Recall our first class: Our main tool in differential calculus is derivative and derivative is based upon tangent line to the graph of a function \(y = f(x) \).

To see what \(\text{limit} \) means, let's start with graph of a function:

Goal: info about the slope of the tangent line.

We need to have info about \(f(x) \) "close" to the tangency point \(x = a \) and for this we need \(\text{limits} \).

Question: When \(x \) "gets close" to 1

\(f(x) \) "gets close" to 2

* Track function values on the y-axis when x gets close to 1.

* Translation of "As \(x \to 1 \) then \(f(x) \to 2 \)" in maths language is:

\[\lim_{x \to 1} f(x) = 2 \]
We can compute some values of \(f(x) \) for \(x \)'s close to 1 and see what's going on.

Let's make a table of values with some \(x \) close to 1 and find \(f(x) = x + 1 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x) = x + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9, 0.99</td>
<td>1.9, 1.99</td>
</tr>
<tr>
<td>1.1, 1.01</td>
<td>2.1, 2.01</td>
</tr>
</tbody>
</table>

\[\lim_{x \to 1} f(x) = 2. \]

Question 2.

When \(x \) "gets close" to \(-2\), \(f(x) \) "gets close" to \(-1\).

Again let's track \(y \)-values.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x) = x + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.1, -2.01</td>
<td>-1.1, -1.01</td>
</tr>
<tr>
<td>-1.9, -1.99</td>
<td>-0.9, -0.99</td>
</tr>
</tbody>
</table>

But \(f(-2) = 1 \).

* From graph and from the table of values, it can be seen that:
 As we approach \(-2\) on the \(x \)-axis, the values of function on the \(y \)-axis approaches to \(-1\) i.e. \(\lim_{x \to -2} f(x) = -1 \).

Note that the exact value of the function and \(x = -2 \) is \(f(-2) = 1 \).

So **in finding limit the exact value at the given \(x \)-value does NOT matter. We are checking the values close to that \(x \) NOT exactly at \(x \).**
Limit

The limit is an operation that we perform on a function
\[y = f(x) \].

\[\lim_{x \to a} f(x) = L \]

* a constant number on the \(y \)-axis.

\(x \) \rightarrow \(a \)

* input variable

output variable

\[f(x) \]

* a constant number on the \(x \)-axis.

Meaning: As the \(x \)-values are getting closer and closer
to the value "\(a \)" , the \(y \)-values of the function
are getting closer and closer to the value \(L \) on the \(y \)-axis.

* Again, note that limit is all about being close to some value NOT exactly at that value.

Note: Different letters can be used for variable on the \(x \)-axis
and functions and the given numbers.

* \[\lim_{t \to a} g(t) = L \]

\(t \) \rightarrow \(a \)

* \[\lim_{r \to c} h(r) = M \]

\(r \) \rightarrow \(c \)

some number on the \(x \)-axis

Don't get confused with the notation.

Understand the concept and translate that to any mathematical notations.
Example: Let \(f(x) \) be a function given by the following graph.

Evaluate the following limits:

(1) \(\lim_{{x \to 1}} f(x) = 2 \)
 * In this case: \(\lim_{{x \to 1}} f(x) = 2 = f(1) \)

 A. 1
 B. 2
 C. 2.5
 D. 3
 E. Does NOT exist.

(2) \(\lim_{{x \to 2}} f(x) = 2 \)
 * In this case: \(\lim_{{x \to 2}} f(x) = 2 \) but \(f(2) = 1 \)

 A. 1
 B. 2
 C. 2.5
 D. 3
 E. Does NOT exist.

(3) \(\lim_{{x \to 3}} f(x) = 1 \)
 * In this case: \(\lim_{{x \to 3}} f(x) = 1 \) but \(f(3) \) is undefined.

 A. 1
 B. 2
 C. 2.5
 D. 3
 E. Does NOT exist (DNE)

(4) \(\lim_{{x \to 5^+}} f(x) = 2 \)
 \(\lim_{{x \to 5^-}} f(x) = 3 \)
 * NO unique limit

 A. 1
 B. 2
 C. 2.5
 D. 3
 E. DNE
Practice: Use the following graph for the function \(y = g(x) \) to find the limits.

\[
\begin{align*}
\lim_{x \to 0} f(x) &= \quad \text{Compare with } f(0) \\
\lim_{x \to 1} f(x) &= \quad \text{Compare with } f(1) \\
\lim_{x \to 2} f(x) &= \quad \text{with } f(2) \\
\lim_{x \to 3} f(x) &= \quad \text{with } f(3) \\
\lim_{x \to 4} f(x) &= \quad \text{with } f(4)
\end{align*}
\]