the same time. The

pseudo code for our algorithm is shown in Figure 8. The term

“number-of-clusters” refers to the total number of clusters generated

from the S-relation. Since both threads are using the same hash

table concurrently in each iteration, one thread will serve as an

implicit hash table-prefetcher for the other thread while it is probing

its own tuples.

Figure 7: AA_HJ S-Relation Partitioning and Probing Phases

This is because each hash table fits in the L1-cache therefore, once

it is fetched, it remains cache-resident until the next iteration, where

another hash table is prefetched. The original S-relation is not

accessed sequentially any more because of our index partitioning,

therefore the hardware prefetcher will not be as useful. To solve this

problem, we use explicit prefetch instructions to prefetch the next

tuple in the cluster before we begin to process the current tuple. We

find that prefetching one tuple ahead is enough to overlap the

memory access latency for the tuple.

for i = 0 until i = number-of-clusters/2

 if (thread0)

 for j = 0 until j = thread0.Probe-clusteri.number-

of-entries

 prefetch thread0.Probe-clusteri.tuplej+1

 use hash-tablei to probe thread0.Probe-

clusteri.tuplej

 else

 for k = 0 until k = thread1.Probe-clusteri.number-

of-entries

 prefetch thread1.Probe-clusteri.tuplek+1

 use hash-tablei to probe thread1.Probe-

clusteri.tuplek

 pragma barrier

Figure 8: AA_HJ Multithreaded Probing Algorithm

This is because each prefetch instruction in the Intel® Pentium® 4

loads two cache lines and the largest tuple size we study is

140Bytes.

Extending AA_HJ for more than two threads: We now present a

scalable form of AA_HJ that exploits more than two threads. Our

new version of AA_HJ is capable of utilizing various types of

multithreading including SMP (Symmetric Multiprocessors), CMP

and SMT. Follows is a description of the changes we have made to

the dual-thread AA_HJ:

R-relation index partition: Assume that the R-relation has Rn

tuples. Also, assume that the number of available threads in the

platform is t, t includes any threads resulting from the SMT, the

CMP and the SMP architectures, where t = number of processor

chips × number of cores per chip × number of SMT threads per

processor core. For example, if a system has four processor chips,

each processor is a quad core, each core is 2-threads SMT, then t =

4 × 4 × 2 = 32 threads. Each thread ti (i = 0, 1... t-1) is assigned Rn/t

tuples. The remaining tuples after this division will be added to the

last thread. An index partitioning similar to the one described in

earlier in this section is executed by each thread. By the end of this

phase any thread will have a set of clusters c. A ci (i = 0, 1… limit-

1) stands for a key-range as described earlier. The value of limit

depends on the following observations: (1) the total size of clusters

for any key-range must be small enough to allow both the hash table

and its R-clusters to fit in the L2 cache. This is because we are

planning for each four threads in a chip to share one hash table. (2)

During the probe phase some space in the L2 cache should be

reserved for a few tuples from the S cluster. The tuples from the S-

relation are used only once, so this space is intended to be a

temporary storage for tuples prefetched manually. (3) Some space

should be reserved for the operating system processes. Taking all

theses factors into account, we use (R-relation-size + hash

tables’sizes)/limit < L2 cache size to calculate limit. Since it is

difficult to estimate the hash table size prior to the hash join (hash

table size ranges between 22MByte up to 150MByte in our case) we

use its worst case, where hash table is just above half the R-relation

size (150MByte). Therefore limit is measured as follows (250 +

150) / limit < 2, which results in limit > 200. We choose limit to be

256 clusters.

Build Phase and S-Relation Index Partition Phase: In the second

step, the thread with the smallest identifier builds the hash tables.

Simultaneously, other threads will index-partition the S-relation as

described in earlier in this section. The thread with the next smallest

identifier will generate two sets of clusters instead of one, to

compensate for the thread building the hash tables.

Probe Phase: During this phase, a constructive cache-level sharing

is maintained by directing all four threads of each dual-SMT-core to

probe one key-range using one hash table. Recall that any thread

generates a set of clusters from phase two, with a cluster for each

key-range. Therefore, t clusters exist for each key range. A probing

thread in a core will process t/4 clusters. Again, GP is incorporated

with this phase code to eliminate cold misses. Keeping in mind that

this is the most expensive phase in the hash join operation, we

provide several optimizations including: (1) the load is almost

perfectly balanced between threads. Given that our keys are

uniformly distributed, the sizes of clusters are very close. (2) Having

four threads repeatedly visiting the same memory structure (hash

table), will highly increase temporal and spatial locality.

4. EXPERIMENTAL METHODOLOGY
We run our algorithms on two multithreaded machines. The first

(Machine 1) is a 3.4GHz Intel® Pentium® 4 processor with hyper-

threading technology (HT, Intel’s dual thread SMT architecture

[11]). The second (Machine 2) is the Intel® Xeon® Quad Processors

for PowerEdge 6800, each processor is a dual-core, each core is HT.

General specifications for both machines are shown in Table 1.

Both systems have L2 unified cache with 128Bytes cache lines. We

use the Scientific Linux version 4.1 operating system which is based

on the Redhat Linux Enterprise version 4.0. We implemented all

algorithms in C, and we use the Intel® C++ Compiler for Linux

version 9.1 [10] with maximum optimizations. We use the built-in

OpenMP C/C++ library [19] version 2.5 (as implemented in the

Intel® C++ Compiler) to initiate multiple threads in our multi-

threaded codes. We repeat each run three times, remove the outliers,

and take the average. Timing and memory measurements are done

through our program using functions such as gettimeofday (). A

warm up run is done prior to any measurements to load the relations

into main memory.

Table 1: Machines Specifications

 Machine 1 Machine 2

Processor(s) Pentium® 4 with

HT

Quad Xeon®,

PowerEdge 6800

L1 data Cache 64Kbyte 64KByte/core

L2 Cache 2MByte 2MByte/processor

Main Memory 1GByte 533MHz

DDR2

4GByte 400MHZ

DDR2

Clock Speed 3.4 GHz 2.66 GHz

Hard Drive 160GByte 300GByte

We choose to implement our own version from hash join rather than

using the database benchmarks (e.g. TPC-C) to prevent the impact

of DBMS overhead from unseen activities. These activities might

include query planner, query optimizer, etc. For Machine 1 we use a

50MByte build relation and a 100MByte probe relation. We choose

these sizes to make sure that our relations, in addition to any large

intermediate structures needed by the code, fit in our 1GByte main

memory.

Table 2: Number of Tuples for Machine 1 and 2

Tuple

Size

(Byte)

Build

Relation in

Machine 1

Probe

Relation in

Machine 1

Build

Relation in

Machine 2

Probe

Relation in

Machine 2

20 2621440 5242880 13107200 26214400

60 873814 1747628 4369067 8738134

100 524289 1048578 2621440 5242880

140 374491 748982 1872457 3744914

While for Machine 2 we use 250MByte build relation and

500MByte probe relation since we have larger main memory

(4GByte). Our join key is 10Bytes, randomly generated such that

each tuple in the build relation matches one tuple in the probe

relation. The payload part of the tuple is of variable size. The

number of tuples in each table (given the table’s constant size)

depends on the tuple size. Table 2 shows the number of tuples used

in each relation for different tuple sizes. We choose tuples of these

sizes to study the cases where tuples are smaller than the L1 cache

line (20Byte, 60Byte), between the L1 and the L2 cache line sizes

(100Byte) and larger than the L2 cache line size (140Byte). In real

DBMS the average tuple size is 120Byte [22]. Our naïve

partitioning and probing algorithms are the same as those in [9].

Our hash function consists of XOR and shift operations [4] and

generates 4Bytes hash codes. Once hash codes are computed at any

stage, they are saved in temporary structures in memory to avoid

recalculating them. Hash table buckets are calculated using the hash

code mod hash table size. Our hash tables are created such that the

number of buckets equals the number of tuples in the corresponding

R-cluster or the R relation in case partitioning is not used. We use

the Intel® VTune™ Performance Analyzer for Linux 9.0 [12] to

collect the hardware events from the hardware performance counters

available in our machines. These events include L2 cache load

misses, L1 data cache load misses, etc. Each run for VTune is

repeated three times. Each time two runs are performed by VTune,

the first is for calibration, which determines the frequency at which

the event occurs. The second is for the actual event collection.

5. RESULTS FOR THE DUAL-THREADED

HASH JOIN
We start by characterizing the main memory-hash join algorithm in

Machines 2. Figure 9 shows that the level one (L1) data cache load

miss rate (= L1 load cache misses/total loads) ranges from 4.7% to

5.3% while varying the tuple (record) size. Taking into account that

the L1 miss latency does not exceed 10 cycles, we find that the L1

data cache does not affect the overall performance of the hash join.

Next, we characterize the unified level two (L2) cache in Figure 10.

The L2 cache load miss rate (= L2 load cache misses/L1 load cache

misses) varies from 29% for tuple size = 140Bytes to 64% for tuple

size = 20Bytes. As the L2 cache load miss latency is usually larger

than 100 cycles, our results show that the L2 cache load miss rate is

a critical factor in main-memory hash join performance. This agrees

with previous research in [1]. Our measurements show that the

maximum TC miss rate we get is very small and does not exceed

0.14%. In summary, the L2 cache miss rate has a major impact on

the hash join performance. Therefore, reducing the L2 cache miss

rate is vital to improve the hash join performance.

Partitioning vs. Non-Partitioning vs. Index Partitioning: Now,

we study the effects of partitioning the build and probe relations on

the execution time and memory usage of the hash join on Machine

1. As described in Figure 4, partitioning is the first step of the hash

join algorithm. It creates small clusters (partitions) of the R and S-

relations that fit in the cache. The goal is to divide the overall hash

join into a set of smaller hash joins to work on data that fits in the

cache. Recent papers ([4], [9]) copy the entire relations while

partitioning. We implement three types of the hash join algorithms:

partitioning (PT), non-partitioning (NPT), and index partitioning

(Index PT): (1) PT uses the copy partitioning algorithm described in

Figure 4. We use 1024 clusters for the R-relation which creates R-

clusters of 50KByte each. Including the hash table size for each

cluster, this fits easily in our 64KByte L1 cache. We find

experimentally that using clusters of larger sizes will create cache

thrashing, and smaller cluster sizes result in high partitioning

overhead. We also use 1024 clusters for the S-relation. However,

the S-relation is not as critical as the R-relation to have in the cache

and is not partitioned to fit in the cache in techniques such as DC,

described in Section 3. (2) NPT uses no partitioning, instead the full

R and S-relations are hash joined. (3) Index PT. Instead of copying

the actual tuples into the partition, pointers to the tuples are stored.

We use 1024 clusters for both the R- and S-relations which allows

our R-cluster (which includes pointer to the tuples only and not the

full tuple) and its corresponding hash table to fit into our L1 cache.

The PT and Index PT are two variants from main-memory Grace

hash join. Our results in Figure 11 demonstrate that although the

timing analysis for PT outperforms the NPT algorithm in tuple size

= 20Byte, the overhead of the partitioning phase overcomes the

4.4%

4.5%

4.6%

4.7%

4.8%

4.9%

5.0%

5.1%

5.2%

5.3%

5.4%

20 60 100 140
Tuple Size (Byte)

L
1

 L
o

a
d

 M
is

s
 R

a
te

Figure 9: The L1 Data Cache Load Miss

Rate for Hash Join

0%

10%

20%

30%

40%

50%

60%

70%

20 60 100 140
Tuple Size (Byte)

L
2

 L
o

a
d

 M
is

s
 R

a
te

Figure 10: The L2 Cache Load Miss

Rate for Hash Join

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

20 60 100 140
Tuple Size (Byte)

T
im

e
 (

S
e

c
o

n
d

)

PT NPT Index PT

Figure 11: Timing for three Hash Join

Partitioning Techniques

performance improvement due to partitioning in all other tuple

sizes. This overhead is a result of the copying of large tuples from

the source relation to the destination cluster. This overhead is

eliminated by Index PT and therefore results in the performance

improvement of Index PT over both NPT and PT in all tuple sizes

The longer execution time for smaller tuples is due to the larger

number of tuples (as a result, more random accesses to caches for

smaller tuples) in these cases as shown in Table 2.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

20 60 100 140
Tuple Size (Byte)

T
im

e
 (
S
e
c
o
n
d
)

AA_HJ+GP+SMT
AA_HJ+SMT
SMT+NPT
NPT
SMT+PT
PT
SMT+Index PT
Index PT

Figure 12: Timing Comparison of all Hash Join Algorithms

The memory usage of PT, NPT and Index PT: Since we are

studying MMDB operations, our relations have to be main

memory resident prior to any processing. Thus, the minimum

memory space that any hash join requires will be equal to the total

sizes of the two relations, which is 150MB, in addition to the

memory needed to build the hash table. The size of the hash

table(s) is proportional to the number of tuples involved in the

table building. Our results show that PT requires almost two times

the memory space required by NPT. This is because both relations

are copied into the clusters in PT. While, Index PT memory

requirements are in between PT and NPT, as each tuple in Index

PT requires only 8Bytes in its cluster (4Bytes for tuple hash value

and 4Bytes tuple pointer), regardless of the size of the tuple.

Therefore, Index PT gives the best performance and has the

intermediate memory usage. Speedups achieved from Index PT

over NPT ranges from 18% to 21%.

Dual-threaded Hash Join: The probe phase is known to be the

most time consuming phase in hash join due to its random access

pattern to both the hash table and R-relation. Now, we study the

performance of the straightforward parallelization of the probe

phase on Machine 1. We develop dual-threaded versions of the

three algorithms presented in the Section 3 on our SMT

architecture. We refer to our algorithms as SMT+PT, SMT+NPT

and SMT+Index PT. We parallelize the probe phase for PT and

Index PT by dividing the available S-clusters evenly between both

threads to create SMT+PT and SMT+Index PT, respectively.

While for NPT we split the probe relation between the two

threads, such that each thread probes half of the large relation. Our

results in Figure 12 show that Index PT (in the SMT+Index PT

algorithm) continues to give the best performance. We calculate

the speedups resulting from multithreading each of our three hash

join algorithms to be; SMT+NPT is 39%, SMT+PT is 10% and

SMT+Index PT is 15%, compared to NPT, PT and Index PT hash

joins, respectively.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

20 60 100 140
Tuple Size (Byte)

S
p
e
e
d
u
p
 F

a
c
to

r

PT Index PT 2 4 8 12 16

Figure 13: Speedups for the Multi-Threaded Architecture-

Aware Hash Join

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

10.5
11

11.5
12

12.5
13

13.5
14

14.5
15

P
T

In
d
e
x
 P

T 2 4 8

1
2

1
6

P
T

In
d
e
x
 P

T 2 4 8

1
2

1
6

P
T

In
d
e
x
 P

T 2 4 8

1
2

1
6

P
T

In
d
e
x
 P

T 2 4 8

1
2

1
6

20 60 100 140
Tuple Size

T
im

e
 (
S

e
c
o
n
d
)

Partition Build Index Partition Probe Index Partition Build Probe

35.91

second

27.70

second

Figure 14: Time Breakdown Comparison for Hash Join

Algorithms

3%

4%

5%

6%

7%

8%

9%

10%

20 60 100 140Tuple Size (Byte)

L
1

 L
o

a
d

 M
is

s
 R

a
te

NPT 2 4 8 12 16

Figure 15: The L1 Data Cache Load

Miss Rate for NPT and AA_HJ

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

20 60 100 140
Tuple Size (Byte)

N
u

m
b

e
r

o
f

L
o

a
d

s

NPT 2 4 8 12 16

Figure 16: Number of Loads for NPT

and AA_HJ

0%

10%

20%

30%

40%

50%

60%

70%

20 60 100 140
Tuple Size (Byte)

L
2

 L
o

a
d

 M
is

s
 R

a
te

NPT 2 4 8 12 16

Figure 17: The L2 Cache Load Miss

Rate for NPT and AA_HJ

The SMT+NPT has the highest speedups since it lacks the

overhead of the sequential partitioning phases and its execution

time is dominated by the probing phase. We use Index

Partitioning in AA_HJ as it is the best performing partitioning

algorithm. In contrast to the SMT+Index PT where two hash

tables (one per thread) are used, AA_HJ forces the two threads to

use the same hash table simultaneously. This reduces cache

conflicts between the two hash tables in SMT+Index PT and

allows accesses from one thread to prefetch parts of the table for

the other thread. We refer to this version of our proposed

algorithm as AA_HJ+SMT. Since our proposed technique is

orthogonal to some of the previously proposed hash join

enhancement techniques such as Group Prefetching (GP) [4], we

further enhance our performance by adding GP to AA_HJ+SMT.

GP prefetches the randomly accessed buckets of the hash tables,

thus reducing our cold cache misses. We refer to this version of

our proposed algorithm as AA_HJ+GP+SMT. Figure 12 shows

that AA_HJ+SMT is able to increase the thread cooperation in the

cache level for all tuple sizes and therefore considerably improve

performance. AA_HJ+GP+SMT further enhances the

performance. AA_HJ+SMT achieves a speedup ranging from 2.04

to 2.70 for tuple sizes 20Bytes to 140Bytes, respectively. Speedup

for AA_HJ+GP+SMT ranges from 2.19 to 2.90 for tuple sizes

20Bytes to 140Bytes, respectively.

6. RESULTS FOR THE MULTI-THREADED

ARCHITECTURE-AWARE HASH JOIN
In this section we present the results of our scalable AA_HJ

algorithm. The workstation we conducted our experiments on is

Machine 2, described in Section 4. The R-relation is 250MByte

and the S-relation is 500MByte. We ran multithreaded AA_HJ

with 2, 4, 8, 12 and 16 threads, each of which with tuple size =

20Byte, 60Byte, 100Byte and 140Bytes. To highlight the

differences in performance with single-threaded AA_HJ, we also

run NPT, PT and Index PT hash joins (for details about NPT and

PT and Index PT refer to Section 5). Figure 13 shows the

speedups of all multithreaded runs together with Index PT

compared to PT hash join. We achieve speedups ranging from 2x

for tuple size = 20Bytes with two threads, to 4.6x for tuple size =

140Bytes with 16 threads. The improvements in running time

saturate while having eight threads for all tuple sizes. This is

because number of clusters has proportional relation with number

of threads. Therefore, the partitioning overhead together with the

expensive off-chip communications will increase while having

more working threads. AA_HJ takes advantage of sharing

structures between each four threads in a dual-SMT core. Thus,

enhancements in performance are large while having 2, 4 and 8

threads. Despite the fact that PT accomplishes good execution

time for tuple size = 20Bytes, its memory footprint is 3.4 times the

relations sizes, which makes it impractical for machines with

limited main memory environments. NPT hash join maintains its

precedence over others in memory savings. While Index PT and

all AA_HJ multithreaded hash joins are comparable in memory

consumption. Figure 14 shows the time breakdown for all

multithreaded AA_HJ, PT and Index PT for all tuple sizes. From

Figure 14 we have the following observations: There are large

improvements in probing and index-partitioning execution times

for AA_HJ compared to PT and Index PT. Execution time

decreases when using more threads for AA_HJ up to 8 threads,

where it saturates. The R- and S-relations index partitioning

phases saturate at eight-threaded AA_HJ. This is due to doubling

number of clusters while adding each thread. The communication

overhead for CPUs on the same chip is cheap (10-20 cycles) and

is carried out through the L2 cache. While off-chip cores

communicate through the main memory or a cache-coherence

protocol which is very expensive (hundreds of cycles). In the

probe phase clusters are collected from all cores to process a hash

table, this generates large communication overhead that prevents

further improvements.

In what follows, we use Intel VTune Performance Analyzer for

Linux 9.0 to collect hardware events from the hardware counters

available on Machine 2. First, we measure the L1 data cache load

miss rate in Figure 15. NPT hash join is always generating low L1

data load miss rate, due to the low number of loads it executes

(Figure 16). The relatively small number of loads is a direct effect

for not using any intermediate structures but one hash table and to

accessing both R and S-relations sequentially. The L1 data cache

miss rate for multi-threaded AA_HJ decreases as we increase the

tuple size except for tuple size = 20Bytes. Since number of tuples

are smaller for larger tuple sizes Table 2. Therefore, hash joins

with large tuple sizes process fewer movements while partitioning

and probing. The L1 data cache load miss rate for NPT is about

5%, and for multi-threaded AA_HJ is from 6.5% to 9.1% showing

an increase of 1.5% to 4%. This increase is very small and

therefore has a minor affect on the overall performance. In Figure

17, we measure the L2 cache load miss rate. NPT has over a 60%

L2 load miss rate at tuple size = 20Bytes. This is a result of the

very large probe portion for the NPT for tuple size = 20Bytes,

since it uses one hash table. All tuple sizes in Figure 17 are

experiencing an improvement in L2 load miss rate, which is the

dominating factor in the execution time and the main cause for the

performance improvement. A noticeable decrease exists from NPT

to two-threaded AA_HJ, due to the cache-sized index partitioning,

good load balance between both threads and constructive cache

sharing.

7. CONCLUSIONS
In this paper we characterize the hash join operation on

state_of_the_art multithreaded hardware that combines SMT,

CMP and SMP. We find that the hash join is bound by the L2

miss rates, which range from 29% to 62%. We propose an

Architecture-Aware Hash Join (AA_HJ) that relies on sharing

critical structures between working threads at the cache level,

benefiting from multithreaded architectural features. AA_HJ

distributes the load evenly between threads while requiring almost

the same memory space used by index-partitioning hash join. We

study AA_HJ performance on two machines. The first is a two-

threaded SMT processor where we achieve speedups ranging from

2.1 to 2.9 compared to the single-threaded hash join. The second

is a quad dual-SMT-core server (with a total of 16 threads); we

obtained speedups from 2 to 4.6 compared to the single-threaded

hash join. We find that AA_HJ decreases the L2 cache miss rate

from 62% to 11%, and from 29% to 15% for tuple size = 20Bytes

and 140Bytes, respectively.

References

[1] Ailamaki, A., DeWitt, D.J., Hill, M.D. and Wood, D.A. DBMSs on a

Modern Processor: Where Does Time Go?. In Proceedings of the 25th

International Conference on Very Large Data Bases (VLDB). Pages:

266-277, 1999.

[2] Belzer, Jack. Very Large Data Base Systems to Zero-Memory and

Markov Information Source. Encyclopedia of Computer Science and

Technology, Volume 14.

[3] Blelloch, G. and Gibbons, P. Effectively Sharing a Cache among

Threads. Symposium on Parallelism in Algorithms and Architectures

(SPAA). 2004.

[4] Chen, S., Ailamaki, A., Gibbons, P. and Mowry, T. Improving Hash Join

Performance through Prefetching. In IEEE International Conference on

Data Engineering (ICDE). Page: 116-128, 2004.

[5] Cieslewicz, J., Berry, J., Hendrickson, B. and Ross, K.A. Realizing

Parallelism in Database Operations: Insights from a Massively

Multithreaded Architecture. In Proceedings of the 2
nd

 international

workshop on Data Management on New Hardware (DAMON). Article

No. 4, 2006.

[6] Codd, E.F. A Relational Model of Data for Large Shared Data Banks.

ACM, Vol. 13, No. 6, 1970.

[7] Curtis-Maury, M., Ding, X., Antonopoulos, C. and Nikolopoulos, D. An

Evaluation of OpenMP on Current and Emerging

Multithreaded/Multicore Processors. In International Workshop on

OpenMP (IWOMP). May, 2005.

[8] Fushimi, S., Kitsuregawa, M. and Tanaka, H. An Overview of the

System Software of a Parallel Relational Database Machine Grace. In

Proceedings of International Conference on Very Large Data Bases

(VLDB),1986.

[9] Garcia, P. and Korth, H. Database Hash-Join Algorithms on

Multithreaded Computer Architectures. In Proceedings of Computing

Frontiers (CF). Pages: 241 - 252, 2006.

[10] Intel C++ Compiler for Linux. URL:

http://www.intel.com/cd/software/products/asmo-

na/eng/compilers/277618.htm

[11] Intel Hyper-Threading Technology. URL:

http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hy

per_threading_technology.pdf

[12] Intel
®

 VTune Performance Analyzer for Linux. URL:

http://www.intel.com/software/products/vtune/.

[13] Kim, W., Gajsk, D. and Kuck, J.D. A Parallel Pipelined Relational

Query Processor. ACM Trans. On Data-Base Systems, 9 (2). Pages:

214-242, 1984.

[14] Kitsuregawa, M., Tanaka, H. and Moto-Oka, T. Application of Hash to

Data Base Machine and its Architecture. New Generation Computing,

1983.

[15] Lo, J.L., Barroso, L.A., Eggers, S.J., Gharachorloo, K., Levy, H.M., and

Parekh, S.S. An Analysis of Database Workload Performance on

Simultaneous Multithreaded Processors. In Proceedings of International

Symposium on Computer Architecture (ISCA) Conference, 1998.

[16] Lu, H., Tan K. and Shan, M. Hash-Based Algorithms for Multiprocessor

Computers with Shared Memory. In Proceedings of the 16
th

international conference on Very Large Data Bases (VLDB). Pages:

198-209, 1990.

[17] Manegold, S., Boncz, P.A. and Kersten, M.L. What Happens During a

Join? Dissecting CPU and Memory Optimization Effects. In

Proceedings of International Conference on Very Large Data Bases

(VLDB). Pages: 339 – 350, 2000.

[18] McDowell, L., Eggers, S. and Gribble, S. D. Improving Server Software

Support for Simultaneous Multithreaded Processors. In Proceedings of

the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP) and workshop on partial evaluation and

semantics-based program manipulation. Pages: 37 – 48, 2003.

[19] OpenMP
®

. URL: http://www.openmp.org/

[20] Shatdal, A. Architectural Considerations for Parallel Query Evaluation

Algorithms. PhD thesis, 1996.

[21] Shatdal, A., Kant, C. and Naughton, J.F. Cache Conscious Algorithms

for Relational Query Processing. In Proceedings of International

Conference on Very Large Data Bases (VLDB). Pages: 510 – 521, 1994.

[22] Shao, M., Ailamaki, A. and Falsafi, B. “DBmbench: Fast and Accurate

Database Workload Representation on Modern Microarchitecture”. In

Proceedings of the Centre for Advanced Studies on Collaborative

research conference. Pages: 254 – 267, 2005.

[23] Tullsen, D., Eggers, S., Levy, H. Simultaneous Multithreading:

Maximizing on-Chip Parallelism. In Proceedings of the 22nd Annual

International Symposium on Computer Architecture, (ISCA), 1995.

[24] Zhou, J., Cieslewicz, J., Ross, K., and Shah, M. Improving Database

Performance on Simultaneous Multithreading Processors. In

Proceedings of International Conference on Very Large Data Bases

(VLDB). Pages: 49 – 60, 2006.

[25] Zukowski, M., Héman, S. and Boncz, P. Architecture-Conscious

Hashing. In Proceedings of the 2
nd

 international workshop on Data

Management on New Hardware (DAMON). Article No. 6, 2006.

[26] Jack Belzer. Encyclopedia of Computer Science and Technology -

Volume 14. Very Large Data Base Systems to Zero-Memory and

Markov Information Source. Marcel Dekker Inc., ISBN 0-8247-2214-0.

[27] Hammond, L., Nayfeh, B. and Olukotun, K. A Single Chip

Multiprocessor. IEEE Computer, 30(9). Pages: 79-85, 1997.

[28] Liaskovitis, V. et al. Parallel Depth First vs. Work Stealing Schedulers

on CMP Architectures. In Proceedings of the 18
th

 Symposium on

Parallelism in Algorithms and Architectures (SPAA). Pages: 330 – 330,

2007.

[29] Colohan, C., Ailamaki, A., Steffan, J. and Mowry, T. Optimistic intra-

transaction parallelism on chip multiprocessors. In Proceedings of

international conference on Very Large Data Bases (VLDB), 2005.

