Integration by Parts

\[\int u \, dv = uv - \int v \, du \rightarrow \text{anti-product rule} \]

You are given an integral, you choose \(u \) and \(dv \) and you apply the above formula.

Example 1:

\[\int xe^x \, dx = \int u \, dv = uv - \int v \, du \]

Choose \(u \) and \(dv \):

\[x = u \quad e^x \, dx = dv \]

\[1 \cdot dx = du \quad e^x = v \quad \text{(anti-derive)} \]

\[= xe^x - \int e^x \, dx \]

\[= xe^x - e^x + C \]

Let's check if we did it correctly:

\[(xe^x - e^x + C)' = e^x + xe^x - e^x = xe^x \]

Question: Does it matter how we choose \(u \) and \(dv \)?

What if I choose \(u = e^x \) and \(x \, dx = dv \)?

\[u = e^x \quad x' \, dx = dv \]

\[du = e^x \, dx \quad \frac{1}{1+1} \cdot x^{1+1} = v \]

\[\frac{1}{2} x^2 = v \]

\[\times \text{ NOT a good choice} \]

\[e^x \cdot \frac{1}{2} x^2 - \int \frac{1}{2} x^2 e^x \, dx \]

even harder than the original one.
Usually our choice for “U” is prioritized by the following list:

(1) Logarithmic functions
(2) Algebraic functions such as polynomials
(3) Trig functions
(4) Exp functions.

Last Example: \(\int x \cdot \ln x \, dx \)

\(e^x \) → exp function → \(x = u \)

\(\ln x = u \quad x \, dx = dv \)

\(\frac{1}{x} \, dx = du \quad \frac{1}{2} x^2 = v \)

\(\int x \cdot \ln x \, dx = \int u \, dv = uv - \int v \, du = x \ln x - \frac{1}{2} x^2 - \int \frac{1}{x} \, dx \)

\(= \frac{1}{2} x^2 \ln x - \frac{1}{2} \int x \, dx \)

\(= \frac{1}{2} x^2 \ln x - \frac{1}{2} \left(\frac{1}{2} x^2 \right) + C \)

Remark: Note that IBP is different from substitution, even if we use “U”. In substitution, we transform the integral \(\int f(x) \, dx \) to a new integral \(\int f(u) \, du \), so the variable is changing from \(x \) to \(u \). However, in IBP we choose “u” and “dv” so that we can use the formula and simplify the integral, but the variable in the integral is still the original variable: \(x \).
Clicker Q: \[\int x \sin x \, dx \]

How would you choose u and dv?

A. \(u = x \), \(dv = \sin x \, dx \)

B. \(u = \sin x \), \(dv = x \, dx \)

\[u = x \quad dv = \sin x \, dx \]

\[du = dx \quad v = -\cos x \]

\[\int x \sin x \, dx = \int u \, dv = uv - \int v \, du \]

\[= -x \cos x - \int -\cos x \, dx \]

\[= -x \cos x + \int \cos x \, dx \]

\[= -x \cos x + \sin x + C \]

Question: Find a particular function \(F(x) \) whose derivative \(F'(x) = x \sin x \) and \(F\left(\frac{\pi}{2}\right) = 3 \).
Definite integral with IBP keep the integral bounds all along:

\[\int_{a}^{b} u \, dv = uv \bigg|_{a}^{b} - \int_{a}^{b} v \, du \]

\[\text{Ex 4: } \int_{0}^{\frac{\pi}{2}} x^2 \sin x \, dx = \pi - 2 \]

\[u = x^2 \quad \sin x \, dx = dv \]

\[du = 2x \, dx \quad -\cos x = v \]

\[\int_{0}^{\frac{\pi}{2}} x^2 \sin x \, dx = \int_{0}^{\frac{\pi}{2}} u \, dv = uv \bigg|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} v \, du \]

\[= -x^2 \cos x \bigg|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} -\cos x \cdot 2x \, dx \]

- \[-x^2 \cos x \bigg|_{0}^{\frac{\pi}{2}} = -\left(\frac{\pi}{2} \right)^2 \cos \frac{\pi}{2} - \left(-0^3 \cos 0 \right) = 0 \]

- \[2\int_{0}^{\frac{\pi}{2}} x \cos x \, dx = 2 \left[x \sin x \bigg|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x \, dx \right] \]

Another step with IBP

\[x = u \quad \cos x \, dx = dv \]

\[dx = du \quad \sin x = v \]

- \[x \sin x \bigg|_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} \sin \frac{\pi}{2} - 0 \sin 0 = \frac{\pi}{2} \]

- \[\int_{0}^{\frac{\pi}{2}} \sin x \, dx = -\cos x \bigg|_{0}^{\frac{\pi}{2}} = -\cos \frac{\pi}{2} - (\cos 0) = 1 \]
Practice Problems:

a) \[\int 3x e^{-x} \, dx \]

b) \[\int \frac{\ln x}{x^2} \, dx \]

c) \[\int x^2 \cos x \, dx \]

d) \[\int \ln x \cdot 1 \, dx \]

e) \[\int e^x \sin x \, dx \]

f) \[\int -x^3 e^{x^2} \, dx \]

g) \[\int \sin x \cos x \, dx \]

h) \[\int \cos^2 x \cdot \ln(\sin x) \, dx \]

Definite Integrals

a) \[\int_{-1}^{1} (2x + 3)^3 (-x+2) \, dx \]

b) \[\int_{0}^{\frac{\pi}{2}} (-6x + 4) \cos x \, dx \]

c) \[\int_{1}^{e^3} x^7 \ln x \, dx \]

d) \[\int_{\frac{-\pi}{6}}^{\frac{\pi}{3}} 2x \cos(3x + \pi) \, dx \]
Practice Problems:

(d) \[\int \ln x \, dx = uv - \int v \, du \]
\[u = \ln x \quad 1 \cdot dx = dv \]
\[du = \frac{1}{x} \, dx \quad x = v \]

\[= x \ln x - \int x \cdot \frac{1}{x} \, dx \]
\[= x \ln x - \int 1 \, dx \]
\[= x \ln x - x + C \]

(e) \[\int e^x \sin x \, dx \]
\[u = \sin x \quad e^x \, dx = dv \]

Will complete it next class.