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Matrix Algebra

Amir Esteghamatian

January 4, 2017

1 Linear systems

A equation is called linear when it follows the following form:

T, + Ty + ... +apx, = b (1)

Example 1.1. )fr‘)k‘ 4 W ™Y
Example 1.2. 2 (R - \’:- ) 4+ A, 9 - ) ) 4 ‘ 2 \//

LA =
Example 1.3. ey . ’ )
P N 7\! + LNy Q P

Example 1.4. s 13 = "Rog o PN s y ALKy AR oA 7&
A set of linear equations with the same variables is called a linear system:
G\ 6L = ¥ v n42m-1sm=8 7. 9.7 v @

§_¢ -0 v m-m=0 £ 6.0 v @

A solution is a list of numbers which makes each equation a true statement. For
above set of linear equations for instance [73-._7.6his a solution since by substituting
it to (2) and (3), it yields 8 = 8 and 0 = 0. For this particular example, another
solution is meaning that the solution is not unique. All sets of numbers
satisfying a set of linear equations are called the solution set for that set of linear
equations. Two linear sets are equivalent if they have the same solution set.

For a better visualization of a set of linear equations, let's start with a simple set
of two equations with two variables:

Example 1.5.
Ip+ 11 =1 [4}

Iy — 23.‘?1 =4 (5)

Each linear equation with two variables forms a line:

1 4%
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Now the intersection point of these two lines (-{,) is a solution.

With the above representation, we can easily see that two lines (equations) might
be parallel (no solution), or might superpose (infinite solutions): .

| L | T 1 T4

TN |

-~

I

B
—1 1

|
LEL | e T

B — Ty S . e - - !
1
|

1
|

Thus, a system of linear e(juations has (i) no solution, or (ii) one solution (iii)
infinite solutions.

In Example 1.5, we have already seen that for a linear system with only two
unknowns, plotting the corresponding lines can give us the solution. Unfortunately,
solving a larger (with more unknown variables) linear system is not always an easy
task. However, there are some strategies to transform a complicated linear system to
an equivalent (i.e. one with exactly same solution set) simpler one. For instance in
Example 1.5, by subtracting (4) from (5) we can readily obtain z,. A systematic way
to solve systems of linear equations step by step is called "Gaussian Elimination".
Before detailing this algorithm, let's see how a set of linear equations can be solved
by simple algebraic operations:

Example 1.6.
T, — 3z +13=4 (6)
2ry — 8x3 +8z3 = -2 (7)
—6xy +3xy — 1523 =9 (8)

To solve 1,17, z3 we must eliminate some unknowns from the equations. Let's
try to remove z; from 7. To do that, we can add -2 times equation 6 to equation 7:
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Ty —3Ts+ a3 =4 9)
0xy — 2x3 + 623 = —10 (10)
— 61‘1 + 3332 - 151‘3 =9 (ll]

Similarly we can add 6 times equation 9 to the equation 11, to eliminate z, from
the equation 11:

I —3.'172"‘373: 4 [12]
0x; — 2z + 623 = —10 (13)
0z, + —15z9 — 925 = 33 (14)

We can simplify equations 13 and 14 by multiplying both sides with } and 3, re-
spectively:

Ty —3T9+13=4 (15)
0.’1.'1 e 1.1‘2 + 3.1.3 = -9 [16]
01‘1‘1‘—5.1'2—31'3:11 (17)

Finally, in order to eliminate z, 17, we can add —5 times equation 16 to the
equation 17:

-3z, +z3=4 (18)
0.’!71 —1$2+3$3= -5 (19]
0.171 + 0.’1’-‘2 —= ].8.’1.‘3 = 36 (20]

Now we can easily solve equation 20 with only one unknown which is|z; = 42;—
Plugging this solution to equation 19 yleldsEzjj:l Finally, the last unkn can
be achieved by plugging known values for r, and z3 into the equation 18, which
gives: _

The above operations can be performed in a more compact form with a Matrix
notation. Let’s look at another Example:

Example 1.7.
1z1 + 2x9 + 323 = 2 (21)
le; + log+ laz =2 (22)
3x1+ 3z + 13 =0 (23)

By identifying rows and columns, one can write the coefficients on the left hand
side in a matrix form:

(24)

A=

[ e
W = N
— = W
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Which is called the coefficient matrix. By concatenating the right hand side of

the linear set (as a column) to the right of this matrix, we obtain the augmented
matrix:

Lo = =

2
1
3

—_— =

2
9 Ao =b 25)
0

The compact form of a set of linear equations ease the task of solving a set of linear
equations. The system can be written in the form of Az = b, where A is the coefficient
matrix, b is the right hand side vector and x is the unknown ve(]‘tor. Now let's solve
the above set of linear equations in a matrix form:

3T sine ) vow/ Gl 1 2 3|2\« gy (2]
\‘; Comdhe st i 1 1|2 “*
g 2T 3 3 1[0
x
M\) (\ % 3 ;\
\ o -\ -2 /
; Lo 3.4
- fre 5 | 2)
- V-2l o | % (-1)
v REE- \2 o -2 /6) it )
& s 5.4 | 2 S
3
_'? v 2 ) - N
% 2 4|58 el
9 \ J(=") X(-3)
-_2. oA\ e,
v o \ a9 |-€ -(—.f»“'j
"‘§ o L \ "‘))
e I oo |5)
8 A
~L ¢ \ "a(‘
: R Qe o V' |2)
Threfore, the solution is:
AWAL
6 v

9 13

Let's attack another example, in which we need to do a Row Interchange:
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Example 1.8.

C
—
s
O

\ 2 Y | 2
() | ""."3 3

o o\ |o) st
| 2 v l\ <
e | o2
2 J | : )

3

v\ o ==

=~

o)

As previously seen, a system of linear equations might not have a solution (in-
consistent):

Example 1.9.
1 2 3

0 -1 2| 0 «(-Z!S
X T
0 -3-6|6 o

G
0
N0

2: 6 =>alo E.’u"‘.wff.rfmv”-""’)
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Definition 1.
oAIinearsystemiscaHedconsistmt_if..iL qjﬁ;'“ ot Least ove oled o
e A linear system is inconsistent if ... r‘i l’l!) vio Sf;a?lo'h"'a'b\-\

In general, " i iminati i inciple steps:
e, e ttiaing, . (EE)
(a) ‘fwm}ﬂv‘ CJW.,@-,'([QM ——p WA e o g_

. i e Lo Ly WA
[b] bﬂ"’.wnyo\ Q(M\*-%&'un jl ‘o ﬁ‘p’\klei‘ "‘(0 L

‘ T 1T S $ (Rd(_ (- J
In doing so, we benefit from three elementary operations: :

(i) Oo’(ﬂf o fne v & wu“ffik -"f' ‘fgog{r ol
(ii) M*’erc(«ng e the 3 Howm :’.A-(' t e rows
(111) NH'f{j one row k\j a ko 2ervo cc,h..d*‘“+

Please note that none of these row operations change the solution set of the linear
system.

WY e 3‘3'0&%'\ :

Definition 2. Row Echelon Form (REF):

e all rows with at least one nonzero are above any rows of all zeros,

e reading from left to right, the first non-zero entry in any row (called leading
entry) is in a column strictly to the right of the leading entry in the row above.

LYl
* Row Echelon Form (RREF), if additionally we have:
S |
5 e all pivots are equal to one,
]S e any column with a leading entry has zeros above and below it. |
W '.
Example 1.10. !-
e ———— | i
| 0 o S ,-\ 2z) + 4x9 + 423+ 614 =0 l_ B
i ) 2 |
“:) é \j .i B ;_.' 1+ 2x+ 33+ 44 =1 .' ) . __1
,-’ T1+2x9+ 4= -2 | 2 A l
\ / '
) 6 2 0 | | \ oo |
o \ | © & , - |
a © 4 | 2 1 nN
[ o y I W Y 4 1 o 1 o ©
0
3 o | I3
S o o l \

Ty I ) |
{ |
\ 6 G |

2 Y Y€ |o\ ct-%) s =) b
6/ I 2 34| . RN
2
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2 Y Lfe

o ©
&

>

So the Row Echelon Form (REF) is:

G 2+ N, $-2-°°
™ J G o 1]\ \ ; “ Ryt s
1‘}"‘)\‘1- ‘ -2 l-, = [__‘K\
S v W | B
v L
f.'nr* r"lo+\
Glune | S~ 4
e free
Colamn s,

m= >
n= Y
r= 2
pnes s

the number of equations (rows)

the number of uknowns (columns)

the number of pivots

the number of free variables

If n —r > 0, we write the pivot variables in terms of free variables as parameters:

ﬂ Va'{_ UWI‘&I% | ¢

RPN
e midhle ~5
put wishle o]\ ay
rée  pa v‘:'a.'{'f"- :
Y

With arbitrary values for the free variables.

) S

(P |
ore /)(T/f(y fd.

Al £
4 o oCJ‘ Lo o
n?‘ L s

-
-
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Example 1.11. 4 equations, 3 unknowns: Find the general solution of the linear

system:
2 1
4 2
4
6
2
£y 28y %)
ﬂj,igl o
ﬁr{,sp‘ 0
(&
g
a
o
[2]
O.
K3—Rl- >
E' )

R A o 'J RL
W= q rows (j
N= 3 uarkngwng R é{é( o
r -"2,_ Pn’ofj ‘
Ny =4 Free variables [
- .
$

—_ O N

OlGY ¢ o

i

Foot @),

T

=]

I

{

~

n -k
(f‘) v 13(
o \

79}
«b
o
d
V‘\) " '3— 1
v\ M 1'3,_1\3 Yy, > K=y 3
-0 ity -2ny sab = )‘%1 ,,{,*11\3
- e
<
'9-;' 36.13
A= | -$37%3
Ly
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Example Y@ Transportation:

172 682

Smithe St

333 ¢ — A < 340

Counts of vehicles per hour were collected
at various locations along four one-way
streets in downtown Vancouver. Assum-

Hornby St [py 7% Howe St ing that there is no parking available, how

many cars have passed the marked loca-
tions where no traffic counts were under-
400 » ] » 384
Nclgﬁ St
S
_ 185
:?\Ow " ﬂo"‘) 0‘#

taken?
/thsar ’ Haru‘b My EY = l<{9'+‘{00
Horroy / Swmdhe R M = 13333
Swithe/Ho we ti+Xy 6%+ 340

How e /Ml dzaky = 304 exs
Oveval 125 + 400 3Y0+ 6% U= 172 + 333 43U « 1S

t T2 g (“’ .'(}" Vi,

A Po) | ) 453 (...31:\ (l \
vl -\

| & O 9 509 5¢9

D 4 O © o2 T=|llo2| + 24| =)\ (?‘q (—;R)
Q

o | (. %51 : \

o @ O I b'g/ \ © )

o Q A& & O

From a physical point of view, a solution is sensible only if
e Ny Ve g mon-negalive {n‘fejer_r

Thus, we only consider those solutions which satisfy

(%0 ) ( Ay)30) [ 04 2,¢505)
< :;;: - 1%558?}_} 0£ 1, (§0%
Lo Mo T 517 &340
ds20 "‘*‘;}0 €0 Chy £5¢8”
s * > 3 o RS s N
Co ¢M ¢5 %5 (”
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From a physical point of view, a solution is sensible only if

Thus, we only consider those solutions which satisfy

4 1 f 3 f h'

s —— ¢ y —— ¢ >

2 Sets of vectors

A n-tuple of numbers is called a vector. It can also be considered as a matrix with
only one column. Vectors have many useful properties which make them a popular
form of mathematical structure applicable to a wide range of real-life problems. We
start with some simple definitions:

Definition 3. e When the vector a belongs to a space R™ it means that all m entries
of a belong to Real numbers,

e Additive closure: a; + a; € V (Adding two vectors give a vector),

e Additive commutativity: a; + a; = a; + a,. (Order of addition does not matter),

e Distributivity : c¢(a,+a2) (Scalar multiplication distributes over addition of vectors),
e Associativity: c(a, - as)

{a),a,,as, ...,a,} € R™ is called a set of vectors in Real numbers where the order
does not matter. One question that we need to answer is:

e Given b € R™, can it be represented as a linear combination of {a,,...,a,}?

Cy0, + Ca Oy + . Cnln :‘-b {(_'LIQKQ-‘
1
Example 2.1. Verify ifb = (4) can be expressed by a linear combination of a; = (i)

1

and a; = ( ) . Find the coefficients of the linear combination.

10
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' '.\] 4 ) (l \ (f) i
8 — p)
:/;
o " ( Xya a
)+ i) = Q) 0y e
gl .

{I;flu,sl‘-( 2> (\' ,'1‘:{) . (:;\) ,.,(%\)

1[-—2*2’ =

Definition 4. Vector form for a linear set:
A linear combination of equations can be viewed as a sum of basis vectors with un-

known coefficients:
anr + apr2 = b an a by
I + I =
a1y + anTs = by az a2 be
Definition 5. For any set of {aj, ...,a,} in R™, the set of all linear combinations of
{ay,...,an} is called the span of this vector set:
r(
Span{a,, ...,a,} := {2181 + ... + Ty |T1, ..., Tn € R}

Example 2.2. Verify if the following sets span the given space ?

ag =, =12k a = (-1,2),a; = (1,1)
a3 = (—-1,-1) T ' . 0
’ !:,f_. y WY § = \
‘r:ﬂ2 ‘ . 3 "I? i
\ t} v B h— -
0.t 19330 "'_‘: | Jav .
o T e T /v
df Gor Y : =
rey 1:")} i 1
0%

L1
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; a1(2,1,1),a2(1,2,2), a3(3,3, 3)
e span(a,, az,as) %R:’

B
Spﬂ"(f'.-;-f;,'fg,): P| 6 R\

a) (01 0$ 0), 02(0, 4! 3)! 03(31 0! 3)

® spa.n(al, as, 03)} R3

spavi(a, a3 ,43) = o €K
01(0,2,1),&2(2,2,3),03(0,1,3)
[ span(al,ag,as) ‘:{]RS
Example 2.3. For what values of h will b be in Span{a,, ay,a3}?
1 5 -3 —4
ap=|-1|, aa=|—-4|, az=| 1 b=1] 3
-2 . | 0 h
Ay d +ha o v 303 o 4
\ 5 2 w1 3
71(-: + 7 —‘}} e 731 = "
-4 ) " Y I 5 .31=9)
9 V& .
);114‘511-313:' Loy | 3 | hllo -
- -C{’Yx?- 413 ,:_.3 1—’} &) L-) qu*‘ﬁ‘ @) .b "6 ('1-(6
e W . s :
=2 A +0¥n 14 F’h R ol
Qo' V) -2 -\
Ry %N\ O O K5 WS = O
12
55\
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Definition 6. Matrix form Az = b for a linear set:
A linear combination of equations can be viewed as a product of coefficient matrix A
and vector of unknowns z:

2L 2. 2\
)
a5 Ty + a2z = by [ay a)] Ll] =b aygy ap i\ _ by
Q2174 + a2T3 = by : az az T2 )
Az=1b
How to compute A.z = b more efficiently ?
— R e - K i c—'\‘l
([A\\ 2at )(K‘ ) . (“ltq\*Qt‘ivL (|01> v)(quq\-&@\'},‘ﬁi.}b\
a o = LWy - ] Aay i wass b
- G Ly’ 02\ A\ 4 Uy, ¥ 23 ) #9353 70 4

Theorem 2. fA lsamxn matrix, uandvareuectors inR", and c is a scalar, then

.A~(u.+r;;3 Au+\4v ;_ 2‘ ( [:1 t } ) [;':] [ 1 -\ ;.r?J
o« Ale) = c(Au) s ¥ 3{] [:I by “‘ [3’] +[
Theorem 3. The following statements are equivalent
e span(a,az,...,a,) = R™,
e For any vector b € R™ there exist numbers z,,..,z2 such that:
718y + ... + Tpan = b.
e For any vector b € R™ the problem Az = b has at least one solution z € R".
e The matrix A has m pivots, one pivot in each row.

Example 2.4. Does {a,,a,,a;} span the R® ? N o

1 3 —4
a;=10|, a2=|-2|, az= ] 6
1 2 -1

3

7(‘0‘ x Ry Oy A !"303 < b \o{: i&
1 -
; : v < | b2
' + Ml-1v] + 3L
B (?) (t K b3
g3 -4|> 0B -4 | \ 3 -y | by
o:_g ¢ |- s Od‘dﬁ £ | v Wi o -2 ¢ | byL
Mz -1y [ gr loll3 12 ] Raey® O 0 lbyhylr

L[l

b -2 :zo0
> ba_b, 2
13 —g—
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3 Solution sets of linear systems

3.1 Homogeneous system

Any linear system in the form of Az = 0 is called a homogeneous system. There

is always at least one solution for any homogeneous system, that is: z = 0. This
solution is called the trivial solution. Any other non-zero vector that satisfies the

linear system is called a non-trivial solution.

Example 3.1.
2 1 1
I
4 2 2
Iz | =
4 3 0
I3
6 4 1
RREF A A s rhs
- o #%nlo
Y L vow o
w T @)L o LT[ 210
b veduction o © o (o)
¢ 1 1\ e © o
7 - »
& + 3 ~
A ;'3?’ )_—,) 1:"3(1 ) ‘i; f 3
‘1 - 1 2 ) 3> 3 O
nakde © & o
Hence, a homogeneous system has a non-trivial
solution if and only if there is at least one free vari-
able in the system.
3.2 Nonhomogeneous system
Example 3.2.
KRl
i T 7/1 h/’L
6 m .2 |-6
b O o D
b6 p 0
3
A = '(.}27-'5 o
«® 3 a
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Summery: Writing the solution of a linear system in parametric form can be achieved
by following steps:

e Row reduction (Forward/backward elimination)

e Express pivot variables in terms of free variables (put free variables on the right
hand side)

e Write the solution vector z in terms of free variables, if any.

¢ Decompose z into a linear combination of vectors using the free variables as
parameters.

Example 3.3. A muesli company is planning to introduce a new product. The new
muesli mix will be composed of rolled oats, raisins, almonds, dried blueberries and
banana chips, for which the following nutritional values are known:

nutrition per 100 gr Rolled oats Raisins Almonds Dried blueberries Banana chips

Carbohydrates 70 gr 80 gr 20 gr 90 gr 60 gr
Fat 6 gr 1gr 50 gr 2gr 35gr
Protein 15 gr 3gr 21 gr 3gr 2gr
Other 9gr 16 gr 9gr 5gr 3gr

In what proportion the nutrients should the ingredients be combined to achieve
a nutrietion profile of carbohydrates: fat: protein: other=6:1:2:1
A g Y 773 Ay 1S | hs

30 O 20 % fo |fO
£ 1 50 2 35 |® | e reducton —

T % 2. % A B
> W 9 ¢ a4 [1°

1.4 s Bt

_%.0% 1€ 0. 00 L (”(f 63’)
UV oo | £ 77 ;"113?

-~ 034 /l

From a physical viewpoint, a soluti.0n is only sensible if: Y, A0 ‘ \

o Ny 4oy 75 0 prgwlin belucew o ael 1 (07 o
Therefore, M I’)htj 1.. (a L r}ﬂb(g:b aclm i 1O Sg:.;ﬂ‘.,m.l
Conclusion: To solve a problem that stems from an application of linear algebra,
we first identify equations and unknowns to set up a system of linear equations that
models this problem. Once we have found all mathematical solutions of this linear
system by Gaussian elimination, we interpret these solutions from the perspective
of the application. It is important to note that mathematically correct answers may
not always be meaningful in real life.

15
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4 Linear independence

Let {a),as,...,a,} € R™. Can we write any of vectors a,, ay, ..., a, in the forgl of a linear
combination of other vectors{ bd““ﬂ"‘b 4o f)a pl2-dn} ER

Example 4.1.
a, = [1,2,0],
az = [1,1,0], /
a3 =[1,1,3]
a, = [1,2,0],
az = [1, 1,3], ><
as = [2,3,3]

Definition 7. A set of vectors a,, a,, ..., a, is called linearly independent if the equation
a)r) + axry + ... + Tpa, =0
has only the trivial solution.
The following statements are equal:
e The family (a,,as,...,a,) = R™ is linearly independent.

¢ The problem

I]ﬂ'.] + I2(12 + ... + Inln = 0

has only one solution whichis z; =z =13 = ... = z,, = 0.
e The problem Ar = 0 has only the trivial solution z = 0 € R".
¢ The matrix A has n pivots, one pivot in each column.
These ideas can be better pictured in the following example.

Example 4.2. Determine if the following families of vectors span the full space R™, if
they are linearly independent?

3 / . y ™ - w | A Yo ;
span IR 1 {2 3 f'/ 1\ 2 ) | o \ 3 ?
C I a =11 aa=1]1 az= |1 o' -1| - V710 ' (cf. Example 1.7) !
vﬂr'Sj / _ ,5 sta. cil.
v 3 3 1 a o "2 O y 0 = n
|rJvaJ# ~ | s ! £y l}"":ﬁ

(2

(%]

51 0
. v oL 3

-3 -é\o (cf. Example 1.8)
Lo '

__\-g
o)
W
\

._.
Q.---

ﬂl \ =1 az = |2 az = : :
rew '/ﬂ 3 3 1 0 0 | WS
IIQIYZJ"“* \ ; Y j parn —
— - 1 ( 2 3 3 {l’] l ? 3 } : J‘ \ ™ - LJ"
0 (-1 -2 -2 0 o ‘ "-.1‘ -l;‘\ A “u
ay = 0 a; = 0 3 az = E@ ay = 6 L 4] é G 4 ¥ "
0 \ 0 5 5 )0 O 0 |b (53

‘ipﬂh }A" \ o
ol iwdspudint X * ,
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S Y A S T 0 0 VA S T L5 A0 0 A T L A A e I TR N i B LA s A A A o
- P .3 (I-R\q V/
Qunenrly  {neckepondant X

M,H 1
5{ 1, = g g =
"
0/
a; = 9
"o
\0

a, =

g2
span 1R ?_/al_
,0.;«17;:_?/

3 =

5pan l&af‘/al
Lider T X, _

Scanned by CamScanner



J
£

Loteve!

>

for

Sets of Vectors

Linear Systems

Pivots

The vectors a,,...,a, € R™
span the whole space:
span(a,,...,a,) = R™,

Existance of solutions: for any
b€ R™ the problem Az = b
has at least one solution.

The matrix A € R™*" has a
pivot in each of its m rows.
In particular we must have
m<n

The vectors a,,...,a, € R™
are linearly independent,

Uniqueness of the solutions: for
any b € R™ the problem

Az = b has at most one solution.

The matrix A € R™*" has a
pivot in each of its n columns.
In particular we must have

m2>2n

f! The vectors ay, ...,a,, € R™
/| Jorm a basis of R™,

:’: I..

Existance and uniqueness of
solutions: for any b € R™ the
problem Az = b has exactly
one solution,

The matrix A € R™*" has a
pivot in each of its m rows
and n columns. In particular,
we must have m =n

Reminder: To find the number of pivots in A, we use Forward elimination to

transform A to REF.

Example 4.4. The two homogeneous equations, below, define two planes through
the origin in R®. Find a parametric vector form for the line of intersection of the two

planes.

2=

y._.
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5 Linear transformation

In this sections we are considering functions between vector space R™ and R".
Example 5.1,

R—R R? — R® R? — R!

Y= D) Lz‘g—” T *(:7;} [;;‘\J——@“[YJ
cx 3~ U 1 3 "

) l%\*x'l_ A pE
://“_( = KXo ljl:?‘"+ )‘.){1-%7\3
7_%3 | R

(.

Definition 8. e (Domain) The set of all vectors z for which T(z) is defined

e (Range) The set of all vectors of the form T'(x) for some r in the domain of T'.

e (Codomain) The set that contains the range of T.

i XY

Figure 1: X: Domain, Y: Codomain, f(z): range

However we will only be looking at functions with a special property that we refer

to as linearity. As it turns out, such linear maps provide yet another interpretation
of matrices multiplied with vectors.

Definition 9. A function T : R* — R™ is said to be a linear map or a linear transfor-
mation if it satisfies the following two properties:
| (Additivity) T(u+v)=T(u)+ T(v) Jor any u,v in R®
(Homogeneity) T (cu) = cT(u) Jor any up(inR™ and ¢ in R

19

Scanned by CamScanner



These two properties can be simply combined and represented by:
T(cu+ cv) = cT'(u) + cT(v) Joranyu,vinR* andce R

Example 5.2. Check if T is linear:

T . R? — R? % = 21y — T2
- T3 3z,
o — T e— Wy (N ot
) l(ua-\r)-_:'(u).r\u‘} {u”nt\_%)C\

2 ) - () }

1Y

T tnet) - { \(1:&‘-&1)* (2\ -\F—,)-X

I 4 ) 3wy« 3,
" ‘w,\[l } P
U\.u"‘_”‘l '{ + " i = _—
g | o | . (cwy+ 1 Q) /
= LR . 2N -
.—":".‘\
ox T len)s £TL
T (C
{9\1 Example 5.3. Check if T is linear:
Wy e T:R' >R T[xl}={2x,—1]
, Al W
| (W) = [cw) 4 1OV

5.1 Matrix of linear transformation

Up to now, we have looked at linear transformation as a formula. In the following
: formation is simply another interpretation of matrices

we show that linear trans : -
multiplied by vectors. In particular, a linear transformation can be seen as matrix

A that "acts” on the vector z and produces the vector b:
Az=b

20
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T( ue W) s T(M) -|-'_|' )

Hence, many familiar properties of the linear systems in matrix form can be related

to the linear transformations.
Example 5.4. (dilation or contraction)

T:R* 5 R?

A:(; 2) ceR
. Ch
(i) = (al) b

Cing
Example 5.5. ( rotation by 90°)
T:R? > R?

2
L MM leRr ] @ 1
/{:L Y 2 (1 0 \
'\ 7 Ry ¢ ok )

Y= (%,

>(—fl \ \ 3

/O -
\

A]SK\ o

Example 5.6. (reflection across the linel; :
T2 = 11)

14

T:R? > R?

(1)

Example 5.7. (reflection across thelinel, :
Iz =—I

T :R? — R?

(4 7)

21

2

Tfﬂz - L -7\

1

-
-
Q

f

-

I

T

-

I
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Tl s Teu) { Ter)

Hence, many familiar properties of the linear systems in matrix form can be related

to the linear transformations.
Example 5.4. (dilation or contraction)

T:R? 5 R?
i
e “'}él?l A:(c 0),c€IR
= '}lz 0 ¢

cC o ") (C‘M l
pﬂ{-’(o c)(f;(z_): Ei J = &

Example 5.5. ( rotation by 90°)

T :R? - R?
-—
7’(—'[11] A_(1 0)

o -\ 7“\ _ "“q?""i \i
ﬂ“:(\ o /\1Ar/ & i

Example 5.6. (reflection across the line [,
T2 =11)

T :R? 5 R?
Ve R
,ﬂ:['}(z}c o

A=(0 1)
10

B YN rilz‘\.
[ (ry s P\";L”(l O \\,’;\_L) = ﬂ/{l)

Example 5.7. (reflection across the linel,
Ty = —Ty)

T:R?> 5 R?

=(%3)

= % a ~U\ /% <‘“
K'Y s
Jew) = > Ao 1y o

21

Tz, \ C< ')-——""}0 %
g
T a0\ )L
._In— - M V‘
/ N Cs--"("“oL
“ U‘{ i v N
()\ U\!.s( \I":O\,

Ig \ “I2
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Example 5.8. (reflection across the origin)
T:R? - R?

(7 %)

Example 5.9. (Projection on the axis )
T :R? > R?

A=(o 0)
01

@)
TenraPet= | C\))Gj (m

Example 5.10. (Horizontal expansion)

T:R? - R?
A=(c 0), ceR
01
/' r - ~ \ 5 O
_ ¢ e \/h)
l(MsA-"k s (3 1 :'k\_ ;<

Example 5.11. (Horizontal shear)
T : R? -» R?

Az(l Is),celk

01

— A (\ ¢\ (f‘) (’f"*““»)
<P N C -

ISNEE: 5 | ) ™ -

Example 5.12. (Vertical shear)
T :R? - R?

A:(l 0), ceR
c 1

S— |\ O A
,(MsA'f\5(c A )(MP_

M)

e TR

22
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Example 5.13. Imagine T is a linear transformation R? — R®. For given input unit

1 0 10
vectors e, = [0] ey = [I] (these vectors are columns oftheM:!_: |:U 1] ), the
dent by wesbvt

outputs are the followings:
2 -1
T(er) = |3 Te)=|2 |,
1 0
Find the standard matrix of T. S *\ O‘\
2 o - A, \*11 |
— LS n c ? - -
)(n) P b €N N2 -

A :e\ M, v {4 ']'-1 > ’.\(‘f\\b . "‘. ((’l“ﬂ’ti('}"‘}\

— T
T - | ey e
'!'-\fw't‘, ¥y N Vtey) -~ [i(di} L\‘Xixi

: 3 =
; - ’.'M-.,"p- % (3 +
S, #e (_rfc., 3 L o

Theorem 4. Let T : R" — R™be a linear transformation. There exists a unique matrix
A such that:

T(x) = Ax, Jorallz inR"

Matrix A is a m x n matrix whose jth column is the vector T'(e;), where ¢; is the jth
column of the identity matrix in R":

A= [T((fl} T(f’n)]

Example 5.14. Find the standard matrix A for the transformation T"R? — R? which
rotates all the inputs with the angle ¢

A = ['Ve.) 7?:,;.)] W Ixi Q"'[lv]

K S o
. R ’7‘.“ e}-’[r]
- N el } .
—_ ! 65"" {\ ﬁ% rIl
JCC;): E,‘ = = 3 \
Dindr

- / -—Sir\ }
ffcx_,) Tt 7 £ ) .
Lot of <P e )

23
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Example 5.15. Let T : R? — R® be a linear transformation with following formula:

Ty + 219
T(xy,22) = |27y + 22
0

First, identify the standard matrix of transformation. Second, identify the domain,

codomain and range of the transformation. Is any arbitrarily chosen vector in R® an
image of at least one x ?‘E]o l '

o T
o) e-[1]

4Xh SRR N Yo Y

—y

\ - 57 | =~y
Tee) s 1] '(eﬂ-.[' g | L Y
& [ | Diewmatia s .

oy g

; 3 2
- o= ‘ 2 \ \ ‘.’.—..}m-\'\rtw\ 3 ‘Rﬂ 3
T € ) lcen ‘X S 2 \
Theorem 5. A mapping T : R" — R™ is said to be onto R™ if each b € R™ is the image
of at least one z € R". This is true if and only if the columns of standard matrix A
span R™

z

)
Example 5.16. In Example 5.15, for an arbitrarily chosen vector b € R*, how many
input vectors = € R? exist_for which T(z) = b?

! -
e if b is outside the range of T'(x)... KO mpuT Vet o

e if b is inside the range of T(z)... Tiars i, OW Y ane ,/@cj'o'/
r i't-(?u',‘L
| 2 ) |5
ﬂ & I { rod } o) J ;‘f}‘.
s Dy oA
Moo A

Theorem 6. A mapping T : R* — R™ is said to be one-to-one if each b € R™ is the
image of at most one z € R". This is true if and only if the columns of standard matrix
A are linearly independent

Example 5.17. Consider the following linear transformation T : R? — R?:

+ 2z
T(thmx-'l}:[ " ; :l

1+ T2+ 223

24
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-

Is T one-to-one ? Is T onto R™ ?

A = (ET@4\ \cey) l(e;)i} ﬁL_ﬁ '
ownto RL7 v

i1 Wt

— — -

| S'hmolafo(

A 3 .
Dot + %2 SN - :
Codow am *_i?\ r,'nv\e:'fc)-‘i""a . 7‘ k | Q‘g.’
» r‘ ¢ Hhe .
rmj&-‘ ™ ) b;‘j':f veiable [

Linear Maps Sets of Vectors Linear Systems Pivots
T:R"— R™ Vectors For any b € R™ The matrix A € R™*" has a
is onto R™. a,...,a, € R™ the problem Az =b pivot in each of its m rows.
span R™. has at least In particular we must have
one solution. m<n
T:R"— R™ Vectors For any b € R™ The matrix A € R™*" has a
is one-to-one. a.....a, € R™ the problem Ar =b pivot in each of its n columns.
are linearly has at most In particular we must have
independent.  one solution. m>n
" T:R"—R™ Vectors For any b € R™ The matrix A € R"*" has a
is onto R™ a,....a, € R™ the problem Ar =b pivot in each of its m rows
and one-to-one. form a basis has exactly and n columns. In particular,
of R™, one solution. we must have m = n

Reminder: To find the number of pivots in A, we use Forward elimination to
transform A to REF.

Ia
Example 5.18. Find the standard matrix
Jor alinear transformationT : R? — R? with s
the following features: it ﬁrst performs a w’ JH‘.-,.

horizontal shear: it maps e, to e; — 2¢, (and
it leaves e, unchanged). Then it reflects
the results through the origin. Is this lin-
ear map onto R?? Is it one-to-one ?

c.:[l.] o1, o ? T

* NE
¢ s Uol — [4’5(0)} - E/;};Cq Ar o .'_"j

W

>
A T

éq 3 LA

/ €2
27 2
BT R N PR
1 x ™~ .\\ T UWL-{C"O‘E 7/
7N — [2)=Teen e

f

er < [2] —> [1] Te»

25
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Example 5.19. Find the standard matrix
Jor a linear transformation T : R?* +— R?

with the following features: it first rotates QA

the points (about the origin) through —/2. e o )
Next, it projects every point onto the z, axis va —f"' — '>1' )
? Is this linear map onto R?? Is it one-to- s -

one ? 6/1 '

>

_ [401 ﬁ‘!_-a- 6; > [j\\] T2
ers [71 2 eh. 1]

/’ [; P2y fl-(e,n - [jl ! T
m s Teer s (5]

-

Y

A ’,\ QS ~ t_ L:ﬁu *_  il oiie %

tr
g'b.)arj bl A 3

6 Matrix Algebra ¢

In linear algebra, we encounter three basic types of arithmetic operations that in-
volves scalars A € R and matrices:

ayy v Qi bu - by
A= - ._‘ ‘ ERH!XH B: E ._. ERpxq
am1 """ Qmn bpl — bpq
)\{111 e )\(l]n
e Multiplication with scalars : Al
Am1 0 Almn

¢ Matrix addition — only works if A and B have the same size:

an+by o0 G +byg
A+ B= :
am1 +bp1 -+ G+ bpg
26
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e Matrix multiplication — only works if n = p (number of columns in A4 is equal
to number of rows in B):

( buy big| )
%6 = C @11+ a1a] | ar -+ @)
& \‘J k.] bp]. bpq
_nj‘\_rw ch\ Nxt\ AB =
:‘ “.I et bu biq
\‘}_i-? (aml amn) : [aml i amn] i
\ bp1 Bl
Example 6.1. Compute the matrix mu[ttp!tcatw when possible.
Lx0 282 R
12\ (1 0 (12 "'-e'k*z
e AB = ) yid) ek
2 1)\11 \2 VI\3 | ARmrl
3xl 2x?2 3 Hi
L2\ o, I = 3, {19,
« AB=|3 4 (3 4) % 4 &}5" 22,
5 6 & ¢ 23 |34)
-:'-\l_ I w4 ‘I
1 k¢
« 4B=|3]| (7 8) 1
5 ;
AN+
1
e 4B=(7 8) |3
]
If Ais a m x n matrix, and if B is a n x p matrix with columns b, - - - by, another way
to compute the multiplication is to write AB as a linear combination of columns of
matrix B:
AB = Alb, by bp) = [Aby Aby --- Aby
b, 2 b3
1 2 1 2 2
Example 6.2. Compute AB where A = and B =
2 3 311
?.,(L 2x5

AG = A (b b by] .

[Bb, Aba Abs |
() G3G) | -

27

+ 4 g9
N 7 F

| 2
5 %

(3)6)
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Properties of matrix multiplication: Let A be a m x n matrix, and let B and C
have sizes for which the indicated sums and products are defined.

- ib t
o [P Ak i (Pt P
e A(BC) = (AB)C Associativity P\“ (gc ) y ((5(_ )- A(BCO)
o A(B+C)=AB+ AC Distributivity " px9 («t
(pe) C e ) C
e (B+C)A=BA+CA "‘"‘?"q fL'f mlgt_
e r(AB) = (rA)B = A(rB),
{. ) =(rA) (rB) @4 B
e [ZA=A=AI, I, is a n x n identity matrix A ( 5 4 L )
k
WA 1( - |
At MF

' ,.__W,QI Mri 0]

01
Example 6.3. Given A = (0 (l) and B = (:J ?}) compute AB and BA and verify if

AB=BA. - _ > L ﬁ@-,f: gf

w -

-

P(‘(,b - \9 O ,..\ (2 i = " Y, ny / O -'>

5 ' (|
| - 3 ] > T

Gfc # \O 8 (O 4 \

- —————

Eammg in mamx mulnplwanon order matters !

= .y p———

Example 6.4. LetT : R — R2and P - R? » K 4
be the linear nunsfomlatwns comzspondmg to the ,[ '
rotation by /2 and the projection on the axis z,. | |

What is the standard matrix corresponding to the
composition of these two linear maps (first T and
second P). Hint: use the associativity rule ! Teenl -~ I

e, ll - -"
{
T(z) = Az P(z) = Aoz _] = - F o
1) 9oy B 1
o (8 2 s B ‘
1 0 00

T'nU‘P"‘K. — P (Tew) s | ArTany - Q)_(Q N = f'\*z.lq

1

. + *’r:w nti C
[ Se(ord{ el

L.'i)t’yr* 4I*S$D(Wﬁ—fim I O -"
o)

I

q(___\_‘{ Pm""'""b

) ’_\E#\o ‘31(:81 = faP - (; :; )(; ;9')
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)

? -——--"(q'cl)\'———- b ﬁ:'&) 72&)]

— ' lea o O
[t 2]

fxl

Teayqes E15Tee,)

/ 6 N
s
q("" = A|A11 (‘ O o d
Definition 10. Given an m x n matrix A, the transpose of A is the m x n matrix,
denoted by AT, whose columns are formed the corresponding rows of A.

W I T

Example 6.5. Find the transpose of the following matrices:

(%1
(=]

b S
Il
e ——
[l B =
=3 1
- w
[e TS
\l——-'/
s
g |
Il
o I

Properties of the transpose of a matrix:

o (AT)T=A

o T L\ T -\
£ £ \ )“. i ¢ ) ' } I': | ) : l
e (A+B)T=AT + BT | \) « 3 \-\ 0} / s -\ | \
\ W N

\
-1 O to '\ | © o -l |
o for any scalar r, (rA)" =rAT (Jj i/t a0/ 5 \ol ) 'f(\ O)SQ\ \

e (AB)T = BTAT - General Form: (AB---YZ)T = ZTyT... BTAT

29
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T2

+

I

Definition 10. Given an m x n matrix A, the transpose of A is the m x n matrix,
denoted by A", whose columns are formed the corresponding rows of A.

Azab a ¢
c d b d

Example 6.5. Find the transpose of the following matrices:

=N
]
CA
TSN ]
=
)

v |

RN
Il
- AR
[ B
(=) T ]
- W
00 W=
I
o
-
Il

Properties of the transpose of a matrix:

o (AT = A
e (A+B)T = AT + BT

e for any scalar r, (rA)? =rA”
e (AB)T = BTAT - General Form: (AB---YZ)T = ZTYT ... BTAT b
* * b
Av:0 < 1 e
7 Inverse of a matrix LT ] m
A b =R R‘\ ﬂ hQ
This section addresses the question how we can undo the action of a matrix or linear

map, provided that this is possible at all: if Az give b, the A~'b should give z. Such
an inverse matrix can only exist if:

e for any b € R™ there is an z € R" such that Az = b (Existence of the solution)
¢ there are not two or more = € R" such that Az = b. (Uniqueness of the solution)

29
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Hence, we only consider square matrices A € R™*" in this section and look for 4!

of the same size.

Definition 11. If for a matrix A € R"*" there exist a matrix A~' € RV

AA =1, and A'A=1,

such that :

then A is said to be invertible and A™' is called the inverse of A. Otherwise A is

singular.

Note that if A € R" is invertible, after row reduction it reduces to I, (Why ?).
If A is invertible, how can we compute A~! ? If A € R, this is very easy:

b
Theorem 7. Let A = (a d).lfad—bcaéo. then A is invertible and
c

. Y e 1 d -b
e \ A =
\ 2 \l ﬂ\, \; \ = 1 ,‘\ ad — be (—(_' a
J b

No‘(f" [2:5\?‘ v )

_ (1 2 e 4 -2 = (
Lmjfe e (3 4)'A T e (“5 ‘ ) e
A

/K> For an invertible matrix A-‘=J [ Ya i Yz € R

\::“1? (1th column of A™!) =y, = A7, i Ay = ¢
(jth column of A™') = y; = A7 ¢, — Ay; = e;
(nth column of A™!) =y, = A7 e, — Ay, =e,

Therefore, we have to solve n simultaneous linear system:

(A | € ez --- en)_>(In 1 n Yy - yn)
(A_l | L) — (In | A—])

30
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Example 7.2. Determine whether or not

1 4
A=101 -2
0 2

I o H { ( K"th}' | 9 O | } "'l
M v2PR -~ o) VG 'l/
o \ -2l 1V ¢ REviRylo | © i * [3_
R3 A © | o l{ l,Lt P . \ /{ w
[ j
Y T A»l
I\
P } | - 1:.
-" ) » A 1
] - A ; ( -] ";,, " A :_
&) o Y \
\\J A /u/

o
Properties of matrix inversion: A A ?‘

!

T I L P Y I LA YR

. (A—l)—l =A I‘f\

AR 5 1w

o (A7)t m (A

T I-')'T"_._ e "T' —
A {P (Pt A) " Shf

T
for a 04& JOH‘& —

- “*[WﬂJ NoA- 2vo enl

Ty A
ad o ) ./|“lj;)p,£ otz
A (9 e f;’) —> K

C:.’ _ Al 31 \ 'I&)
e
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Example 7.2. Determine whether or not

is invertible and if so, find its inverse matrix.

Properties of matrix inversion:

* (AB)_] =B1A4"!
e« (AN 1=4
P (AT)—I -— (A—I}T

8 Characteristics of invertible matrices

We already know that matrix A € R™" is invertible if and only if the linear system
Az = b has exactly one solution. This can be interpreted in terms of properties of
linear transforamtion. A linear transformation 7" : R* — R" is said to be invertible if

31
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T R = R SR — R A 1
A - lo P"\g s R S(Twy) s *

there exist a function S : R* — R" such that:
S(T(z)) ==z for all z € R"
T(S(z))==x for all z € R"

In that case, A is also invertible and S(z) = A™'z.

Theorem 8. A linear transformation T : R" — R" is invertible, if and only if the
corresponding standard matrix A € R* — R" is also invertible. In that case, the
inverse of the linear transformation S : R" — R" reads as S(z) = A™'z

Example 8.1. Let A € R™", Check if the following statements are true:

e if A is invertible, then its columns span R". 'r' “
Ax:=b be® o> u"“"“‘ solut. - one P..,,‘f A each vow '—'W#k : ®
e If A is invertible, then the corresponding linear transformation is one-to-one. @
kﬁ_;\a o Em-m:.‘) uni’tﬂt xo(u*fam =) vt Fl'-ﬂ?*' In e l'lfLY Calum W "JTZ'HJA'(' om—'famg
e if the columns of A are linearly independent, then A is invertible. Pt*’“ wﬁ]h‘-
NN ; ) whorewink ol , o 1wl *? gt
H—&R “5 one P\'Qi' [ eoch\ &‘ . #-H ohe 'Pw-f L, | “\CL\ VOD aw £+

e if the equation Ax = b is inconsistent for some b € R", then the equation Az = 0
has only the trivial so!utton F AND ont column

M

A > dig ot s RS 2 R Wy gl lwst ore vadYT tod f‘Jb'_jf
e If the first two columns of A are equal, A is not invertible. "1 0.~ .le

CDl O‘P k arve ,?.gw 4 "[' r}-f,a R f & f{’ﬁ ewe u“a?m‘ '&quf ___)# “st mitdi.

e [f the equanon Az = 0 has only the trivial solutwn then A is row equivalent to
the n x n identity matrix.

e J : b, row =vh. 4.
y J F Vane o e 1 al
A‘A O an -’k '}(,”ij; !- = ﬂ Lon 1o 4,f .-.-’.. g o ra Vs preal e 6'{" n{ _._'?_&——-—-r—-) A_ [,‘w.) sve
e Let Be R, IfAB is muemble then A is invertible. ©~ axch O_" ) n‘_“’ = A~ In
wewr ™ : T

P‘B imer’fc.l)}c, o considr Y/ = M) Heon \ﬂ ﬂ} w = In =2 P‘(BW) s l-h

> K s invevh ble awdd 75 ravevre i BW

Ereverse: jllbok) b w  elso r'.m/w'f.'uc ;
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((Jlec k j./ ey Ver f‘w f:f ﬂ/Mj_f (afr'?é’l'ngy{ w9 é%’m)

T

9 Subspace and basis

We have already encountered various subsets of vector spaces, e.g.

g (2} P‘l\ﬂﬂ. F.'\ Rs
e the soluhon o5 A Livesw 751!"*“"

o sl \meaw com bivatony y{‘ dhe  oluman o()‘ a m}"k

Somésubsets are especial because they form another vector space inside the larger

vector space:
N H4 @ -
Definition 12. A non-empty set H C R" is said to be a subspace of R" if it satisfies

the following two properties: fov o\l
) fCIose:'_g_iness under Addition) \4’;{_‘.\}“6 H . dxV eH
* (Closedness under Scalar Multiplication) \} )\ ¢ ®. ¥ y ER - M& )
Or it can be combined to:
e (Closedness under Linear Combination) \ > ﬁ c - '\f U,V EH %u* ’4 Ve Hr

Example 9.1. Determine if the following subsets of R? are subspaces?

e H = {z € R?|z, =22}

AR S INOL, s
b) H 15 .’;I'J")J u;“}»_y },'f”., o bt -
fpAER gy R = e A=
Ay APy A Y ) ;
)' (1?%'-1.,_? lwﬂ kl(hvz*r\ﬁ) et /

hY

e H={z€R¥zy =1, - 1}

ogt It s

Wig bhee  @od at Jewnl ome veW D /

=) 0501 e H ( 5"“6 "‘l' ;; daﬁ'e}‘ ' ;.'I:l
wker  salgs .v...i-hf;h ,,4.0,-\') / /

e H = {z € R?zyz) > 0}
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a=(Dek A5 ()t

UV = (_:) ¢H | i—,f—’ix
/ y \ ’d“";‘_l

=2 B s uo+ o Sukﬂ?ﬂfb J’,
II v
e H = Span(u,v) u,v € R { ?\U*/’U’ | ApmEm
a I al
- Y,REH pLAER N L /
/ e N ousoVv = 0E€ "
A F & / ,
AN «Vp S Ly oV | | S
¢ ., o i
Az Ak eV },.,M‘,Hu’ (wu o 0 )X« (guegv)p = ®
\ r " - X ) / ’ !
Y £ Moafyt @ = PRAL AT« PN (‘m.‘*rw)*»c
Example 9.2. If H is a subspace of R, then H is either . B : .
A ~8 :
o Ao BN spree of R )
3 g A
e O e‘anz pass ae, ‘ .
. o e B
o 0 Lwm pamnny Ao " -
) J—J«e el J:-‘-"' e
Definition 13. A family of vectors (v1, ...,Uq) C R™ is said to ) .
- o ok Dene comlaimntiond
e span the subspace H CR™ if ™ > sel &)
prr (Visva ) ")"') A £k L'ua'\'j

.."1 (he W), e. H -
cR*if it spors H awve

e be a basis for the subspace H

vnd 7 enddaa®”
Definition 14. (Dimension of a vector space) The dimension dim H of a vector space

H is the number of vectors in every basis for H.

34
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Example 9.3. Let

gy o
2 1L 3’ sl
H=span| (1], |2]|,]|3
1l (2] [3
- REF
21 3 sl 5
y 2 ¢ - o ll/‘L. 3,2' =2 fﬂl)ﬂ;:ﬂ;}

H o Not = bass
4_9) s {a! 7“7.; > B s a bass

e S~ PI‘Q* ‘o L
Conclusions:

-
He R i tike "or
SO onP""C 4o

f:ﬂ*n{ .

¢ A subspace is a vector space nested inside another vector space.

e To prove that a subset H C R" is also a subspace we have to show that:
1) H # 0 by giving an example of one vector in H (0 always works if H is actually a
subspace) 2) if u and v are any two vectors in H, the all their linear combinations

Au + pv must be contained in H as well.
To prove that a subset H C R" is not a subspace we need to find a counterex-

ample that violates one of the conditions.

e R" is the space of all vectors with n real-valued components. A d—dimensional
subspace H C R" is isomorphic to ("of the same shape as") the space of all

vectors with only d components: H = R,

10 Column space and Null space

In this section we are going to use vector-space language to describe general linear
system Ar = b and their solutions. Two subspaces associated with the matrix A:

Al a'Ha;ra blt flJ"!'*"\Mmol side S

e column space:

e null space: All solutions of Az =0
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Definition 15. Let A € R™*" be the matrix with columns a,, - --a, € R™.

e the set of all linear combinations of the columns of A is called the column space
col(A)

CO‘(A') 3 f bé’mml ate R“ ' P‘ﬁ'—"b} :{&IQH""‘ Nalln ‘ )K.‘.---'ll,\e&k

e The set of all solutions of the homogeneous problem Az = 0 is called the null
space nul(A) or the kernel ker(A).

nal () ;{ﬁé‘@n IA%-,O}

Example 10.1. Let A € R™*". Show that col(A) and null(A) are subspace.

. w0 =7 S é:.Ca'(A)
. col(P) 2 cal(p\1;¢ . gso > Axso

(L\(P‘) i (ln';(‘rt \_,{p(;,!ﬁ" f..rfff (Qw\")lihg""{lblﬂ (9_9.1)

VK Yo d o Ar=AbL)=0 emu@)

Lotrval saled

¥ | |
’*‘} w\k(#) i« closed evdev Loway The v e om

"y en B, Adso e

1

3&)‘6'{‘ A(“Frh) 50 =2 \fﬁ.?\‘# p(f

y
APu 5 o

Example 10.2. For each of the following matrices (from examples 1.10 and 1.11),
find a basis C for the column space and a basis N for the null space.

2 1 1
2 446 i &
A=|123 4 o

4 30

1 201
6 4 1

Solution:
Aé“}") r}\ Iavwh\plc. =) (alm')7 m«“(ﬂ) "?
£ xevase .
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@ Gaussiamn  eliw (ux.JQ:u "

20 1 M0 3/2
0 000 00 O
00 O

n:f

'f A 2, f-+ rals o‘é A v
?-fof Cﬁls- ] {

A r ) '2 'Pl
) \ P ('-f a e
) [* : | B &Ly y A s |9
A =z (\ ) A ] | \¢ 4

\ "~/

~ « :

4 : » - (:; ) 9 5

;4 ¢

w

0
b=11
- 10
2 4
. 9
all solutions of Axr = b are
-2 =0 = all solutions of Az = b are
0 1 . 0 11/2 -3/2
= + z2 + I3
1 -1 = —6 | +x3 2
0 1 0 1
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Definition 16. (Rank A) The rank of a matrix A, is the dimension of the col(A). That
is equivalent to say that the rank of A is equal to the number of pivots in A.

T.

dim col(4) = [

,7” Mi(rﬂaf ofn.m Co'(P‘) +0‘|‘an\(’(‘ =V
fé,f lmyof' + # a{ éﬁé _-;‘!*J;l( 4 d% fo‘q-ﬂW)

T

pivots.

wlnmn 5

elumin s

dim null(A) =

Theorem 9. (Rank theorem) Let A € R™*" (m rows and n columns) be a matrix of rank

n-rv

. !
"J'_'"'(“) Pright vt I)e aVuﬁ 0 te wo. of entres m boss vector H:sm(;});(i]

Conclusions: We assume that A € R™*" € has m rows and n columns and r

 The null space of 4 is a subspace of the input space R". The column space is
a subspace of the output space R™.

* The dimension of the subspace is the number of free columns in A, namely

T.

n—r. The dimension of the column space is the number of pivots in A, namely

e In order to find a basis for col(A4) and null(A4), we first do the row reduction and
achieve the RREF. The solution of Az = 0 in a parametric vector form readily

provide us with a basis for null(A). The pivot columns of A (from the original
matrix A, not the RREF of A) forms a basis for col(A).

¢ Important special cases are the smallest possible null space null(4) = {0} and
the largest possible column space col(A4) = R™:

Linear Maps

Sets of Vectors Linear Systems Rank

Pivots
T:R" — R™ Vectors For any b € R™ Ahas full A has a pivot
is onto R™. a,...,an € R™  the problem Az =b row rank in every row.
span R™. has at least r=m
one solution.
T:R*"— R™ Vectors For any b € R™ A has full A has a pivot
is one-to-one.  a,,...,a, € R™  the problem Az =b column in every column.
are linearly has at most rank r=n
independent.  one solution.
T:R"— R™ Vectors For any b € R™ Ahas full A has a pivot
is onto R™ a,...,a, € R™ the problem Az =b rankr = in every row
and one-to-one. form a basis has exactly =m=n and column.
of R™. one solution.
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3 Yo & G\(K)

|

K = ¢ no So\\df\‘hn

Knowing about the two fundamental subspaces of A which are null(A) and col(A),
we can know about the number of solutions of the system Az = b:

\ pal(n) .—.fb} /

one m;alue Iah(( . 0

3‘5P x{P-rn";l-r'r"ﬂ:F:‘jl\-r
& (¢) B
L sy ER)

\ ( '

e

mul (A) # fof
!‘hﬁfn{ lzld m.lnj s ot

X s P +V'M\(P\)

Example 10.3. Let {a;,a,} be a basis for subspace H. Show that b is in the subspace
H,

1 2 3
a=|2|, az= |1}, b= |3
0 0 0
b -, va,
/‘.r’ 7 vEd D R Gy < \3
f v 4
\

<Xundave baws )

Definition 17. Supposethat B = by, - - -b, is a basis for a subspace H, the coordinate
of = relative to the basis are the weights c,,- - -, such that z = ciby + -
the vector in R?

-+ cpbyp, and
N
€y
[z]s =
S
is called the coordinate of z (relative to B) or the B-coordinate vector of x.

Exercise: Show that a B-coordinate vector of z is unique.
() (Asqb, 4 C1122.+..¢CFIOP (’LT) A = ﬂ.b; -ralbzv- - GPIOB

(ﬂf{fz) s (C,..h,)bII ¢ (6 - 41)‘7" — (cp-q'p)bp s O (ﬁ)

6 i bagas = {b.,iu--‘bpiau Dioenly rnsfendsd 5 Gl woeights n ()
ave o
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Ho can we transfer B-coordinates to standard coordinates?

T2 ;
Example 10.4. B-coordinates of the vector = be: ¢ ; v
el o= (]f) Gkl
Find the coordinates of z. N
- L
RSP O RSP R S T O R,
0 : A
s Cou i W& : g, =Pl
(5);5()49()4 € 2 ] CKMA"K

[ H”*féﬂ e (3 8]0

M- cOow-dmdh,s of nis

In general @/ [z]B AB v e by J:che coordinates of z with respect to the standard bases
(columns of I,,) is: ard B2 b7 rbaf s a DRSS

T=[b - blz]s

Inversely, B-coordinates of a given m:- ¥iX z can be written as:

[$]B= [br -+ b]7'z

11 Determinants

For the remainder of this course, we are going to work with square matrices A €
R"*". The determinant is a single number, that compresses a lot of information
about an entire matrix. We will use it as another test for invertibility and singularity:

e detA=0— vn,)'r :bs/cuflbio_, /S’,'nguﬁf:qv’

e detd #0 — ' 9”{‘[7’5/ M‘f ﬁcféﬁﬂ/
An interpretation of that is used in multivariable calculus is as follows:
If we apply A to the unit cube in R", the det(A) gives the n—dimensional volume of

the output.

Y
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Tz, T:cz
A U7 Jefi i)
| /_e?‘ » T .

Definition 18. The function det: R™" — R with the properties:

A old(lv\) =1

S ﬂi (1. s—
. 5 e G\J‘ ki \

- (‘.1"—-"—‘-
—_ ""a - - Q\""""

| a- ! 12
e — Qg \ i ' X - A a(‘r " 'r a‘ -
..--"""-al \ hile \ ! /Tl" = G-‘ . 3 o‘—f

g ML N et & L

is called the determinant of an n x n matrix.

Some important properties of the determinant of A € R**" are as follows

(I) If A has a row of zeros then J r’f{ﬁ) s 0

proof. 1 — ) —
_ 0( —_ '. _
o)) 500 ¢ 7| >©
9(9_ :
o i

(1) if A has two equal rows then p[ Cf(/q’) 0 . . :
proof. Let He two lyw.t ovy bhe QG qu}@ ("#})

-—-"‘3‘..-—-—- \ . _[FaT| B detth)s 0t
- i) o > FF°

4
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(II) If we add a multiple of one row to another row, then Yhe Jc,'fclm{am_t VeWwa AS
proof.

uwdm.&q;f

\
: . b b —
e e B \*\ (,;\__\ A, \ =4
: —ay— J
a\
J

N

i .
7
2
(IV) If A is upper triangular, then
A g B
O - f
{rue pom ;;ﬁ agz_,--"
! detA=|' "« | " o
, o ) l \ \ael
\ \K ‘ O - O anu vow ""t?.
proof. oAl (east one ajp e Then e (ivkiwsh 21 e “vztfa..jzj
‘. €z et (p)s9
o\fhgrw'lfd .
Yy # b

)QT(J‘B < Qw4 ST 1-I_’ _ s ..I

4.,
~ Auq3z ="

Fu 0,
i.G “‘--.‘_. 5[\
G— * a

(V) det A = 0 if and only if A is singular. det A # 0 if and only if A is invertible.

prof- Use A ds KEG:J T{’((u

N 2
C("\"-ﬂﬁ‘u*,- Ty Trare e

e tse (7}
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(VI) The determinant of a 2 x 2 matrix is

a b z M\.vbc-
c d '
proof. .
J =l
. > A :? o‘ejf'\ ¥ =
a4 a.\oz_dk\” \oa-s\a\

. ol -2C
Fazo \‘23\ f“’\;i\ Fume =

(VII) For two matrices A, B € R™*", det(AB) ( AE“ A ) (Jd B\
A det(heB) £ Je%rmf det (B)

(VII]) If A is invertible, then det(A- =
proaf. ((:.’_'f' P\

: ; & ¢ 4pay o |
P(P!‘\';I => JC*!AP‘ [.\ . ‘ , et (k) ""T_"

(IX) for any exponent p € N,det(4?) = ¢

@0 For A R, det(0d) = A" L+ 4 ' L w7

&) det(a™) = det F

Conclusion: In this introductory section, we have defined the determinant as a
function that satisfies the three properties (A), (B) and (C): the determinant of the
identity matrix is 1, every row exchange reverses the sign of the determinant and
the determinant is a linear map with respect to one fixed row. Of the ﬁroperties
derived from (A), (B) and (C), the most important ones are the invertibility criterion
(V). the product formula (VII) and the fact (XI) that the transpose has no effect on
the determinant. -
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11.1 How to compute the determinant in practice?

One of these three rules can be used:

A% 5
1. formula for a 2 x 2 matrix. ak —\0c = dd P\ ? z Cl\
2. forward elimination

3. co factor expansion

Theorem 10. (Determinant by Gaussian elimination) Let A € R™*". Then

ven wh. ol ——— ‘ : ) Y e
“u “th‘l" det(A) = _‘!‘_( Pm!ur‘f o“f HM offtjaac.f athey o r\€ F(ﬁ))

C}c,‘o’( wh. 0"\3 vow f"d:f‘ i
Theorem 11. (Derivation of the Caofactor Formula for the Determinant):

Idea: Use property (C) to split the matrix into "basic matrices", which contain exactly
orgentry in every row and every column, all other entries being zero. Then, by
row exchanges (using property (B)), every "basic matrix" can be transformed into a
diagonal entries (by properties). Factoring out all the entries of one particular row
or one particular column will then yield the cofactor formula.

2 x 2 Case:
a b a & (o) i{‘)
= +
c d c d c d
20l 140 |29 |ob
= + M + |
¢ x c ol |oc
X 2.0 | , 9
= ud_bc
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3 x 3 Case:

an ap ag aw o Q 9 i O 9 QO %3
1 Q2 Q3 | = |@y Gy Q3 |t|am G ap3 |+ |az ax a3
Gz Gz Qs3 az1 Qz2 a3z a3y azz Q33 az Qaz2 Q33
Ay 0O v O Ul’l o o O a.g
= 0 012
o+ A g O |7 Cny a a
0 o

0 Bl lo ol o a7
+| ¢ o o3+|0 & QG+ 0 anv
; o

o Qu o Q\} ‘ o 0 A, O

—t0y A3 Qyy — A QnA33 G302 A0

- Oy Ay, A3 A o A% Q'S\ - 3 A2 &

3\

= qnag-;«ﬂzsﬂv) ayy + (= 22053+ 285 0 + (az ay, ~R2fa;

—

'

Colactsts —> < 4z Cig
+am —ay2 +a13

= Dy Gy + B2y Qa7 -+ C“"" Qz2-

A oy az !jj 2 d')’l

- (L)N3)---(n) TPy [ you

n x n Case; ﬂ' -
. v é‘
h’g D{;{Jﬁq.a

w
Theorem 12. (Determinant by Cofactor Expansion)
1. Cofactor expansion across row i:
det A =aCi + ai2Ciz + - - - + ainCin
2. Cofactor expansion across column j:

det A = aa.jclj + szczj B R an_,-Cm-
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If A;; is the matrix that is formed by deleting row i and column j from A, then the
cofactor is

Cij = (— 1)i+jdetA"j.

+ — + - * *
gigns = — + == + A= * * ok
+ — + = Qij
- 4+ 2 + * * *
Example 11.1.
1 2 3 4
0 1 2 3
4 6 7
-1 -2 2 2
( 2 3% 9

Ra)-l‘?‘l 0 o a -\ j
2 (10 e

Y 4 :
\ 2 3{{ 6’
o (\ e - .
R (R 2 “ a (L8
%U‘\'{ \ oy fert? o 1
g = N = \ ¥
1 2 3 4 : , Y
bo v 3| 3 b
2 4 @ 7 b -2 :,\ -
-1 -2 @ 2

=z =72

Conclusions: Our default method for calculating determinants is forward elimi-
nation. With every row exchange, the determinant changes sign. Only in two cases

we use a different method:

e If the matrix is 2 x 2, then we use the formula: ad — be.

e If the matrix is 3 x 3, or if it is larger but it has many rows and/or columns
with many zeros, the cofactor expansion may be faster than elimination.
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12 Eigenvalues and Eigenvectors

We already know one powerful set of numbers associated with a (rectangular) ma-

trix:
. ﬂtva 'fj
In this chapter, we will introduce another set of numbers for a (square) matrix, which

is even more relevant for a huge range of applications in mathematics, physics,
computer science, engineering and economics:

. 6’36"‘ values

Definition 19. (Eigenvalues and eigen vectors) Let A € R™*". A nonzero vector v €
R™\{0} is said to be an eigenvector of A if:

A= A% (Aais porallel 45 4)
Jfor some eigenvalue ) € R.

1 ;
Example 12.1. Check that v = L] is an eigenvector for matrix A ?

o a-(27)

F\ bl 1}- = | - 5 i i

\ =4 ¥ /- ! .

A % § L, ¥V is an eigenvector
) "J—: e J
Example 12.2. (Illlustration of eigenvalues and eigenvectors) (a) projection onto a line
Not &ia&n vedots cge cYors
Ay . 7\1. -4
= a3 . 7\1_:- o}
Tz, Tz2

o~

N /5\5 /P‘;/

VE Z
// ! //h{ T 1

-
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Remark: Why fo we need Eigenvalues and Eigenvectors ? Remember about the
linear transformations corresponding to contraction/dilation (Example 5.4)? Those
are simple linear transformations which are represented by a diagonal matrix and
can be easily understood by their geometrical representations:

2 2
d=[" Y A:R? > R? A 154 = [0
0 3 Ig 31'2

4‘272 ‘9!?2/

& 4

A
[4 m
z’r p
:'-1 _>$1 _—* >:1:1

Now if we have a non-diagonal matrix A4, eigenvectors and eigenvalues help us to
better understand the "action" of A on the input vectors:
Eigenvalues: \; =2, A2 =1

A:R?H R? 9 -1
Eigenvectors: v, = 1 yUg =

i el

2

.
T2

T I\

AN

4-3:2 . - < .
&'\r ' " \/ . PJ\

: r ’ I
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How can we find the eigenvalues and eigenvectors ? Let's first start with the eigen-

values:
Example 12.3. Find the eigenvalues of A.

= Ak

A , f det (P -li__)-'-'
PY.T\ g hl_% | (A ~ ‘f\-l—)?\ ;;"‘;ft’r'a-ft P°\jvomtﬁ\
| - -
€ e x J
A K —-7\1 Ns0 ( (g)( < & -’{Ml'ﬂt'fc,fs'{lc tPY“A’N\S\\
(A-A1 k=0 | | b AD AR
I A('{'(f)) = O
= (-0 (¥5-2) - )25 0
Theorem 13. A scalar ) € R is an eigenvalue of a matrix A € R™", if and only if: R 1
det(A — M) =0 ¥ hse SR
Example 12.4. Find the eigenvalues of A.
50 3
A=11 21
305
) - fl5o 3\ ool TA o 3
At (B = "J,f(l';;,-"‘""" s 1 22 1 -
¢ ( \ o I j ) 2 \j/ ._S o 5_’)
" ¢ - N 3
;,2\ 3 [ 2’?\ ) - A ? %
g "O\ g 5| 3 SN .
(’),,?\) (g /?x) -—7) o) AS 10 1 !od.-Q(r](lG) . 10—..:_‘6
- £
?\152, —— SR,
) 'IO?‘*Z)-—?I o
- ?"*_Lu nsL My il o1
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Remark: The degree of the characteristic polynomial (i.e. det(4 — Al,)) is equal to
the size of A. Thus, the characteristic polynomial has at most n roots.
Sometimes it might have less than n roots and sometimes it might have no roots.
Crev ex.) Ng&(t& % 5 Lvoots
¢
6:\(?') b1 I’A 1+ l ‘(j((& ?— e WMo KOQ{S

Some practical tips to find the roots of the characteristic polynomial:

1. If the degree is 2, use the quadratic formula:

a)X +bA+c=0
—b+ VP — dac
2a

2. If there is no constant, factor out as many s as possible:

2 o S
éx) ?\},‘1,?\:'.@ <7 ﬁ(-h_lf) =3 ‘A59 f

A 5 A 1
3. As in the example 12.4, one root might be explicitly visible:

4, Try if A = 1, A = 2,.. is a root. Then we can factor out (A — p), p being the
guessed root: p(A) = (A —p)(..)

5. If A is upper triangular, then the eigenvalues are the entries in the diagonal

positions:
t?lri-.ﬂ| ¢ -
dyy N ’
det (4 - InA) = ? * | \, e ((1“-7‘; )(ull"h)"' k"‘w\vm\ =
-
- D < D va\'?\ ’h :,é'-u _-}\_:-vl'l'l_--- hn,‘s‘au\ﬂ

Attention: You are not allowed to do row reduction on A before computing the
eigenvalues. Row reduction usually changes the eigenvalues of a matrix.

Definition 20. Algebraic multiplicity is the property of an eigenvalue );, and it denotes
the multiplicity of ) in the characteristic polynomial.

Example 12.5. Find the eigenvalues and their corresponding algebraic multiplicity
for the following characteristic polynomial:
MA=-2)(A-3)=0

Ao
As L _'
h“’ 50

My coric b it "
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(%
2% 6152

Now let's turn our attention to the eigenvectors:

Example 12.8. For the following matrix A, \, = 2 is an eigenvalue. Find all of the
eigenvectors corresponding to A\, = 2.

) A 2% =2 (A-21) 4 50

S

I
cipa enjwo
[ [=- = TPE]

2 5 U
. ) =0 25 ( )qh 0o

. . /8 b
e 1”5’) . -/511' ?11 ;931:211 J,Z") . (:\;) ;11(\)
-

9 e ry freevar

Definition 21. The span of all eigenvectors with the same eigenvalues ) is called the
eigenspace of A corresponding to A, denoted by eig,. In other words, eig, is equal to
the set of all solutions to Az = Az (including 0)

Theorem 14. (Eigenspace and Nullspaces) If A € R is an eigenvalue of A € R™*", then
eig,A = nul(A - \l,,)

Conclusions:
¢ If a matrix A € R™*" is applied to any vector z € R", then the vector Az usually
has a different length than = and points in a different direction than z.

e If we can find a special vector z that does not change direction when we apply
A toit, then this vector z is an eigenvector. The eigenvalue is the scaling factor

A that turns z into Az = Az

e If ) is an eigenvalue of the matrix A, then the matrix 4 — \J, must be singular.
Therefore:

~ its determinant is zero: det(4 — AI,) = 0

- its nulspace nul(4 — AI,) = eig, A is larger than just {0}
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Conclusions (continued):

* Finding all eigenvalues and corresponding eigenvectors (eigenspaces) for the
matrix A is a two-step procedure:

1. Find all eigenvalues ), ..., Ay by computing the roots of the characteristic
polynomial:

det(A-Al,) =0 at most n real s

2. For each eigenvalue \;,i € {1,--- , N }. find a basis E; for the corresponding
eig, A:

E; = (‘U,-l ) U,? v, vf) at least one eigenvector

by computing all the "special solutions" of:
(A=A, ) =0

e If A is a n x n matrix, then A is invertible if and only if the number 0 is not an
eigenvalue. ( Why | }

Example 12.7. Find all eigenvalues and eigenvectors of

23 3
A=102 0
0 O _l -
i 3 3\ .
5 -
e lst step: Eigenvalues ' L}z ) \ 2 10 RN
-'—) (L' AJ“L'— } {'-:_'_ _ .=
7\-'-.'2— ,'-:(:) *{'{'\:n)"l ;,ﬂ
Isb 4
o'y malt O, ) @ 2
¢ 2nd step: Eigenvectors
A
= for Ay = L (b*"’)' ) B
\ ﬂ\‘ ~f0 “‘ O
_— Re3r 0 3 © SF = o
a XL
ot f 1 C 1 g 2 ‘i ~ 0 "3 ~ '35' o o 9
alhplic v o ©
e | Jq)) 0o o -5

| |
7157\,% m E R 61;'*'((1)) U(\
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~for\g= « | (Af.&\*) <

geomcleic 3 3 3\ Aty o 3 ‘2/3 g’ ({ : 0‘ His =3
oh “ 0 o i < 2 o r~ 'fg ) WL s 0
'.M..“'\Q\ 4 J ; ?) 2 J

o O @ O A w3y free
g} - weil
A s ’13\0 43&.@- Tz;(o) E_ﬂ_:(&o\))
\ '

Definition 22. (Geometric multiplicity of an Eigenvalue) Let ); € R be an eigenvalue of
a matrix A € R™", the geometric multiplicity g; of ); is the dimension of its Eigenspace
eig, A

Theorem 15. (1 < Geometric Multiplicity < Algebraic Multiplicity) the geometric mul-
tiplicity g; of the eigenvalues ); is at least 1 and at most equal to the algebraic multi-
plicity a;:

1<¢:<a
Example 12.8. Find the eigenvalues and eigenspaces, and specify the algebraic and
geometric multiplicity of the following matrices. In addition, specify if the collection of
eigenbases form an eigenvector basis for R%?

50 3 Yy -.
@A=|1 21 oo ' \
305 :

2- A (5-2) =3 re & Y ~"Ns i g
(2-2) ( R P L T

: ...l:((' e 4 J*'(!" £ 2‘ !
#§, Geerehs f »
g+ > 2]
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ast (bt W) s 0

Theorem 16. (Linearly independent eigenvectors) If vy, - - -
responding to distinct eigenvalues A, - - -

-0 % - ( o | Q-vt s h3
T ~ A v, -—5 Z ( '/3 Mo s 13/
2 0 .3 0 o ©O > O [ Ry Reee
V3
N l \ ﬁz;’
" \ v S 14 NS
A s ’“),15 ’3) €? 3 ku-)/a
>y Al AL
lyehvanc  wult = 4 PASED A
o ."o‘..( W‘-n“' 3 1 . i £
S N b i ren.r_rjfer. A‘ﬁ :lf}
(b) A= ([1} ?) Av, -2Va
RN e Y2 B AN AV s LT
(AN 5o > 0P
o 1 x50
| S [ o @) Ao teee
b\ A - L2 f
— “. : ¥ w."é, ¢ .ni-n."t ’1
'ﬂ\" 2 ,... i'; " < : Y 5-? 5 L
gz { o ik F D5 N0 “
ARY
g I i s\v 9/ }
Y5 .

v € R" are eigenvectors cor-
, A+ € R, then these eigenvectors are linearly

independent. (Proof on page 150 in textbook)
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Theorem 17. (Eigenwectors that span R™) The following statements are equivalent:

o The characteristic polynomial of A € R"*" can be decomposed into a product of
linear factors:

det(A— ML) = (A = M)A = A2 (A = A)*
and all r distinct eigenvalues \,,- - , A\, € R have
a; = g; (i=1,.--,r)
algebraic multiplicity = geometric multiplicity
e The n eigenvectors vi,--- ,v{*,v},--- 4% ... v} ...v% span the full space R".

» These eigenvectors form a basis for R", a so-called eigenvector basis.

12.1 Diagonalization

Diagonal matrices are very easy to deal with: The inverse of a diagonal matrix is
simply:

A O = / ‘i, o
w0 A\ (e
&, Aaw | \ /.

(Other) powers of diagonal matrices are also straightforward to evaluate:

\ ¥ [ O

)] 7 \o

]
N
-

d ol </
o =

We will now use eigenvalues and eigenvectors to transform a matrix A € R"*" to a
diagonal matrix D € R"*", if possible, which will allow for very simple calculations.

Definition 23. (Similar matrices): Two matrices A and B are said to be similar, if
there exists an invertible matrix P € R"*" such that:

A= PBpP™!
Theorem 18. If A and B are similar, then A and B have the same characteristic
polynomial and hence the same eigenvalues. p 5 F ('ovo:f)

Definition 24. A matrix is said to be diagonalisable, if it is similar to a diagonal
matrix: there exist an invertible matrix P € R**" and a diagonal matrix D € R**" such

that:
A= PDP™!
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¢ k™ e
Example 12.9. (Power of a matrix) We define: )" 4 ('/.b_) (- +(R)

2 ~3 -1 0 -5 _
P=( 12)' D=( ). a=pppr-_(Tz 7P
-1 3 0 3 2

Derive a formula for A*, where k € N is any positive integer. ” F
15 way At..'«' A---A, :“""‘“fp\j Ak Yme s w~{\!f\. el

?_...J-—Jo\j « n-n'w\u: ‘_; o 0 k -\
A¥- PDO"'PDP” .- pDP - PP

_k'1;‘:..;e5h 2 <nypn® o ‘ b .
= (-1 ‘fl)(o )/ \2 4 22

Theorem 19. (Continuation of Theorem 17) The following statements are equivalent:

L&)

¢ The characteristic polynomial of A € R™" can be decomposed into a product of

linear factors:
g Aheve ove N veal
det(A =) = (M = )" (e =) (=N eenvalnes (vot
A I A ) 1;“‘1')
and all r distinct eigenvalues \,,--- , A\, € R have ‘”*“'55“'“’":) olis

a; = gi (i=1,---,r)

) o N flere ave M
algebraic multiplicity = geometric multiplicity .
. GGem ve tovs

e The matrix A is diagonalisable. )
In this case we have A = PDP~! with P e e
/ Al Trdae

W ) ) O | ., 2550
¥ ) - Y . . lJI : ] i \ \
P* (‘r‘ i v B Ny

Example 12.10. (Denationalization) Determine whether or not theinmtritef;. ave o aﬁom{f o ble?

Fost fnd Al oud i . :?o“au.)mj

h ) i A= ) 'S fq({j factoviqed
() From Tae 9 )j

e The churaclenstc j?%jhgav!{.-‘f Aet (‘LIA)_];.-/)\(\_}\
The eigenwlaes of A louth heve v gy Celuy

1

ISR
o= i
(== e I V]
o N W

[=R ]

Thev fore 73' \f\ o\ \:.
@ 0 A A
1o~ o | " PS(‘J’ ‘)

\’AZ 56 -
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Conclusions: Denationalisation allows us to extend the very simple calculations
with diagonal matrices to diagonalisable matrices:

¢ A € R™*" is diagonalisable if and only if it has n real eigenvalues (not necessarily
distinct) and n linearly independent eigenvectors, i.e. an eigenvector basis for
R".

e In the similarity transformation A = PDP-!,D € R™" is a matrix with the

eigenvalues of A on the diagonal, P € R™*" has the corresponding eigenvectors
as columns.

 Powers of a diagonalisable matrix A can easily be calculated as A* = PD*P-!.
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Example 12.11. (Predetor-prey system) A dynamical system is defined by the follow-
ing equations: (please refer to the dynamical systems lecture notes, page 27, for a
complete description of the problem)

gn+1 = 0.38g, + 0.24y,
Yn+1 = —0.36g, + 1.22y,
Or in matrix form:
_ (038 0.24 90
= (—0.36 1.22) sy Ho= LJ

Find the general formula for f,.,, in terms of f,, with the method of diagonalization:

Fl e o i = sepk e
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Summery and conclusions of Discrete Dynamical Systems: The linear discrete
dynamical system is described by the formula z,,, = Az, with an initial condition
zo and A € R¥**. With the help of eigenvalues/spaces/vectors, we can achieve the
following two goals:

(a) Find an explicit formula for z,,, in terms of n and z,. Depending on the problem,
zo might be given as a vector of numbers or simply given in parametric form.
Remind that the explicit formula should not include z, (that is why it is called
explicit after all).

(b) Find the general behavior of the discrete dynamical system in long-run, based
on different values of z,.

In doing so the following steps should be taken:
Step 1: Find all the eigenvalues and eigenspaces of A.

Step 2: Check for each eigenvlaue ), if the geometric multiplicity and algebraic
multiplicity are equal (a; = g;). If this condition does not hold at least for
one eigenvalue, the method breaks down. It means that we cannot find an
explicit formula for f,,,, for any initial condition z,. If this condition holds
for all eigenvalues, we can find the eigenvector basis which spans the full
space, i.e. a set which contains all bases corresponding to all eigenspaces
P = (v, -+ ,u) (refer to the Theorem 17 to recall about the eigenvector basis)

Step 3: Now we need to decide which method we prefer to choose in order to find
the general solution:

(a) Method of undetermined coefficients: If the initial condition is not given
in terms of numbers, there is not much left to do. The explicit solution
can be written in the following form (to see why, refer to page 30 in the
discrete dynamical system lecture note):

ZTp = ATV + -+ ATk (26)

In the above equation, only ¢;,- -+ ,c; are unknown (recall that n is only
the time variable, and the general solution will always depend on it).
They will remain unknown if we do not know about the initial condition.
If z, is given, then it can be expressed as a linear combination of the

eigenvector basis (Why?):
To=C U1+ CVs+ +*+ CkUk

The above vector equation is simply a linear system with £ unknown
variables ¢, - - ,c. After finding those unknown variables, the general
solution 26 is explicitly expressed in terms of n.
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(b) Method of diagonalization In this method, we first diagonalize the matrix
A (refer to the Theorem 19 ). Since we already know the eigenvector
basis, we can write:

A=PDP,

Next, the general solution can be directly expressed as:
Intl = PD“P_IIO

. In the above vector equation, the only unknown variable is n, which is
the time variable).

Step 4: Describing the general behavior of the system in long run: First, we need
to plot the phase diagram (a diagram whose axes are each component of
our input vector) with all eigenspaces. We want to know if we start from
any initial vector, what will be the behavior of the system in the future.
Starting from an initial vector on the eigenspace, z, either gets attracted by
the origin (if |A| < 1), or it gets repelled by the origin (if |A| > 1). If the initial
vector is not on the eigenspace, we look at the explicit general formula that
we found on the previous step in order to predict the behavior of the system.
In short, any arbitrary initial vector gets attracted by the eigenspaces with
|A] > 1 and get repelled by the eigenspaces with |A| < 1, and are neutral with
respect to eigenspaces with |A| = 1.
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13 Orthogonality and Least Squares

Vectors allow us to use analytical tools to solve geometric problems and to extend

the notions of length and angles to very general vector spaces. All the necessary
information is contained in the

[ —.I'
oto‘f Pmdu(_"( oY sea lov {3‘. Ja!u 4 + Oy i\n ey Q:,. ) f.! 4
l;eﬂnit.ion 25. (Dot product on R") The dot product of two vectors z,y € R" is defined
Y
x.y=$1y1+iﬂ‘2y2+"'+$nyn €ER
Theorem 20, (Properties of the dot product) The dot product on R" is Fand i it
i Ll i:v:o If‘
(@) positive definite:

LR . A 30 and

v
AR =0 &= A>o0
(b) symmetric:

XY e®™: 1y =y.x
(c) linear in each argument:

V‘L,‘j)%ﬁw h‘?\"&e& : (7\1+r\j)»2= 7\'].1_'_‘.“} 2
Definition 26. (Euclidean Norm on R") The (Euclidean norm, 2-norm or length of a
vector is defined by:

”’ﬂ“ =V

' Nomﬂ’meEucIideannomlonR“is
andl -0 &« 4.0

SRR PR AT

| @‘t A1 v ;"“3"' wﬂiw&t}
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Definition 28. (Orthogonal Complement) Let H be a subspace of R". The set of all
vectors that are orthogonal to all vectors in H: " 5

HJ-: ﬂ: R’ (f*fiv‘;. W,d.y=9 }- H

is called the orthogonal complement of H.
Example 13.3. (Orthogonal complement of a plane)

o))

i ) .
A (2_) s0 =z Tl > Adso =) %s0o
e (3) e (s g

2

Scanned by CamScanner



13.1 What is the significance of Orthogonal and Orthonormal
bases?

In this section, we're revisiting the problems of finding the coordinates of a vector
z € H in terms of a given basis B = (u,---u,) of the space H C R™ find weights
(B-coordinates) ¢;, -+ , ¢, € R such that

T=CU +*+ Crliy

the solution is given by the solution of the linear system:

For orthogonal and orthonormal bases, the solution is a lot shorter.

Definition 29. (Orthogonal and orthonormal sets and bases) A set {u,, -+ ,u,} C R"
or a basis (uy,-+- ,u,) C R* of a subspace H is said to be

¢ orthogonal, if . g
ui- W =0 '+
e orthonormal, if . 8
> (¥
1 /=]
\"Uf~U] - il

Theorem 25. (Nonzero orthogonal sets are linearly independent) if {uy, - ,u,} C
R"™\{0} is an orthogonal set, then the vectors uy, - -+ ,u, must be linearly independent.
Proof.

ur-4 =

C1 Y4t Collag --= 1Cr4r >0

C1(M4.(LQ) + C2 (U ./U,') s i
AL sl el p
#0 o
— F-o
yf‘lv\;b’b C)__' - - = C' -

/
¢ Cy(uyuﬁ\ S/ =5 =0
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Example 13.4. (Orthogonal basis for R® ) Show that

-20 -15
M: 4 ) -9 1 12
12 —16
is an orthogonal basis for R®.
/0
S ? -~ +36 s
(9 |- |12 } s s © N =9 OY+L-@JQOY\C}--{
T J
V12 )\ e [,
(O \ e I 3 ) NSO all a?{ 'ﬁ‘\ue, v‘d'_t,'foﬁ are€ worzero
4} s » fom. peex. thedtem # imphes hey are
0 .t 4 : wkeperdurt and h '
0 eavly 1nokepe anel hence a bais

Example 13.5. (Orthonormal bases for R?) Examples for orthonormal bases of R* are: £, R>

0 - 30 P
’ 3 (‘l) ’ ..-'- -9 A 1
5 3 2{ 2 2.' --1{

() 3)

Theorem 26. (Coordinates in orthogonal and orthonormal bases) IfU = (uy, - ,u,) C
R" is an orthogonal basis of a subspace H, then any vector z € H has a unique repre-

sentation in that basis:
s U .X W, 4+ W R Cf'. coordinat "’{J' N
, .u, Uy.Ur )
- sl i rebitie o W
=Cy =Cy

IfU is even orthonormal, then

Uk ) Ry 2 x) Ur
i £ ( 1 t+t - ¥ (Uf—

el w—/
=C =Cy
proof. :

A s Gy ek rlr

wab ot s, %o

- C, =
S e s CiiAN) 20 = & e
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Example 13.6. (Coordinates in an orthogonal basis) In the standard basis £ = (€1,€2,¢3)
of R®, a vector is given as

1

1
I=(i) M:_C‘u,‘_*c'}'d\'l_*cgqs

Find its coordinates in the basis U from example 13.4

15 |
AU (1)(%) T (32 P U3 : (‘r) (ii) )

- T cm—
-

G € IE A

Yir

" &UI*QUL—"
Ks S '35 gx e

Theorem 27. (Matrix with orthonormal columns) a matrix U € R™*" has orthonormal
columns if and only if UTU = I, ] |
Proof. U = (""i" 3 uin
- At l | oty Uy o YfUn
U U s - Dy <= han 8, S0 g -
—_— Uy — \ ‘ UV T Foetin

R
L L

Definition 30. (Orthogonal matrix) A square matrix U € R™" is called orthogonal if

s wp
UTU:]h » U U
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Theorem 28. (Angle and Length-Preserving Linear Transformation) If U € R™*" has
orthonormal columns, then

\;}}«,5 e (U?\).(Uj) = “Anj
4((}1)09)' :4('}\@)

. \a
o puvtierlay gyl

Voem’ N Uxll = )
,C't’vg‘mf a$ Uas gdajﬂt 0‘{— 8

13.2 How to project a vector orthogonally onto a subspace

Given some vector z € R", how can we find its projection onto a subspace H C R",
e.g. onto a line/plane/hyperspace through the origin ?

A

e =AM ~7
“/1,, kfw; /’
I

Theorem 29. (Orthogonal decomposition) Let H C R" be a subspace.

e Each vector z € R" can be decomposed into the sum of a vector # € H and a

vectore € H+
rT=Z+e

This orthogonal decomposition is En_lq_t.g

e If(uy,--- ,u,) is an orthogonal basis for H, then Ay
LW X o S (__-- dr
r= — ' ¥ — u.(.u'
Uiy W24z,
T gk

P{.\,ﬁ @ P.‘?J?.
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Theorem 30. Let H C R" be a subspace, z € R" and & € H the projection of = onto H.
Then £ is the closest point in H to z:

VheH: |lz—2|| < Iz Al
Example 13.7. (Calculating the Orthogonal Projection) Let H be the plane spanned
by the two orthogonal vectors
1 -9
u =12 and Ug = 2

and calculate the distance of = from H.

) oy D6 L)
’ mg‘a $ e W8 L))

Well = ‘fb: = st (%5 H

o
At
-7¢
\
-}>
A}
/"—:‘
o
L —
\
./"_"T-
N~ nNe

Example 13.8. Consider the planez —y+z = 0.
(a) Find the 3 x 3 matrix T, which represents projection of R® onto a vector orthogonal
to this plane.
Solution:
In general, an orthogonal vector to any plane in R* written in the form az + by +cz =
a
dis given as: | b |. Thus, in this particular example, the orthogonal vector is:

c
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We are asked to find a linear transformation Ty(z) : R* = R® which projects any
point on the subspace spanned by u,, that is a line in R®. Let’s call this line the
subspace H, and a basis for it is U = {u,}. Obviously, this is an orthogonal basis
(Why?). As we learned previously about finding the standard matrix of a linear
transformation, we need to find the "action” of the linear map on the columns of
identity matrix. Thanks to the orthogonality of this basis, from Theorem 29 in the
lecture notes (or Theorem 8 in the textbook) we have:

u
Ti(e1) = projye: = e 3

Uy * €2 -1
Tl(eg) = prQiHeg = PrE U = T -1

Uy * €3 1

Tl (83) — prQJHe;; = Uy - Uy 3

Wl

A, = [Ti(e1) Ti(e2) Ti(es)]=z|-1 1 -1

1
(b) Leta = | 1 |. Find vectors v and w such that a = v+w, where v is in the plane and

1
w is perpendicular to the plane.
Solution:

ey Gl Calno

(c) Find the 3 x 3 matrix T, which represents projection of R* onto this plane.
Solution:
Similar to (a), we want to find a the "action” of the linear map to the columns of

69
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the identity matrix, As we did for vector a in part (b), we can find the projection of
e, ez,e3 on the planex — y + z = 0 by:

T2(31) =€ - Tl(el)
T;(e2) = e — Ti(e2)
T;(es) = e3 — Ti(ea)

Ar = [Ta(ey) Ty(eq) Tyes)| =13 — A = % 1

70
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13.3 How to find Approximate Solutions to Inconsistent Linear
System? ArEDL  inconsictanT

o
Aif-") =2

s vat 0 s W et et sldt)
With this b, the problem Az = b has no solution, since b ¢ col(A), i.e. it is impo
to make ||b — Az|| = 0. Instead, we will try to make ||b — Az|| as small as possible.
find such approximate solutions of Az = b, we proceed as follows:

« Approximate the right hand side b with b = proj,g )b

e Solve Az = b instead. If the approximation error ||b — b|| = ||b — Az]| is |
then Az ~ b.

Definition 31. (Least square solution) Let A € R™" and b € R™. A vector & €
called a least-square solution of Az = b if

Ve € R" : ||b— A#|| < ||b— Ad]|

How to find that approximate solution z?

Ggamdt) 3 P\m:h Mgel.v« |

R i~
‘\\ l‘( /h
5 AL AT ': /—’w
4 s ¥ 4
N o |

= =

€ -:A;L .-b | A"b ¢ -L-L W | e e
Aib € W GIEaYE puld)

ColA = Rume(B) - W
AT(AR-B) 5o

A; ;‘L ' c‘aScs'f *9% I_
!!Aﬂ43~ﬁfb§3_

= n? = ()nlb .
Jw iusf'ead( U‘(f mfﬁlﬁ {Z'“‘ﬁm" Al:b
ts R;" «‘0 5-3 fve, 'H'M €7 40 jd, ’#’ %5{'

P

sgquarel o /u'h‘."‘ '
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Example 13.9. Let

=t

| S T s |
“w N

6|

Check if the system Az = b is consistent. If not, find the approximate solution and the

error,
¢ i ( ! = i“jz- II\'L | ; ) ..:‘* .- J
A : b < e T gL o el | 2 | Sl
K ARy %, enve 12 Y o olk2}/

éﬂ“’)'f J7,fdwe 50’"1?;0!'\" (52,_ T) 9
e 1 2 |3
R B (221G

i ¢ ! PR o 7
<E\;)/}\k5@) = (E;‘?) (m _{;-8’)
% “{: : : |
) R A
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Example 13.11. (Calculating the Orthogonal Projection) Let H be the plane spanned
by the two (non-orthogonal) vectors:

. Find the point b on the plane H which is closest to the point

=]
Il
i~ A 7

and calculate the distance of b from H.
o w prev. e ,\o.w_‘?\@-

¥ SAL('&)

esh & '(é)'(:s)f(;") => lleM -:-m s € = dod f"'H)
¥ - . Vi

Example 13.12, (Least-square fitting) An experimental study has produced the fol-
lowing data:

T2

I

Find the best linear fit with the least square error to these data.

b o{'H—

T GRO R
!

'13 ‘0.6 :
[q’o 7» JN ( l 05) jsﬂ-ﬁi*‘o'r
10 74
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