Announcements:

- **Final Exam**: December 14 at 12:00 pm
 Location: MATH 100
 Duration: 2.5 hours

- **Office Hours during the exam period**:
 - Thursday, Dec 6, 11 am - 12 pm in MATx 1118
 - Thursday, Dec 13, 11 am - 1 pm & 2 - 3 pm in LSK 300
 - Friday, Dec 14, 10 - 11 am

 Change of location in my earlier email.

- **Exam topics**: Everything week 1 - Week 13
 - Heavier on Integral Calculus.

- **Check everything posted and solve all the examples & problems** in:
 -> Lecture Notes
 -> Labs
 -> Quizzes
 -> HW
 -> Sample exam & review practice
 -> Textbook problems

 You should be able to do them without checking the solution.

- **TEACHING EVALUATION** -> Please complete the survey 😊
3. Find the equation of the tangent line to
\[f(x) = \frac{\cos(2x)}{x} \]
at the point \(x = \pi \).

General Equation of a line:
\[y - y_0 = m(x - x_0) \]

Tangent line:
\[m = f'(\pi) \]
\[y_0 = f(\pi) \]

\[f(x) = \frac{\cos(2x)}{x} \Rightarrow f'(x) = \frac{(\cos(2x))' \cdot x - (\cos(2x)) \cdot (x)'}{x^2} \]

- \((\cos(2x))' = 2 \cdot -\sin(2x) \)
\[\Rightarrow f'(x) = \frac{-2 \sin(2x) \cdot x - \cos(2x)}{x^2} \]
\[\Rightarrow f'(\pi) = \frac{-2 \sin(2\pi) \cdot \pi - \cos(2\pi)}{\pi^2} = \frac{-1}{\pi^2} = m \]

- \(y_0 = \frac{\cos(2\pi)}{\pi} = \frac{1}{\pi} \)
\[x_0 = \pi \]
\[\Rightarrow y_0 - \frac{1}{\pi} = -\frac{1}{\pi^2} (x - \pi) \]
\[\Rightarrow y = -\frac{1}{\pi^2} x + \frac{1}{\pi} + \frac{1}{\pi} \]
\[\Rightarrow y = -\frac{1}{\pi^2} x + \frac{2}{\pi} \]
4. Find the derivative of

\[f(x) = xe^{2x} \sin(x^2). \]

\[
(fgh)' = f'gh + g'fh + h'fg.
\]

\[(x)' = 1 \]

\[(e^{\frac{2x}{\sin(x^2)}})' = 2 \cdot e^{2x} \]

\[\underbrace{(e^{\frac{2x}{\sin(x^2)}})}_{\text{outside}}' = 2 \cdot \frac{2x}{\sin(x^2)} \cdot \cos(x^2) \]

\[\underbrace{(\sin(x^2))}_{\text{in}}' = 2x \cdot \cos(x^2) \]

\[f'(x) = 1 \cdot e^{2x} \sin(x^2) + 2 e^{2x} \cdot x \sin(x^2) + 2x \cos(x^2) \cdot x e^{2x} \]
6. A spherical snow ball is melting such that its surface area is decreasing at a rate of 0.5cm2/min. How fast is the volume decreasing when the radius is 6cm? The Volume and Surface Area of a sphere are given by

$$V = \frac{4}{3}\pi r^3 \quad \text{and} \quad A = 4\pi r^2$$

respectively.

Steps:

1) Diagram and label the picture.

2) Read the question carefully & summarize the info.
 - changing quantities
 - constant
 - given & unknown rate of change.

3) Relate the variables:
 1) Pythagorean
 2) \sin, \cos, \tan
 3) Use the given equations in the problem.

4) Differentiate

5) Substitute the info.
Changing quantities:

\[A = \text{Surface area} \]
\[V = \text{Volume} \]
\[r = \text{radius} \]

Given/unknown info:

\[\frac{dA}{dt} = -0.5 \text{ cm}^2/\text{min} \]
\[\frac{dV}{dt} = ? \rightarrow \text{must be negative} \]
when \(r = 6 \text{ cm} \)

\[V(t) = \frac{4}{3} \pi r^3(t), \quad A(t) = 4\pi r(t)^2 \]

\[\frac{dV}{dt} = \frac{4}{3} \pi \cdot 3r^2\cdot \frac{dr}{dt} \]

\[\frac{1}{3} \cdot (-0.5) = 3 \cdot (-0.5) \]
\[= -1.5 \text{ cm}^3/\text{min} \]

\(\frac{dA}{dt} = 4\pi \cdot 2r \cdot \frac{dr}{dt} \)

\[-0.5 = 4\pi \cdot 2 \cdot 6 \cdot \frac{dr}{dt} \]

\[\frac{-0.5}{48\pi} = \frac{dr}{dt} \]