Testing for Relationships Between Time Series
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The usual procedures for testing the significance of sample correla-
tions between pairs of independently normally distributed series are
not appropriate for testing sample correlations between pairs of
autocorrelated series. We present sampling evidence supporting
our hypothesis that the distributions of sample correlations between
pairs of unrelated first-order Markov series conditional on the first
lag sample autocorrelations of the series correlated are independent
of the population first lag autocorrelations of these series. Based on
this evidence, a new test of significance for correlations between
autocorrelated series is proposed, which, although treating them as
first-order Markov series, does not depend on the generally un-
known generating properties of the series.

1. INTRODUCTION

Two related null hypotheses have been widely used by
researchers in testing for significant relationships between
pairs of time series :

I. Hy: 3 =0 in the model ¥ = a + BX -+ ¢, where the X
series is assumed to be fixed, the disturbance term e is in-
dependent of X, and, in particular, e and, therefore, ¥ are
assumed to be independently and normally distributed.

II. Ho: pxy = 0 where p denotes the zero-order cross-correla-
tion between two independently, normally distributed series
X and Y.

The statistic used to test Hypothesis I is exactly the
same ¢ quantity that is commonly used to test Hypothesis
IT. Also it has been shown in [18, pp. 25-337] that even
if both X and Y are assumed to be randomly, normally
distributed in Hypothesis I, the usual ¢-test for this hy-
pothesis is still appropriate. There is evidence, too, that
the usual tests will frequently yield reasonable results
even when the series correlated are drawings from non-
normal populations (see [127). There is, however, one
point at which these tests of significance for Hypotheses I
and II clearly break down. Economic time series are
usually autocorrelated, and ever since the article by Yule
[34], it has been clear that higher correlations are to be
expected by chance between unrelated autocorrelated
series than between unrelated series which are inde-
pendently distributed.
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2. EVALUATING THE SIGNIFICANCE OF RELATION-
SHIPS BETWEEN AUTOCORRELATED
TIME SERIES

The problem of testing the significance of observed
relationships between autocorrelated time series has been
approached in various ways. For purposes of discussion
we will categorize these approaches as

1. Spacing or selection of observations used.

2. Trend removal.

3. Autoregressive transformation, or differencing.
4. Direct evaluation.

The first three approaches are aimed at removing
whatever autocorrelation is present from at least one of
the series to be correlated. Approach 1 includes not only
the practice of simply dropping out observations from
the series of interest, but also the more sophisticated exact
tests of significance for correlations between time series
which have been developed (see [14, 15 and 267]). The
main difficulty with these exact tests, as well as with
simple spacing, is that not all the information in the
original data is used, with a consequent reduction of
degrees of freedom.! Among the difficulties associated
with Approach 2 is the fact that trend-corrected data are
not generally independently distributed (see [1, 117).
Approach 3 involves choosing an appropriate autoregres-
sive transformation. The practical difficulties involved in
making this choice are well-known (see [5, 19, 20, 30,
32]). Another difficulty, however, is that when we test
for the significance of a linear relationship between, say,
the first differences of two series, we are not testing
exactly the same hypothesis as when we test for a linear
relation between the two series themselves.?

1In [15], Hannan obtained an exact test of correlation between two series which
can be applied whenever one of the two series is Markovian. However, for a Markov
process of order kh, only n(h + 1)1 observations will be used in the correlation
where 7 is the number of observations available. The remainder of the observations
are used to reduce the series to independence in time. Also, as Hannan notes [15, p.
3207, “When p1 £ p2 the exact test of significance of the correlation between the
two series there given is still an exact test, but the conclusions as to the power of
this test and the others there considered, when z: also comes from a Markov
process, do not follow. . ..”

2 A simple example may help to illustrate this point. Arbitrarily draw any two
smooth curves. Divide each of these into N equal segments. On the vertical division
lines between these segments, mark off for Curve 1 points alternately one unit
above and one unit below the curve. Repeat with Curve 2. The two new curves may
obviously be made to have highly positively correlated first differences. However,
as is evident from the manner of construction, the original values of these new series
may have zero or even a negative correlation. Another difficulty is that when an
autoregressive transformation is performed on actual economic time series, random
measurement error variances will likely be amplified relative to the phenomena
under study.
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The last approach is the only one aimed at directly
testing the significance of observed relationships between
autocorrelated time series, and most of this work has been
focused on developing a test of significance for the more
general null hypothesis (see [2, 3, 4, 17, 29, 31]):

III. Ho: pxy = 0, where both X and Y are assumed to be
autocorrelated.

Spectral analysis in [13, 247 represents one procedure
which can be used for investigating and testing Hy-
pothesis III. Basic questions have been raised, however,
about the suitability of spectral methods to economic
data and problems in [24, p. 340, and 33, p. 337].2 Our
work is aimed at developing a procedure for testing the
significance of correlations between autocorrelated time
series which is better suited to the data and problems of
economists.

3. THE NULL DISTRIBUTION OF CORRELATIONS
BETWEEN PAIRS OF FIRST ORDER
MARKOV SERIES

MecGregor [21] and MecGregor and Bielenstein [22]
have worked out approximate distributions for sample
correlations between pairs of stationary first-order
Markov series with both known and fitted means. Like
Bartlett’s large-sample variance approximations [2],
these approximate distributions depend only on the
length of the series correlated and the product of their
first-lag population autocorrelations. An approximate
density function of the type McGregor has derived could
be numerically integrated to determine significance levels
for sample correlations between stationary first-order
Markov series. As one step in our exploration, we chose
alternatively to approximate these significance levels
using the Monte Carlo approach.

Our generating relationships were of the form

X, = PlXt—l +u, and Y, = p2Yt—1 + v, y (3-1)

where w and v were generated by two Chen random
normal number generators.* Both » and » have a mean of

3 Although spectral techniques can be advantageously used in analyzing certain
time series, the following questions have been raised with respect to economic ap-
plications: (1) the amount of data (the number of items in a series) required before
it becomes sensible to attempt to estimate a spectrum would seem to be greater than
100, which would form an important barrier to analyzing annual economic time
series, particularly when the mean of the generating process must be estimated from
the available data (see [24, 25]); (2) spectral and time domain (regression) methods
are mathematically equivalent only if an observed time series is assumed to be
identically zero outside the observation interval, which means that in spectral
analysis emphasis is distributed equally over the entire observation interval, while
in economic time series analysis a tangible point of the argument is that a good fore-
cast is not made by assuming that the time series is zero outside the observation
interval (see [33]); and (3) spectral methods are not attractive in the coordination
between statistical and subject matter knowledge, since it is well-known that the
spectral components defined by specific bands of the spectrum often do not lend
themselves to a subject-matter interpretation (see [33]).

4See Chen [7, 8]. The initial values used for the starting integers were 748511649
and 147303541 for the u series and 180810529 and 536841077 for the v series.
Satisfactory statistical properties are reported for random numbers generated using
these initial numbers in Chen [7, 8]. The computer used was the IBM System/360
model 67 at the University of Alberta Computing Center.
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zero and a standard deviation of 25.5 We set the initial
values of X and Y in (3.1) equal to zero, and then gen-
erated pairs of long series of 600,000 items each for the
following values of py and ps: (—.9, —.9), (—.7, —.7),
(—5y —5); (—3) —3)) (_1) _1)y (0) 0)) (1: 1))
(.3,.3), (.5,.5), (.7,.7) and (.9, .9). To minimize the effect
of the initial values used in generating u and v, the first
30 items gencrated in each of these long series were dis-
carded. Also, every other subsequent group of 30 items
generated was discarded, leaving 10,000 paired subseries
of length 30 for cach pair of values of p; and p,. For each
of these pairs of subseries, the Pearson product moment
correlation coefficient was calculated. The resulting
10,000 sample corrclation coefficients for each pair of
values of p; and p, were then ordered according tq their
absolute values, and two-tail significance levels of .01, .02,
.05 and .10 were calculated for each group. Our results
for p1 = ps = £.9, +.5 and 0 are shown in Table 1,
along with Fisher’s significance levels [10] for the case
where p1 = p; = 0, as a check on our computational pro-
cedures. (Significance levels for p; = py = 4.7, +.3 and
=+.1 were calculated but are not shown.)é

In the absence of further information concerning
factors which affect the probability of obtaining chance
correlations between unrelated autocorrelated series, we
might accept our Monte Carlo results shown in Table 1,
or McGregor’s analytic expressions, as a basis for a
revised null test for correlations between autocorrelated
economic time series. However, in 1948 Orcutt and James
[29] found evidence that the conditional variances of
sample correlations between pairs of unrelated autocor-
related series, given their first-lag sample autocorrela-
tions, seem to vary systematically with the product of
the values of these sample autocorrelations.

5 The results of our paper would have been identical regardless of the variances
chosen for the disturbance terms.

Let Xt = pXto1+ ue(t =2, 3,4, ---) and X1 = u1 (hence, Xo = 0), where u:
s, us, -+ are independently and normally distributed with mean 0 and standard
deviation k£ (k > 0). Then X; = u: and

t
X¢ = Z pt-w; for

=1

t>2.

Suppose we generate Z1, Zs, Zs, --- which are independently and normally dis-
tributed with mean zero and standard deviation one. We can now generate the
Xi-process by using i = kZi(i = 1, 2, ---). Thus, we have
¢
Xe=Fk 2 pt—Zi(t > 2)
1=1

and X1 = kZ, .

From this it follows that the estimated first-order autocorrelations (denoted by r1
and 72 in our paper) and the estimated zero-order cross-correlations (denoted by r
in our paper) should be identical for all values of the variances of the disturbance
terms for our generating process, since

t t
Xe= ZpitmZ;, Yi= Z ptiZ;

1=1 =1

X =kX:e, and Y ={Y:,

and, therefore,

Z kXt — kX)) kXt — kX)) k2 2 (X — X (X1 — Xiea)
2 kXt — kXi1)? B k2 (Xeor — Xe1)?

rx’ = = rx

and
Z (kX — kX)(Ye —¢F) K Z (Xe— X)(Ye—Fo) _
B k& (nsxsy)

rx'y’ = TXY .

k& (nsxsy)

6 The nonsymmetry about zero which is shown in Table 1 for p1 = p2 = .9 and

pt = p2 = —.9 was also observed for p1 = p2 = .7 and p1 = p2 = —.7. This non-

symmetry is due to the dependence, established in Sections 4, 5 and 6, of the dis-

tribution of the sample correlation coefficient on the first-lag sample autocorrelations
of the series correlated.
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1. Critical Points for Correlations Between Series of
Length 30, Given the Population First-Lag
Autocorrelations of These Series

Level of significance for two-tailed test

P1=p2
.10 .05 .02 .01
-.9 .70 77 .84 .86
-5 .38 .44 .51 .55
0 .31 .36 42 .47
5 .38 44 .51 .56
9 .63 71 a7 .81

Fisher’s approximation for series of length 27

0 .3233 .3809 .4451 .4869

Fisher's approximation for series of length 32

0 .2960 .3494 .4093 .4487

4. EVIDENCE OF THE IMPORTANCE OF THE
SAMPLE AUTOCORRELATIONS

Our generated series were used to carry out a test of the
Orcutt-James hypothesis that the conditional variances
of correlations between pairs of unrelated, autocorrelated
series, given the first-lag sample autocorrelations of these
series, are independent of the population first-lag autocor-
relations of the series correlated.”

For each of our subseries of length 30, the autoregres-
sive parameter was estimated using least squares regres-
sion,® and the Pearson product moment correlation
coefficient was calculated for each pair of subseries.

Each of our 11 sets of 10,000 sample correlation coeffi-
cients corresponding to specified values for p; and p; was
then cross-classified according to the respective values of
the sample autocorrelation coefficients, r; and s, of the
subseries used to compute each of the sample correla-
tions. (In carrying out this classification we did not dis-

7 Orcutt and James worked with series generated by the model
Yo =Ye+03(Ye — Yieo) + eta

where the random elements used, the e:,1, were two digit numbers drawn from a
population having a rectangular distribution and a range of —49 through zero to 49.

8 Since, in practice, one would have no way of knowing the true value of the
constant term, we estimated a constant term along with the autoregressive
parameter.

As to our choice of an estimator for the autoregressive parameter, Copas [9] has
compared by Monte Carlo methods the performance for estimation in a stable
Markov time series with unknown mean of a ‘‘mean likelihood” estimator, the
first sample serial correlation coefficient, the first sample serial correlation coefficient
bias corrected, and the least squares estimator. The ‘“‘mean likelihood’’ estimator
and the least squares estimator were found to perform almost equally well in terms
of the mean squared error when the results were averaged over 8 = —0.9 (0.1)0.9,
where B denotes the true autoregressive parameter, and to provide better results
than the other two estimators. Looking at the results for the individual values of 8,
the ‘““‘mean likelihood’” estimator was found to give the least mean squared error for
the approximate range [ —0.3, +0.6], the correlation coefficient for true values of
B < —0.3, and the least squares estimator for true values of > 0.6. These results
are claimed to be valid for series of length 10 and 20, and accurate to approximately
two decimal places. Because we are primarily interested in true values of the auto-
regressive parameter greater than 0.6, and because the least squares estimator is
the most familiar to economists, we have chosen to base our study on this estimator.
It should be noted, however, that we are not chiefly concerned with accurately
estimating the true autoregressive parameter. We are rather trying to uncover a
stable dependence of the distribution of the sample correlation coefficient on ob-
servable sample autoregressive properties of the series correlated. How well other
estimators of the autoregressive parameter would perform in terms of this objective
is not known.
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tinguish between (ri, 72) and (rs, 71).) The conditional
variance of the sample correlations was calculated for
each cell.?

Intervals of 0.1 were used in grouping the subseries ac-
cording to their sample autocorrelation -coefficients,
except for sample autocorrelation coefficients ranging
between —0.10 and +0.10. Intervals of 0.025 were used
to group the series with sample autocorrelation coeffi-
cients falling in this range.

We next tested the hypothesis that the observed vari-
ances of the sample correlations corresponding to any
given cell in our two-way classification can be regarded as
drawings from a single population. For instance, for the
cell corresponding to 0.1 <r; <0.2 and —0.2 <1y
< —01o0r01<7r,<02and —02<r < —0.1, we
tested the hypothesis that the sample correlations falling
in this cell and corresponding to values of the generating
autoregressive parameters of (—.7, —.7), (—.5, —.5),
(—3) _3); (_1) _1)) (O) O): (1) 1)) (37 3): (5) 5)
and (.7,.7) can all be regarded as drawings from the same
population.!®

For each cell in our two-way classification containing
sample correlations corresponding to two or more pairs
of values of generating paramecters, and more sample cor-
relations than the number of pairs of corresponding gen-
erating parameters, we performed a simple one-way
analysis of variance. For each cell the null hypothesis is

4.1)

. 2 ... — 2
Ho: p1i? == pui?,

where p;; denotes the population correlation coefficient
for the sample correlations in the kth cell in our two-way
classification, and corresponding to the 7th pair of gen-
erating parameters p; and p, in (3.1).

Since intuition as well as a ¢-test confirm that

E(Tlrl) T2, p1, p2) = E(T|T1y T2) = E(T) =0 )
where r denotes the sample correlation coeflicient,
r=2r/n=2%[r—EnF/n

is an unbiased estimate of the variance of r. Thus, testing
our null hypothesis H, is equivalent to testing the hy-
pothesis that the sample correlations in any given cell of
our two-way classification all have the same correspond-
ing population conditional variances.

Out of 258 F-ratios, 13 or approximately 5.03 percent
are significant at a 5-percent critical level, and five or
approximately 1.93 percent are significant at a one-
percent critical level. Thus, we feel that the hypothesis
that the observed variances of sample correlations cor-
responding to any given cell in our two-way classification

9 More precisely, the conditional variance referred to here is -

”= (Z 72)/ number of elementsin R ,
R

where R is an index set over which the sum is taken. In this case, R is defined in
terms of a cell in our two-way classification.

10 No observations from the sets of 2’s with the generating autoregressive parame-
ters of (—.9, —.9) and (.9, .9) fell in this particular cell. In general, for any given
cell k£, some of the &2, ¢ = 1, ---, 11, may not exist.
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can be regarded as drawings from a single population is
supported.!!

5. AUTOREGRESSIVE INFORMATION CONTAINED
IN THE PRODUCT AND SIGNS OF r; AND r,

The existence of a dependence of the conditional vari-
ances of sample correlations between unrelated autocor-
related series on the product of the associated first-lag
sample autocorrelations is clearly demonstrated in Figure
A. The observations in this figure are again based on our
sets of pairs of subseries of length 30 constructed ac-
cording to (3.1).

Each of our 11 sets of 10,000 72’s was ordered by ar-
ranging the corresponding values of the product of the
sample autoregressive coefficients from largest to smallest.
Using this ordering, each set was divided into ten groups
of 1,000 correlations each—the first group corresponding
to the 1,000 largest values of the product ryr, for that set,
the second group to the next 1,000 values of riry, ete. For
each group we calculated

rry = Y rir2/1000 , 12 = ¥ 12/1000 and
o2t = (1/999) {3 r* — (1/1000) (3 r3)?} .

Each of these groups of 1,000 r?’s is a subset of one of our
11 original samples of r¥s. Thus, r2 now stands for the
variance of the correlation coefficients in each group, con-
ditional on the mean value of the products of the sample
autocorrelation coefficients, as well as on the population
autocorrelations. In Figurc A we have plotted and con-

nected the resulting ten pairs of values of r2 and 77, for
each of the following pairs of values of p; and ps: (—.9,
_9)’ (_71 _7): (_57 '—5); (_3’ _3); (3; 3)7
(.5,.5), (.7,.7), (.9, .9).

This figure shows clearly that the conditional variances
of the sample correlations generated in this study are, in
fact, dependent on the corresponding values of the prod-
uct of the sample autoregressive coefficients. There are,
however, small but systematic differences between those
line segments corresponding to positive and negative pairs
of values of the generating autoregressive parameters.

6. SIMPLE AND MODIFIED PRODUCT
CLASSIFICATIONS

These systematic differences noted in Figure A were
verified by an analysis of variance test. We grouped all
our sample correlation coefficients according only to the
values of the products of the sample autoregressive co-
efficients for the subseries yielding these correlations,
using the same intervals as in Section 4. We then tested
Hypothesis (4.1), where k¥ now denotes the cell in our
simple product classification. Out of 19 F-ratios, ten or
approximately 52.6 percent are significant at a 5-percent
critical level, and eight or approximately 42.1 percent are
significant at a one-percent critical level. Thus, the hy-

11 Distributions of the sample correlation coefficient conditional on various other
sample properties of the series correlated may also display this property.
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A. A Demonstration of the Dependence of rz on rir,

r2

0.36

pothesis must be rejected that the sample correlations
corresponding to each cell in our simple product classifica-
tion are drawings from a single population.

We next grouped our sample correlation coefficients by
the values of the products of the sample autoregressive
coefficients for the subseries yielding these correlations,
with a distinction being made between 75, 7, > 0 and
ry, 2 < 0. We again tested Hypothesis (4.1), where k now
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denotes a cell in our modified product classification.
These F-ratios are shown in Table 2. Out of 29 F-ratios,
two, or approximately 6.9 percent are significant at a
5-percent critical level, and zero are significant at a one-
percent level. Thus, using this modified product classifi-
cation, we feel that the hypothesis is supported that the
distributions of sample correlations between unreclated
first-order Markov series conditional on the values of the
product and signs of the sample first-lag autocorrelations
of the series correlated are independent of the population
first-lag autocorrelations of these series.

2. F-Tests for Modified Product Classification

Degrees of ‘Degrees of
Cell F-Ratio freedom freedom
between within
-2to—-.1 .813 7 346
—.1to —.075 1.318 8 466
—.075 t0 .050 .466 8 1169
—.050 to —.025 .450 8 3053
—-.025t0 0 .368 8 11165
ry, ry>0
0to .025 470 7 6511
.025 to .050 .654 7 3364
.050 to .075 .836 6 2520
.075to .1 .804 6 2173
dto .2 .330 6 6895
2t0.3 .881 4 5323
.3to .4 1.215 3 4678
4t0.5 .279 3 4003
.5t0 .6 3.3272 2 3512
6to.7 1.118 2 2734
.7t0 .8 .054 1 1681
8to .9 — — —
9to1.0 .052 1 40
ry, r, <0
0to .025 .466 7 7273
.025 to .050 2.072 6 3683
.050 to .075 1.887 5 2742
.075to .1 1.293 6 2338
1to.2 .884 6 6786
2t0.3 2.364 4 5183
3to 4 .515 3 4521
4to.5 952 3 3837
5t0 .6 1.048 2 3517
6t0.7 .588 2 3087
7t0.8 4.9892 1 3325
.8to0.9 2.426 1 2782

2 Significant at the five-percent level.

Having established our hypothesis for the 45-degree
line —1 < p; = p2 < 1, we next explored the parameter
rectangle 0 < py, p2 < 1. Twenty-one sets of 1,000 pairs
of subseries of length 30 were generated by the procedure
described in Section 3, using the parameter combinations
(.9,.9), (.9,.7), (.9, .5), (.9, .3), (.9, .1), (.9, 0), (.7,.7),
(7,.5), (7,.3), (7,.1), (7,0), (5 .5), (.5,.3), (5, .1),
(.5, 0), (.3,.3), (.3,.1), (.3,0) (.1,.1), (.1,0), and (0, 0).
As before, analysis of variance was used to test the hy-
pothesis that the sample correlations in any given cell in
our modified product classification all have the same
population conditional variance, regardless of the true
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values of p; and ps. Out of 25 F-ratios, one, or approxi-
mately 4 percent, are significant at a 5-percent critical
level and zero arc significant at a one-percent critical
level. Thus, we feel that our hypothesis is supported for
the entire parameter region —1 < p;, ps < 1 that the
distributions of sample correlations between unrelated
first-order Markov series, conditional on the values of the
product and signs of the sample first-lag autocorrelations
of the series correlated, are independent of the population
first-lag autocorrelations of these series.

7. A SUMMARY OF OUR FINDINGS

Thus, to summarize our findings,2 let

p(r|ry, 12, p1, p2) = p(r, 11, 72| py, p2) /P (1, 72| p1, p2)  (7.1)

denote the distribution of the sample correlation co-
efficient r conditional on the sample first-lag autocorrela-
tions 71, 7, and the population autocorrelations pi, pq
(and implicitly on p = 0, i.e., ¢, = 0). The conventional
tests of significance for r rely on

p(rlply PZ) = //p(r; T1, 7'2'91, p2)d7"1, er ) (72)

and it appears from Bartlett’s and McGregor’s work that

p(r|py, p2) = p(r|pipe) - (7.3)

We note that (7.1) is more informative than (7.2). In
particular, Monte Carlo evidence is presented supporting
the hypothesis that

V(Tlrl: T2, P1, P2> = V(TITITL Sign (7'1); Sign (7‘2)) ) (74)
and on the basis of this evidence we conjecture that

p(T[Tl, T2, p1, PZ) = p(rlrly 1"2)

= p(r|riry, sign (r1), sign (r2)) . (7.5)

Monte Carlo tabulation of (7.5) is presented in Section 8.

8. A NEW TEST OF SIGNIFICANCE FOR
CORRELATIONS BETWEEN TIME SERIES
OF THIRTY OBSERVATIONS

On the basis of our findings in Section 6 we have pro-
ceeded to use Monte Carlo methods to approximate sig-
nificance levels for correlations between autocorrelated
time series of length 30, with given first-lag sample auto-
correlations, and which can be viewed as drawings from
first-order Markov processes. Our observed sample cor-
relations for all 11 of our sets of 10,000 correlations were
grouped according to the product of the first-lag sample
autocorrelations of the subseries correlated, with a dis-
tinction being made between correlations corresponding
to 71, 2 > 0 and those corresponding to 71, 72 < 0. This
is the modified product classification used in Section 6.

The observed sample correlations in each group con-
taining 100 or more observations were then ordered from

12 This formalization of our findings was suggested to us by Arthur S. Goldberger.



