Math 104 section 108 Quiz #5 Column B	Date:	Grade:	
First Name:	Last Name:		
Student-No:	Section.		

You must show your work

1. 3 marks A wholesale flour producer wants to sell flour in cubic containers. The cost of making a cubic container with edge x meters is $3x^3 + 85x^{\frac{3}{2}}$ dollars. A market research shows that people are willing to be y cubic meters of flour for $90\sqrt{y}$ dollars. Find the size of the edge of the box which will produce the maximal profit per box.

Answer: $x = \left(\frac{5}{6}\right)^{\frac{2}{3}}$

Solution: The volume of the box is $V(x) = x^3$ and the revenue per box is

$$R(x) = 90\sqrt{V(x)} = 90x^{\frac{3}{2}}.$$

The profit function is

$$P(x) = R(x) - C(x) = 5x^{\frac{3}{2}} - 3x^{3}.$$

We are interested in values of x in the open interval $(0,\infty)$. We look for critical points

$$P'(x) = \frac{15}{2}\sqrt{x} - 9x^2$$

Solving P'(x) = 0 for x we get $x^{\frac{3}{2}} = \frac{5}{6}$ so the only critical point of P(x) is at $\left(\frac{5}{6}\right)^{\frac{2}{3}}$. The second derivative of P is

$$P''(x) = \frac{15}{4\sqrt{x}} - 18x$$

Which is positive for $0 < x < \left(\frac{5}{24}\right)^{\frac{2}{3}}$ and negative for $x > \left(\frac{5}{24}\right)^{\frac{2}{3}}$. In particular, it follows that P is increasing for $0 < x < \left(\frac{1}{2}\right)^{\frac{2}{3}}$ and decreasing for $x > \left(\frac{5}{6}\right)^{\frac{2}{3}}$ so $x = \left(\frac{5}{6}\right)^{\frac{2}{3}}$ is the absolute maximum of P(x) at $(0, \infty)$. The profit is going to be $\$\frac{25}{12}$.

2. 3 marks Approximate $\sqrt[3]{15}$ as rational number, using a 2-nd Taylor Polynomial of $f(x) = \sqrt[3]{x}$.

Answer:
$$2 + \frac{7}{12} - \frac{7^2}{288}$$
 or $3 - \frac{12}{27} - \frac{12^2}{2187}$

Solution:

• The closest cubes to 15 are 8 and 27. I solve for both choices but you needed choose only one. Write

$$A(x) = a_0 + a_1(x - 8) + a_2(x - 8)^2$$

$$B(x) = b_0 + b_1(x - 27) + b_2(x - 27)^2$$

• 0-term:

$$a_0 = f(8) = 2, \quad b_0 = f(27) = 3$$

In particular $2 < \sqrt[3]{15} < 3$ (since f is increasing).

• 1-term: $f'(x) = \frac{1}{3x^{\frac{2}{3}}}$ $a_1 = f'(8) = \frac{1}{3 \cdot 2} = \frac{1}{12}, \quad b_1 = f'(27) = \frac{1}{3 \cdot 9} = \frac{1}{27}$ • 2-term: $f''(x) = \frac{-2}{9x^{\frac{5}{3}}}$

$$a_2 = \frac{f''(8)}{2} = \frac{-2}{2 \cdot 9 \cdot 2^5} = \frac{-1}{288}, \quad b_2 = \frac{f''(27)}{2!} = \frac{-2}{2 \cdot 9 \cdot 243} = \frac{-1}{2187}$$

• The 2-nd taylor polynomial centered at x = 8 is

$$A(x) = 2 + \frac{1}{12}(x-8) - \frac{1}{288}(x-8)^2$$
$$B(x) = 3 + \frac{1}{27}(x-27) - \frac{1}{2187}(x-27)^2$$

• The approximations of $\sqrt[3]{15}$ are given by

$$A(15) = 2 + \frac{7}{12} - \frac{7^2}{288}, \quad B(15) = 3 - \frac{12}{27} - \frac{12^2}{2187}$$

3. 4 marks Sketch the graph of the function $f(x) = \frac{4(x-9)^2}{x^2-9}$. You may use the fact that f''(x) = 0 only at $x_0 = 5 + 4\sqrt[3]{2} + 2\sqrt[3]{2^2} \approx 13.2$.

Solution:

- The domain of f(x) is $x \neq \pm 2$, i.e. $(-\infty, -3)$, (-3, 3) and $(3, \infty)$.
- Vertical asymptotes:

$$\lim_{\substack{x \to 3^+ \\ x \to 3^-}} f(x) = \infty$$
$$\lim_{\substack{x \to -3^+ \\ x \to -3^-}} f(x) = -\infty$$
$$\lim_{\substack{x \to -3^- \\ x \to -3^-}} f(x) = \infty$$

Horizontal asymptotes:

$$\lim_{x \to \infty} f(x) = 4$$
$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(-x) = 4$$

• The first derivative of f(x) is

$$f'(x) = 72\frac{(x-9)(x-1)}{(x^2-9)^2}$$

The derivative is defined for any x in the domain (i.e. $x \neq \pm 3$) and so the only critical points are the points c where f'(c) = 0, i.e. c = 1 and c = 9. Also, since the denominator is always positive, the sign of the first derivative is the same as the sign of its numerator. So, f'(x) is positive (and f(x) is increasing) for x < -3 and x > 3 and it is negative (and f(x) is decreasing) for -3 < x < 3. It follows that c = 1 is a local maximum and c = 9 is a local minimum.

- f(1) = -32, f(9) = 0
- The second derivative of f(x) is

$$f''(x) = 144 \frac{-x^3 + 15x^2 - 27x + 45}{(x^2 - 9)^3}$$

The denominator is positive for x > 3 and x < -3 and negative for -3 < x < 3. The numerator is negative for $x > x_0$ and positive for $x < x_0$. It follows that f''(x) is positive (and f(x) is concave up) for x < -3 and $3 < x < x_0$ and negative (and f(x) is concave down) for -3 < x < 3 and $x > x_0$. So x_0 is an inflection point.

