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ABSTRACT 

As database management systems gain importance in our everyday 

life, it is essential to have efficient implementations of important 

database operations such as the hash join. Improvements in 

processor architectures including simultaneous multithreaded 

architectures and Chip Multiprocessors have opened opportunities 

for taking advantage of the new multithreaded hardware. Recently, 

several efforts have been done to enhance database performance 

through architecture-aware data management. In this paper, we 

present a new architecture-aware hash join (AA_HJ) algorithm for 

main memory database systems, where all the data resides in 

memory. AA_HJ relies on sharing critical structures at the cache 

level, and distributing the load evenly between threads. Our timing 

results show a performance improvement up to 2.9x for the Intel® 

Pentium®4 HT and up to 4.6x on the Intel® Quad Xeon® Dual-Core 

machine, compared to single-threaded hash join. The L2 load miss 

rate is reduced by up 82%. 

1. INTRODUCTION 
As information management becomes an integral part of our 

everyday life, database management systems (DBMSs) gain further 

importance as a critical commercial application. The performance of 

DBMSs has been less than optimal due to their poor memory 

performance [3]. Main memory database systems (MMDB) [26] 

suffer from large cache misses and low CPU utilization [1]. At the 

hardware level, multithreaded architectures are considered among 

the significant advances in processor architectures. In Simultaneous 

Multithreaded architectures (SMT) [23] multiple threads execute 

concurrently sharing the same hardware. Whereas in Chip 

Multiprocessors (CMP) [27]; one chip contains multiple processor 

cores usually sharing the second level cache and the bus. Such 

sharing can result in either performance improvements (e.g., one 

thread prefetching data for another) or performance degradation 

(e.g., two threads conflict in the shared caches). Exploiting 

multithreaded architectures create new opportunities for improving 

essential DBMSs operations. Hash join (an optimized join operation 

that uses hash table data structures) is one of the most important 

operations commonly used in current commercial DBMSs [22]. 

Therefore, revisiting the join implementation to take advantage of 

state-of-the-art hardware improvements is an important direction to 

boost the performance of DBMSs. Significant work has been done 

on the improvement of hash join operations ([4], [6], [9], [16], [20], 

[21], [24], [25]). Parallel hash Join has been extensively examined 

by Shatdal [20] for SMP architectures. Shatdal [20] also presented a 

hybrid between hash join algorithm designed for shared-nothing 

multiprocessors and SMP systems. Database operations have been 

investigated on SMT architectures in many papers ([9], [15], [18], 

[24]), including hash join operations ([9], [24]). In [9] Garcia and 

Korth conclude that prefetching techniques in [4] are useful for the 

probing phase only in the hash join on real SMT hardware. J. Zhou 

et al in [24] use a helper-thread approach to exploit the two threads 

available in an SMT architecture. Work on database operations and 

CMP architectures include [28] in which researchers evaluate the 

On-Line Transaction Processing (OLTP) benchmark TPC-C and the 

decision-support database benchmark TPC-H on a CMP simulator. 

They find that most stalls are due to data misses mainly in the Level 

2 cache. In [29] Colohan et al. use speculative threads to parallelize 

database queries for a CMP 4-processors simulator, and achieve 

speedups ranging from 36% up to 74% for some TPC-C 

transactions. Other work on tuning software on CMP environments 

include [3], which presents a general theoretical justification of 

upper and lower bounds on cache misses for a system consisting of 

p processors with shared memory hierarchy. However, previous 

work does not take advantage of the sharing in the underlying 

hardware structures, has less than optimal work division among 

threads, and does not provide insights into the memory hierarchy 

performance. In this paper we present the following main 

contributions: (1) we analyze and study the different phases of 

traditional hash join algorithms using one of the most popular join 

algorithms (the Grace Algorithm [13]) and highlight existing 

problems. (2) We apply improvements to the different hash join 

phases to enhance their single thread performance. (3) We propose a 

multithreaded hash join algorithm that takes advantage of the 

underlying multithreaded architecture by sharing data between 

threads in the same processor. Thus, reducing cache conflicts and 

using one thread to prefetch data for the other. We refer to our 

algorithm as an Architecture-Aware Hash Join (AA_HJ). (5) We 

show that our proposed algorithm can be easily integrated with the 

recent (yet orthogonal) improvements to the single threaded hash 

join operation to achieve high performance. In particular, we take 

advantage of the software group prefetching technique proposed by 

[4]. To the best of our knowledge, no other work has proposed a 

multithreaded hash join algorithm that takes advantage of the 

underlying SMT and CMP hardware. In this paper we conduct our 

experiments on the Intel® Pentium® 4 HT (SMT, dual-threaded) 

processor and the Intel® Quad Xeon® Dual Core server 

(combination of SMT, CMP and Symmetric processors (SMP), up 

to 16 threads). On the first machine we achieve speedups ranging 

from 2.1 to 2.9 times compared to the Grace hash join. While on the 

second machine our speedups range from 2 to 4.6 times depending 

on the tuple size. The rest of this paper is organized as follows: 

Section 2 describes the concepts of databases and hash join. In 

Section 3 we present the details of our proposed dual-threaded and 

multi-threaded AA_HJ. Section 4 describes the experimental 

methodology. In Section 5 we present the timing and memory-



characterizing results on the Intel® Pentium® 4 HT processor for the 

dual-threaded AA_HJ. In Section 6 we show the results on the 

Intel® Quad Xeon® Dual Core server for more than two threads and 

characterize the hardware performance for AA_HJ and analyze its 

memory behavior using the Intel® VTune Performance Analyzer. 

Finally, conclusions are presented in Section 7. 

2. BACKGROUND 
This section introduces database management systems (DBMSs) 

and hash join operations [2]. The relational database management 

system (RDBMS) model is the traditional DBMS originally 

presented by Edgar F. Codd [6]. RDBMS is a tabular representation 

of a database, where records (tuples) represent the rows and 

attributes represent the columns. As an example Figure 1 has three 

relational tables. 

 

Figure 1: Database Join 

Queries initiated to the RDBMS include retrieving tuples that 

satisfy some conditions, updating, and deleting tuples. Some queries 

request data that exists in two relations (tables), Figure 1 shows an 

example of joining two tables. The datasets are organized such that 

some employees have their names and salaries stored in one table, 

while the departments and provinces are stored in another table. To 

retrieve all the data for any employee whose ID is in both tables, we 

perform a natural-join. Natural join is one variation of a join in 

which we ask to retrieve all tuples from both relations whose join-

key (ID in Figure 1) matches. This is one of the most popular types 

of joins. In its simplest form, joining two relations can be processed 

by two nested loops, where the outer loop reads a tuple from the 

large relation, and the inner loop scans the smaller relation looking 

for tuples with keys equal to that for the outer tuple. A more 

efficient (and the most popular) implementation for the join query is 

the hash join which is shown in Figure 2. In a hash join, a hash 

table is constructed from the smaller relation (usually called R or 

build relation).  

 

Figure 2: Hash Natural-join Process 

Next, tuples are probed from the larger relation (usually called S or 

probe relation) one by one using the hash table. A hash table 

structure is shown in Figure 3. It is an array of buckets, where each 

bucket has a pointer to a linked list of cells. Each cell has a pointer 

to a tuple in the build relation, and a hash value generated from the 

joining key of this tuple. After building the hash table, the probe 

relations’ tuples are read one by one. For each S tuple read, the 

joining key hash value is computed, and then the bucket number is 

calculated from the hash value. The proper bucket (cells array) is 

accessed, and each cell’s hash value is compared against the S 

tuple’s hash value for a match. If a match occurs, the pointer in that 

cell is dereferenced so as to load the build relation R tuple, whose 

key will be compared against the probe S tuple’s key for a match. If 

we have a match then both the build and probe tuples are projected 

into the output buffer. A hash join requires random accesses to the 

hash table during the probing phase, and random accesses to the R-

relation to retrieve the matched tuples. To reduce the memory 

access latency resulting from these random accesses, previous 

efforts have concentrated on storing the data tables as close to the 

CPU as possible. For disk-resident databases (DRDBs) ([2], [8]) 

both the R and S-relations are partitioned into clusters (partitions) 

that fit in the main memory. 

 

Figure 3: Hash Table Structure 

This algorithm is widely known as the “Grace Hash Join”. While for 

MMDB, a similar partition-based approach called “cache 

partitioning” (a.k.a. Direct Cache, DC) is used. In DC partitioning 

([4], [9], [14], [17], [21]) the R and S-relations are partitioned into 

clusters such that each R cluster and its corresponding hash table fit 

in the highest level cache (largest cache) in the machine. This is 

done prior to any hash join processing. The partition-based hash 

join algorithm is shown in Figure 4. 

partition R into R0, R1,…, Rn-1 

partition S into S0, S1,…, Sn-1 

for i = 0 until i = n-1 

 use Ri to build hash-tablei 

for i = 0 until i = n-1 

 probe Si using hash-tablei 

Figure 4: Hash Join Base Algorithm 

In the parallel hash join [16] both relations are partitioned among 

the available processors p in a multi-processor system, for example. 

This is done by dividing the S and R-relation into p clusters 

(blocks), such that each cluster has approximately the same number 

of tuples. Then each processor uses its R-relation-cluster to build 

one global hash table. Multiple writes to the same memory location 

are synchronized by latches. In the final step of the parallel hash 

join, each processor probes its cluster using the global hash table. 

3. ARCHITECTURE AWARE HASH JOIN 
In this section we propose a dual-threaded architecture-aware hash 

join (AA_HJ) database operation, then we extend it to use more 

than two threads. Our algorithm takes advantage of the following 

two main features in SMT architectures: (1) two threads are 



available to run simultaneously, (2) the full memory hierarchy is 

shared between these two threads (i.e. the cache sharing feature of 

SMT architectures). MMDB systems suffer from high L2 cache 

miss rates and therefore, reducing/hiding the memory access latency 

is an important performance factor for hash join operations. 

The Build Index Partition Phase: We use the OpenMP library 

([7], [19]) to initiate two threads, where each thread is assigned a 

unique ID. To minimize thread creation and killing overhead, we 

initiate the two threads only once when the hash join begins, and 

kill the threads only when the join is completed. Our algorithm 

starts by creating structures to hold the R-relation index clusters 

(partitions) for each thread. Each entry in the index structures 

consists of 8Bytes; 4Bytes for the tuple index, which is a pointer to 

the tuple in the R-relation, and 4Bytes to store the hash value for 

that tuple. We partition the R-relation by first splitting it between 

the two threads, such that the first thread processes the first half (R0-

R(n/2)-1) and the second thread processes the second half (Rn/2-Rn-1). 

The R-relation is accessed sequentially by each thread. Therefore, 

the hardware prefetcher is able to capture the memory address 

patterns and prefetch the needed data. This eliminates the need for 

explicit software prefetch instructions. Each thread in this stage 

reads a tuple from its half and calculates the tuple's key mod number 

of clusters that belong to this thread. Therefore, it chooses the 

cluster where it should store the tuple. The thread saves the tuple’s 

pointer together with its hash value, which is calculated from the 

tuple's key. We are using 1024 clusters for the index partition. This 

generates L1 cache size clusters (L1 cache size is 64KByte). Later 

in this section we explain an automated method to determine 

numbers of clusters prior to actual execution. 

The Build and the Probe Index Partition Phase: Before we begin 

this stage, we make sure that both threads finish the build index 

partition phase completely by using a barrier synchronization 

pragma. Our hash tables are described in Figure 3. We study several 

possible multithreaded implementations. 1) Use the two threads 

simultaneously, each building a hash table. This approach resulted 

in contention over the cache between the two threads hash tables. 

Thus resulting in cache misses for most accesses in the two hash 

tables and highly degrading performance. 2) Use the two threads to 

build the same hash table simultaneously. We use atomic 

synchronization pragmas to restrict writing to the same memory 

location to one thread at a time.  ��� � � � ��� �	 � � ���
 	����
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Figure 5: AA_HJ Build Phase Executed by one Thread  

However, this type of synchronization limits the performance of the 

two threads, resulting in slowdowns rather than speedups. 3) 

Devoting one thread to create the hash tables of the build phase and 

use the second thread to perform the S-relation index partitioning 

phase simultaneously. This method gives us the best performance 

and therefore, is our method of choice. 

The build phase algorithm is shown in Figure 5. Each two clusters 

generate one hash table, where both of these two clusters have the 

same key-range. For example, both thread0.Build-cluster1 (cluster1 

generated by thread0 from the first phase) and thread1.Build-cluster1 

(cluster1 generated by thread1 from the first phase) generate hash-

table1 in Figure 5. While the first thread is building the hash tables, 

we use the second thread to perform the S-relation index 

partitioning simultaneously. The R-relation structures will be 

accessed repeatedly to probe tuples in the probe phase, thus they 

need to fit in one of our caches. While for S-relation, each tuple will 

be read once during the probing phase to search for its match, so the 

S-relation clusters do not need to fit in the caches. Also, since tuples 

are read sequentially, the hardware prefetcher is able to prefetch the 

S-relation tuples. Each entry in the S-relation clusters has a similar 

form to that used for the R-relation clusters. We create two sets of 

clusters, one for each thread. The first set of clusters store the 

indexes resulting from tuples ranging from 0 to (n/2)-1, where n is 

the total number of tuples in the S-relation. While the second set of 

clusters stores indexes from (n/2) to n-1. Therefore, each key-range 

has two clusters, one from the first S-relation half and the other 

from the second half. The algorithm used for the S-relation indexing 

phase is shown in Figure 6 (where S means S-relation). 

x=0 

do{ 

 read S.tuplex 

 z = appropriate-cluster-number depending on 

S.tuplex.key  

 insert S.tuplex into thread0.Probe-clusterz 

 read S.tuplex+(n/2) 

 z = appropriate-cluster-number depending on 

S.tuplex+n/2.key 

 insert S.tuplex+(n/2)  into thread1.Probe-clusterz 

 increment x by 1 

} while ( x < n/2 ) 

Figure 6: AA_HJ Probe Index Partitioning Phase Executed by 

one Thread 

The Probe Phase: As the probing phase uses both the hash tables 

and the S-relation clusters, we can not begin this phase until both 

threads of the previous phase are done. Thus, a barrier pragma is 

implemented between the two phases. One of the large challenges 

for the probe phase is the random accesses to the hash table 

whenever there is search for a potential match. As described in 

Section 2: Figure 3, each access to the hash table will result in a 

sequence of pointers dereferenced. The probe phase begins by 

accessing the appropriate bucket, reading the cell array’s pointer, 

accessing the cell array and dereferencing every cell’s pointer so as 

to read this tuple’s key and test for a match with the probed tuple. 

Consequently, the goal of optimizing this phase concentrates on 

proposing a solution for the sequence of random accesses to the 

hash tables. Architectural Aware Hash Join (AA_HJ) controls both 

threads such that each thread is probing tuples from its cluster 

whose key-range is similar to another cluster that is being probed by 

the other thread concurrently. As an example, in Figure 7, we show 

the process of generating four clusters from the S-relation in the S-

relation index partitioning phase by Thread1. Thread2 will be busy 

in hash tables building (not shown in the figure). Next, in the probe 

phase the two clusters that belong to the same key-range are probed 

by the two threads simultaneously and one hash table is visited 



during each key-range’s iteration. To prevent race conditions that 

might arise from one thread probing its cluster faster than the other 

thread, we divide each key-range probe iteration with a barrier 

pragma from the other iterations. However, since keys are randomly 

distributed throughout the S-relation, each cluster from thread0’s set 

of clusters will result in almost the same number of matches as those 

resulted from the corresponding cluster from thread1’s set of 

clusters. Thus, probing both clusters requires the same time. The 

pseudo code for our algorithm is shown in Figure 8. The term 

“number-of-clusters” refers to the total number of clusters generated 

from the S-relation. Since both threads are using the same hash 

table concurrently in each iteration, one thread will serve as an 

implicit hash table-prefetcher for the other thread while it is probing 

its own tuples. 

 

Figure 7: AA_HJ S-Relation Partitioning and Probing Phases 

This is because each hash table fits in the L1-cache therefore, once 

it is fetched, it remains cache-resident until the next iteration, where 

another hash table is prefetched. The original S-relation is not 

accessed sequentially any more because of our index partitioning, 

therefore the hardware prefetcher will not be as useful. To solve this 

problem, we use explicit prefetch instructions to prefetch the next 

tuple in the cluster before we begin to process the current tuple. We 

find that prefetching one tuple ahead is enough to overlap the 

memory access latency for the tuple.  

for i = 0 until i = number-of-clusters/2 

 if (thread0) 

  for j = 0 until j = thread0.Probe-clusteri.number-

of-entries 

   prefetch thread0.Probe-clusteri.tuplej+1 

   use hash-tablei to probe thread0.Probe-

clusteri.tuplej 

 else 

  for k = 0 until k = thread1.Probe-clusteri.number-

of-entries 

   prefetch thread1.Probe-clusteri.tuplek+1 

   use hash-tablei to probe thread1.Probe-

clusteri.tuplek 

 pragma barrier 

Figure 8: AA_HJ Multithreaded Probing Algorithm 

This is because each prefetch instruction in the Intel® Pentium® 4 

loads two cache lines and the largest tuple size we study is 

140Bytes. 

Extending AA_HJ for more than two threads: We now present a 

scalable form of AA_HJ that exploits more than two threads. Our 

new version of AA_HJ is capable of utilizing various types of 

multithreading including SMP (Symmetric Multiprocessors), CMP 

and SMT. Follows is a description of the changes we have made to 

the dual-thread AA_HJ: 

R-relation index partition: Assume that the R-relation has Rn 

tuples. Also, assume that the number of available threads in the 

platform is t, t includes any threads resulting from the SMT, the 

CMP and the SMP architectures, where t = number of processor 

chips × number of cores per chip × number of SMT threads per 

processor core. For example, if a system has four processor chips, 

each processor is a quad core, each core is 2-threads SMT, then t = 

4 × 4 × 2 = 32 threads. Each thread ti (i = 0, 1... t-1) is assigned Rn/t 

tuples. The remaining tuples after this division will be added to the 

last thread. An index partitioning similar to the one described in 

earlier in this section is executed by each thread. By the end of this 

phase any thread will have a set of clusters c. A ci (i = 0, 1… limit-

1) stands for a key-range as described earlier. The value of limit 

depends on the following observations: (1) the total size of clusters 

for any key-range must be small enough to allow both the hash table 

and its R-clusters to fit in the L2 cache. This is because we are 

planning for each four threads in a chip to share one hash table. (2) 

During the probe phase some space in the L2 cache should be 

reserved for a few tuples from the S cluster. The tuples from the S-

relation are used only once, so this space is intended to be a 

temporary storage for tuples prefetched manually. (3) Some space 

should be reserved for the operating system processes. Taking all 

theses factors into account, we use (R-relation-size + hash 

tables’sizes)/limit < L2 cache size to calculate limit. Since it is 

difficult to estimate the hash table size prior to the hash join (hash 

table size ranges between 22MByte up to 150MByte in our case) we 

use its worst case, where hash table is just above half the R-relation 

size (150MByte). Therefore limit is measured as follows (250 + 

150) / limit < 2, which results in limit > 200. We choose limit to be 

256 clusters.  

Build Phase and S-Relation Index Partition Phase: In the second 

step, the thread with the smallest identifier builds the hash tables. 

Simultaneously, other threads will index-partition the S-relation as 

described in earlier in this section. The thread with the next smallest 

identifier will generate two sets of clusters instead of one, to 

compensate for the thread building the hash tables.  

Probe Phase: During this phase, a constructive cache-level sharing 

is maintained by directing all four threads of each dual-SMT-core to 

probe one key-range using one hash table. Recall that any thread 

generates a set of clusters from phase two, with a cluster for each 

key-range. Therefore, t clusters exist for each key range. A probing 

thread in a core will process t/4 clusters. Again, GP is incorporated 

with this phase code to eliminate cold misses. Keeping in mind that 

this is the most expensive phase in the hash join operation, we 

provide several optimizations including: (1) the load is almost 

perfectly balanced between threads. Given that our keys are 

uniformly distributed, the sizes of clusters are very close. (2) Having 

four threads repeatedly visiting the same memory structure (hash 

table), will highly increase temporal and spatial locality. 

4. EXPERIMENTAL METHODOLOGY 
We run our algorithms on two multithreaded machines. The first 

(Machine 1) is a 3.4GHz Intel® Pentium® 4 processor with hyper-

threading technology (HT, Intel’s dual thread SMT architecture 

[11]). The second (Machine 2) is the Intel® Xeon® Quad Processors 

for PowerEdge 6800, each processor is a dual-core, each core is HT. 

General specifications for both machines are shown in Table 1. 



Both systems have L2 unified cache with 128Bytes cache lines. We 

use the Scientific Linux version 4.1 operating system which is based 

on the Redhat Linux Enterprise version 4.0. We implemented all 

algorithms in C, and we use the Intel® C++ Compiler for Linux 

version 9.1 [10] with maximum optimizations. We use the built-in 

OpenMP C/C++ library [19] version 2.5 (as implemented in the 

Intel® C++ Compiler) to initiate multiple threads in our multi-

threaded codes. We repeat each run three times, remove the outliers, 

and take the average. Timing and memory measurements are done 

through our program using functions such as gettimeofday (). A 

warm up run is done prior to any measurements to load the relations 

into main memory. 

Table 1: Machines Specifications 

 Machine 1 Machine 2 

Processor(s) Pentium® 4 with 

HT 

Quad Xeon®, 

PowerEdge 6800 

L1 data Cache 64Kbyte 64KByte/core 

L2 Cache 2MByte 2MByte/processor 

Main Memory 1GByte 533MHz 

DDR2 

4GByte 400MHZ 

DDR2 

Clock Speed 3.4 GHz 2.66 GHz 

Hard Drive 160GByte 300GByte 

We choose to implement our own version from hash join rather than 

using the database benchmarks (e.g. TPC-C) to prevent the impact 

of DBMS overhead from unseen activities. These activities might 

include query planner, query optimizer, etc. For Machine 1 we use a 

50MByte build relation and a 100MByte probe relation. We choose 

these sizes to make sure that our relations, in addition to any large 

intermediate structures needed by the code, fit in our 1GByte main 

memory.  

Table 2: Number of Tuples for Machine 1 and 2 

Tuple 

Size 

(Byte) 

Build 

Relation in 

Machine 1 

Probe 

Relation in 

Machine 1 

Build 

Relation in 

Machine 2 

Probe 

Relation in 

Machine 2 

20 2621440 5242880 13107200 26214400 

60 873814 1747628 4369067 8738134 

100 524289 1048578 2621440 5242880 

140 374491 748982 1872457 3744914 

While for Machine 2 we use 250MByte build relation and 

500MByte probe relation since we have larger main memory 

(4GByte). Our join key is 10Bytes, randomly generated such that 

each tuple in the build relation matches one tuple in the probe 

relation. The payload part of the tuple is of variable size. The 

number of tuples in each table (given the table’s constant size) 

depends on the tuple size. Table 2 shows the number of tuples used 

in each relation for different tuple sizes. We choose tuples of these 

sizes to study the cases where tuples are smaller than the L1 cache 

line (20Byte, 60Byte), between the L1 and the L2 cache line sizes 

(100Byte) and larger than the L2 cache line size (140Byte). In real 

DBMS the average tuple size is 120Byte [22]. Our naïve 

partitioning and probing algorithms are the same as those in [9]. 

Our hash function consists of XOR and shift operations [4] and 

generates 4Bytes hash codes. Once hash codes are computed at any 

stage, they are saved in temporary structures in memory to avoid 

recalculating them. Hash table buckets are calculated using the hash 

code mod hash table size. Our hash tables are created such that the 

number of buckets equals the number of tuples in the corresponding 

R-cluster or the R relation in case partitioning is not used. We use 

the Intel® VTune™ Performance Analyzer for Linux 9.0 [12] to 

collect the hardware events from the hardware performance counters 

available in our machines. These events include L2 cache load 

misses, L1 data cache load misses, etc. Each run for VTune is 

repeated three times. Each time two runs are performed by VTune, 

the first is for calibration, which determines the frequency at which 

the event occurs. The second is for the actual event collection. 

5. RESULTS FOR THE DUAL-THREADED 

HASH JOIN 
We start by characterizing the main memory-hash join algorithm in 

Machines 2. Figure 9 shows that the level one (L1) data cache load 

miss rate (= L1 load cache misses/total loads) ranges from 4.7% to 

5.3% while varying the tuple (record) size. Taking into account that 

the L1 miss latency does not exceed 10 cycles, we find that the L1 

data cache does not affect the overall performance of the hash join. 

Next, we characterize the unified level two (L2) cache in Figure 10. 

The L2 cache load miss rate (= L2 load cache misses/L1 load cache 

misses) varies from 29% for tuple size = 140Bytes to 64% for tuple 

size = 20Bytes. As the L2 cache load miss latency is usually larger 

than 100 cycles, our results show that the L2 cache load miss rate is 

a critical factor in main-memory hash join performance. This agrees 

with previous research in [1]. Our measurements show that the 

maximum TC miss rate we get is very small and does not exceed 

0.14%. In summary, the L2 cache miss rate has a major impact on 

the hash join performance. Therefore, reducing the L2 cache miss 

rate is vital to improve the hash join performance. 

Partitioning vs. Non-Partitioning vs. Index Partitioning: Now, 

we study the effects of partitioning the build and probe relations on 

the execution time and memory usage of the hash join on Machine 

1. As described in Figure 4, partitioning is the first step of the hash 

join algorithm. It creates small clusters (partitions) of the R and S-

relations that fit in the cache. The goal is to divide the overall hash 

join into a set of smaller hash joins to work on data that fits in the 

cache. Recent papers ([4], [9]) copy the entire relations while 

partitioning. We implement three types of the hash join algorithms: 

partitioning (PT), non-partitioning (NPT), and index partitioning 

(Index PT): (1) PT uses the copy partitioning algorithm described in 

Figure 4. We use 1024 clusters for the R-relation which creates R-

clusters of 50KByte each. Including the hash table size for each 

cluster, this fits easily in our 64KByte L1 cache. We find 

experimentally that using clusters of larger sizes will create cache 

thrashing, and smaller cluster sizes result in high partitioning 

overhead. We also use 1024 clusters for the S-relation. However, 

the S-relation is not as critical as the R-relation to have in the cache 

and is not partitioned to fit in the cache in techniques such as DC, 

described in Section 3. (2) NPT uses no partitioning, instead the full 

R and S-relations are hash joined. (3) Index PT. Instead of copying 

the actual tuples into the partition, pointers to the tuples are stored. 

We use 1024 clusters for both the R- and S-relations which allows 

our R-cluster (which includes pointer to the tuples only and not the 

full tuple) and its corresponding hash table to fit into our L1 cache. 

The PT and Index PT are two variants from main-memory Grace 

hash join. Our results in Figure 11 demonstrate that although the 

timing analysis for PT outperforms the NPT algorithm in tuple size 

= 20Byte, the overhead of the partitioning phase overcomes the  
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Figure 10: The L2 Cache Load Miss 
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Figure 11: Timing for three Hash Join 

Partitioning Techniques 

performance improvement due to partitioning in all other tuple 

sizes. This overhead is a result of the copying of large tuples from 

the source relation to the destination cluster. This overhead is 

eliminated by Index PT and therefore results in the performance 

improvement of Index PT over both NPT and PT in all tuple sizes 

The longer execution time for smaller tuples is due to the larger 

number of tuples (as a result, more random accesses to caches for 

smaller tuples) in these cases as shown in Table 2. 
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Figure 12: Timing Comparison of all Hash Join Algorithms 

The memory usage of PT, NPT and Index PT: Since we are 

studying MMDB operations, our relations have to be main 

memory resident prior to any processing. Thus, the minimum 

memory space that any hash join requires will be equal to the total 

sizes of the two relations, which is 150MB, in addition to the 

memory needed to build the hash table. The size of the hash 

table(s) is proportional to the number of tuples involved in the 

table building. Our results show that PT requires almost two times 

the memory space required by NPT. This is because both relations 

are copied into the clusters in PT. While, Index PT memory 

requirements are in between PT and NPT, as each tuple in Index 

PT requires only 8Bytes in its cluster (4Bytes for tuple hash value 

and 4Bytes tuple pointer), regardless of the size of the tuple. 

Therefore, Index PT gives the best performance and has the 

intermediate memory usage. Speedups achieved from Index PT 

over NPT ranges from 18% to 21%. 

Dual-threaded Hash Join: The probe phase is known to be the 

most time consuming phase in hash join due to its random access 

pattern to both the hash table and R-relation. Now, we study the 

performance of the straightforward parallelization of the probe 

phase on Machine 1. We develop dual-threaded versions of the 

three algorithms presented in the Section 3 on our SMT 

architecture. We refer to our algorithms as SMT+PT, SMT+NPT 

and SMT+Index PT. We parallelize the probe phase for PT and 

Index PT by dividing the available S-clusters evenly between both 

threads to create SMT+PT and SMT+Index PT, respectively. 

While for NPT we split the probe relation between the two 

threads, such that each thread probes half of the large relation. Our 

results in Figure 12 show that Index PT (in the SMT+Index PT 

algorithm) continues to give the best performance. We calculate 

the speedups resulting from multithreading each of our three hash 

join algorithms to be; SMT+NPT is 39%, SMT+PT is 10% and 

SMT+Index PT is 15%, compared to NPT, PT and Index PT hash 

joins, respectively.  
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Figure 13: Speedups for the Multi-Threaded Architecture-

Aware Hash Join 
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Figure 14: Time Breakdown Comparison for Hash Join 

Algorithms 



3%

4%

5%

6%

7%

8%

9%

10%

20 60 100 140Tuple Size (Byte)

L
1

 L
o

a
d

 M
is

s
 R

a
te

NPT 2 4 8 12 16

 

Figure 15: The L1 Data Cache Load 

Miss Rate for NPT and AA_HJ 
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Figure 16: Number of Loads for NPT 

and AA_HJ 
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Figure 17: The L2 Cache Load Miss 

Rate for NPT and AA_HJ 

The SMT+NPT has the highest speedups since it lacks the 

overhead of the sequential partitioning phases and its execution 

time is dominated by the probing phase. We use Index 

Partitioning in AA_HJ as it is the best performing partitioning 

algorithm. In contrast to the SMT+Index PT where two hash 

tables (one per thread) are used, AA_HJ forces the two threads to 

use the same hash table simultaneously. This reduces cache 

conflicts between the two hash tables in SMT+Index PT and 

allows accesses from one thread to prefetch parts of the table for 

the other thread. We refer to this version of our proposed 

algorithm as AA_HJ+SMT. Since our proposed technique is 

orthogonal to some of the previously proposed hash join 

enhancement techniques such as Group Prefetching (GP) [4], we 

further enhance our performance by adding GP to AA_HJ+SMT. 

GP prefetches the randomly accessed buckets of the hash tables, 

thus reducing our cold cache misses. We refer to this version of 

our proposed algorithm as AA_HJ+GP+SMT. Figure 12 shows 

that AA_HJ+SMT is able to increase the thread cooperation in the 

cache level for all tuple sizes and therefore considerably improve 

performance. AA_HJ+GP+SMT further enhances the 

performance. AA_HJ+SMT achieves a speedup ranging from 2.04 

to 2.70 for tuple sizes 20Bytes to 140Bytes, respectively. Speedup 

for AA_HJ+GP+SMT ranges from 2.19 to 2.90 for tuple sizes 

20Bytes to 140Bytes, respectively. 

6. RESULTS FOR THE MULTI-THREADED 

ARCHITECTURE-AWARE HASH JOIN 
In this section we present the results of our scalable AA_HJ 

algorithm. The workstation we conducted our experiments on is 

Machine 2, described in Section 4. The R-relation is 250MByte 

and the S-relation is 500MByte. We ran multithreaded AA_HJ 

with 2, 4, 8, 12 and 16 threads, each of which with tuple size = 

20Byte, 60Byte, 100Byte and 140Bytes. To highlight the 

differences in performance with single-threaded AA_HJ, we also 

run NPT, PT and Index PT hash joins (for details about NPT and 

PT and Index PT refer to Section 5). Figure 13 shows the 

speedups of all multithreaded runs together with Index PT 

compared to PT hash join. We achieve speedups ranging from 2x 

for tuple size = 20Bytes with two threads, to 4.6x for tuple size = 

140Bytes with 16 threads. The improvements in running time 

saturate while having eight threads for all tuple sizes. This is 

because number of clusters has proportional relation with number 

of threads. Therefore, the partitioning overhead together with the 

expensive off-chip communications will increase while having 

more working threads. AA_HJ takes advantage of sharing 

structures between each four threads in a dual-SMT core. Thus, 

enhancements in performance are large while having 2, 4 and 8 

threads. Despite the fact that PT accomplishes good execution 

time for tuple size = 20Bytes, its memory footprint is 3.4 times the 

relations sizes, which makes it impractical for machines with 

limited main memory environments. NPT hash join maintains its 

precedence over others in memory savings. While Index PT and 

all AA_HJ multithreaded hash joins are comparable in memory 

consumption. Figure 14 shows the time breakdown for all 

multithreaded AA_HJ, PT and Index PT for all tuple sizes. From 

Figure 14 we have the following observations: There are large 

improvements in probing and index-partitioning execution times 

for AA_HJ compared to PT and Index PT. Execution time 

decreases when using more threads for AA_HJ up to 8 threads, 

where it saturates. The R- and S-relations index partitioning 

phases saturate at eight-threaded AA_HJ. This is due to doubling 

number of clusters while adding each thread. The communication 

overhead for CPUs on the same chip is cheap (10-20 cycles) and 

is carried out through the L2 cache. While off-chip cores 

communicate through the main memory or a cache-coherence 

protocol which is very expensive (hundreds of cycles). In the 

probe phase clusters are collected from all cores to process a hash 

table, this generates large communication overhead that prevents 

further improvements. 

In what follows, we use Intel VTune Performance Analyzer for 

Linux 9.0 to collect hardware events from the hardware counters 

available on Machine 2. First, we measure the L1 data cache load 

miss rate in Figure 15. NPT hash join is always generating low L1 

data load miss rate, due to the low number of loads it executes 

(Figure 16). The relatively small number of loads is a direct effect 

for not using any intermediate structures but one hash table and to 

accessing both R and S-relations sequentially. The L1 data cache 

miss rate for multi-threaded AA_HJ decreases as we increase the 

tuple size except for tuple size = 20Bytes. Since number of tuples 

are smaller for larger tuple sizes Table 2. Therefore, hash joins 

with large tuple sizes process fewer movements while partitioning 

and probing. The L1 data cache load miss rate for NPT is about 

5%, and for multi-threaded AA_HJ is from 6.5% to 9.1% showing 

an increase of 1.5% to 4%. This increase is very small and 

therefore has a minor affect on the overall performance. In Figure 

17, we measure the L2 cache load miss rate. NPT has over a 60% 

L2 load miss rate at tuple size = 20Bytes. This is a result of the 

very large probe portion for the NPT for tuple size = 20Bytes, 

since it uses one hash table. All tuple sizes in Figure 17 are 

experiencing an improvement in L2 load miss rate, which is the 

dominating factor in the execution time and the main cause for the 

performance improvement. A noticeable decrease exists from NPT 

to two-threaded AA_HJ, due to the cache-sized index partitioning, 



good load balance between both threads and constructive cache 

sharing. 

7. CONCLUSIONS 
In this paper we characterize the hash join operation on 

state_of_the_art multithreaded hardware that combines SMT, 

CMP and SMP. We find that the hash join is bound by the L2 

miss rates, which range from 29% to 62%. We propose an 

Architecture-Aware Hash Join (AA_HJ) that relies on sharing 

critical structures between working threads at the cache level, 

benefiting from multithreaded architectural features. AA_HJ 

distributes the load evenly between threads while requiring almost 

the same memory space used by index-partitioning hash join. We 

study AA_HJ performance on two machines. The first is a two-

threaded SMT processor where we achieve speedups ranging from 

2.1 to 2.9 compared to the single-threaded hash join. The second 

is a quad dual-SMT-core server (with a total of 16 threads); we 

obtained speedups from 2 to 4.6 compared to the single-threaded 

hash join. We find that AA_HJ decreases the L2 cache miss rate 

from 62% to 11%, and from 29% to 15% for tuple size = 20Bytes 

and 140Bytes, respectively.  
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