Last class: \(y = f(x) \) a given function

→ Derivative of \(f(x) \): the slope of the tangent line to the graph of \(f(x) \) at any \(x \)

→ Math definition of the derivative:

\[
\frac{df}{dx} \quad \text{or} \quad y'
\]

→ Notation:

\[
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]

Examples:

(1) \(f(x) = x^2 \quad \Rightarrow \quad f'(x) = ? = 2x \)

\[
\begin{align*}
\frac{df}{dx} &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\
&= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} \\
&= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} \\
&= \lim_{h \to 0} \frac{h(2x+h)}{h} = 2x
\end{align*}
\]

(2) \(f(x) = x^3 \quad \Rightarrow \quad f'(x) = ? = 3x^2 \)

\[
\begin{align*}
\frac{df}{dx} &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\
&= \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} \\
&= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h} \\
&= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h} \\
&= 3x^2
\end{align*}
\]

For each \(x \) value, find \(m_{\text{tan}} \) at that \(x \) value and make a graph for \(m_{\text{tan}} \) or for \(f(x) \).
Graph of \(f(x) = x^3 \) and its derivative \(f'(x) = 3x^2 \).

* At \(x = 0 \) \(m_{\text{tan}} = 0 = f'(0) \) \(\Rightarrow \) graph of \(f \) crosses \(x \)-axis at 0.
* Everywhere else \(m_{\text{tan}} > 0 \) \(\Rightarrow \) \(f'(x) > 0 \) \(\Rightarrow \) graph of \(f \) above \(x \)-axis.

Example 1: Using the fact that \(f'(x) \) is the slope of the tangent line, sketch the graph of \(f'(x) \) for the given function \(f(x) \).

Clicker Q: Which one is the graph of \(f'(x) \) for the following \(f \).
Relationship between \(f \) and \(f' \) graphically:

If \(f \) is increasing \(\iff \) \(m_{\text{tan}} > 0 \iff \) \(f' \) positive
above \(x \)-axis

If \(f \) is decreasing \(\iff \) \(m_{\text{tan}} < 0 \iff \) \(f' \) negative
below \(x \)-axis

If \(f \) is constant \(\iff \) \(f \) has a horizontal \(\iff m_{\text{tan}} = f' = 0 \)
tangent line

Example 2. Find the equation of the tangent line to \(f(x) = x^2 \) at
\(x = 3 \).

*This line is the tangent line so
\(m = m_{\text{tan}} \) at \(3 = f'(3) \)

point \(\rightarrow \) tangency \(\rightarrow \) point: \((3, f(3)) = (3, 9) \)

We already know if \(f(x) = x^2 \) then \(f'(x) = 2x \) so
\(m_{\text{tan}} \) at \(3 = f'(3) = 2 \cdot 3 = 6 \)

\(m_{\text{tan}} = 6 \)
point: \((3, 9) \)
\(y - y_0 = m(x - x_0) \Rightarrow y - 9 = 6(x - 3) \)
\(\Rightarrow y = 6x - 9 \)
Example 3: Find the equation of the tangent line to the graph of the function \(f(x) = \frac{x}{x-3} \) at \(x = 4 \).

We need \(m_{\text{tan}} \) at 4 and a point:

\[m_{\text{tan}} = f'(x) \quad \xrightarrow{x=4} \quad m_{\text{tan}} = f'(4) \]

Tangency point: \((4, f(4)) \)

\[f(4) = \frac{4}{4-3} = \frac{4}{1} = 4 \quad \Rightarrow \quad \text{point:} \quad (4, 4) \]

How to find \(f'(4) \)? For now, use the limit definition of the derivative.

\[
f(x) = \frac{x}{x-3} \quad \Rightarrow \quad f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]

\[
\xrightarrow{x=4} \quad f'(4) = \lim_{h \to 0} \frac{f(4+h) - f(4)}{h}
\]

Plug in \(4+h \) and 4 into \(f(x) \):

\[
= \lim_{h \to 0} \frac{(4+h-3) - 4}{h}
\]

Simplify:

\[
= \lim_{h \to 0} \frac{4+h - 4(1+h)}{1+h}
\]

Take the common denominator:

\[
= \lim_{h \to 0} \frac{4+h - 4 - 4h}{1+h}
\]

Simplify:

\[
= \lim_{h \to 0} \frac{-3h}{1+h} \cdot \frac{1}{h} = -3
\]

Cancel \(x \) re-sub:

\[
= \lim_{h \to 0} \frac{-3h}{1+h} \cdot \frac{1}{h} = -3
\]
So we found

\[f'(4) = -3 = m \tan \text{tangency point } (4,4) \]

\[y - y_0 = m(x - x_0) \]

\[\Rightarrow y - 4 = -3(x - 4) \Rightarrow y = -3x + 16 \]