1. Find all $x \in \mathbb{R}$ that solves the following equation.

$$x^4 + 3x^2 - 10 = 0.$$

2. Recall that the absolute value function is defined by

$$|x| = \begin{cases}
 x, & x \geq 0 \\
 -x, & x < 0
\end{cases}$$

(a) Plot $|x|$
(b) Plot the piecewise function

$$f(x) = \begin{cases}
 |x|, & x \geq -2 \\
 2x + 6, & -4 \leq x < -2 \\
 -2, & x < -4
\end{cases}$$

(c) Use the graph to find the domain and range of f.
(d) Use the graph to find the zeros (roots) of f.

3. Consider the functions

$$f(x) = x^2 + 6x \quad \text{and} \quad g(x) = 3 - 2x$$

Find all real numbers x such that $f \circ g(x) = g \circ f(x)$.

4. Using the relevant graphs/triangles/unit circle explain why

$$\sin \left(\frac{11\pi}{6} \right) = -\frac{1}{2}.$$
5. Consider the following functions

\[g(x) = 3 \cos(2018x) \]

and

\[f(x) = \begin{cases}
 x^4 + 8x^2, & x > 3 \\
 5, & -3 \leq x \leq 3 \\
 2^x, & x < -3
\end{cases} \]

Determine the range of the function \(f \circ g \). Ensure your answer is fully justified.

6. Below, the graph of functions \(f \) and \(g \) are given. Using the graph answer the following questions.

(a) Write the domain and range of \(f \). \quad \text{Dom: } [0, 6] \quad \text{Range: } [-1, 1]

(b) Write the domain and range of \(g \). \quad \text{Dom: } [0, 6] \quad \text{Range: } [-2, 2]

(c) Evaluate

i. \(f \circ g(0) = f(g(0)) = f(2) = 1 \)

ii. \(f \circ g(4) = f(g(4)) = f(1) = -1 \)

iii. \(g \circ g(4) = g(g(4)) = g(2) = 2 \)

iv. \(g \circ f(4) = g(f(4)) = g(1) = \text{undefined} \rightarrow -1 \text{ is NOT in the domain of } g \)

v. \(f \circ g \circ f(3) = f(g(f(3))) = f(g(1)) = f(2) = 1 \)

[Graph of \(g(x) \) and \(f(x) \) with arrows and labeled points]
\[x^4 + 3x^2 - 10 = 0. \]

Take \(x^2 = t \), then the equation becomes

\[t^2 + 3t - 10 = 0 \Rightarrow (t + 5)(t - 2) = 0 \Rightarrow t + 5 = 0 \Rightarrow t = -5 \]
\[t - 2 = 0 \Rightarrow t = 2 \]

\[t = x^2 \Rightarrow x^2 = -5 \quad \therefore \text{No solution} \Rightarrow \text{squared number = negative number} \]
\[\Rightarrow x^2 = 1 \Rightarrow \pm \sqrt{1} \Rightarrow x = \pm 1 \]

2) \(f(x) = |x| \)

Only pick the part of \(|x|\) for which \(x > -2 \)

\[f(x) = \begin{cases}
 |x|, & x \geq -2 \\
 2x + 6, & -4 \leq x < -2 \\
 -2, & x < -4
\end{cases} \]

Pick the piece of line with these \(y \)-values.

(c) \(\text{Domain} : (-\infty, \infty) \text{ or } \mathbb{R} \)
\(\text{Range} : [-2, \infty) \text{ or } y \geq -2 \)

(d) \(\text{Roots are } x \text{-intercepts} : \text{line } y = 2x + 6 \text{ crosses } x \text{-axis when} \)

\[2x + 6 = 0 \Rightarrow 2x = -6 \Rightarrow x = -3 \]

Also the graph has a root at the origin

\[\Rightarrow \text{roots} : \boxed{x = -3, \ x = 0} \]
\[f(x) = x^2 + 6x \quad \text{and} \quad g(x) = 3 - 2x \]

\[\text{fog}(x) = f(g(x)) = f(3-2x) = (3-2x)^2 + 6(3-2x) \]

\[g\circ f(x) = g(f(x)) = g(x^2 + 6x) = 3 - 2(x^2 + 6x) \]

Equate and find \(x \):

\[(3-2x)^2 + 6(3-2x) = 3 - 2(x^2 + 6x) \]

\[9 - 12x + 4x^2 + 18 - 12x = 3 - 2x^2 - 12x \]

Group

\[6x^2 - 12x + 24 = 0 \]

\[\Rightarrow \quad 6(x^2 - 2x + 4) = 0 \]

\[\Rightarrow \quad x^2 - 2x + 4 = 0 \]

\[\Rightarrow \quad \text{Rearrangement does not work} \rightarrow \text{quadratic formula:} \quad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[b^2 - 4ac = (-2)^2 - 4(1)(4) = -12 < 0 \]

\[\Rightarrow \quad \text{NO solution} \]

\[\Rightarrow \quad \text{For NO} \ x, \ \text{fog} = g\circ f \]

(4) With the unit circle:

\[\frac{11\pi}{6} = \frac{12\pi - \pi}{6} = 2\pi - \frac{\pi}{6} \rightarrow \frac{\pi}{6} \quad \text{less than one complete cycle} \]

\[\sin\left(\frac{11\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2} \]
\[g(x) = 3 \cos(2018x) \]

\[f(x) = \begin{cases}
 x^3 + 8x^2, & x > 3 \\
 3, & -3 \leq x \leq 3 \\
 2^x, & x < -3
\end{cases} \]

\[f \circ g(x) = f(g(x)) = f(3 \cos(2018x)) \]

We know for any angle \(\theta \)

\[-1 \leq \cos \theta \leq 1 \quad \Rightarrow \quad -1 \leq \cos(2018x) \leq 1 \]

\[\Rightarrow \quad -3 \leq 3 \cos(2018x) \leq 3 \]

\[\Rightarrow \quad f(3 \cos(2018x)) = 3 \]

This is a value between -1 and 1.

So we input it in the 2nd line of \(f \).

\[\Rightarrow \quad f \circ g(x) = 5 \quad \text{for any } x \quad \Rightarrow \quad \text{Range of } f \circ g = \{5\} \]