Introduction to PDEs:

\(u \): dependent variable

\(x, y, z, t \): independent variables

Order of the PDE: the order of the highest partial derivative in the equation.

Example: \(u(x, y) \), \(u \) is an unknown function dependent on \(x, y \).

\[a(x, y) u_x + b(x, y) u_y + c(x, y) u = d(x, y) \] (1)

is a linear first order ODE.

\[A u_{xx} + B u_{xy} + C u_{yy} + D u_x + E u_y + F u = G \] (2)

A linear 2nd order ODE

\(A, B, C, \ldots, G \): constants or functions of \(x, y \)

If \(G = 0 \) the PDE is homogeneous, if \(G \neq 0 \) the PDE is non-homogeneous.
Consider the analogy with quadric surfaces:

\[AX^2 + BXY + CY^2 + DX + EY = K \]

\[\Delta = B^2 - 4AC \]

<table>
<thead>
<tr>
<th>(\Delta)</th>
<th>Type</th>
<th>Quadric</th>
<th>PDE</th>
<th>PDE Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta = 0)</td>
<td>Parabolic</td>
<td>(X^2 = T)</td>
<td>(u_t = u_{xx})</td>
<td>Heat eqn. (diffusion eqn.)</td>
</tr>
<tr>
<td>(\Delta < 0)</td>
<td>Elliptic</td>
<td>(AX + CY = 1)</td>
<td>(u_{xx} + u_{yy} = 0)</td>
<td>Laplace's eqn.</td>
</tr>
<tr>
<td>(\Delta > 0)</td>
<td>Hyperbolic</td>
<td>(T - \alpha XY = 1)</td>
<td>(u_{tt} = \alpha u_{xx})</td>
<td>Poisson's eqn.</td>
</tr>
</tbody>
</table>

All linear 2nd order PDEs can be transformed into one of these types.
Example: Traffic flow (1D Conservative law)

Assume we are looking at the traffic flow at a length Δx of a highway.

$u(x, t) = \text{density of cars at point } x \text{ at time } t$.

$[u] = \# \text{ of cars / unit length}$

$q(x, t) = \text{flux of cars at point } x \text{ at time } t$.

$[q] = \# \text{ of cars / unit time}$

\[\begin{array}{c|c|c}
\text{flux in} & q(x, t) & q(x + \Delta t, t) \\
\hline
x & \Delta x & x + \Delta x
\end{array} \]

\[u(x, t) \quad \quad \quad \quad \quad u(x + \Delta x, t) \]

\[\text{flux out} \]
The conservation law tells us:

change in the # of cars over \([t, t+\Delta t]\)

\[\# \text{ cars in} - \# \text{ cars out} \]

Or:

\[u(x, t+\Delta t) \Delta x - u(x, t) \Delta x \]

\[q(x, t) \Delta t - q(x+\Delta x, t) \Delta t \quad (\ast) \]

Check dimensions:

\[\frac{\# \text{ cars}}{\Delta x} \cdot \frac{1}{t} = \frac{\# \text{ cars}}{\Delta x} \cdot \frac{1}{\Delta x} \]

Divide \((\ast)\) by \(\Delta t \cdot \Delta x\):

\[\frac{u(x, t+\Delta t) - u(x, t)}{\Delta t} = \frac{q(x, t) - q(x+\Delta x, t)}{\Delta x} \]

Now let \(\Delta t \to 0\), \(\Delta x \to 0\):

\[\frac{\partial u}{\partial t} = -\frac{\partial q}{\partial x} \]

or:

\[\frac{\partial u}{\partial t} + \frac{\partial q}{\partial x} = 0 \]
This is conservation law PDE.

\(u(x,t) \) and \(q(x,t) \) are both unknowns.

To be able to solve this PDE we need to know how \(q \) is related to \(u \).

This information comes from the nature of the problem. For instance it can be:
- an equation of state
- a constitutive law
- ...

Let's assume:

\[q = cu \quad , \quad c > 0 \] a linear flux-density relationship

i.e. when the number of cars increases, the flux increases proportionally.
So, we get:

\[\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 \]

or, use another notation:

\[u_t + c u_x = 0 \]

Since the PDE has constant coefficients and is a linear combination of time and spatial partial derivatives, try a solution:

\[u(x, t) = e^{ikx+6t} \]

\[u_t = 6e^{ikx+6t} \]

\[u_x = (ik) e^{ikx+6t} \]

\[\text{sin/cos behaviour in } x \]

\[\text{exponential damping in time } (\delta < 0) \]
Substitute into PDE:
\[i k x + \sigma t \]
\[(\sigma + i k c) e = 0 \]
or: \[\sigma = -i k c \] "a dispersion relation"
So, the solution is:
\[u(x,t) = e^{i k x - i k c t} \]
\[u(x,t) = e \]

You can show that any differentiable function \(f \) with the functional form \(f(x - ct) \) is a solution to this PDE:
\[u(x,t) = f(x - ct) \]
\[u_t = -c f'(x - ct), \quad u_x = f'(x - ct) \]
\[u_t + cu_x = -c f' + c f' = 0 \]
The PDE:

\[u_t + cu_x = 0 \]

with the solution

\[u(x,t) = f(x-ct) \]

can be interpreted as a right moving wave using the Galilean transformation:

The wave propagates in time to the right observer ①, stationary, sees: \(x \)

observer ②, moving with the wave, sees:

\[x' = x - ct \]
\(u_t + cu_x = 0 \), Solution: \(u(x,t) = f(x-ct) \)
right moving wave

\(u_t - cu_x = 0 \), Solution: \(u(x,t) = f(x+ct) \)
left moving wave

Second order wave equation:
A wave that moves in both directions.

\[
\left(\frac{\partial}{\partial t} + c \frac{\partial}{\partial x} \right) \left(\frac{\partial}{\partial t} - c \frac{\partial}{\partial x} \right) u(x,t) = 0
\]

\[
\begin{align*}
\text{right moving} & \quad \text{left moving} \\
\text{wave operator} & \quad \text{wave operator}
\end{align*}
\]

\[
\left(\frac{\partial^2}{\partial t^2} - c \frac{\partial^2}{\partial t \partial x} + c \frac{\partial^2}{\partial x \partial t} - c^2 \frac{\partial^2}{\partial x^2} \right) u(x,t) = 0
\]

\[
\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0
\]

The second order wave equation.
Now, what happens if drivers slow down if they see an increase in car density ahead of them?

\[q = cu - D u_x \]

\[\uparrow \quad \leftarrow \quad \text{a constant} \]

\[\text{increase in car density} \]

Check dimensions:

\[\frac{\# \text{ cars}}{T} = \frac{M}{T} \cdot \frac{\# \text{ cars}}{M} = [D] \cdot \frac{\# \text{ cars}}{M^2} \]

So, \(D \) should have dimensions: \([D] = \frac{M^2}{T}\)

Substitute in the conservation PDE:

\[\frac{\partial u}{\partial t} + \frac{\partial q}{\partial x} = 0 \]

\[q = cu - D u_x \]

\[u_t + cu_{xx} = D u_{xx} \]

\[\text{convection} \quad \text{diffusion} \quad \text{D: a diffusion coefficient} \]
So, now in addition to moving at speed c to the right, the wave diffuses too.

Now, if you make a change of variable:

$z = x - ct$, i.e., you move with the center of the wave, and find the PDE for $U(z)$:

$$U_t = DU_{zz}$$

This means the observer that travels with the wave only sees the diffusion.
Finding the dispersion relation for the convection-diffusion equation:

Consider a solution: \(u(x, t) = e^{i(kx + \omega t)} \)

Substitute in:

\[
\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = D \frac{\partial^2 u}{\partial x^2}
\]

\[
(\omega + ick) e^{i(kx + \omega t)} = (-k^2)D e^{i(kx + \omega t)}
\]

\[
\omega = -i k c - k^2 D
\]

\(\omega \rightarrow \omega_d \) due to convection and diffusion

\[
\omega_d = -ikct - k^2 D
\]

\[u(x, t) = e^{ik(x-ct)} e^{-k^2Dt} \]

Decay in time due to diffusion \((D > 0) \)

right moving wave