Reminder:
* Labs begin next week.
* HW1 will be posted on Mon, Sept 10.
 Due date: Sept 17
* Quiz 1: Mon, Sept 24

Lines:

Slope of a line: A quantity that measures how fast the line is rising or falling moving from left to right.

Given two points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$, the slope of the line segment PQ (secant line) is given by:

$$\text{slope of } PQ = \frac{\text{Rise}}{\text{Run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

One common notation for slope = m.

Sign of the slope:

* positive slope \rightarrow Rising line
* negative slope \rightarrow Falling line
* slope = 0 \rightarrow Horizontal line
 $\Delta y = 0$
 Δx is Any value
* slope undefined \rightarrow Vertical line
 $\Delta x = 0$
 Δy is Any value
Equation of the line:

To find the equation of a line we need two pieces of info:

1. slope of the line: m
2. A point on the line: $P = (x_1, y_1)$

Then the equation of the line is:

$$y - y_1 = m(x - x_1)$$

Example 1: Find the equation of a line with slope 3 that goes through the point $(2, 5)$.

Solution:

$$m = 3$$

$P = (2, 5)$

we have all we need

$$y - y_1 = m(x - x_1)$$

$$y - 5 = 3(x - 2)$$

Now let's simplify the equation, by distributing 3 and have y at one side and every other term at the other side of $=$.

$$y - 5 = 3x - 6$$

$$y = 3x - 6 + 5$$

$$y = 3x - 1$$

* The line equation in the form:

$$y = mx + b$$

is called the slope-intercept formula. This is because the value b is actually the y-intercept of the line i.e. the line crosses the y-axis at b at which $x = 0$.

y-intercept
Example 2: What is the equation of the line through \((-1,1)\) and \((1,-5)\)?

Solution:

We need to find the two pieces \(m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-5 - 1}{1 - (-1)} = -3\) \(\rightarrow \)

\[P = (1,-5) \quad \Rightarrow \quad y - y_1 = m(x - x_1) \]

\[y - (-5) = -3(x - 1) \]

\[y + 5 = -3x + 3 \]

\[y = -3x - 2 \]

You can pick \((-1,1)\) and write the equation \(\Rightarrow\) the same answer

You can pick any of the points as \((x_1, y_1)\) and \((x_2, y_2)\) but be consistent:

\((1,-5) = (x_2, y_2)\)

\((-1,1) = (x_1, y_1)\)

Example 3: What is the slope and \(y\)-intercept of the line \(2x - 3y = 6\)?

A. \(m = 2, \ y\text{-int} = 6\)

B. \(m = \frac{2}{3}, \ y\text{-int} = -2\)

C. \(m = \frac{3}{2}, \ y\text{-int} = -2\)

D. \(m = 3, \ y\text{-int} = 6\)

E. None of the above.

Rewrite the equation in the slope-intercept form:

\[
2x - 3y = 6 \quad \Rightarrow \quad -3y = -2x + 6 \quad \Rightarrow \quad y = \frac{-2}{-3}x + \frac{6}{-3}
\]

\[
\Rightarrow y = \frac{2}{3}x - 2
\]

Compare with \(y = mx + b\)

B
Example 4. Which of the following lines is parallel to

\[y - 2 = \frac{5}{2} (x+1) \]

What’s \(m \)? Coefficient of \(x \) \(\Rightarrow m_1 = \frac{5}{2} \)

A. \(y + 4 = \frac{2}{5} (x-7) \) \(m_A = \frac{2}{5} \)

B. \(y + 1 = -\frac{5}{2} (x+1) \) \(m_B = -\frac{5}{2} \)

C. \(y = \frac{5}{2} (x+7) \) \(m_C = \frac{5}{2} \)

D. \(y - 6 = -\frac{2}{5} (x-4) \) \(m_D = -\frac{2}{5} \)

Which one is perpendicular?

* Parallel lines have equal slopes
 \(L_1 \parallel L_2 \Rightarrow m_1 = m_2 \)

* Perpendicular lines have slopes negative and reciprocal of each other.
 \(L_1 \perp L_2 \Rightarrow m_1 = -\frac{1}{m_2} \)

\(\Rightarrow \) parallel to \(C \)

\(\Rightarrow \) perpendicular to \(D \)

Practice problem. Find the equation of the line that goes through the point \((1,2)\) and is perpendicular to the line \(2x - 3y = 10\).

Solution:

\(P = (1,2) \)

The other piece is \(m \) \(\Rightarrow \) The line we look for is perp to \(2x - 3y = 10\) so they must satisfy \(m_1 = -\frac{1}{m_2} \) for their slope.

\[2x - 3y = 10 \quad \text{y} = \text{mx+b} \quad 2x - 10 = 3y \quad \Rightarrow \quad \frac{2}{3}x - \frac{10}{3} = y \]

Slope of perp. line

\[m = -\frac{3}{2} \]

So \(m = -\frac{3}{2} \) and \(P = (1,2) \)

\[y - y_1 = m(x-x_1) \]

\[y - 2 = -\frac{3}{2} (x-1) \]

\(\Rightarrow \)

\[y = -\frac{3}{2} (x-1) + 2 \]
Functions

What is a *function*? A function is a rule or relation that takes an input and assigns to it a unique output.

![Diagram of function concept]

Examples of functions:

1. **Set of Inputs**: Students in our course
 Set of Outputs: Final grade

2. \(f(x) = x^2 \)

 \[1 \rightarrow f(1) = 1^2 \rightarrow 1 = 1 \rightarrow f(1) = 1 \]
 \[-2 \rightarrow f(-2) = (-2)^2 \rightarrow (-2)^2 = 4 \rightarrow f(-2) = 4 \]
 \[\frac{1}{3} \rightarrow f\left(\frac{1}{3}\right) = \left(\frac{1}{3}\right)^2 \rightarrow \left(\frac{1}{3}\right)^2 = \frac{1}{9} \rightarrow f\left(\frac{1}{3}\right) = \frac{1}{9} \]

 ✓ The points help us sketch the graph of the function \(f(x) = x^2 \)
Question: Come up with a relation/rule that is NOT a function.

Notation for Domain is usually \(X \).

Domain: The set of all acceptable inputs that a function can take.

Range: The set of all produced outputs, usually denoted by \(Y \).

Example 5. How many of the following graphs are graphs of a function? Each input must go to only one output.

- **(I)** \(x \) NOT a function
- **(II)** Function
- **(III)** Function
- **(IV)** Function
- **(V)** Function
- **(VI)** Function

Answer: C. 4

How to test a graph for a function?

Vertical Line Test:

A given graph is the graph of a function, if any vertical line intersects the graph at most at one point.

* Discontinuities and jumps in the graph are OK, as long as we don't get more than y-value for any x-value.