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Abstract

In this work, we discuss about some applications of the notion of fundamental group to cell complexes.
We prove that the fundamental group of a space X does not change after we have attached n-cells to it
with n > 2. When n = 2, it does and we have an explicit relationship between the fundamental groups
involved. As a consequence of that result, we show that the fundamental group of a cell complex X is
reduced to that of its 2-skeleton X2, that is, π1(X,x0) ∼= π1(X

2, x0). As application, we show that
for two given closed and path-connected surfaces Sg and Sh both either orientable or nonorientable and
of genus g and h respectively, a necessary condition for them to be homeomorphic is that their genera
must be equal, that is, g = h. Furthermore, we prove that considering the presentation 〈gα|rβ〉 of a
group G, there exists a space XG such that π1(XG) ∼= G. That space is a 2-dimensional cell complex
whose 1-skeleton is the wedge sum X1 = ∨αS1

α as many copies of the unit circle S1 as generators gα’s,
and we complete the construction of XG by attaching 2-cells e2β to X1 along the loops associated to
the relators rβ. We end the work with a description of the space XG when G = 〈a|an〉, n ≥ 1. We
prove that XG is homeomorphic to a simple space, and we then notice that it is a surface only when
n = 1, 2.
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Résumé

Dans le présent travail, nous traitons de quelques applications de la notion de groupe fondamental aux
complexes cellulaires comme le stipule le titre. Nous prouvons que le groupe fondamental d’un espace
X ne change pas après qu’on y ai attaché des n-cellules avec n > 2. Lorsque n = 2, cela change et
l’on a une relation explicite entre ces groupes fondamentaux. Comme conséquence de ce résultat, nous
démontrons que le groupe fondamental d’un complexe cellulaire X se réduit à celui de son 2-squelette
X2, c’est à dire, π1(X,x0) ∼= π1(X

2, x0). Comme application, nous démontrons qu’étant donné deux
surfaces Sg et Sh fermées et connexes par arc, toutes deux orientables où nonorientable et de genres g et h
respectivement, une condition nécessaire pour qu’elles (surfaces Sg and Sh) soient homéomorphe est que
leurs genres soient égaux, c’est à dire, g = h. Nous prouvons aussi qu’en considérant la représentation
〈gα|rβ〉 du groupe G, il existe un espace XG tel que π1(XG, x0) ∼= G, x0 ∈ XG est un complexe
cellulaire dimension 2 dont le 1-squelette est la ”wedge sum” (somme de coins en Français) X1 = ∨αS1

α

d’autant de copies du cercle unité S1 que de générateurs gα’s, et l’on complète la construction de XG

en attachant des 2-cellules e2β à X1 le long des chemins fermés associés aux relations (ou relateurs) rβ.
Nous clôturons ce travail par un exemple de description de l’espace XG avec G = 〈a|an〉, n ≥ 1; Ainsi
XG est homéomorphe à un simple espace, et nous remarquons que c’est une surface uniquement quand
n = 1, 2.

Mots Clés: Groupe fondamental, complexe cellulaire, surface fermée et connexe par arc.
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1. Introduction

Algebraic topology can be defined as a branch of Mathematics which uses tools from abstract algebra
to study topological spaces. The basic goal of algebraic topology is to find algebraic invariants which
classify topological spaces up to homeomorphism, though usually most classifications are only up to
homology equivalence. Among the algebraic invariants studied in Algebraic topology are fundamental
group, homology group and cohomology group. In this thesis we are concerned only with the fundamental
group.

The fundamental group is a group associated to any pointed, path-connected topological space. It was
introduced by Henri Poincaré [9] in his attempt to classify topological spaces. For examples, it is a
well known result that the fundamental group is a complete invariant for compact topological spaces
of dimension 2. The famous Poincaré conjecture states that ”Every closed and simply-connected 3-
manifold is homeomorphic to the 3-sphere” . This conjecture was proved in 2002 by Gregory Perelman
[14], an achievement that earned him a fields medal in 2014.

1.1 Objectives

In this thesis, we will study fundamental group in relation to cell complexes. A cell complex can be
defined roughly as a type of topological space made of basic building blocks called cells. Fundamental
group will help us to prove some results and to answer a natural question associated to cell complexes.
Hence, we will alternatively, prove two results which give a necessary condition for two closed and
connected surfaces (orientable and nonorientable) to be homeomorphic. Moreover, we will answer to
the following natural question: for a given group G, can we find a topological space XG such that
its fundamental group and group G are isomorphic? We will see that the answer to this question is
”yes”, and the space XG is a cell complex by construction. The rest of the work is subdivided into four
chapters.

1.2 Outline of Thesis

In Chapter 2, we will recall some basic concepts of group theory and also the concept of fundamental
group which will allow us to make constructions and proofs thereafter. In Chapter 3, a description of
the notion of cell complex will be given, followed by the proof of a more general result, which will allow
us later to compute fundamental groups of some cell complexes. Chapter 4 consists in the presentation
of some applications of fundamental group of cell complexes. So we will make a brief discussion about
classification of surfaces which are cell complexes and we will finish the chapter by finding and describing
the space XG. In the last chapter, Chapter 5, we will provide a general conclusion to this work.
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2. Preliminaries

To achieve the goals we have set so far, we first need to describe the tools needed. So in this chapter,
we present alternatively notions of free product of groups and group presentation which are from group
theory. Also, we give a brief definition of the concept of fundamental group followed by the examples
of computing the one of a wedge sum of finitely many copies of the unit circle S1 and the one of the
n-sphere (n ≥ 2).

2.1 Some Group Theory Basics

The group presentation is very useful in the last part of Chapter 4 where for the construction of the
space XG, we need to have G in the form of group presentation, that is, G = 〈gα|rβ〉, where gα’s are
generators and rβ’s are relators (See Definition 2.1.5).

We begin with the statement of the first isomorphism theorem which will help us to prove some results
below.

2.1.1 Theorem (First Isomorphic Theorem). [6] If θ : G → H is a group homomorphism, then
G/kerθ ∼= imθ.

2.1.2 Definition (Generated Subgroup). [6] Let X ⊆ G, with G a group. Consider the set X−1 =
{x−1 | x ∈ X} and set A = X ∪X−1. Define A∗ to be the set of all words over A. Elements of A∗

represent elements of G and it is closed under concatenation and inversion. So it is a subgroup of G
called subgroup of G generated by X and denoted A∗ = 〈X〉, where the empty word represents the
neutral element 1G of G.

2.1.3 Definition (Free Group on a Set). [6] Let F be a group and X ⊆ F . Then F is said to be free
on X if for any group G and map θ : X → G, there exists a unique homomorphism θ′ : F → G with
θ′(x) = θ(x), for all x ∈ X.

2.1.4 Proposition. [6] If F is a free group on X, then F = 〈X〉 (that is, X generates F ).

2.1.5 Definition (Presentation of a Group). [6] Let G be a group. A presentation of G is an isomorphism
G ∼= 〈gα | rβ〉 of G with a free group generated by gα modulo the normal subgroup 〈〈rβ〉〉 generated
by a finite number of words rβ formed from {gα}.

gα’s and rβ’s are respectively called generators and relators.

2.1.6 Remark. [6] We need to notice here that concatenation in the free group 〈gα|〉 descends to the
group operation on G in the quotient. We think of the presentation as giving a way to multiply elements
of G freely, subject to relations rβ = 1.

2.1.7 Proposition. [6] All groups have presentations and finite groups have finite presentations.

Proof. (Proposition 2.1.7). Let G be a group. Choose a generator subset X ⊂ G, that is G = 〈X〉.
Let F be free group of X. By definition of the free group, a map θ : X → G such that θ(x) = x, for
all x ∈ X extends to a surjective map θ′ : F → G, then from the first isomorphic theorem, we have
G ∼= F/N where N = kerθ. Let us now choose a generator subset R ⊂ N , that is, N = 〈〈R〉〉 (This
double angle notation is due to the fact that N is normal). Therefore G = 〈X | R〉.

2



Section 2.1. Some Group Theory Basics Page 3

Assume that G is finite. In this particular case, a finite generator subset X ⊂ G is chosen and then
|F ·N | = |G| is finite hence a finite generator subset R ⊂ N since N is finite in G.

2.1.8 Definition (Commutator). [6] Let G be a group and let x, y ∈ G. The commutator of x and y
is xyx−1y−1 and it is denoted [x, y].

2.1.9 Definition (Commutator Subgroup). [8] The commutator subgroup of G is the normal subgroup
denoted [G,G] generated by the commutators [a, b] = aba−1b−1, a, b ∈ G, that is,

[G,G] = 〈〈{[a, b] | a, b ∈ G}〉〉. (2.1.1)

2.1.10 Definition (Abelianization of a Group). [8] Let G be a group. The abelianization of G is the
quotient group Ab(G) given by:

Ab(G) = G/[G,G]. (2.1.2)

2.1.11 Example. Consider the group presentation given by G = 〈a, b|an, bm〉. The abelianization of
the group G is given by

Ab(G) = 〈a, b|an, bm〉/〈〈[a, b]〉〉 ∼= 〈a, b|an, bm, [a, b]〉.

The notion of free group is relevant when we compute the fundamental group of some spaces. It is
mainly used by the van Kampen theorem which is one of the main tools used to compute fundamental
groups. Before defining the free product of groups, we first define the notion of disjoint union.

2.1.12 Definition (Disjoint Union). Let A and B be sets. The disjoint union A q B of A and B is
defined as follows:

• If A ∩B = ∅, then AqB = A ∪B.

• If A ∩ B 6= ∅, we first take isomorphic copies A′ and B′ of A and B such that A′ ∩ B′ = ∅
(A′ = A× {0} and B′ = B × {1} for instance) and then AqB = A′ ∪B′.

2.1.13 Definition (Word and its Length). Let (G1, •) and (G2, ?) be groups with e1 ∈ G1 and e2 ∈ G2

as identity elements.

• A word over the alphabet G1qG2 is a sequence w = a1a2 · · · ak, k ≥ 0 and ai ∈ G1qG2, ∀i =
1, 2, · · · , k.

• k is the length of the word.

• A word w is reduced if the following are verified:

– Adjacent letters are from different groups, that is, ai ∈ G1 implies ai−1 ∈ G2 and ai ∈ G2

implies ai−1 ∈ G1.

– Identity elements do not appear, that is, ai 6= e1 and ai 6= e2.

Reduction algorithm

From any word w = a1 · · · ai−1aiai+1ai+2 · · · ak, it is possible to obtain a unique reduced word w′ by
applying the following two steps:
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• If for any i = 1, 2, · · · , k, ai, ai+1 ∈ G1 (respectively ai, ai+1 ∈ G2), then combine ai and ai+1

in G1 (respectively in G2), that is, b = ai • ai+1 (respectively b = ai ? ai+1). We get a word of
smaller length w = a1 · · · ai−1bai+2 · · · ak.

• If any of the letters ai of the word w is the identity e1 or e2, we simply take it out.

2.1.14 Definition (Free Product). Let G1 and G2 be groups.

• The free product of G1 and G2 is G1 ∗G2 = {w word | w is a reduced word over G1 qG2}.

• Let e denote the empty word (that is, the word of length k = 0).

• Let us consider the binary operation � defined by:

� : G1 ∗G2 ×G1 ∗G2 → G1 ∗G2

(a1 · · · ak, b1 · · · bs) 7→ c, (2.1.3)

where c=reduction of (a1 · · · akb1 · · · bs).

The binary operator � is well-defined since the reduced word is unique for a given word.

2.1.15 Proposition. (G1 ∗G2, �) is a group.

2.1.16 Example. Here we give two examples of free product of groups.

• Let us consider two cyclic groups G1 = 〈a|an〉 and G2 = 〈b|bm〉 respectively of order n and m.
The free product G1 ∗G2 is given by the following:

G1 ∗G2 = 〈a, b|an, bm〉.

• The free product of the free groups Fn and Fm respectively on n and m generators is the free
group Fn+m on n+m generators, that is,

Fn ∗ Fm ∼= Fn+m.

2.2 Fundamental Group

Here, we just try to give a brief overview on fundamental group. It is based of the notion of homotopy
relation which involves some topological concepts such as continuous functions between two topological
spaces. We are going to present the main definitions and results which lead to the notion of fundamental
group. We conclude this section by stating the van Kampen theorem [4] which is one of the main tool
needed for computing the fundamental group of several spaces.

In the sequel, X,Y and Z usually denote topological spaces and I = [0, 1].

2.2.1 Definition (Homotopy Relation). [12] Let f, g : X −→ Y be continuous maps. the map f is
said to be homotopic to g if there exists a continuous map H : X × I −→ Y such that H(x, 0) = f(x)
and H(x, 1) = g(x), for all x ∈ X.

The map H is said to be a homotopy from f to g and we write f ∼ g.
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2.2.2 Proposition. [12] The homotopy relation ”∼” is an equivalence relation on the set of continuous
maps from X to Y .

2.2.3 Proposition. [12] If we have f1, f2 : X → Y and g1, g2 : Y → Z continuous maps such that
f1 ∼ f2 and g1 ∼ g2, then g1f1 ∼ g2f2.

2.2.4 Definition (Homotopy Equivalence). [12] A continuous map f : X → Y is a homotopy equiva-
lence if there exists a continuous map g : X → Y such that gf ∼ idX and fg ∼ idY .

2.2.5 Definition (Homotopy Equivalent Spaces). [12] If there exists a homotopy equivalence f : X →
Y , then X and Y are said to be homotopy equivalent or to have the same homotopy type. In this case
we write X w Y .

2.2.6 Definition (Path). [12] A path in X is just a continuous map α : I −→ X.

2.2.7 Definition (Composition of Paths). [12] Let α and β be paths in X verifying α(1) = β(0). The
composition of paths α and β, denoted α · β, is a path given by the following construction:

α · β(s) =


α(2s) if 0 ≤ s ≤ 1

2
;

β(2s− 1) if
1

2
≤ s ≤ 1.

(2.2.1)

2.2.8 Definition (Homotopy Relation Between Paths). [12] Let α and β be paths in X such that
α(0) = β(0) and α(1) = β(1). The path α is said to be homotopic to β and we write α ∼ β, if there
exists a continuous map H : I × I → X such that:

(H1) H(s, 0) = α(s) and H(s, 1) = β(s), for all s ∈ I;

(H2) H(0, t) = α(0) and H(1, t) = α(1), for all t ∈ I;

Here, H is called a homotopy from α to β.

2.2.9 Proposition. [12] Let x, y ∈ X. The homotopy relation ”∼” defined above is an equivalence
relation on the set of paths α such that α(0) = x and α(1) = y.

2.2.10 Notation. The equivalence class of a path α, with respect to the equivalence relation ”∼”, is
denoted [α] and we then have the following:

α ∼ β if and only if [α] = [β].

2.2.11 Definition (Constant Path). [12] Let x ∈ X. The constant path at x is the path denoted by
cx and defined as cx(s) = x, ∀s ∈ I.

2.2.12 Definition (Inverse Path). [12] Let α a path. The inverse path of α is the path denoted by α
and defined as α(s) = α(1− s), ∀s ∈ I.

2.2.13 Definition (Loop). [12] A loop in X is a path α such that α(0) = α(1).

2.2.14 Notation. Let α be a loop and set x = α(0) = α(1). We say that α is a loop at x. The set
of equivalence classes [α], with respect to the equivalence relation ”∼”, of loops at x is denoted by
π1(X,x), that is;

π1(X,x) = {[α] | x = α(0) = α(1)}. (2.2.2)
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2.2.15 Proposition. [12] The set π1(X,x) has a group structure with respect to the internal operation
given by:

[α][β] = [α · β], for all α, β ∈ π1(X,x). (2.2.3)

The proof of this result is based on the four following lemmas.

2.2.16 Lemma. [12] Let α1, α2, β1, β2 four paths such that α1(0) = α2(0), α1(1) = α2(1) = β1(0) =
β2(0) and β1(1) = β2(1). If α1 ∼ α2 and β1 ∼ β2, then α1 · β1 ∼ α2 · β2.

2.2.17 Lemma. [12] Let x, y ∈ X. If α is a path such that α(0) = x and α(1) = y, then α ∼ cx · α
and α ∼ α · cy.

2.2.18 Lemma. [12] Let x, y ∈ X. If α is a path such that α(0) = x and α(1) = y, then α · α ∼ cx
and α · α ∼ cy.

2.2.19 Lemma. [12] If α, β, γ are paths such that α(1) = β(0) and β(1) = γ(0), then α · (β · γ) ∼
(α · β) · γ, that is, the composition of paths is associative up to homotopy.

Proof. (Proposition 2.2.15). There are four things to check. Let x ∈ X.

• Well-defineness of the internal operation.

Let [α1], [α2], [β1], [β2] ∈ π1(X,x) such that [α1] = [α2] and [β1] = [β2]. We have that:

[α1] = [α2]⇒ α1 ∼ α2 and [β1] = [β2]⇒ β1 ∼ β2, then from Lemma 2.2.16, α1 · β1 ∼ α2 · β2.
Therefore [α1 · β1] = [α2 · β2].

• Existence of the identity element.

The identity element in π1(X,x) for the considering internal operation is the constant path [cx].
Indeed, let α ∈ π1(X,x) we have [α][cx] = [α · cx] by definition of cx. But from Lemma 2.2.17,
we have α · cx ∼ α. Therefore [α][cx] = [α].

Analogously, we have [cx][α] = [α] by applying the same lemma as before.

• Inverse of an element.

Let [α] ∈ π1(X,x). The inverse element of [α] in π1(X,x) is the equivalent class [α] of the
inverse path α (inverse loop in this case) of α. Indeed, from Lemma 2.2.18, we have α(0) =
α(1) = x⇒ α · α ∼ cx and α · α ∼ cx. Therefore [α · α] = [α · α] = [cx].

• Associativity of the internal operation.

Let [α], [β], [γ] ∈ π1(X,x). We have the following:

[α]([β][γ]) = [α]([β · γ])

= [α · (β · γ)]

= [(α · β) · γ], by Lemma 2.2.19;

= [α · β][γ]

= ([α][β])[γ].

Therefore [α]([β][γ]) = ([α][β])[γ].
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Since the axioms of a group are verified, we have the desired result.

2.2.20 Definition (Fundamental Group). [12] Let x ∈ X. The fundamental group of X at x is the
one from Proposition 2.2.15, that is, the group π1(X,x).

2.2.21 Definition (Path-connected Space). [12] Let X be a topology space. X is said to be path-
connected if for every x, y ∈ X, there exists a path δ : I → X verifying δ(0) = x and δ(1) = y.

2.2.22 Theorem. [2] If X is a path-connected space and x0, x1 ∈ X, then π1(X,x0) ∼= π1(X,x1).

Proof. (Theorem 2.2.22). Let X be a path-connected space, x0, x1 ∈ X and let δ be the path from
x0 to x1 with inverse path δ from x1 back to x0. Let α be a loop based at x0, δ · α · δ is then a loop
based at x1.

Consider the map hδ : π1(X,x0) → π1(X,x1) defined by [β] 7→ [δ · β · δ]. Let H : I × I → X be a
homotopy of loops α and β at x0, for a fixed t ∈ I, Ht is also a loop at x0 (where Ht(s) = H(s, t)).
Therefore, δ ·Ht · δ is well-defined and is a homotopy of loops δ · α · δ and δ · β · δ at x1. Thus hδ is
well-defined.

We have hδ[α · β] = [δ · α · β · δ] = hδ[α] · hδ[β], so hδ is a homomorphism.

Consider the map hδ, we have hδhδ[α] = hδ[δ ·α · δ] = [δ · δ ·α · δ · δ] = [α] and similarly, hδhδ[β] = [β].
So hδ is a bijection.

Conclusion: We can conclude that π1(X,x0) ∼= π1(X,x1).

2.2.23 Proposition. [3] The fundamental group of the circle S1 is given by π1(S
1) ∼= Z.

2.2.24 Proposition. [12] If f : (X,x0) −→ (Y, y0) be a pointed map (that is, f is a continuous map
such that f(x0) = y0), then the map

π1(f) = f∗ : π1(X,x0) −→ π1(Y, y0)

[α] 7−→ [f ◦ α] (2.2.4)

is a homomorphism of groups called induced homomorphism.

2.2.25 Proposition. [12] If f : X → Y is a homotopy equivalence, then f∗ : π1(X,x) −→ π1(Y, f(x))
is an isomorphism, for all x ∈ X.

The notion of deformation retract will be very useful in the following to compute fundamental group
of some spaces. We will use the fact that two spaces have isomorphic fundamental groups if one
deformation retracts onto the other (See Proposition 2.2.27)

2.2.26 Definition (Deformation Retract). [12] Let A be a subspace of a space X. A is said to be a
retract of X (or X retracts onto A) if there exists a continuous map r : X → A such that r ◦ i = idA.
If in addition i ◦ r ∼ idX , then A is said to be a deformation retract of X (or X deformation retracts
onto A). Here, i : A ↪→ X is the inclusion map.

2.2.27 Proposition. [12] Let us consider the inclusion map i : A ↪→ X. If X deformation retracts onto
A, then the induced homomorphism i∗ is an isomorphism, that is, π1(A, x) ∼= π1(X,x), for all x ∈ A.
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Van Kampen’s Theorem

The following van Kampen theorem is used for computations of the fundamental group of spaces
which are constructed out of simpler ones (cell complexes for example). It expresses the structure of
the fundamental group of a topological space X in terms of the fundamental groups of opens, path-
connected subspaces Aα that cover X.

2.2.28 Theorem (Van Kampen). [4] Let X be a topological space and let x0 ∈ X be a basepoint.

1. Assume X = ∪αAα and that, for all α:

(a) Aα is open;

(b) Aα is path-connected;

(c) x0 ∈ Aα.

Then, the homomorphism Φ : ∗απ1(Aα, x0)→ π1(X,x0) is surjective.

2. Assume now we also have that each three-way intersection Aα∩Aβ ∩Aγ is path-connected. Also,
define the following homomorphisms:

(a) i∗α : π1(Aα)→ π1(X) induced by the inclusion map iα : Aα ↪→ X;

(b) j∗α,β : π1(Aα ∩Aβ)→ π1(Aα) induced by the inclusion map jαβ : Aα ∩Aβ ↪→ Aα.

Then the kernel of Φ is the normal subgroup N generated by all elements in ∗απ1(Aα) of the form,
jαβ(ω)jβα(ω)−1, where ω ∈ Aα ∩Aβ. In this case, Φ induces an isomorphism π1(X) ∼= ∗απ1(Aα)/N .

2.2.29 Remark. [12] If the cover {Aα}α is reduced to two subsets U, V of X, then van Kampen’s
theorem also reduces to the following:

If U, V and U ∩ V are path connected, x0 ∈ U ∩ V and X = U ∪ V , then the following commutative
diagrams hold:

and then

(i) there exists a map ϕ : π1(U) ∗ π1(V ) −→ π1(X) which is surjective.

(ii) ker(ϕ) is a normal group N generated by i∗1(g)i∗2(g
−1) ∈ π1(U) ∗ π1(V ) with g ∈ π1(U ∩ V ).

The points (i) and (ii) imply that π1(X) ∼= (π1(U) ∗ π1(V ))/N.
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Fundamental Groups of some Spaces

Here we apply van Kampen’s theorem to compute the fundamental group of what is called wedge sum
of circles. We begin by the a general definition of the notion of wedge sum of spaces.

2.2.30 Definition (Wedge Sum). [4]

1. Let X and Y be two topological spaces. Let x ∈ X and y ∈ Y be basepoints respectively of X
and Y . The wedge sum of X and Y (with respect to x and y) is the quotient X ∨Y = XqY/ ∼
of the disjoint union X q Y by the smallest relation ∼ identifying x and y to a single basepoint.

2. Let {Xα} be a collection of topological spaces and {xα} a collection of basepoints. The wedge
sum of {Xα} is the quotient ∨αXα = qαXα/ ∼ of the disjoint union qαXα by the smallest
relation ∼ identifying the collection {xα} to a single basepoint.

2.2.31 Example. Computation of π1(∨αS1
α).

Let aα ⊂ S1
α be an open arc containing the common basepoint x0 for each α. Let us consider a

neighborhood Aα of S1
α given by Aα = S1

α∨β 6=αaβ. The intersection of two or more such neighborhoods
is always simply ∨αaα, that is, ∩αAα = ∨αaα, which is of the same homotopy type as a point and
therefore its fundamental group is trivial, that is, π1(∩αAα) = π1(∨αaα) = 0 (See Figure 2.2.31).

Figure 2.1: Wedge sum of two circles.

By van Kampen’s theorem 2.2.28, it follows that we have the isomorphism:

π1(∨αS1
α) ∼= ∗απ1(S1

α) ∼= ∗αZ. (2.2.5)

2.2.32 Example. Computation of π1(S
n) for all n ≥ 2.

Let U = Sn − {(0, · · · , 1)} and V = Sn − {(0, · · · ,−1)}. {U, V } is a cover of Sn and U ∩ V =
Sn − {(0, · · · , 1), (0, · · · ,−1)}. U , V and U ∩ V are open subsets of Sn.

Considering the stereographic projection with respect to the north pole, we have that U is homeomorphic
to Rn (U ∼= Rn), which implies that, π1(U) ∼= π1(Rn) (See Figure 2.2). Similarly, we have V ∼= Rn
implies π1(V ) ∼= π1(Rn). But π1(Rn) = 0 so π1(U) ∼= π1(V ) ∼= π1(Rn) = 0.

By van Kampen’s theorem, π1(S
n) = π1(U) ∗π1(V )/N , where N is the normal subgroup generated by

i∗1(g)i∗2(g
−1) ∈ π1(U) ∗ π1(V ) with g ∈ π1(U ∩ V ) (See Remark 2.2.29). Thus,

π1(S
n) = 0. (2.2.6)
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Figure 2.2: Stereographic projection on U for n = 2 [11].

These results will be used in the second section of the next chapter to compute the fundamental group
of closed and connected surfaces.



3. Fundamental Group of Cell Complexes

In this chapter, we first describe the topology of cell complexes. Then we state and prove a result
which will allow us to compute easily the fundamental group of path-connected complexes. We end the
chapter with the computation of fundamental group of both orientable and nonorientable closed and
path-connected surfaces which are special cases of 2-dimensional cell complexes.

3.1 Topology of Cell Complexes

Many topological spaces of practical interest can be represented by a decomposition into subsets (cells),
each with a simple topology, attached together along their boundaries. A decomposition of this form is
commonly called a cell complex. We begin by the definition of a cell.

3.1.1 Definition (Cell). [4] A cell or an i-cell is a space of the following form:

ei = {x ∈ Ri | ‖x‖ < 1}, ∀i = 0, 1, 2, · · · . (3.1.1)

The integer i stands for the dimension of the cell.

3.1.2 Remark. By definition, we have ei = Di\∂Di.

To build a cell complex, we start by what we can call ingredients, which are all cells needed for the
construction. Notice that more than one cell, of a given dimension, can be required to construct a cell
complex.

3.1.3 Definition (Cell Complex). [4] A cell complex is a space X constructed in the following way:

1. Consider the set of all 0-cells e0 (points) among the ingredients and denote it X0;

2. Build the 1-skeleton X1 by attaching boundary of all 1-cells e1 from ingredients to elements of
X0;

3. Build the n-skeleton Xn inductively by attaching boundary of all n-cells en from ingredients to
Xn−1, that is;

Xn =
Xn−1 qα Dn

α

x ∼ ϕα(x)
, (3.1.2)

where ϕα : Sn−1 → Xn−1 is a collection of maps.

4. Set X = ∪nXn endowed with the weak topology, that is, a set A is open (or closed) iff A ∩Xn

is open (or closed) in Xn for each n.

3.1.4 Remark. If X is finite-dimensional, that is, X = Xn, then the topology is reduced to the usual
one, that is the quotient topology.

3.1.5 Definition (Characteristic Map). [4] Each cell enα is associated to a continuous map Φα called
characteristic map and defined as the composition

Dn
α ↪→ Xn−1 qα Dn

α → Xn ↪→ X, (3.1.3)

11
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where σ : Xn−1 qα Dn
α → Xn is defined as follows:{

σ|Xn−1qα(Dnα\∂Dnα) = id

σ|∂Dnα = ϕα.

3.1.6 Remark. [4] Another description of the weak topology mentioned in part 4 of Definition 3.1.3
is related to the notion of characteristic map. A subset A ⊂ X of X is open (or closed) iff Φ−1α (A) is
open (or closed) in Dn

α for each characteristic map Φα.

3.1.7 Definition (Subcomplex). [4] Let X be a cell complex. A ⊂ X is a subcomplex of X if A is a
union of cells of X such that the closure of each cell in A is contained in A.

3.1.8 Proposition. [4] A finite cell complex, that is, one with only finitely many cells, is compact.

The result above is based on the fact that attaching a single cell preserves compactness. The following
result is a sort of converse of the above Proposition 3.1.8 and will help us to prove Corollary 3.2.2.

3.1.9 Proposition. [4] A compact subspace of a cell complex is contained in a finite subcomplex.

Proof. (Proposition 3.1.9) Let C ⊂ X be a compact subspace of X. The proof is divided into two
parts. We first show that C can meet only finitely many cells in X and secondly, we show that the
union of those cells is contained in a finite subcomplex of X.

1. Assume by contradiction that there is a infinite sequence of points xi ∈ C all lying in distinct
cells. Let S = {x1, x2, · · · } to be the set of all those points. We claim that S is closed in X. To
prove the claim, we will proceed by induction on n:

• S ∩X0 is closed in X0 because of the discrete topology of X0.

• Assume that S ∩Xn−1 is closed in Xn−1 and let’s show that S ∩Xn is closed Xn.

For each n-cell enα of X, ϕ−1α (S) = ϕ−1α (S ∩Xn−1) is closed in ∂Dn
α as the pre-image of a

closed set. Furthermore, Φ−1α (S) consists of at most one more point in Dn
α, so Φ−1α (S) is

closed in Dn
α.

Then S ∩Xn is closed in Xn for each n, which implies that S is closed in X.

Using the same argument, we show that any subset of S is closed, that is, S has the discrete
topology. But S is compact as a closed subset of a compact subspace C. Therefore S must be
finite, which is a contradiction. Hence C is contained in a finite union of cells, that is, C ⊂ ∪nαenα
finite.

2. Now, it remains to show that a finite union of cells is contained in a finite subcomplex of X. Since
a union of finite subcomplexes is again a finite subcomplex, this reduces to show that a single cell
enα is contained in a finite subcomplex. The image of the attaching map ϕα for enα is a compact
as the image of a compact by a continuous map. So by induction on dimension this image is
contained in a finite subcomplex Anα ⊂ Xn−1. So enα is contained in the finite subcomplex A∪enα.
Thus ∪nαenα ⊂ ∪nα(Anα ∪ enα) finite subcomplex.

Conclusion: From 1 and 2, we conclude that C ⊂ ∪nα(Anα∪ enα) finite subcomplex, that is, the compact
subspace C of the cell complex X is contained in a finite subcomplex ∪nα(Anα ∪ enα).
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Surfaces are special cases of cell complexes. In the following, we give some definitions and results related
to them.

3.1.10 Definition (Surface). [15] A surface can be defined as a geometrical shape that resembles a
deformed plane.

3.1.11 Definition (Orientable and Nonorientable Surfaces). [10] Let M be a connected surface, and
let α : S1 →M be an injective loop.

• α is orientable if the complement M\α(S1) is not connected, in which case it has 2 components.

• α is nonorientable if the complement M\α(S1) is connected.

A surface M is orientable if every α : S1 →M is orientable. Otherwise, M is nonorientable.

3.1.12 Definition (Closed Surface). [15] A closed surface is a surface which is compact and without
boundary.

3.1.13 Theorem (Classification theorem of closed surfaces). [7] Every closed surfaces is homeomorphic
to one of the following:

∗ The sphere;

∗ The connected sum of g tori, for g ≥ 1;

∗ The connected sum of k real projective planes, for k ≥ 1.

The first two surfaces belong to the family of orientable surfaces. The number g is called the genus of
the surface. The third surface is a nonorientable surface.

3.1.14 Example. ∗ The sphere and the torus are closed and orientable surfaces;

∗ The projective plane and the Klein bottle are closed and nonorientable surfaces;

∗ An open-disk is a non-closed surface.

3.1.15 Definition (Connected Sum). [10] The connected sum of two surfaces M and N , denoted
M#N , is obtained by removing a disk from each of them and gluing them together along the boundary
components which result.

3.1.16 Example. The following Figure 3.1 shows the connected sum process from two torus (orientable
surface of genus 1) to an orientable surface of genus 2.

3.1.17 Theorem. [7] Every compact surface admits a polygonal presentation.

3.2 Fundamental Group of Cell Complexes

The goal here is to see how the fundamental group π1(Y, x0), of a space Y obtained from a space X
by attaching cells, and the fundamental group π1(X,x0) of X are related. Let X be a path-connected
space and consider the space Y obtained from X by following the next three steps.
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Figure 3.1: Connected sum of two torus [1].

Figure 3.2: Space X and collection of 2-cells.

Step 1. Let {e2α}α be a collection of 2-cells. Let ϕα : S1 → X be a continuous map, one for each α, and
let s0 ∈ S1 be the basepoint (See Figure 3.2).

Step 2. After attaching the 2-cells e2α to X via the maps ϕα : S1 → X, we obtain the space Y (See
Figure 3.3).

Step 3. Since s0 is the basepoint of S1, we have that ϕα determines a loop α at ϕα(s0), that is, α(0) =
α(1) = ϕα(s0), with α = ϕα ◦ β where β : I → S1 is a loop at s0. In the following we shall
consider the map ϕα as the loop α. The basepoints ϕα(s0) may not all coincide by varying α,
but since we want to discuss about the fundamental groups of X and Y , we need to deal with
one basepoint. This prompts us to choose a basepoint x0 ∈ X ⊂ Y . Consider a path γα in X
from x0 to ϕα(s0) for each α. Such a path exists since X is path-connected. Then, for each α,
we have that γα · ϕα · γα is a loop at x0 since X is a path-connect space (See Figure 3.3).

γα · ϕα · γα(s) =


γα(2s), if 0 ≤ s ≤ 1

2

ϕα(4s− 2), if
1

2
≤ s ≤ 3

4

γα(4− 4s), if
3

4
≤ s ≤ 1.
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Figure 3.3: Space Y and loops γα · ϕα · γα in Y at x0.

Let N be the normal subgroup generated by all the loops γα · ϕα · γα for varying α. The following
theorem gives a relation between π1(Y, x0) and π1(X,x0).

3.2.1 Theorem. [4] Let X be a path-connected space.

1. If Y is obtained from X by attaching 2-cells as described above, then the inclusion X ↪→ Y
induces a surjection π1(X,x0)→ π1(Y, x0) whose kernel is N . Thus π1(Y, x0) ∼= π1(X,x0)/N .

2. If Y is obtained from X by attaching n-cells for a fixed n > 2, then the inclusion X ↪→ Y induces
an isomorphism π1(X,x0) ∼= π1(Y, x0).

Proof. (Theorem 3.2.1)

Part 1. The proof is subdivided into three main steps. We begin with the construction of a space Z which
deformation retracts onto Y and is more suitable for the application of van Kampen’s Theorem.
Then we apply van Kampen’s theorem twice, firstly to a cover {A,B} of Z and secondly to a
cover {Aα}α of A ∩B.

• Construction of the space Z from Y .

The space Z is obtained from Y by attaching rectangular bands Sα = I × I * Y defined
such that its bottom edge I × {0} is attached along the path γα, the right edge 1 × I is
attached along an arc βα : I → Y whose origin is at ϕα(s0) and follows radially the shape
of the 2-cell e2α, and all the left edges {0}× I of the different bands identified together. The
top edges of the bands are not attached to anything. So the space Z is of the form

Z =
Y q (∪α(γα(I)× I))

(γα(s), 0) ∼ γα(s), (γα(1), t) ∼ βα(t)
. (3.2.1)

We claim that Z deformation retracts onto Y . Indeed, consider the map r : Z → Y as
follows:

r(z) =

{
idY (z) if z ∈ Y ;

γα(s1) if z = [(γα(s1), s2)], with s1 6= 1 and s2 6= 0.
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∗ r is well-defined since r[(γα(s1), 0)] = γα(s1) = z = idY (γα(s1)), for z = [(γα(s1), 0)]
and also, r[(γα(0), s2)] = γα(0) = x0 = γβ(0) = r[(γβ(0), s2)], for [(γα(0), s2)] =
[(γβ(0), s2)]. r[(γα(1), t)] = [(γα(1), t)] = [βα(t)] = r[βα(t)] since βα(t) ∈ Y .

∗ r is continuous since, assuming that W is an open subset of Y , then r−1(W ) = W ∪α
(γ−1α (W )× I) is open as union of open sets.

∗ Consider the inclusion i : Y ↪→ Z, we have r ◦ i(y) = r([y]) = [y] = y = idY (y) by
definition of the map r. So r ◦ i = idY .

∗ We have i ◦ r(z) =

{
idY (z) if z ∈ Y
(γα(s1), 0) otherwise

.

Consider the map H : Z × I → Z defined by

H(z, t) =

{
[idY (z)] if z ∈ Y
[(γα(s1), ts2)] otherwise (where z = (γα(s1), s2)

.

· H is well-defined since H([(γα(s1), 0)], t) = [γα(s1)] = z = [idY (γα(s1))] by con-
struction of Z, for z = [(γα(s1), 0)] and also, H([(γα(0), s2)], t) = [(γα(0), t)] =
[(x0, t)] = [(γβ(0), t)] = H([(γβ(0), s2)], t), for [(γα(0), s2)] = [(γβ(0), s2)].

· H is continuous since, assume O is an open subset of Z, then
H−1(O) = (O ∪α (γ−1α (O)× I))× I is open as cartesian product of the segment I
and union of open set.

· H(z, 0) =

{
idY (z) if z ∈ Y
[(γα(s1), 0)] otherwise

. So H(z, 0) = i ◦ r(z).

H(z, 1) =

{
idY (z) if z ∈ Y
[(γα(s1), s2)] otherwise

. So H(z, 1) = idZ(z).

Therefore, we have π1(Y ) ∼= π1(Z) by Proposition 2.2.27.

• Application of van Kampen’s theorem to Z.

Let us now consider a point yα on the 2-cell e2α such that yα /∈ Sα. Set A = Z − ∪α{yα}
and B = Z−X = ∪α

[
(e2α ∪ Sα)− γα · ϕ · γα(I)

]
. We have A∩B = (Z−X)−∪α{yα} =

∪α
[
(e2α ∪ Sα)− ({yα} ∪ γα · ϕ · γα(I))

]
. Hence, A is path-connected (See Figure 3.4) and

open since AC = ∪α{yα} is closed as a finite set, B is also path-connected (See Figure 3.4)
and open and finally A ∩B is also path-connected (See Figure 3.4) and open.

Since x0 /∈ A ∩ B, to apply van Kampen’s theorem to the cover {A,B} of Z, we need to
have a new basepoint, say z0 ∈ A ∩B. That point z0 is chosen close to x0 on the segment
(left edge on Figure 3.4) where all the bands Sα intersect.

Now, the hypothesis of van Kampen’s theorem are verified. Consider the diagram as shown
by Figure 3.5. Then

(i) the map Φ : π1(A, z0) ∗ π1(B, z0)→ π1(Z, z0) is surjective.

(ii) Its kernel kerΦ = N/π1(A, z0)∗π1(B, z0) generated by i∗1([δα])i∗2([δα]−1) ∈ π1(A, z0)∗
π1(B, z0), ∀[δα] ∈ π1(A ∩B) implies N = 〈〈{[δα]}α〉〉.

(i) and (ii) imply that π1(Z, z0) ∼= (π1(A, z0) ∗ π1(B, z0))/N . But B is contractible (See
Figure 3.4), that is, π1(B, z0) = 0, so we have

π1(Z, z0) ∼= (π1(A, z0)/N. (3.2.2)

To determine a more explicit expression of N , we need to compute π1(A ∩B).
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Figure 3.4: Subspaces A and B of Z.

Figure 3.5: π1 of a commutative square.

• Application of van Kampen’s theorem to A ∩B.

Here, for each α, we consider the open subsets Aα = A ∩ B − ∪β 6=αe2α and we apply van
Kampen’s theorem on the cover {Aα|α} of A ∩B. We have that Aα’s and ∩αAα are open
and path-connected, also z0 ∈ ∩αAα (See Figure 3.6). Applying van Kampen’s theorem, we

Figure 3.6: Spaces Aα (left) and ∩αAα (Right).

have the following:

(i) the map Φ : ∗απ1(Aα, z0)→ π1(A ∩B, z0) is surjective.

(ii) Its kernel kerΦ = N / ∗απ1(Aα, z0) generated by i∗1([λα])i∗2([λα]−1) ∈ ∗απ1(Aα, z0),
∀[λα] ∈ π1(∩αAα) but ∩αAα is contractible, that is, π1(∩αAα, z0) = 0 (See Figure
3.6) which implies N = 0.
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The points (i) and (ii) imply that π1(A ∩B, z0) ∼= ∗απ1(Aα, z0). But each Aα deformation
retracts onto the circle S1 in e2α−{yα} due to the holes created by the withdrawal of points
yα (See Figure 3.6), that is, π1(Aα, z0)) = Z for each α, so we have π1(A ∩B, z0) ∼= ∗αZ.

We have that A =
(Y − ∪α{yα})q (∪α(γα(I)× I))

(γα(s), 0) ∼ γα(s)
deformation retracts onto X as in the

case of Z and Y .

Conclusion: We have π1(X,x0) ∼= π1(X,x1) ∼= π1(A, x1) ∼= π1(A, z0) and π1(Y, z0) ∼=
π1(Y, x0) since the fundamental group is independent of the choice of the basepoint for
path-connected spaces (See Theorem 2.2.22). Therefore we have the following result from
(3.2.2):

π1(Y, x0) ∼= π1(X,x0)/N, with N = 〈〈{[γα · ϕα · γα]}α〉〉, (3.2.3)

Where [γα · ϕα · γα] = Ψ([δα]), Ψ : π1(Z, z0) → π1(Z, x0) is the basepoint-change isomor-
phism.

Part 2. Now, assume that Y is obtained from X by attaching n-cells enα for a fixed n > 2 and let us show
that X ↪→ Y induces an isomorphism π1(X,x0) ∼= π1(Y, x0).

Here we follow the same three steps as before:

• Construction of the space Z from Y .

We make a similar construction of Z as in Part 1 and we also have that Z deformation
retracts onto Y .

• Application of van Kampen’s theorem to Z.

Let us now apply the van Kampen’s theorem to the cover {A,B} of Z, where A = Z −
∪α{yα} and B = Z −X = ∪α [(enα ∪ Sα)− γα · ϕ · γα(I)]. We have A ∩ B = (Z −X)−
∪α{yα} = ∪α [(enα ∪ Sα)− ({yα} ∪ γα · ϕ · γα(I))]. Hence, A is path-connected and open
since AC = ∪α{yα} is closed as a finite set, B is also path-connected and open and finally
A ∩B is also path-connected and open.

We have x0 /∈ A ∩B so we choose another basepoint z0 ∈ A ∩B as before.

Now the hypothesis of van Kampen’s theorem are verified and we have the diagram from
Figure 3.5. Then

(i) the map Φ : π1(A, z0) ∗ π1(B, z0)→ π1(Z, z0) is surjective.

(ii) Its kernel kerΦ = N/π1(A, z0)∗π1(B, z0) generated by i∗1([δα])i∗2([δα]−1) ∈ π1(A, z0)∗
π1(B, z0), ∀[δα] ∈ π1(A ∩B) implies N = 〈〈{[δα] | α}〉〉.

(i) and (ii) imply that π1(Z, z0) ∼= (π1(A, z0) ∗ π1(B, z0))/N . But B is contractible (See
Figure 3.4), that is, π1(B, z0)) = 0, so we have

π1(Z, z0) ∼= (π1(A, z0)/N. (3.2.4)

To determine a more explicit expression of N , we need to compute π1(A ∩B).

• Application of van Kampen’s theorem to A ∩B.

Here, for each α, we consider the open subsets Aα = A ∩ B − ∪β 6=αenα and we apply van
Kampen’s theorem to the cover {Aα | α} of A∩B. We have that Aα’s and ∩αAα are open
and path-connected, also z0 ∈ ∩αAα.

Now the hypothesis of van Kampen’s theorem are verified, we have the following:
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(i) the map Φ : ∗απ1(Aα, z0)→ π1(A ∩B, z0) is surjective.

(ii) Its kernel kerΦ = N / ∗απ1(Aα, z0) generated by i∗1([λα])i∗2([λα]−1) ∈ ∗απ1(Aα, z0),
∀[λα] ∈ π1(∩αAα) but ∩αAα is contractible, that is, π1(∩αAα, z0) = 0 which implies
N = 0.

(i) and (ii) imply that π1(A∩B, z0) ∼= ∗απ1(Aα, z0). But Aα’s deformation retract onto the
sphere Sn−1 in enα−{yα} due to the withdrawal of points yα, that is, π1(Aα, z0)) = 0 since
n > 2 (From the point 2 of Proposition 2.2.23) for some α, so we have π1(A ∩ B, z0) ∼= 0
so N = 0.

Conclusion: As in Part 1, we have the following result from (3.2.4):

π1(Y, x0) ∼= π1(X,x0). (3.2.5)

This completes the proof of the theorem.

The following result, based on the above Theorem 3.2.1, states that the fundamental group of an
n-dimensional (n ≥ 2) path-connected cell complex X is reduced to the fundamental group of its
2-skeleton X2.

3.2.2 Corollary. If X is a path-connected cell complex, then the inclusion of the 2-skeleton X2 ↪→ X
induces an isomorphism π1(X

2, x0) ∼= π1(X,x0).

Proof. (Corollary 3.2.2). Let X be a path-connected cell complex. Let us prove that the inclusion of
the 2-skeleton X2 ↪→ X induces an isomorphism π1(X

2, x0) ∼= π1(X,x0).

Here, we distinguish two cases: the finite and non finite-dimensional cases. In the sequel, the basepoint
x0 is taken in X2 (x0 ∈ X2).

• Assume that X is finite-dimensional, that is, X = Xn.

Let us do this by induction on the dimension n > 2 of X.

– Since the case n = 2 is trivial, let us consider the case n = 3.

We have X = X3 and the inclusion X2 ↪→ X. From the construction [4] of the cell
complex X = X3, it is obtained from X2 by attaching 3-cells e3α to X2 via the maps
ϕα : S2 → X3. Therefore from Part 2, we know that the inclusion X2 ↪→ X induces an
isomorphism π(X

2, x0) ∼= π1(X,x0) since n = 3 > 2.

– Let us suppose that inclusionX2 ↪→ Xn−1 induces the isomorphism π(X
2, x0) ∼= π1(X

n−1, x0)
for n > 2 and let us prove that we have the same for X = Xn.

From the construction of the cell complex X = Xn, it is obtained from Xn−1 by attaching
n-cells enα to Xn−1 via the maps ϕα : Sn−1 → Xn. Therefore from Part 2, we know that the
inclusion Xn−1 ↪→ Xn induces an isomorphism π1(X

n−1, x0) ∼= π1(X
n, x0) since n > 2.

But from induction hypothesis, we obtain π1(X
2, x0) ∼= π1(X

n, x0).

Therefore, π1(X
2, x0) ∼= π1(X

n, x0), ∀n ≥ 2.

• Now, assume that X is non finite-dimensional.

Here, the idea is to show that π1(X
2, x0)→ π1(X,x0) is surjective and injective.
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– Surjection.

So let δ ∈ π1(X,x0), then its image δ(I) is compact as an image of a compact by a
continuous map. Proposition 3.1.9 implies that there exists n <∞ such that δ is a loop in
Xn at x0. But, as in the finite-dimensional case, from Part 2 we have that π1(X

2, x0) ∼=
π1(X

n, x0), which implies that δ is homotopic to a loop in X2 at x0. Thus π1(X,x0) ⊆
π1(X

2, x0), that is, π1(X
2, x0)→ π1(X,x0) is surjective.

– Injection.

Let δ a loop in X2 at x0 which is nullhomotopic in X, that is, δ is an element of the kernel
of the map π1(X

2, x0)→ π1(X,x0). Suppose that δ is nullhomotopic in X via a Homotopy
H : I × I → X. Its image H(I × I) is compact as the image of a compact by a continuous
map and as previously, by applying Proposition 3.1.9, we have that ∃n <∞ such that δ is a
loop in Xn at x0. But from Part 2 we have that π1(X

2, x0)→ π1(X
n, x0) is injective what

implies δ is nullhomotopic in X2. Thus π1(X
2, x0)→ π1(X,x0) is injective.

Thus π1(X
2, x0) ∼= π1(X,x0), for all path-connected cell complex X of infinite-dimension.

Conclusion: Therefore, π1(X
2, x0) ∼= π1(X,x0), for all path-connected cell complex X.

Fundamental Group of Closed and Connected Surfaces

The purpose is to compute the fundamental groups of orientable and nonorientable surfaces of genus
g. These are supposed to be closed and path-connected surfaces.

The following theorem gives the expression of the fundamental group of an orientable surface of genus
g.

3.2.3 Theorem. If Mg is an orientable surface of genus g, then π1(Mg) has the presentation of the
form:

π1(Mg) ∼= 〈a1, b1, · · · , ag, bg | [a1, b1][a2, b2] · · · [ag, bg]〉. (3.2.6)

Proof. (Theorem 3.2.3). Let Mg be an orientable surface of genus g. It is a 2-dimensional cell com-
plex and for its construction, we need one 0-cell, 2g 1-cells and one 2-cell. Its 1-skeleton is con-
stituted by the one 0-cell and the 2g 1-cells is a wedge sum of 2g circles S1 (that is ∨2gi=1S

1
i ) labeled

a1, a2, · · · , ag, b1, b2, · · · , bg. An orientable surface Mg can be represented by a 4g-gon [5] (Polygon of 4g
edges, each edge representing a generator or its inverse) with boundary a1b1a

−1
1 b−11 a2b2a

−1
2 b−12 · · · agbga−1g b−1g =

[a1, b1][a2, b2] · · · [ag, bg] (Product of commutators). The construction of the polygonal representation
of Mg ended by attaching a 2-cell along the loop given by the former product of the commutators,
resulting in an orientable surface of genus g (See Figure 3.7).

We know that π1 of the wedge sum of 2g circles is the free group on 2g generators (See relation (2.2.5)),
so π1(∨2gi=1S

1
i ) = 〈a1, b1, · · · , ag, bg | 〉, the free group generated by a1, b1, · · · , ag, bg. But according

to the construction of Mg we have that π1(Mg) = π1(∨2gi=1S
1
i )/N from Part 1 of Theorem 3.2.1, then

π1(Mg) = 〈a1, b1, · · · , ag, bg〉/N where N is the normal subgroup of 〈a1, b1, · · · , ag, bg | 〉 generated by
the word given by the product of commutators [a1, b1][a2, b2] · · · [ag, bg]. Therefore

π1(Mg) ∼= 〈a1, b1, · · · , ag, bg | [a1, b1][a2, b2] · · · [ag, bg]〉.
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Figure 3.7: Polygonal construction of the torus T = M1.

Consider now the following theorem which gives the expression of the fundamental group of a nonori-
entable surface of genus g.

3.2.4 Theorem. If Ng is an nonorientable surface of genus g, then π1(Mg) has the presentation of the
form:

π1(Ng) ∼= 〈a1, · · · , ag | a21a22 · · · a2g〉. (3.2.7)

Proof. (Theorem 3.2.4). Let Ng be a nonorientable surface of genus g. Like the g-genus orientable
surface, Ng is a 2-dimensional cell complex and for its construction, it is needed one 0-cell, g 1-cells
and one 2-cell. Its 1-skeleton, constituted by the one 0-cell and the g 1-cells, is a wedge sum of
g circles S1 (that is ∨gi=1S

1
i ) labeled a1, a2, · · · , ag. A nonorientable surface Ng can be represented

by a 2g-gon [5] (Polygon of 2g edges, two edges representing a generator twice or a generator and its
inverse) with boundary a21a

2
2 · · · a2g (Product of squares of generators). The construction of the polygonal

representation of Ng end by attaching a 2-cell along the loop given by the former product of squares,
resulting in a nonorientable surface of genus g.

Polygonal representations of projective plane and the Klein bottle are respectively given by Figures 3.8
and 3.9.

Figure 3.8: Polygonal representations of the projective plane RP2 = N1.

Case of N2, the Klein bottle K.

We know that π1 of the wedge sum of g circles is the free group on g generators (See relation
(2.2.5)), so π1(∨gi=1S

1
i ) = 〈a1, · · · , ag | 〉, the free group generated by a1, · · · , ag. But according
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Figure 3.9: Polygonal representations of the Klein bottle K = N2.

to the construction of Ng we have that π1(Ng) = π1(∨gi=1S
1
i )/N from Part 1 of Theorem 3.2.1, then

π1(Ng) = 〈a1, · · · , ag〉/N where N = 〈〈a21a22 · · · a2g〉〉 is the normal subgroup of 〈a1, a2, · · · , ag | 〉
generated by the word given by the product of squares a21a

2
2 · · · a2g. Therefore

π1(Ng) ∼= 〈a1, · · · , ag | a21a22 · · · a2g〉.



4. Applications of Fundamental Group of Cell
Complexes

In this chapter, we investigate two main applications of the fundamental group to cell complexes. The
first one says that if two surfaces are homotopy equivalent, then they have the same genus (See Theorem
4.1.1 and Theorem 4.1.2). The second one says that for a group G, there exists a 2-dimensional cell
complex XG such that π1(XG) ∼= G (See Theorem 4.2.1).

4.1 Homeomorphism of Closed and Path-connected Surfaces

We distinguish two cases, respectively the case of orientable and nonorientable surfaces.

• Case of orientable surfaces.

4.1.1 Theorem. [4] Let Mg be an orientable surface of genus g. Then Mg is not homeomorphic
(or even homotopy equivalent) to Mh if g 6= h.

Proof. (Theorem 4.1.1)

Let Mg and Mh be two orientable surfaces. Assume by contradiction that Mg ' Mh, that is,
Mg and Mh are homotopy equivalent, and let us prove that g = h. Let us consider the group
Ab(π1(Mg)) the abelianization of the fundamental group π1(Mg) of the orientable surface Mg.
From the expression of π1(Mg) computed in Theorem 4.1.1 and Definition 2.1.10 of abelianization,
we have:

Ab(π1(Mg)) = 〈a1, b1 · · · , ag, bg | [a1, b1][a2, b2] · · · [ag, bg]〉/〈〈{[a, b] | a, b ∈ π1(Ng)}〉〉
= 〈a1, b1 · · · , ag, bg | 1 · 1 · · · 1〉
= 〈a1, b1 · · · , ag, bg | 〉, for a = a1a2 · · · ag
= ∗gi=1[〈ai〉 ∗ 〈bi〉]
= ∗2gZ.

From hypothesis we have that Mg 'Mh, that is, π1(Mg) ∼= π1(Mh), hence the abelianization of
these groups are isomorphic (that is, ∗2gZ ∼= ∗2hZ⇔ 2g = 2h), which implies g = h.

Conclusion: Therefore given Mg and Mh orientable surfaces, we have g 6= h ⇒ Mg is not
homotopy equivalent to Mh and therefore g 6= h⇒Mg is not homeomorphic to Mh.

• Case of orientable surfaces.

4.1.2 Theorem. [4] Let Ng be an nonorientable surface of genus g. Then Ng is not homeomorphic
(or even homotopy equivalent) to Nh if g 6= h.

Proof. (Theorem 4.1.2).

Let Ng and Nh be two nonorientable surfaces. Assume by contradiction that Ng ' Nh, that is,
Mg and Mh are homotopy equivalent, and let us prove that g = h. Let us consider the group

23
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Ab(π1(Ng)) the abelianization of the fundamental group π1(Ng) of the nonorientable surface Ng.
From the expression of π1(Ng) computed in Theorem 4.1.2 and Definition 2.1.10 of abelianization,
we have:

Ab(π1(Ng)) = 〈a1, a2, · · · , ag | a21a22 · · · a2g〉/〈〈{[a, b] | a, b ∈ π1(Ng)}〉〉
= 〈a1, a2, · · · , ag | (a1a2 · · · ag)2〉
= 〈a1, a2, · · · , ag−1, ag, a | a2〉, for a = a1a2 · · · ag
= 〈a1, a2, · · · , ag−1, a | a2〉
= 〈a | a2〉 ∗g−1i=1 〈ai〉
= Z2 ∗g−1 Z.

From hypothesis we have that Ng ' Nh, that is, π1(Ng) ∼= π1(Nh), hence the abelinizations of
these groups are isomorphic (that is, Z2 ∗g−1 Z ∼= Z2 ∗h−1 Z ⇔ g − 1 = h − 1), which implies
g = h.

Conclusion: Therefore given Ng and Nh orientable surfaces, we have g 6= h⇒ Ng is not homotopy
equivalent to Nh and then g 6= h⇒ Ng is not homeomorphic to Nh.

4.2 From a Group to a Topological Space

Given a group G, can we construct a topological space XG such that its fundamental group is isomorphic
to G? The purpose of this part is to apply computation of fundamental group of cell complexes to answer
this natural question. The answer is given by the following corollary of Theorem 3.2.1.

4.2.1 Theorem. [4] For every group G, there is a 2-dimensional cell complex XG with π1(XG) ∼= G.

Proof. (Theorem 4.2.1).

This proof uses two tools, Theorem 3.2.1 and the construction of cell complexes.

Let G be a group and let us find a 2-dimensional cell complex XG such that π1(XG) ∼= G.

From Proposition 2.1.7, there exists elements gα’s and rβ’s in G such that we have the following
presentation:

G ∼= 〈gα | rβ〉. (4.2.1)

Let us consider the free group 〈gα | 〉 generated by the gα’s and the normal subgroup 〈〈rβ〉〉 of G
generated by the rα’s. Then, relation (4.2.1) becomes:

G ∼= 〈gα | 〉/〈〈rβ〉〉. (4.2.2)

Here 〈〈rβ〉〉 = kerθ′, where the surjection θ′ : 〈gα | 〉 → G comes from Definition 2.1.3 of free group.

Let us consider a one skeleton X1 = ∨αS1
α, which is the wedge sum of circles S1

α (obtained by gluing
the boundaries of 1-cells e1α to a 0-cell e0), one for each gα’s. We know that:

π1(X
1) ∼= 〈gα | 〉. (4.2.3)
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Now, let us consider the space X obtained from X1 by attaching 2-cells e2β along the loops associated
to the words rβ. For instance if G = 〈x, y|xy = yx〉, then there are two generators g1 = x and g2 = y
and one relator r = xyx−1y−1 for the relation xyx−1y−1 = 1. So the associated loop wraps x then y
then x−1 and finally y−1 from the basepoint x0 (See Figure 4.1).

Figure 4.1: The 1-skeleton X1 of X.

The space X is a 2-dimensional cell complex and from Part 1 of Theorem 3.2.1, the inclusion X1 → X
induces a surjection π1(X

1) → π1(X) whose kernel is N and we thus have π1(X) ∼= π1(X
1)/N . But

by construction of X, we have
π1(X) ∼= 〈gα | 〉/〈〈rβ〉〉. (4.2.4)

So by identification, we have N = 〈〈rβ〉〉. Thus relations (4.2.2) and (4.2.4) give us

π1(X) ∼= G. (4.2.5)

Conclusion: Therefore, it suffices to take XG = X.

Description of XG.

The goal here is to describe the space XG for G = 〈a|an〉 (n 6= 0) considering the notations of Theorem
4.2.1. It is obtained by attaching a 2-cell on the circle S1 via the map ϕ : C ⊃ S1 → S1 ⊂ C such that
ϕ(z) = zn. For the description, we need the following proposition which will give us a best idea of the

space XG =
D2 q S1

z ∼ ϕ(z)
.

4.2.2 Proposition. If we consider the following maps defined on the circle S1 for n ≥ 1,

ϕ : ∂D2 → S1

z 7→ zn
and

ψ : ∂D2 → ∂D2

z 7→ ze
2πi
n

,

then we have the following homeomorphism:

D2 q S1

z ∼ ϕ(z)
∼=

D2

z ∼ ψ(z)
. (4.2.6)

Proof. (Proposition 4.2.2).

Let X =
D2 q S1

z ∼ ϕ(z)
and Y =

D2

z ∼ ψ(z)
, where z ∈ ∂D2.
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We will define two maps Φ : X → Y and Ψ : Y → X such that ΦΨ = idY and ΨΦ = idX . First,
consider the map p : S1 → S1, defined by p(z) = zn. The map p is a non constant analytic function
defined on S1, then according to the Open Mapping Theorem for Analytic Functions [13], p is an open
map. Also the map p is continuous as a polynomial function.

• Defining Φ. First define f : D2 q S1 → Y as:

f(z) =

{
[z], if z ∈ D2\∂D2

[e
iθ
n ], if z = eiθ ∈ ∂D2 q S1.

Assume that z ∼ z′. Thus without lost of generality, either z = z′ ∈ D2\∂D2 or z ∈ ∂D2, z′ ∈ S1

and z′ = zn = enθi. f is well defined on D2\∂D2. We have f(z′) = [e
nθi
n ] = [eiθ] = [z] = f(z),

therefore f is well-defined in the whole D2qS1. We claim that the map f is continuous. Indeed,
let U ⊂ Y open. We have:

f−1(U) = (U ∩ (D2\∂D2)) ∪ (p(U ∩ S1))

is open as a union of open set since p is an open map.

So the map f passes to the quotient and this gives rise to:

Φ : X → Y

[x] 7→ f(x)

By definition, Φ is continuous.

• Defining Ψ. First define g : D2 → X as:

g(z) =

{
[z], if z ∈ D2\∂D2

[zn], if z ∈ ∂D2.

The map g is well-defined D2 by definition. We claim that the map g is continuous. Indeed, let
V ⊂ X open. We have:

g−1(V ) = (V ∩ (D2\∂D2)) ∪ (p−1(V ∩ ∂D2))

is open as a union of open set since p is a continuous map.

So the map g passes to the quotient and this gives rise to:

Ψ : Y → X

[y] 7→ g(y)

By definition, Φ is continuous.

If z ∈ D2\∂D2, then ΦΨ([z]) = Φ(g(z)) = Φ([z]) = f(z) = [z] = idY ([z]) and if z = eiθ ∈ ∂D2, then

ΦΨ([z]) = Φ(g(z)) = Φ([einθ]) = f(einθ) = [e
inθ
n ] = [eiθ] = [z] = idY ([z]).

If z ∈ D2\∂D2, then ΦΨ([z]) = Φ(g(z)) = Φ([z]) = [f(z)] = [z] = idX([z]) and if z = eiθ ∈ ∂D2qS1,

then ΦΨ([z]) = Φ(g(z)) = Φ([zn]) = f(zn) = f(e
iθ
n ) = [e

inθ
n ] = [eiθ] = [z] = idX([z]).

Therefore Φ : X → Y is a homeomorphism between X and Y with Ψ : Y → X as its inverse
homeomorphism.

Conclusion:
D2 q S1

z ∼ ϕ(z)
∼=

D2

z ∼ ψ(z)
.



Section 4.2. From a Group to a Topological Space Page 27

The description of XG is done with respect to the value of n. We describe particular cases where
n = 1, 2, 3 and we end with a generalization for an arbitrary value of n.

• Case n = 1.

In this case we have ϕ = idS1 , so from Proposition 4.2.2 the space XG =
D2 q S1

z ∼ z
is exactly the

well known unite disk D2.

• Case n = 2.

As said above, the 1-skeleton of XG is the circle S1. The 2-cell e2 = D2\∂D2 is considered as

divided into two equal parts, regions respectively determined by the oriented angles
̂

(
−→
OI,
−−→
OI ′) and

̂
(
−−→
OI ′,

−→
OI) (See Figure 4.2: right).

Figure 4.2: S1 and e2.

To obtain XG =
D2 q S1

z ∼ z2
, we attach the arc II ′ ⊂ S1 of the region determined by

̂
(
−→
OI,
−−→
OI ′) to

the whole S1 by the map ϕ given above with n = 2 and the same job is done with the regions

determined by
̂

(
−−→
OI ′,

−→
OI).

By Proposition 4.2.2,

XG
∼=

D2

z ∼ ze
2πi
2

, z ∈ ∂D2

∼=
D2

z ∼ zeπi
, z ∈ ∂D2

∼=
D2

z ∼ (−z)
, z ∈ ∂D2

∼= RP2.

• Case n = 3.

Here, the 2-cell e2 is considered as divided into three equal parts, regions determined respectively

by the oriented angles
̂

(
−→
OI,
−→
OA),

̂
(
−→
OA,
−−→
OB) and determined by

̂
(
−−→
OB,

−→
OI) (See Figure 4.4: right).
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Figure 4.3: ϕ(∂D2) and XG = RP2.

Figure 4.4: S1 and e2.

To obtain XG =
D2 q S1

z ∼ z3
, we first attach the arc IA ⊂ S1 of the region determined by

̂
(
−→
OI,
−→
OA)

to the whole S1 by the map ϕ given above with n = 3 and the same job is done with the regions

determined by
̂

(
−→
OA,
−−→
OB) and

̂
(
−−→
OB,

−→
OI) respectively. So we have the following transforma-

tions: ϕ(z(0)) = ϕ(z(
2π

3
)) = ϕ(z(

4π

3
)) = z(0), ϕ(z(

π

6
)) = ϕ(z(

5π

6
)) = ϕ(z(

3π

2
)) = z(

π

2
),

ϕ(z(
π

3
)) = ϕ(z(π)) = ϕ(z(

5π

3
)) = z(π) and ϕ(z(

π

2
)) = ϕ(z(

7π

6
)) = ϕ(z(

11π

6
)) = z(

3π

2
) (See

Figure 4.3: left). From Proposition 4.2.2, this construction gives us exactly the quotient of the

disk D2 under identification of a point of ∂D2 to its image by the rotation of angle
2π

3
, that is,

this construction can start by the one of a neighborhood N of the 1-skeleton S1 of XG which is
the Cartesian product Y× I of a graph Y with the interval I and then we identify the two ends
of this product via a one-third twist (See Figures 4.5 and 4.6: right). N is then bounded by one
circle, formed by the three endpoints of each Y cross section of N . The construction of XG is
completed from N by attaching a disk D2 along the boundary circle of N . This is not a surface
and cannot be easily represented since it cannot be done in R3 [4].

• Case of a larger n.

Here, the 2-cell e2 is considered as divided into n equal parts, sectors determined respectively by the

oriented angles
̂

(
−−→
OIk,

−−−−→
OIk+1),∀k = 0, 1, 2, · · · , n− 1. To obtain XG =

D2 q S1

z ∼ zn
, we first attach
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Figure 4.5: Construction of N from Y× I.

Figure 4.6: ϕ(∂D2) and the neighborhood N of the 1-skeleton S1 of XG [4].

the arc I0I1 ⊂ S1 of the sector determined by
̂

(
−−→
OI0,

−−→
OI1) to the whole S1 by the map ϕ given

above and the same job is done with the sectors determined respectively by
̂

(
−−→
OIk,

−−−−→
OIk+1), ∀k =

1, 2, · · · , n−1. So we have the following transformations: ϕ(z(
2kπ

n
)) = z(0), ϕ(z(

π

2n
+

2kπ

n
)) =

z(
π

2
), ϕ(z(

π

n
+

2kπ

n
)) = z(π) and ϕ(z(

3π

2n
+

2kπ

n
)) = z(

3π

2
). From Proposition 4.2.2, this

construction gives us exactly the quotient of the disk D2 with identification of a point of ∂D2

to its image by the rotation of angle
2π

n
, that is, this construction can start by the one of a

neighborhood N of the 1-skeleton S1 of XG, which is the Cartesian product X × I of a graph
X with the interval I which is an n-pointed ”asterisk” and then we identify the two ends of this
product via a 1/n twist. N is then bounded by one circle, formed by the n endpoints of each X
cross section of N (See Figure 4.7).

The construction of XG is completed from N by attaching a disk D2 along the boundary circle
of N . This is not a surface (for n > 2) and cannot be easily represented since it cannot be done
in R3.
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Figure 4.7: Construction of N from X× I for n = 4.



5. Conclusion

The purpose of this dissertation was to display some applications of fundamental group to cell complexes.
We first proved a theorem on how the fundamental group is affected by attaching 2-cells. Then we
showed a direct consequence of this theorem saying that the fundamental group of a cell complex X is
reduced to the one of its 2-skeleton X2, that is, π1(X,x0) ∼= π1(X

2, x0). Finally, we gave a necessary
condition for two closed and path-connected surfaces to be homeomorphic and verified the existence
of a topological space XG such that its fundamental group is isomorphic to a given group G. More
precisely, we showed that given two closed and path-connected surfaces Sg and Sh both either orientable
or nonorientable and of respective genus g and h, a necessary condition for them to be homeomorphic
is that their genera must be equal, that is, g = h. We also succeeded in constructing a space XG

verifying π(XG, x0) ∼= G, where G is a given group. We concluded that considering the presentation
〈gα|rβ〉 of G, XG is the 2-dimensional cell complex whose 1-skeleton is the wedge sum X1 = ∨αS1

α

generated by the gα’s and the construction of XG is completed by attaching 2-cells e2β to X1 along the
loops associated to the relators rβ. We ended the work with an example of description of the space

XG =
D2 q S1

z ∼ zn
z ∈ ∂D2, where G = 〈a|an〉, n ≥ 1. Hence, we have shown that XG is homeomorphic

to
D2

z ∼ ze
2π
n
i

and we concluded that XG is a surface only for n = 1, 2, which are the unit closed disk

and the projective plane respectively.

Our work is somehow related to the notion of classification of manifolds. In the future, we plan to go
further with that concept.
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Claudia, Prisca, Réné and David for our enriching discussions, their advices and also for our leisure
time.

To all my classmates for invaluable collaboration throughout my year at AIMS Cameroon.

I cannot end without thanking all those who helped me in one way or the other and whose names have
not been mentioned.

I dedicate this work to my lovely daughter Léana!
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