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Abstract

In this thesis, we explore the Mayer-Vietoris sequence which is one of the key algebraic tools to compute
the homology groups of topological spaces. The idea is to decompose a given topological space, say
X, into subspaces, say A and B, whose homology groups, including the homology of the intersection
A ∩ B, may be easier to compute. The Mayer-Vietoris theorem claims that if A and B are nice, there
is a long exact sequence that relates the homology groups of X to the homology groups of A,B, and
A ∩ B. We provide a detailed proof of the Mayer-Vietoris sequence theorem using some notions in
algebraic topology especially some notions in singular homology and the theorem of long exact sequence
in homology. Furthermore, we notice that the Mayer-Vietoris sequence theorem can be easily proved
using the excision theorem. As applications, we compute the homology of some spaces including the
sphere, the wedge of two spaces, the torus, the Klein bottle, and the projective plane. Moreover, we
prove some important results in mathematics including the Brouwer �xed point theorem, the invariance
of dimension theorem, and we also study the contractibility of the sphere.
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1. Introduction

Algebraic topology can be de�ned as a branch of mathematics that uses tools from algebra to study
topological spaces. Its basic idea is to construct algebraic invariants that classify topological spaces
up to homeomorphism, or more precisely up to homotopy equivalence. The well-known invariants, and
also the most important ones, include the homotopy groups, homology, and cohomology. This thesis is
concerned with homology.

The homology of a topological space X is a sequence of abelian groups {Hn(X)}n≥0, one for each n.
The 0th homology group is determined by the number of components of X. For n ≥ 1, the nth homology
group detects "holes of dimension n" (a precise de�nition is given by De�nition 2.2.21). It turns out that
it is very hard to compute the homology of most spaces directly from the de�nition. Fortunately, there
is a certain amount of tools that allow to make calculations. One of the most important tools is called
Mayer-Vietoris sequence, which we consider in this thesis. One can view the Mayer-Vietoris sequence as
the analogue of the well known Seifert-van Kampen theorem [10] for the fundamental group.

1.1 Brief Literature Review

The Mayer-Vietoris sequence is due to two Austrian mathematicians, Walther Mayer and Leopold Vietoris
[15]. In fact, Mayer was initiated to topology by his colleague Vietoris when attending his lectures in
1926 at a local university in Vienna [1]. So he was told about the conjectured result of the Mayer-Vietoris
sequence and he proved it only for the Betti numbers in 1929 [15]. He applied his results to the torus
considered as the union of two cylinders [5]. Vietoris later proved the full result for the homology groups
in 1930 but did not express it as an exact sequence [13]. Many years later, in 1952 the concept of an
exact sequence appeared in the book Foundations of Algebraic Topology [6] by Samuel Eilenberg and
Norman Steenrod, where for the �rst time the tool Mayer-Vietoris sequence was expressed in the modern
form.

Nowadays, the Mayer-Vietoris sequence is very helpful in Topological Data Analysis (TDA) [17]. Actually,
TDA is a new area of research that uses algebraic topology to extract non-linear features from data sets.
It is based on the computation of the so-called persistent homology [2], which measure the features of
shapes and functions of big data sets. So there exists an analogue of Mayer-Vietoris sequence in TDA for
computing persistent homology [4]. For instance, when the data are robotics network, looking at them
as a sequence of spaces, we can apply the Mayer-Vietoris sequence to relate the homology groups of the
space to the homology groups of its subspaces. So by the mathematical de�nition of a robotic network
in [14], we can split the set of robots to apply the Mayer-Vietoris sequence, choose a couple of subspaces
A,B of X, where X is the union of the interiors of A and B, the Mayer-Vietoris sequence has the form:

· · · → Hn(A ∩B)
φ−→ Hn(A)⊕Hn(B)

ψ−→ Hn(X)
∂−→ Hn−1(A ∩B) −→ · · · → H0(X)→ 0.

1
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1.2 Objectives of the Study

The objectives of this work are the following:

1. To prove the Mayer-Vietoris sequence theorem (Theorem 3.3.2).

2. To compute using the Mayer-Vietoris sequence the homology of some spaces.

3. To go over some general well known results in mathematics, including the Brouwer �xed-point
theorem and the invariant of dimension theorem. And also the problem of the non-contractibility
of the sphere.

1.3 Outline of the Thesis

This essay is divided into �ve chapters. In the �rst chapter, we introduce the topic, brie�y review the
literature, and then state the objectives. In Chapter 2, after reviewing the general concepts of homotopy
theory, we establish the basics of singular homology which are the ingredients for proving the Mayer-
Vietoris sequence theorem. In Chapter 3, we present the proof with all the details of the latter theorem.
In Chapter 4, we present some applications. Finally, in Chapter 5, we give the conclusion of the work.



2. Preliminaries

To achieve the objectives we have set, we �rst have to describe the tools needed. So in this chapter,
we �rst present notions of homotopy, and then alternatively we de�ne the notion singular of homology,
exact sequences, relative homology and reduced homology.

Throughout this work, X and Y are usually two topological spaces, and by map between X and Y we
mean a continuous map.

2.1 Homotopy Equivalence

2.1.1 De�nition (Homotopy). [10] Let f0, f1 : X → Y be two maps. A homotopy between
f0, f1 : X → Y is a map

F : [0, 1]×X −→ Y
(x, t) 7−→ F (x, t)

such that F (x, 0) = f0(x) and F (x, 1) = f1(x) for all x ∈ X. If such an F exists, we say f0 is
homotopic to f1, and write f0 w f1.

2.1.2 Proposition. [10] The relation ' is an equivalence relation on the set of maps from X to Y.

2.1.3 De�nition (Homotopy equivalence). [10] A map f : X → Y is a homotopy equivalence if there is
another map g : Y → X such that f ◦ g ' 1Y and g ◦ f ' 1X . We say that X is homotopy equivalent
to Y or X and Y have the same homotopy type, and we write X ' Y.

2.1.4 De�nition (Deformation retraction). [10] Let A be a subspace of X. We say that A is a retract
of X if there is a continuous map r : X → A such that r ◦ i = 1A. If in addition, i ◦ r ' 1X , we say
that A is a deformation retract of X.

The following proposition gives a useful deformation retract.

2.1.5 Proposition. For n ≥ 0, Sn = {x ∈ Rn+1 : ||x|| = 1} is a deformation retract of Rn+1 − {0}.

Proof. Let i : Sn → Rn+1 − {0} be the inclusion. Let us consider r : Rn+1 − {0} → Sn de�ned by

r(x) =
x

||x||
.

So r is continuous as a quotient of continuous function. Since y ∈ Sn it follows that ||y|| = 1, and we
have r ◦ i = 1Sn so r ◦ i is the identity. Let us show now that i ◦ r is homotopic to the identity. We
consider the map

F (x, t) = tx+ (1− t)r(x).

So F (x, t) = x
[
t + (1− t) 1

||x||
]
, F never vanishes. Hence F is well de�ned. Moreover F is continuous

because r is. In addition, F (x, 0) = r(x) and F (x, 1) = x. So Sn is a deformation retract of Rn+1−{0}.

2.1.6 De�nition (Contractible spaces). [10] A topological space X is said to be contractible if X w {∗}.

2.1.7 Example. For all, n ≥ 0, the space Rn and the disk Dn are contractible.

3
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2.2 Singular Homology

2.2.1 Chain complexes.

2.2.2 De�nition (Chain complex). [10] A chain complex is a collection {An}n∈Z, denoted A∗, of abelian
groups equipped with group homomorphisms ∂n : An → An−1 such that

∂n ◦ ∂n+1 = 0 for all n ∈ Z. (2.2.1)

2.2.3 De�nition. Let A∗ be a chain complex. An element a of An is called

(i) an n-cycle (or just a cycle) if ∂n(a) = 0;

(ii) an n-boundary (or just a boundary) if there exists b ∈ An+1 such that ∂n+1(b) = a.

2.2.4 Remark. The equation 2.2.1 implies that im∂n+1 is a subgroup of Ker∂n.

2.2.5 De�nition (Homology). [10] The homology of a chain complex (A∗, ∂∗) is the graded group
H∗(A) := Ker∂∗/Im∂∗+1. In other words,

Hn(A) = Ker∂n/Im∂n+1

for all n ∈ Z.

2.2.6 Example. Let us consider the chain complex described by the following sequence :

· · · ×0−−→ Z
×2−−→ Z

×0−−→ Z
×2−−→ Z

×0−−→ Z
×2−−→ · · · .

Their homologies groups are alternately isomorphic to Z
2Z and {0}.

2.2.7 De�nition (Chain map). [10] LetA∗ andB∗ be chain complexes. A chain map from f : A∗ −→ B∗
is a collection {fn : An −→ Bn}n∈Z of group homomorphisms such that

∂nfn = fn−1∂n for all n ∈ Z. (2.2.2)

This amounts to saying that the following diagram commutes.

· · · // An+1
∂n+1 //

fn+1

��

An
∂n //

fn
��

An−1

fn−1

��

// · · ·

· · · // Bn+1
∂n+1

// Bn
∂n
// Bn−1 // · · · .

2.2.8 De�nition (Chain homotopy). [10] Let A∗, B∗ be chain complexes, and f0, f1 : A∗ → B∗ be
chain maps. A chain homotopy h between f0 and f1 is a collection of homomorphisms h : An → Bn+1

such that
∂h+ h∂ = f1 − f0.
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2.2.9 Simplices.

2.2.10 De�nition (The n-simplex). [10] Consider a Euclidean space Rm,m ≥ 0 and let n ≤ m. Let
v0, · · · , vn be a sequence of points of Rm such that the di�erence vectors v1−v0, · · · , vn−v0 are linearly
independent. De�ne [v0, · · · , vn] as

[v0, · · · , vn] =

{ n∑
i=0

tivi : (∀i : ti ≥ 0) and
n∑
i=1

ti = 1

}
.

This set is called the n-simplex generated by v0, · · · , vn. The coe�cients ti are called the barycen-

tric coordinates of the point
n∑
i=0

tivi in [v0, · · · , vn]. The points v0, · · · , vn are called the vertices of

[v0, · · · , vn].

2.2.11 De�nition (Standard n-simplex). [3] For n ≥ 0, The standard n-simplex is of points is the subset

of Rn+1 given by ∆n =

{
(t0, . . . , tn) ∈ Rn+1

∣∣ n∑
i=0

ti = 1 and ti ≥ 0 for all i

}
.

2.2.12 Example. [10] The n+ 1 vertices of the standard n-simplex are the points ei ∈ Rn+1, where

e0 = (1, 0, 0, · · · , 0), e1 = (0, 1, 0, · · · , 0), · · · , en = (0, 0, 0, · · · , 1).

Figure 2.1: Standard 2-simplex [3].

2.2.13 De�nition. [10] Let [v0, · · · , vn] be an n-simplex, and let 0 ≤ k ≤ n. The (n−1)-simplex gener-
ated by v0, · · · , vk−1, vk+1, · · · , vn is called a face of [v0, · · · , vn], and it is denoted [v0, · · · , v̂k, · · · , vn].

Now we want to de�ne the notion of singular homology of a given topological space X. We will see that
from any topological space X, we can get the set of singular n-simplices. So we will de�ne a singular
chain complex in terms of �nite formal sums.

2.2.14 De�nition (Singular n-simplex). [10] LetX be a space. A singular n-simplex inX is a continuous
function (also called a map) σ : ∆n −→ X.

2.2.15 Example. [10] The inclusion of the standard n-simplex into Rn+1 is a singular n-simplex.
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2.2.16 Singular homology.

2.2.17 De�nition (Cn(X)). [10] Given a topological space X and n ≥ 0. We de�ne Cn(X) to be the
free abelian group generated by all singular n-simplices in X. An element of Cn(X) is called a singular
n-chain of X.

Moreover elements of Cn(X) are called n chains, or more precisely singular n chains, and are �nite formal
sums

∑
i niσi for ni ∈ Z, σi : ∆n −→ X i ∈ I.

2.2.18 De�nition (Boundary map). [10] The boundary map ∂n : Cn(X)→ Cn−1(X) is the homomor-
phism where ∂n(σ) =

∑n
i=0(−1)iσ|[v0, . . . , v̂i, . . . , vn].

2.2.19 Proposition. For all n ≥ 0, ∂n−1 ◦ ∂n = 0.

Proof. We have : ∂n(σ) =
∑n

i=0(−1)iσ|[v0, . . . , v̂i, . . . , vn] and hence

∂n−1∂n(σ) =
∑
j<i

(−1)i+jσ|[v0, . . . , v̂j , . . . , v̂i, · · · , vn]

−
∑
j>i

(−1)i+jσ|[v0, . . . , v̂i, . . . , v̂j , · · · , vn]

= 0.

In fact, the two summations cancel by switching i and j in the second sum.

2.2.20 Corollary (Singular chain complex). Given a topological spaceX, (C∗(X), ∂∗) is a chain complex.

Proof. The preceding Proposition 2.2.19 gives that ∂ ◦ ∂ = 0.

2.2.21 De�nition (Singular homology group). [10] For all n ≥ 0, the singular homology of X is de�ned
to be the homology of the chain complex (Cn(X), ∂n). That is,

Hn(X) = ker∂n/Im∂n+1.

The group Hn(X) is called the nth singular homology group of X.

2.2.22 Example. [10] If X is a point, then Hn(X) = 0 for n > 0 and H0(X) ∼= Z. In fact here is a
unique singular n-simplex σn : ∆n −→ {∗} for each n, so Cn({∗}) = Z and ∂(σn) =

∑n
i=0(−1)iσn−1,

a sum of n + 1 terms, which is therefore 0 for n odd and σn−1 for n even, n 6= 0. Thus we have the
chain complex:

· · · → Z
∼=−→ Z

0−→ Z
∼=−→ Z

0−→ Z
∼=−→ Z

0−→ Z −→ 0,

the homology groups of this complex are trivial except for H0(X) ∼= Z.

We will move on to homotopy invariance of singular homology.
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2.2.23 Homotopy invariance.

2.2.24 De�nition (Induced map). [10] Let f : X → Y be a map between two topological spaces.
The induced map f] : Cn(X) → Cn(Y ) is de�ned by composing each singular n-simplex σ : ∆n → X
with f to get a singular n-simplex f](σ) = f ◦ σ, and extending f] by linearity. We have the following
commutative diagram:

X

∆n

Y

f

σ

f](σ)

2.2.25 Proposition. Let f : X → Y be a map between two topological spaces. The induced homo-
morphism f] : Cn(X)→ Cn(Y ) is a chain map.

Proof. Let us consider the boundary map ∂n : Cn(X)→ Cn−1(X). Then we have :

f]∂n(σ) = f]
( n∑
i=0

(−1)iσ|[v0, . . . , v̂i, . . . , vn]
)

=

n∑
i=0

(−1)i(f ◦ σ)|[v0, . . . , v̂i, . . . , vn]

= ∂nf](σ), i.e. f]∂(σ) = ∂f](σ).

Thus we have a commutative diagram

· · · // Cn+1(X)
∂n+1 //

f]
��

Cn(X)
∂n //

f]
��

Cn−1(X)

f]
��

// · · ·

· · · // Cn+1(Y )
∂n+1

// Cn(Y )
∂n
// Cn−1(Y ) // · · · .

So f] is a chain map from the singular chain complex of X to that of Y.

2.2.26 Proposition. Let f : X → Y be a map between two topological spaces. Then f] induces a
homomorphism f∗ : Hn(X)→ Hn(Y ).

Proof. By Proposition 2.2.25, the induced homomorphism f] : Cn(X) → Cn(Y ) is a chain map from
the singular chain complex of X to that of Y. So we have the relation f](σ) = f ◦σ, implies that f] takes
cycles to cycles since ∂α = 0 implies ∂(f]α) = f](∂α) = 0. Also, f] takes boundaries to boundaries
since ∂(f]β) = f](∂β). Hence the proposition holds.



Section 2.3. Exact Sequences Page 8

2.2.27 De�nition. The homomorphism f∗ : Hn(X)→ Hn(Y ) is called the induced homomorphism by
f in homology.

2.2.28 Proposition. Let f : X → Y and g : Y → Z be maps. Then

(i) (g ◦ f)∗ = g∗ ◦ f∗,

(ii) (1X)∗ = 1H∗(X).

Proof. This follows immediately from the de�nition.

We will now state some powerful results in singular homology.

2.2.29 Theorem (Homotopy invariance theorem). [10] If two maps f, g : X → Y are homotopic, then
they induce the same maps on homology, i.e. f∗ = g∗ : Hn(X)→ Hn(Y ).

From that homotopy invariance Theorem 2.2.29, we have the following corollary.

2.2.30 Corollary. [10] If f : X → Y is a homotopy equivalence, then f∗ : Hn(X) → Hn(Y ) is an
isomorphism. In other words if X is homotopy equivalent to Y, then H∗(X) is isomorphic to H∗(Y ).

Proof. Let suppose that f is a homotopy equivalence, if g : Y → X is a homotopy inverse, then

g∗ ◦ f∗ = (g ◦ f)∗ = (1X)∗ = 1Hn(X).

On the other hand :
f∗ ◦ g∗ = (f ◦ g)∗ = (1Y )∗ = 1Hn(Y ).

So f∗ is an isomorphism with an inverse g∗.

2.3 Exact Sequences

Here we are interested in the notions of exact sequences.

2.3.1 De�nition. [10] A triple A
f−→ B

g−→ C of abelian groups and homomorphisms is exact if Im(f) =
ker(g). A sequence of abelian groups and homomorphisms

· · · −→M0
f0−→M1

f1−→M2
f2−→ · · · fn−1−−−→Mn

fn−→ · · ·

is exact if each triple Mi
fi−→Mi+1

fi+1−−−→Mi+2 is exact for all i.

2.3.2 De�nition. [10] An exact sequence

0 −→ A
f−→ B

g−→ C −→ 0

is called short exact.
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2.3.3 Proposition. [10] Suppose we have the exact sequences

0 −→ A
f−→ B

and
B

g−→ C −→ 0.

If and only if f is injective and g is surjective.

Proof. The homomorphism 0 −→ A is just the trivial homomorphism with image 0, so Ker(f) = 0 which
means that f is injective. The homomorphism C −→ 0 maps all of C to 0 and hence has kernel C. Since
the sequence is exact we have Im(g) = C and g is surjective; the other implication is straightforward.

2.3.4 Corollary. [10] Given the following short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0

f is injective and g is surjective. If

0 −→ A
f−→ B −→ 0

is exact, then f is an isomorphism.

Proof. Straightforward from the preceding, Proposition 2.3.3.

All those three following lemmas are there to prepare the proof of the great result which is: the short
exact sequences of complexes give rise to long exact sequences in homology (Theorem 2.3.8).

2.3.5 Lemma (Existence of two homomorphisms). Let

0→ A•
i→ B•

j→ C• → 0

be a short exact sequence of chain complexes. Then for all n there exists two homomorphisms

i∗ : Hn(A•)→ Hn(B•) and j∗ : Hn(B•)→ Hn(C•).

Proof. With a slight abuse of notation we will refer to the graded homomorphisms of all of the chain
complexes as ∂, so have the chain complexes (A•, ∂), (B•, ∂), (C•, ∂), and using the fact that

0→ A•
i→ B•

j→ C• → 0

is a short exact sequence of chain complexes.
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We get the following commutative diagram by letting n vary :

0

��

0

��

0

��
· · ·

∂
// An+1

∂
//

i
��

An
∂
//

i
��

An−1

i
��

∂
// · · ·

· · ·
∂
// Bn+1

∂
//

j

��

Bn
∂
//

j

��

Bn−1
∂
//

j

��

· · ·

· · ·
∂
// Cn+1

∂
//

��

Cn
∂
//

��

Cn−1
∂
//

��

· · ·

0 0 0

in which the columns are exact and the rows are chain complexes. The commutativity of the squares
in the short exact sequence of chain complexes implies that i and j are chain maps: i ◦ ∂ = ∂ ◦ i and
j ◦ ∂ = ∂ ◦ j. The image of any boundary is a boundary, and the image of any cycle is a cycle. They
induce homomorphisms i∗ : Hn(A•)→ Hn(B•) and j∗ : Hn(B•)→ Hn(C•).

2.3.6 Lemma (Connecting Homomorphism). [10] Let

0→ A•
i→ B•

j→ C• → 0

be a short exact sequence of chain complexes. Then for all n there exists a canonical homomorphism

∂n : Hn(C•)→ Hn−1(A•).

called connecting homomorphism which is often also called boundary operator.

Proof. We want to prove the existence of the ∂. To do so we must construct the map
∂n : Hn(C•)→ Hn−1(A•), show that it is well de�ned and then show that it is a homomorphism.

• Construction of ∂. Let c ∈ Cn be a cycle. Using the fact that j is into, we can write c = j(b)
for some b ∈ Bn. We also have ∂b ∈ Bn−1 in Kerj, because j(∂b) = ∂j(b) = ∂c = 0. That
implies ∂b = i(a) for some a ∈ An−1 because Kerj = Imi. We also have ∂a = 0 since i(∂a) =
∂i(a) = ∂∂b = 0 and i is injective. Then we can de�ne ∂n : Hn(C•)→ Hn−1(A•) by sending the
homology class of c to the homology class of a, so ∂[c] = [a].

• ∂ is well de�ned. In fact, a is uniquely determined by ∂b since i is injective. Moreover, if we pick a
di�erent value b′ instead of b where j(b′) = j(b) = c, we will get j(b′−b) = 0 so b′−b ∈ kerj = Imi.
b′ − b = i(a′) for some a′, so b′ = b+ i(a′). Replacing by a+ ∂a′ we get

i(a+ ∂a′) = i(a) + i(∂a′) = ∂b+ ∂i(a′) = ∂(b+ i(a′)) = ∂b′.

Indeed the element a + ∂a′ has the same relation with a, so we get the same homology class for
∂[c].
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In the similar way, if we pick a di�erent value c′ in the homology class of c, we replace c with
c′ = c+ ∂c′ for some value c′′ ∈ Cn+1. c = j(b′′) for some b′′ ∈ Bn+1.

c′ = c+ ∂j(b′′) = c+ j(∂b′′) = j(b+ ∂b′′).

So b is replaced by b+ ∂b′′, which leaves ∂b unchanged and then we get the same value for a. we
conclude that the homology class does not depend on the picked element. Since we get the same
homology class for ∂[c]. This is to say that our map ∂ is well de�ned.

• ∂ is a homomorphism. actually if ∂[c1] = [a1] and ∂[c2] = [a2] via elements b1 and b2 as above.
j(b1 + b2) = j(b1) + j(b2) = c1 + c2 and i(a1 + a2) = i(a1) + i(a2) = ∂b1 + ∂b2 = ∂(b1 + b2).
Thus computing ∂([c1] + [c2]) as above we get [a1] + [a2], as wished.

So ∂ is a homomorphism.

2.3.7 Remark. The key notion of the above Lemma is that : the connecting homomorphism
∂n : Hn(C•) → Hn−1(A•) is the map sending the homology class of c to the homology class of a i.e.
∂[c] = [a].

2.3.8 Theorem (The homology long exact sequence). [10] A short exact sequence of chain complexes

0→ A•
i→ B•

j→ C• → 0 induces a long exact sequence in homology groups

· · · → Hn(A•)
i∗−→ Hn(B•)

j∗−→ Hn(C•)
∂−→ Hn−1(A•)

i∗−→ Hn−1(B•)→ · · · . (2.3.1)

Proof. From the Lemma 2.3.5 and Lemma 2.3.6, we already have the existence of i∗, j∗ and ∂ so it
remains just to show that the sequence 5.0.1 is exact. To do so we will proceed in three steps.

Step 1, The goal of this step is to prove that Imi∗ = Kerj∗. So we start by checking Imi∗ ⊂ Kerj∗, this
is straightforward, because j ◦ i = 0 in the short exact sequence and this implies that, now using
that fact that Hn is a covariant functor we get j∗ ◦ i∗ = 0.
Now let check Kerj∗ ⊂ Imi∗, we consider a representative cycle b ∈ Bn for a homology class
in the kernel of j∗. j∗([b]) = 0, so j(b) = ∂c′ for some c′ ∈ Cn+1. Since j is surjective at each
dimension, c′ = j(b′) for some b′ ∈ Bn+1.We evaluate j(b−∂b′) = j(b)−j(∂b′) = j(b)−∂j(b′) =
j(b) − ∂c′ = j(b) − j(b) = 0. (b − ∂b′) ∈ kerj = Imi. Thus b − ∂b′ = i(a) for some a ∈ An.
i(∂a) = ∂i(a) = ∂(b− ∂(b′)) = ∂b = 0 since b is a cycle. By injectivity of i, then, ∂a = 0 and a
is a cycle with a homology class [a]. i∗([a]) = [b− ∂b′] = [b], so [b] ∈ Imi∗.

Step 2, Here we want to prove Imj∗ = Ker∂. If [c] ∈ Imj∗, then b as de�ned when calculating ∂[c] has a
homology class and is therefore a cycle. ∂b = 0 so ∂([c]) = [a] = 0. Thus [c] ∈ Ker∂.
Now assume [c] is in Ker∂. ∂[c] = [a] = 0 so a = ∂a′ for some a′ ∈ An. ∂(b − i(a′)) =
∂b− ∂i(a′) = ∂b− i(∂a′) = ∂b− i(a) = ∂b− ∂b = 0, so the element (b− i(a′)) is a cycle in Bn
and has a homology class [b−i(a0)]. j(b−i(a′)) = j(b)−ji(a0) = j(b) = c so j∗([b−i(a0)]) = [c]
and thus [c] ∈ Imj∗.

Step 3, It remain to check that Im∂ = Keri∗. i∗ takes ∂[c] = [a] to [∂b], which is 0, so Im∂ ⊂ Keri∗.
A homology class in Keri∗ is represented by an cycle a ∈ An−1 where i(a) = ∂b for some b ∈ Bn.
∂j(b) = j(∂b) = ji(a) = 0, so j(b) is a cycle and has a homology class [j(b)]. The homomorphism
∂ takes [j(b)] to [a], and thus [a] ∈ Im∂.
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2.4 Reduced and Relative Homology

It is often very useful to have a modi�ed version of homology for which a point has trivial homology
groups in all dimensions, generally we want to get something like H̃0(X) = 0 for a point, where H̃
stands for the reduced homology that we now de�ne.

2.4.1 Reduced Homology.

2.4.2 De�nition. [10] Let X be a non-empty topological space, The reduced homology H̃ is the
homology of the augmented chain complex

· · · −→ C2(X)
∂2−→ C1(X)

∂1−→ C1(X)
∂1−→ C0(X)

ε−→ Z −→ 0

where the homomorphism C0(X)
ε−→ Z is de�ned by ε(

∑
i niσi) =

∑
i ni, so H0(X) ∼= H̃0(X)⊕ Z and

Hn(X) ∼= H̃n(X) for all n > 0.

2.4.3 Remark. The relations H0(X) ∼= H̃0(X)⊕Z and Hn(X) ∼= H̃n(X) for all n > 0, are meaningful.
In fact, ε ◦ ∂1 = 0, so ε vanishes on Im∂1 and hence induces a map H0(X) → Z with kernel H̃0(X).
Obviously Hn(X) ∼= H̃n(X) for all n > 0.

2.4.4 Corollary. If X is a non-empty contractible space then H̃n(X) = 0 for all n ≥ 0.

Proof. We have X contractible that implies that X is homotopy equivalent to the point {∗}. By using
Proposition 2.2.30, we get H̃n(X) ∼= H̃n({∗}), but H0(X) ∼= H̃n(X) ⊕ Z ∼= Z by de�nition. Hence
H̃n(X) ∼= H̃n({∗}) = 0.

Let us move on to relative homology. In fact, relative homology is seen as a generalization of a homology
theory on topological spaces X to a homology theory on pairs of spaces (X,A), where A ⊂ X.

2.4.5 Relative Homology.

2.4.6 Proposition. [10] Given a space X and a subspace A ⊂ X, let Cn(X,A) = Cn(X)/Cn(A)
be the quotient group, the boundary map ∂ : Cn(X) → Cn−1(X) induces a quotient boundary map
∂ : Cn(X,A)→ Cn−1(X,A) so that when n varies we have a sequence of boundary maps

· · · → Cn(X,A)
∂−→ Cn−1(X,A)→ · · · i.e. ∂ ◦ ∂ = 0.

2.4.7 De�nition (Relative Chain Complex). Let A ⊂ X, be a subspace of a topological space X.
The relative chain complex of the pair (X,A) is C•(X,A) = C•(X)/C•(A). And for n ≥ 0, We call
Cn(X,A) = Cn(X)/Cn(A) the nth relative chain complex of X and A.

2.4.8 Remark. This de�nition makes sense, since we have from Proposition 2.4.6, a sequence

· · · → Cn(X,A)
∂−→ Cn−1(X,A))

∂−→ Cn−2(X,A)→ · · · with ∂ ◦ ∂ = 0.

2.4.9 De�nition (Relative Homology). Let A ⊂ X, be a subspace of a topological space X. The
relative homology of the pair (X,A) is the homology of the relative chain complex C•(X,A), i.e.
Hn(X,A) = Hn(C•(X,A)).

We are now going to give some corollaries showing the relationship between relative Homology and
reduced Homology. Actually, the following is a consequence of Theorem 2.3.8.
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2.4.10 Corollary (Reduced Long Exact Homology Sequence). Let (X,A) be a pair with A 6= ∅, we get
a long exact sequence for the reduced homology of relative homology:

· · · → H̃n(A)→ H̃n(X)→ H̃n(X,A)→ H̃n−1(A)→ H̃n−1(X)→ · · · → H0(X,A)→ 0.

2.4.11 Example. For all n > 0, let us consider the disks Dn = {(x1, · · · , xn) ∈ Rn :

n∑
i=1

x2i ≤ 1}. We

have
Hi(D

n, ∂Dn) ∼= Hi−1(S
n−1) for all i > 0.

Where ∂Dn = Sn−1 is the unit sphere. In fact, Applying the exact sequence of reduced homology to
the pair (Dn, ∂Dn) we get the sequence:

· · · → H̃n(Dn)→ Hn(Dn, Sn−1)→ H̃n−1(S
n−1)→ H̃n−1(D

n)→ · · · .

Because the disk is contractible, we know its reduced homology groups vanish in all dimensions, so the
above sequence collapses to the short exact sequence:

0→ Hi(D
n, Sn−1)→ H̃i−1(S

n−1)→ 0 for all i > 0.

So Hi(D
n, Sn−1) ∼= H̃i−1(S

n−1) for all i > 0.

2.4.12 Remark. We also have the long exact sequence for relative homology given in the similar way
as in the preceding corollary (Corollary 2.4.10).

2.4.13 Corollary. [10] Let X be a space, x0 ∈ X be a basepoint. And let A ⊂ X, be a non-empty
subspace of X, we have the following results:

(i) H̃n({x0}) = 0 for all n,

(ii) H̃n(X) = Hn(X, {x0}) for all n,

(iii) H̃n(X,A) = Hn(X,A) for n ≥ 1.



3. Mayer-Vietoris Sequences

In this chapter we will discuss the important Mayer-Vietoris sequence, which is one of the key tools for
computing the singular homology of various topological spaces. One can think of the Mayer-Vietoris
sequence as a way to "glue" the homology of subspaces, easier to calculate, in order to get the homology
of the big space. It turns out that the proof of this involves the notion of barycentric subdivision.

3.1 The Subdivision Chain Map

3.1.1 De�nition (Barycenter). The barycenter of an n-simplex [v0, ..., vn] is the point b of the form
b =

∑
i tivi, where ti = 1/(n+ 1) for all i.

3.1.2 De�nition (Barycentric subdivision). Let n ∈ N, the barycentric subdivision of an n-simplex
[v0, · · · , vn] is de�ned by induction on n. For n = 0, the barycentric subdivision of [v0] is de�ned to be
[v0] itself. Assume that the barycentric subdivision is de�ned for (n−1)-simplices. De�ne the barycentric
subdivision of [v0, · · · , vn] as the decomposition of [v0, · · · , vn] into the n- simplices [b, w0, · · · , wn−1],
where b is the barycenter of [v0, · · · , vn], and [w0, · · · , wn−1] is an (n − 1)-simplex in the barycentric
subdivision of a face [v0, · · · , v̂i, · · · , vn] for 0 ≤ i ≤ n.

3.1.3 Example. The cases n = 1, 2 and part of the case n = 3 are shown in the �gure below.

Figure 3.1: Barycentric subdivision [10].

3.1.4 De�nition (Diameter of a simplex). The diameter of a simplex [v0, · · · , vn] is the maximum
distance between any two of its points, it is denoted by diam([v0, · · · , vn]).

3.1.5 Lemma. The diameter of every simplex 3.1.4 in the barycentric subdivision 3.1.2 of [v0, · · · , vn]
is bounded from above by n/(n + 1) times the diameter of [v0, · · · , vn] i.e. if ∆

′
is a simplex in the

barycenter subdivision of ∆ then diam(∆
′
) ≤ n

n+1diam(∆).

Proof. We prove this by induction on n.

The base case, when n = 0 holds, because ∆0 = [v0] has just one simplex and its barycentric subdivision
is itself.

Let us assume that this is true for n − 1. Let b =
∑

i tivi, with
∑

i ti = 1 be the barycenter of
∆ = [v0, · · · , vn].

14
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Then the maximum distance between two points v and b of ∆ satis�es the inequality

|v −
∑
i

tivi| = |
∑
i

ti(v − vi)| ≤
∑
i

ti|v − vi| ≤
∑
i

timax|v − vi| = max|v − vi|.

Indeed we need to verify that the distance between any two vertices wj and wk of a simplex [w0, · · · , wn]
of the barycentric subdivision of [v0, · · · , vn] is at most n/(n + 1) times the diameter of [v0, · · · , vn].
Then we have two cases:

If b is not a vertex of ∆
′
then ∆

′
lies in ∂∆ and so we are done by induction.

Suppose b is a vertex of ∆
′
. Then; ∆

′
= [b, w0, · · · , wn−1], where [w0, · · · , wn−1] is a simplex in the

barycentric subdivision of the face, [v0, · · · , v̂i, · · · , vn] of ∆.

Let bi be the barycenter of [v0, · · · , v̂i, · · · , vn]. Then the line through vi and b meets [v0, · · · , v̂i, · · · , vn]
in the barycenter bi of [v0, · · · , v̂i, · · · , vn].

Then we have b = 1
n+1vi + n

n+1bi because bi be the barycenter of [v0, · · · , v̂i, · · · , vn].

Figure 3.2: Barycenter [10].

So we have :
|b− vi| =

n

n+ 1
|vi − bi| ≤

n

n+ 1
diam(∆).

And so it follows by the induction hypothesis that:

diam(∆
′
) = maxi 6=j |wi − wj | ≤

n− 1

n
diam(∆) ≤ n

n+ 1
diam(∆)

where wi, wj are vertices of ∆.

In the sequel, Y is a convex subset in some Rm,m ≥ 0.

3.1.6 De�nition (Linear simplex). Let ∆n = [v0, · · · , vn], with n ≤ m. A singular simplex λ : ∆n → Y
is called linear if for every element x =

∑
i tivi in ∆n, we have λ(x) =

∑
i tiλ(vi).

3.1.7 De�nition (Linear chain). Let ∆n = [v0, · · · , vn], with n ≤ m. A linear chain of Y (more precisely
linear n-chain) is a formal �nite sum

∑
i niλi, where every λi is a linear simplex of Y.

3.1.8 De�nition (LC•(Y )). We de�ne LC•(Y ) to be the subgroup of C•(Y ) whose elements are linear
chains.

3.1.9 Remark. (CL•(Y ), ∂) is a chain complex where the boundary map ∂ : C•(Y ) −→ C•−1(Y ) takes
LCn(Y ) to LCn−1(Y ).
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3.1.10 De�nition (Cone operator b). Let b ∈ Y. Then the homomorphism b : LCn(Y ) → LCn+1(Y )
de�ned by b([w0, · · · , wn]) = [b, w0, · · · , wn] is called cone operator.

3.1.11 Example (Example of representation for n = 2). Here is an example for n = 2, so we have
∆2 = [w0, w1, w2].

w1

w0

w2

b

b

w2

w1

w0

Figure 3.3: Example of representation (cone operator).

3.1.12 Proposition. The cone operator b de�ned in De�nition 3.1.10 is a chain homotopy on LC•(Y )
connecting the identity map to the zero map, i.e. ∂b+ b∂ = 1.

Proof. Since we are considering convex subsets of Euclidean space. One has:

∂b([w0, · · · , wn]) = ∂[b, w0, · · · , wn]

= [w0, · · · , wn]−
n∑
i=0

(−1)i[b, w0, · · · , ŵi, · · · , wn]

= [w0, · · · , wn]−
n∑
i=0

(−1)ib[w0, · · · , ŵi, · · · , wn]

= [w0, · · · , wn]− b
( n∑
i=0

(−1)i [w0, · · · , ŵi, · · · , wn]

)
= [w0, · · · , wn]− b

(
∂[w0, · · · , wn]

)
.

So
∂b([w0, · · · , wn]) = [w0, · · · , wn]− b(∂[w0, · · · , wn]).

Hence ∂b+ b∂ = 1.

3.1.13 Remark. To avoid having the particular case for example 0-simplices, it will be good to set
LC−1(Y ) = Z generated by the empty simplex [∅], with ∂[w0] = [∅] for all 0-simplices [w0].

3.1.14 De�nition. The subdivision operator on linear chains S : LCn(Y ) −→ LCn(Y ) is de�ned
inductively as follows:
Let λ : ∆n −→ Y be a generator of LCn(Y ) and let bλ be the image of the barycenter of ∆n

under λ, i.e. bλ = λ(barycenter of ∆n). Then we set S([∅]) = [∅], and S(λ) = bλ(S∂λ) where
bλ : LCn−1(Y ) −→ LCn(Y ) is the cone operator de�ned earlier. More precisely, the induction is given
by Sn(λ) = bλ(Sn−1∂λ).



Section 3.1. The Subdivision Chain Map Page 17

3.1.15 Lemma. The subdivision operator S : Cn(X) −→ Cn(X) is chain map.

Proof. Let us check that the maps S satisfy ∂S = S∂. We want to check the cases n = 0 and n = −1.
In fact, S is the identity on LC0(Y ) and LC−1(Y ), in fact by Sλ = bλSλ = bλS[∅] = bλ[∅]. Then we
use ∂bλλ+ bλ∂λ = λ and induction

∂Sλ = ∂(bλ(S∂λ))

= S∂λ− bλ(∂S∂λ)

= S∂λ− bλS(∂∂λ)

= S∂λ.

That implies ∂S = S∂ on LC0(Y ).

The result for larger n is given by the following calculation.

∂Sλ = ∂bλ(S∂λ)

= S∂λ− bλ(∂S∂λ) since ∂bλ = 1− bλ∂
= S∂λ− bλS(∂∂λ) since ∂S(∂λ) = S∂(∂λ) by induction on n

= S∂λ since ∂∂ = 0.

3.1.16 Example. Let λ = [v0, v1] : ∆1 → Y. Then;

S(λ) = bλS(∂λ) = bλS([v1]− [v0])

= bλ([v1]− [v0])

= [bλ, v1]− [bλ, v0].

3.1.17 De�nition. We de�ne a chain homotopy T : LCn(Y ) −→ LCn+1(Y ) between S and the
identity, �tting into a diagram

,

such that T on LCn(Y ) is given inductively by setting T = 0 for n = −1 and letting Tλ = bλ(λ−T∂λ)
for n ≥ 0. More precisely, the induction is given by Tnλ = bλ(λ− Tn−1∂nλ).

3.1.18 Lemma. The map T is a chain homotopy between S and the identity.

Proof. We verify the formula on LCn(Y ) with n ≥ 0 by doing the following calculation.

∂Tλ = ∂bλ(λ− T∂λ)

= λ− T∂λ− bλ∂(λ− T∂λ) since ∂bλ = 1− bλ∂
= λ− T∂λ− bλ(∂λ− ∂T (∂λ)) by induction on n

= λ− T∂λ− bλ
[
S(∂λ) + T∂(∂λ)

]
= λ− T∂λ− Sλ since ∂∂ = 0 and Sλ = bλ(S∂λ).
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Now we can discard the group LC−1(Y ) and the relation ∂T + T∂ = 1− S still holds since T was zero
on LC−1(Y ).

3.1.19 Lemma. Let us consider

S : Cn(X)→ Cn(X)
σ 7→ σ]S∆

n

for a singular n simplex σ : ∆n −→ X, where S∆n is the sum of the n simplices in the barycentric
subdivision of ∆n, with certain signs, Sσ is the corresponding signed sum of the restrictions of σ to
the n simplices of the barycentric subdivision of ∆n, and σ] is the induced homomorphism. Then the
operator S is a chain map.

Proof. For the proof we use Lemma 3.1.15, so

∂Sσ = ∂σ]S∆
n = σ]∂S∆

n = σ]S∂∆
n

= σ]S(
∑
i

(−1)i∆n
i ) where ∆n

i is the ith face of ∆n

=
∑
i

(−1)iσ]S∆
n
i

=
∑
i

(−1)iS(σ|∆n
i )

= S(
∑
i

(−1)iσ|∆n
i )

= S(∂σ).

3.1.20 Lemma. The map T : Cn(X) −→ Cn+1(X) de�ned by Tσ = σ]T∆
n, and this gives a chain

homotopy between S and the identity.

Proof. Since the formula ∂T + T∂ = 1− S holds by the calculation

∂Tσ = ∂σ]T∆
n = σ]∂T∆

n = σ](∆
n − S∆n − T∂∆n) = σ − Sσ − σ]T∂∆n

= σ − Sσ − T (∂σ),

where the last equality follows just as in the previous displayed calculation, with S replaced by T.

3.1.21 Lemma. Let S be as in Lemma 3.1.19, and let m ∈ N. A chain homotopy between 1 and the
iterate Sm is given by the operator

Dm =
m∑
i=0

TSi.
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Proof. We have

∂Dm +Dm∂ =

m∑
i=o

(∂TSi + TSi∂) =

m∑
i=o

(∂TSi + T∂Si)

=

m∑
i=o

(∂T + T∂)Si =

m∑
i=o

(1− S)Si

=

m∑
i=o

(Si − Si+1)

= 1− Sm.

3.2 The Key Isomorphism

3.2.1 De�nition (Interior). Let X be a topological space and A ⊂ X a subspace. The interior of A
denoted by int(A) is the union of all open subsets of X which are contained in A.

3.2.2 De�nition. Let X be a topological space, U = {Ui : i ∈ I} a collection of subspaces of X such
that {int(Ui) : i ∈ I} forms an open cover of X, i.e.

⋃
i∈I

int(Ui) = X.

3.2.3 De�nition (CUn (X) and HUn (X)). [16] The complex CU• (X) ⊆ C•(X) is the subgroup generated
by those singular n-simplices σ : ∆n −→ X such that σ(∆n) ⊆ Ui for some i ∈ I, i.e.

CUn (X) =

{∑
i niσi ∈ Cn(X) : ni ∈ Z σi : ∆n → X; such that there exists j with σi(∆

n) ⊂ Uj
}
.

And we de�ne : HUn (X) as Hn(CU• (X)).

3.2.4 Remark. So given Cn(X)
∂−→ Cn(X) and CUn (X)

∂−→ CUn (X) we have a chain complex (CUn (X), ∂)
which is in fact a subcomplex of (Cn(X), ∂).

The following proposition says that the natural map HUn (X)→ Hn(X) is an isomorphism for all n.

3.2.5 Proposition. The inclusion ι : CUn (X) ↪→ Cn(X) is a chain homotopy equivalence, that is, there
is a chain map ρ : Cn(X) −→ CUn (X) such that ι ◦ ρ and ρ ◦ ι are chain homotopic to the identity.
Hence ι induces isomorphisms HUn (X) ∼= Hn(X) for all n.

Proof. The proof is based on the preceding lemmas.

The �rst thing to do is to construct ρ : Cn(X) −→ CUn (X). We will proceed in two steps :

• First step: Let σ : ∆n −→ X be a singular n-simplex in X. If Ui, i ∈ I is an open sets in U , then
σ−1(int(Ui)), is an open cover of ∆n which has a Lebesgue number δ. Then there is m ∈ N such
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that all non-trivial summands of Sm(∆)n have diameter < δ. This means that they are mapped
to one of the sets Ui. Let m(σ) be the smallest m such that each simplex appearing in Sm(∆n)
is mapped to one of the sets Ui by σ (i depends on the simplex). Then ∂ρ(σ) is in CU• (X) but
the subdivision might not be optimal. Thus it is not clear that ρ is a chain map.

• Second step: Let σ and m(σ) be as in the �rst step and we de�ne:

D : Cn(X)→ Cn(X)
σ 7→ Dm(σ)σ

We have already
∂Dm(σ)σ︸ ︷︷ ︸

=Dσ

+Dm(σ)(∂σ)︸ ︷︷ ︸
6=Dm(σ)

= σ − Sm(σ)σ.

Reorganizing the summands

∂Dσ +D∂σ = σ − (Sm(σ) +Dm(σ)∂σ −D(∂σ)︸ ︷︷ ︸
=:ρ

.

Therefore, we de�ne

ρ : C•(X) −→ C•(X)
σ 7→ Sm(σ)σ +Dm(σ)∂σ −D∂σ.

It can be interpreted in terms of that equation:

ρ = 1− ∂D −D∂.

It follows easily that ρ is a chain map since:

∂ρ(σ) = ∂σ − ∂2Dσ − ∂D∂σ = ∂σ − ∂D∂σ
and

ρ(∂σ) = ∂σ − ∂D∂σ −D∂2σ = ∂σ − ∂D∂σ.

To prove that ρ(σ) ∈ CUn (X), we compute ρ(σ) more explicitly:

ρ(σ) = σ − ∂Dσ −D(∂σ)

= σ − ∂Dm(σ)σ −D(∂σ)

= Sm(σ)σ +Dm(σ)(∂σ)−D(∂σ) since ∂Dm +Dm∂ = 1− Sm.

We have Sm(σ)σ ∈ CUn (X) by the de�nition of m(σ). The terms Dm(σ)(∂σ) −D(∂σ) are linear com-
binations of terms Dm(σ)(σj) − Dm(σj)(σj) for σj the restriction of σ to the jth face of ∆n, then
m(σj) ≤ m(σ), so every term TSi(σj) in D(∂σ) will be a term in Dm(σ)(∂σ). Hence the di�erence
Dm(σ)(σj)−Dm(σj)(σj) consists of terms TSi(σj) with ι ≥ m(σj), and these terms are in CUn (X) by
de�nition of T. In fact, T takes element from CUn−1(X) to CUn (X).

We have shown that, ι ◦ ρ : C•(X) −→ C•(X) is chain homotopic to 1. By the de�nition of ρ it follows
that if σ ∈ CUn (X), then m(σ) = 0. Hence, Sm(σ)σ = σ and ρ ◦ ι : C•(X) −→ C•(X) is chain
homotopic to 1 (because ρ ◦ ι = 1). Thus we have shown that ρ is a chain homotopy inverse for ι.
Hence ι induces isomorphisms HUn (X) ∼= Hn(X) for all n.
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3.3 Establishing the Mayer-Vietoris Theorem

We now move on to stating and proving the Excision theorem. And then we will prove by the Mayer-
Vietoris sequences.

3.3.1 Theorem (Excision theorem). [10] For subspaces A,B ⊂ X whose interiors cover X, the inclusion

(B,A ∩B) ↪→ (X,A) induces isomorphisms Hn(B,A ∩B)
∼=−→ Hn(X,A) for all n.

Proof. We use Proposition 3.2.5, so we for a space X, let us consider U = {A,B} be a collection of
subspaces of X whose interiors form an open cover of X, then X = A ∪ B. We also set CUn (X) :=
Cn(A+B) to be the sums of chains in A and chains in B. So we have the formula ∂D+D∂ = 1− ι◦ρ
and ρ ◦ ι = 1. All the maps that are in these formulas take chains in A to chains in A, so they induce
quotient maps. Since the quotient map satis�ed the formulas ∂D + D∂ = 1 − ι ◦ ρ and ρ ◦ ι = 1. So
the inclusion Cn(A + B)/Cn(A) ↪→ Cn(X)/Cn(A) induces an isomorphism on homology. Now using
the inclusion (B,A ∩B) ↪→ (X,A), we get the map Cn(B)/Cn(A ∩B) −→ Cn(A+B)/Cn(A) which
induce an isomorphisms on homology. Since the chain complexes are isomorphic: chains that are in B
which do not lie in A ∩ B are the same as chains that are either entirely in A or entirely in B but are

not in A. So we get the isomorphism Hn(B,A ∩B)
∼=−→ Hn(X,A) induced by inclusion.

Now we present the Mayer-Vietoris sequence which is a powerful tool to help compute the homology of
topological spaces.

3.3.2 Theorem (Mayer-Vietoris sequences). [10]

Let X be a topological space, and let A,B ⊂ X be subspaces such that X is the union of the interiors
of A and B. Then there exists a long exact sequence

· · · → Hn(A ∩B)
φ−→ Hn(A)⊕Hn(B)

ψ−→ Hn(X)
∂−→ Hn−1(A ∩B) −→ · · · → H0(X)→ 0 (3.3.1)

Proof. Let X be a topological space, and let A,B ⊂ X be subspaces such that X is the union of the
interiors of A and B and let U = {A,B}. Let Cn(A+B) denote the subgroup of Cn(X) whose elements
are precisely sums of singular simplices in either A or B. The boundary maps ∂ on Cn(X) restrict to
CUn (X) := Cn(A+B) and we get a chain complex (C•(A+B), ∂).

According to Proposition 3.2.5, the inclusions CUn (X) := Cn(A + B) ↪→ Cn(X) induce isomorphisms
on homology groups. So we have

HUn (X) ∼= Hn(X). (3.3.2)

To this end, for n ∈ N,≥ 0, consider the following sequence:

0→ Cn(A ∩B)
φ−→ Cn(A)⊕ Cn(B)

ψ−→ Cn(A+B) −→ 0 (3.3.3)

where, φ(x) = (x,−x) for all x ∈ Cn(A∩B) and ψ(x, y) = x+ y for all (x, y) ∈ Cn(A)⊕Cn(B). We
claim that this sequence is exact, in fact:

• ψ is surjective by the de�nition of Cn(A+B).
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• φ is injective, since Kerfφ = 0.

• For all x ∈ Cn(A ∩B), ψ ◦ φ(x) = x− x = 0. Therefore Im(φ) ⊆ Kerf(ψ).

• If (x, y) ∈ Ker(ψ), then x is a chain in A, y is a chain in B, and y = −x. This implies that x is a
chain in A ∩B and φ(x) = (x,−x) = (x, y). Therefore Kerf(ψ) ⊆ Im(φ).

Now applying the theorem of long exact sequence in homology 2.3.8 to the sequence given in the equation
3.3.3, we get

· · · → Hn(A ∩B)
φ−→ Hn(A)⊕Hn(B)

ψ−→ HUn (X)
∂−→ Hn−1(A ∩B) −→ · · · → H0(X)→ 0, (3.3.4)

Plugging these isomorphisms HUn (X) ∼= Hn(X) (equation 3.3.2) into the above long exact sequence,
we get the Mayer-Vietoris Sequence which is then the long exact sequence associated to the short:

0→ Cn(A ∩B)
φ−→ Cn(A)⊕ Cn(B)

ψ−→ Cn(A+B) −→ 0.

3.3.3 Remark (The boundary operator ∂ is well de�ned). In fact, every element α ∈ Hn(X) is repre-
sented by a cycle z and by the barycentric subdivision 3.1.5, we can pick z = x+ y in such a way that
x supported in A and y supported in B. We have ∂x = −∂y since ∂(x + y) = 0 by de�nition of the
sequence 3.3.3, and the element ∂α ∈ Hn−1(A ∩B) is represented by the cycle ∂x = −∂y.

Figure 3.4: Representation of the boundary map ∂.

3.3.4 Remark (Mayer-Vietoris sequences follow also from excision theorem 3.3.1). Another way of
proving Mayer-Vietoris sequences 3.3.2 is to use directly the Excision theorem 3.3.1. In fact we consider
the maps ϕ and ψ to be given in terms of inclusion. On the other hand, the map ∂ comes from the
composition of the maps ∂1 and ∂2 satisfying :

Hn(X)
∂1−→ Hn(X,A) ∼= Hn(B,B ∩A)

∂2−→ Hn−1(A ∩B)

where ∂2 comes from the exactness sequence. And the isomorphism Hn(X,A) ∼= Hn(B,B ∩A) comes
from Excision theorem, so it just remains to check that the sequence is exact. So it turns out that the
Mayer-Vietoris sequence theorem is another expression of the Excision theorem.
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3.3.5 Remark (Reduced version of the Mayer-Vietoris sequence). For reduced homology 2.4.2 there
is also a Mayer-Vietoris sequence for reduced homology, under the assumption that A and B have
non-empty intersection. The sequence is identical for positive dimensions and ends as:

· · · → H̃0(A ∩B)−→ H̃0(A)⊕ H̃0(B)−→ H̃0(X)→ 0.

Having studied Mayer-Vietoris sequences, we will now use it to compute and describe the homology
group of some spaces in the next chapter.



4. Applications

In this chapter, we use Mayer-Vietoris sequences to do lots of computations. In the �rst section, we
compute the homology of spheres which leads us to many results, including the Brouwer �xed point
theorem. And then we compute the homology of the wedge of two spaces in section 4.2. Section 4.3
deals with the torus. Furthermore in section 4.4, we calculate the homology of the Klein bottle. Finally,
Section 4.5 deals with the homology of the real projective plan.

4.1 Homology of the Spheres

4.1.1 De�nition. For n ∈ N,≥ 0, n-sphere (unit sphere) in Rn+1 is de�ned by:

Sn = {x ∈ Rn+1 : ||x|| = 1}.

The case when n = 0 is trivial. In fact since Sn has two path components, so H0(S
0) ∼= Z⊕Z. Further,

we have Hp(S
0) ∼= 0, p > 0, because each path component is a single point.

The next thing we are going to do is to focus on S1.

4.1.2 Theorem. We have

Hp(S
1) =

{
Z if p ∈ {0, 1}

0 otherwise.

Proof.

•• The case p = 0, is straightforward H0(S
1) = Z, since S1 is path connected.

• Let now consider the case p = 1, let A = S1 − {(0, 1)} and B = S1 − {(0,−1)} be to two open
subsets of S1, we have both A and B are open in S1 and hence A = intA and B = intB. Further,
intA ∪ intB = S1. We claim that A and B are homeomorphic to R, and the homeomorphism
is given by the stereographic projection in [7]. So R being contractile, it has the same type of
homotopy as a point i.e.

Hp(A) = Hp(B) = Hp(R) =

{
Z if p = 0
0 if p 6= 0.

Also, A ∩B is homotopy equivalent to the 0-sphere S0 so Hp(A ∩B) = Z⊕ Z because we have
two connected components for p = 0 and we have Hp(A ∩ B) = 0 for p 6= 0. Now using the
reduced Mayer-Vietoris sequence, we have :

· · · → H̃1(A ∩B) −→ H̃1(A)⊕ H̃1(B) −→ H̃1(A ∪B) −→ H̃0(A ∩B) −→ · · ·

which implies:
0→ H̃1(S

1)→ Z→ 0.

So H̃1(S
1) ∼= Z which implies H1(S

1) ∼= Z.

24
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• Let us consider p ≥ 2, applying the Mayer-Vietoris sequences we will have:

0→ Hp(S
1)→ Hp−1(A ∩B)→ 0.

Since Hp−1(A∩B) = 0, it follows by the exactness that Hp(S
1) = 0. This ends the proof. So for

all p ≥ 2, Hp(S
1) = 0.

Now we are ready to handle the general case.

4.1.3 Theorem. For any n ≥ 1, we have

Hp(S
n) =

{
Z if p = 0, n

0 otherwise.

Proof. We prove the result by induction on n. The case n = 0 or n = 1 we are done by the preceding
theorems. Let n > 1, we again cut up Sn as A = Sn − {N} and B = Sn − {S} where N and S are
the north and south poles of Sn. We examine the Mayer-Vietoris sequence with p > 0

· · · −→ Hp(A)⊕Hp(B) −→ Hp(S
n) −→ Hp−1(A ∩B) −→ Hp−1(A)⊕Hp−1(B) −→ · · · .

If p > 1 the end terms are isomorphic to 0, because A and B are homeomorphic to Rn, and the
homeomorphism is given by the stereographic projection in [7]. Further Hp−1(A ∩ B) ∼= Hp−1(S

n−1)
because A∩B ∼= R×Sn−1 ' Sn−1 is homotopy equivalent to Rn−{0}. Using the inductive hypothesis
and the exactness we get Hp(S

n) ∼= Z if p = n and Hp(S
n) = 0 otherwise.

If p = 1, we use the reduced version of the Mayer-Vietoris sequence, then we will get:

0 −→ H̃1(S
n) −→ H̃0(S

n−1) −→ 0.

So H̃1(S
n) ∼= H̃0(S

n−1) ∼= 0. That implies H1(S
n) ∼= 0.

4.1.4 Corollary. For m 6= n the spheres Sm and Sn are not homotopy equivalent.

Proof. Let us assume n 6= m, so by the preceding Theorem 4.1.3, the homology groups Hn(Sm) and
Hn(Sn) are not the same, it follows that the homology groups of Sm and Sn are not isomorphic. So,
Sm and Sn are not homotopy equivalent [7].

4.1.5 Corollary. For n ≥ 0 the sphere Sn is not contractible.

Proof. Let us assume n ≥ 0, by contradiction, assume that Sn is contractible i.e. Sn ' {∗}. So

Hp(S
n) = Hp({∗}) =

{
Z if p = 0
0 otherwise.

Let us take n = p so we have two cases:

If n = 0, In that case, we have H0(S
0) = Z⊕ Z, which contradicts the fact that Sn ' {∗}.

Now if n 6= 0 we have Hp(S
n) = 0, that is a contradiction, because using Theorem 4.1.3, we have

Hp(S
n) = Z if p = n 6= 0. Hence Sn is not contractible.



Section 4.1. Homology of the Spheres Page 26

4.1.6 Corollary. (Invariance of dimension). Let m,n ≥ 0. The spaces Rm and Rn are homeomorphic if
and only if m = n.

Proof. Let us assume that Rm and Rn are homeomorphic, so we have a homeomorphism

f : Rm −→ Rn. Let us choose an arbitrary x0 ∈ Rm. We obtain an induced homeomorphism

f : Rm−{x0} −→ Rn−{f(x0)}. If one of n andm are zero, automatically the other have to be zero due to
the homeomorphism. Let us assume that n,m > 0. Then Rm−{x0} and the Rn−{f(x0)} are homotopy
equivalent to a sphere of the respective dimension i.e. Rm − {x0} w Sm−1 w Rn − {f(x0)} w Sn−1.
Which implies the homotopy equivalence S−1 w Sn−1. But by Corollary 4.1.4, we have n = m. That
leads us to a contradiction. If we suppose now n = m, it is straightforward that Rm is homeomorphic
to itself.

4.1.7 De�nition. For all n ∈ N,≥ 0, n-ball (unit ball) in Rn is de�ned to be :

Dn = {(x1, · · · , xn) ∈ Rn :
n∑
i=1

x2i ≤ 1}.

4.1.8 Corollary. (Brouwer �xed point theorem). For n ≥ 0, every continuous map f : Dn −→ Dn has
a �xed point.

Proof. If n = 0, we are done obvious since D0 is the one-point space. By contradiction let us assume
that f has no �xed point. Let us consider a retraction r : Dn −→ Sn−1 = ∂Dn de�ned by taking the
intersection of the ray from f(x) through x with ∂Dn which is continuous.

Figure 4.1: The disk D2.

If x ∈ ∂Dn then r(x) = x. So we have

Sn−1 = ∂Dn i−→ Dn r−→ ∂Dn = Sn−1 where r ◦ i = 1Sn−1 . That induces on homology

Hn−1(S
n−1)

i∗−→ Hn−1(D
n)

r∗−→ Hn−1(S
n−1) where r ◦ i = 1Sn−1 .

SinceDn is contractile we haveHn−1(D
n) = 0 and using Theorem 4.1.3, we also haveHn−1(S

n−1) = Z.

So we get Z
i∗−→ 0

r∗−→ Z which implies the contraction, since r is a retraction. So f has a �xed point.

So far, we have been talking about spheres. We now move on to something di�erent.
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4.2 Homology of the Wedge of Spaces

4.2.1 De�nition (Wedge Sum). [10] Let X and Y be two topological spaces. Let x ∈ X and y ∈ Y
be basepoints respectively of X and Y. The wedge sum of X and Y (with respect to x and y) is the
quotient X ∨ Y = X t Y/ ∼ of the disjoint union X t Y by the smallest relation ∼ identifying x and y
to a single basepoint.

4.2.2 Theorem. Let X and Y be two topological spaces in which the basepoints of X and Y are
identi�ed in X ∨ Y and are deformation retracts of neighborhoods of X and of Y.

Then Hn(X ∨ Y ) ∼= Hn(X)⊕Hn(Y ) for all n ∈ N∗.

Proof. Let x0 be the basepoint of X ∨ Y, with the neighborhoods of A ⊆ X and B ⊆ Y so that
X ∨ Y = (X ∪B) ∪ (Y ∪A). The Mayer-Vietoris sequence

· · · → Hn

[
(X∪B)∩(Y ∪A)

]
−→ Hn(X∪B)⊕Hn(Y ∪A) −→ Hn(X∨Y ) −→ Hn−1

[
(X∪B)∩(Y ∪A)

]
−→ · · ·

Using the fact that A and B are deformation retract onto x0, we have X ∪B w X and Y ∪A w Y. So
Hn(X ∪ B) ∼= Hn(X) and Hn(Y ∪ A) ∼= Hn(Y ), moreover (X ∪ B) ∩ (Y ∪ A) = A ∪ B. That leads
us to the following exact sequence:

· · · → Hn(A ∪B) −→ Hn(X)⊕Hn(Y ) −→ Hn(X ∨ Y ) −→ Hn−1(A ∪B) −→ · · · .

But we have taken a neighborhoods of x0, such that it satis�ed A∪B is contractible, so Hn(A∪B) = 0
for all n ∈ N∗. Then we end up getting :

0 −→ Hn(X)⊕Hn(Y ) −→ Hn(X ∨ Y ) −→ 0.

Hence Hn(X ∨ Y ) ∼= Hn(X)⊕Hn(Y ) for n ∈ N∗.

4.2.3 Remark. In particular, we have the same relation for the reduced homology, i.e.

H̃n(X ∨ Y ) ∼= H̃n(X)⊕ H̃n(Y )

consequently, we can say that the homology functor H̃∗ : Top → GrAb from the category of pointed
topological spaces to the category of graded abelian groups is additive.

4.2.4 Corollary. Let S1 be a unit circle. Let us consider S1 ∨ S1 the Wedge sum of two circles S1 and
S1 with the common basepoint x0 ∈ S1.

Figure 4.2: The wedge of two copies of the circle.
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Then:

Hn(S1 ∨ S1) =


Z if n = 0

Z⊕ Z if n = 1
0 if n ≥ 2.

Proof. So the case n = 0 comes from the fact that the wedge S1∨S1 is connected. For the case n = 1,
we consider the isomorphism H1(S

1 ∨ S1) ∼= H1(S
1)⊕H1(S

1) given in the preceding Theorem 4.2. So
H1(S

1 ∨ S1) ∼= Z⊕ Z. For n ≥ 2, we still Hn(S1 ∨ S1) ∼= Hn(S1)⊕Hn(S1) for n ∈ N, n ≥ 2. But we
have from Theorem 4.1.2, Hn(S1) ∼= 0 for n ≥ 2. Hence Hn(S1 ∨ S1) ∼= 0 for n ∈ N, n ≥ 2.

4.3 Homology of the Torus

4.3.1 De�nition (Torus). Let X = [0, 1] × [0, 1] the product of two copies of the interval, and let ∼
be the equivalence relation on X that is generated by the identi�cations (s, 0) ∼ (s, 1) for all s ∈ [0, 1]
and (0, t) ∼ (1, t) for all t ∈ [0, 1]. We write T = X/ ∼ for the resulting quotient space and note that
it is homeomorphic to a torus.

The representation is given by the �gure below:

Figure 4.3: Torus representation.

4.3.2 Remark. The preceding representation comes from the fact that every compact surface admits a
polygonal presentation (a planar diagram). In particular, for the Torus we have can see the �gure below.

Figure 4.4: Reduction of the Torus [8].

4.3.3 Theorem. The singular homology groups of T are as follows:

Hn(T ) =


Z if n = 0

Z⊕ Z if n = 1
Z if n = 2
0 if n ≥ 3.
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Proof. Let I = [0, 1], A be an open square inside I × I. Also let us consider B′ be a closed square inside
A, as in the �gure below.

Figure 4.5: Torus.

We de�ne B = T −B′. Since A is contractile, A w {∗}; B ' ∂(I × I)/ ∼' S1 ∨ S1 by identi�cation,
where S1∨S1 is the wedge of two circles. Moreover, we have A∩B ' S1. The Mayer-Vietoris sequence
is:

· · · → Hn(A ∩B) −→ Hn(A)⊕Hn(B) −→ Hn(T ) −→ Hn−1(A ∩B) −→ · · · −→ H0(T )→ 0.

Now, we proceed in three steps.

Case 1, n ≥ 3, Hn(A) = Hn(B) = Hn(A ∩ B) = 0, because A is contractible and B is homotopy
equivalent to the wedge S1 ∨ S1. So

0→ 0→ Hn(T )→ 0→ 0→ 0→ · · · .

So Hn(T ) = 0.

Case 2, n = 0, since T is connected, we have H0(T ) = Z.

Case 3, Let us now deal with the case n = 1 and n = 2, the reduced version of the Mayer-Vietoris sequence
gives:

0→ H̃2(T )→ H̃1(A ∩B)→ H̃1(A)⊕ H̃1(B)→ H̃1(T )→ 0, we can rewrite it as

0
ϕ1−→ H̃2(T )

ϕ2−→ Z
ϕ3−→ Z⊕ Z

ϕ4−→ H̃1(T )
ϕ5−→ 0.

Where directly we have ϕ1 = ϕ5 = 0; but for ϕ3 : H1(A ∩ B) → H1(A) ⊕ H1(B), we use the
fact that the generator of H1(A∩B) is 1 which corresponds to a loops around B′. To de�ned ϕ3,
we need to use Figure 4.5. So we have ϕ3(1) = b + a − b − a = 0. Finally ϕ3 is de�ned by the
generator as follows:

ϕ3 : Z −→ Z⊕ Z
1 7−→ (0, 0).
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Indeed, Imϕ3 = 0; and Kerϕ3 = Z by de�nition of ϕ3. Now applying the �rst isomorphism theorem
to ϕ2. We get:
H2(T )
kerϕ2

∼= Imϕ2 = Kerϕ3 = Z, since Kerϕ2 = Imϕ1 = 0. We have H2(T ) = Z.

Let now look for the value of H1(T ). We apply once more the �rst isomorphism theorem to ϕ4 to
get:

Z⊕ Z
Kerϕ4

∼= Imϕ4, (4.3.1)

because of the exactness, we have Kerϕ4 = Imϕ3 = 0. Moreover Imϕ4 = Kerϕ5 = H1(T ). The
equation 4.3.1 becomes Z⊕Z

{0}
∼= H1(T ). Finally, H1(T ) ∼= Z⊕ Z.

Hence

Hn(T ) =


Z if n = 0

Z⊕ Z if n = 1
Z if n = 2
0 if n ≥ 3.

4.4 Homology of the Klein bottle

We want to compute the homology groups of the Klein bottle.

4.4.1 De�nition (Klein bottle). The Klein Bottle can be de�ned as the quotient space K of the square
[0, 1] × [0, 1] modulo the equivalence relation ∼ that is generated by the identi�cations (s, 0) ∼ (s, 1)
for all s ∈ [0, 1], and (0, t) ∼ (1, 1− t) for all t ∈ [0, 1].

The representation is given by the �gure below:

Figure 4.6: Klein bottle representation.

4.4.2 Remark. The representation comes from the fact that every compact surface admits a polygonal
presentation (a planar diagram).
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In particular, we can easily move from the polygonal representation to the surface as we can see for the
case of the Klein bottle in the �gure below.

Figure 4.7: Reduction of the Klein bottle [8].

4.4.3 Theorem. Let K be the Klein bottle. The singular homology groups of K are as follows:

Hn(K) =


Z if n = 0

Z⊕ Z
2Z if n = 1
0 if n ≥ 2.

Proof. Let I = [0, 1], A be an open square inside I × I. Also let us consider B′ be a closed square inside
A, as in the �gure below:

Figure 4.8: Klein bottle.

We de�ne B = K −B′. Since A is contractile, A w {∗}; B ' ∂(I × I)/ ∼' S1 ∨ S1 by identi�cation,
where S1 ∨ S1 is the wedge of two circles. Moreover, we have A ∩B ' S1. By applying Mayer-Vietoris
sequence we get :

· · · → Hn(A ∩B) −→ Hn(A)⊕Hn(B) −→ Hn(K) −→ Hn−1(A ∩B) −→ · · · −→ H0(K)→ 0.

Now, we proceed in three cases.

Case 1. n ≥ 3, Hn(A) = Hn(B) = Hn(A ∩ B) = 0, because A is contractible and B is homotopy
equivalent to the wedge S1 ∨ S1. So

0→ 0→ Hn(K)→ 0→ 0→ 0→ · · · .

So Hn(K) = 0.
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Case 2. n = 0, since K is connected, we have H0(K) = Z.

Case 3. Let us now deal with the case n = 1, and n = 2, the reduced version of the Mayer-Vietoris sequence
gives: 0→ H̃2(K)→ H̃1(A ∩B)→ H̃1(A)⊕ H̃1(B)→ H̃1(K)→ 0, we can rewrite is as

0
ϕ1−→ H̃2(K)

ϕ2−→ Z
ϕ3−→ Z⊕ Z

ϕ4−→ H̃1(K)
ϕ5−→ 0.

Where directly we have ϕ1 = ϕ5 = 0; but for ϕ3 : H1(A ∩ B) → H1(A) ⊕ H1(B), we use the
fact that the generator of H1(A∩B) is 1 which corresponds to a loops around B′. To de�ned ϕ3,
we need to use Figure 4.8: So we have ϕ3(1) = b + a + b − a = 2b. Finally ϕ3 is de�ned by the
generator as follows:

ϕ3 : Z −→ Z⊕ Z
1 7−→ (0, 2).

Indeed, Imϕ3 = 0⊕2Z; and Kerϕ3 = 0. Because ϕ3 is injective. Now applying the �rst isomorphism
theorem to ϕ2. We get:
H2(K)
kerϕ2

∼= Imϕ2 = Kerϕ3 = 0, since Kerϕ2 = Imϕ1 = 0. Hence H2(K) = 0.

Let now look for the value of H1(K). We apply once more the �rst isomorphism theorem to ϕ4

to get:

Z⊕ Z
Kerϕ4

∼= Imϕ4, (4.4.1)

because of the exactness, we have Kerϕ4 = Imϕ3 = 0⊕ 2Z. Moreover Imϕ4 = Kerϕ5 = H1(K).
The equation 4.5.1 becomes Z⊕Z

0⊕2Z
∼= H1(K). Finally, H1(K) ∼= Z⊕ Z

2Z .

Hence

Hn(K) =


Z if n = 0

Z⊕ Z
2Z if n = 1
0 if n ≥ 2.

4.5 Homology of the Projective Plane

In this section, we will use the Mayer-Vietoris sequence to compute the homology of real real projective
plane RP 2.

4.5.1 De�nition. The real projective plan is made from the set of nonzero vectors v ∈ R3 − {0} up
to equivalence relation v ∼ λv, λ ∈ R∗ under scaling i.e. RP 2 := R3 − {0}/ ∼ . Moreover, RP 2 it is
equivalently identify as S2/{−x ∼ x}.
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The representation is given by the �gure below:

Figure 4.9: Projective plane RP 2.

4.5.2 Theorem. We have

Hn(RP 2) =


Z if n = 0

Z/2Z if n = 1
0 if n ≥ 2.

Proof. The projective plane RP 2 can be identi�ed with the quotient D2/ ∼, where ∼ is the equivalence
relation generated by −x ∼ x for every x in the boundary of the disk D2. As we can see in the �gure
below:

Figure 4.10: Reduction of RP 2 [8].

So we set A to be a open disk inside D2 and B′ be a closed disk in A, as in the �gure below:

Figure 4.11: Projective plane.
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We de�ne B = RP 2 − B′. Since A is contractile, A w {∗}; and we have B ' S1. Moreover, we have
A ∩B ' S1. By applying Mayer-Vietoris sequence we get :

· · · → Hn(A ∩B) −→ Hn(A)⊕Hn(B) −→ Hn(RP 2) −→ Hn−1(A ∩B) −→ · · · −→ H0(RP
2)→ 0.

Now, we proceed in three cases.

Case 1, n ≥ 3, Hn(A) = Hn(B) = Hn(A ∩B) = 0. So

0→ 0→ Hn(RP 2)→ 0→ 0→ 0→ · · · .

So Hn(RP 2) = 0.

Case 2, n = 0, since RP 2 is connected, we have H0(RP 2) = Z.

Case 3, Let us now deal with the case n = 1 and n = 2, the reduced version of the Mayer-Vietoris sequence
gives: 0→ H̃2(RP 2)→ H̃1(A ∩B)→ H̃1(A)⊕ H̃1(B)→ H̃1(RP 2)→ 0, we can rewrite is as

0
ϕ1−→ H̃2(RP

2)
ϕ2−→ Z

ϕ3−→ Z
ϕ4−→ H̃1(RP

2)
ϕ5−→ 0.

Where directly we have ϕ1 = ϕ5 = 0; but for ϕ3 : H1(A∩B)→ H1(A)⊕H1(B), we use the fact
that the generator of H1(A ∩B) is 1 which corresponds to a loops around B′. To de�ned ϕ3, we
need to use Figure 4.11: So we have ϕ3(1) = a + a = 2a. Finally ϕ3 is de�ned by the generator
as follows:

ϕ3 : Z −→ Z
1 7−→ 2.

Indeed, Imϕ3 = 2Z; and Kerϕ3 = 0. Because ϕ3 is injective. Now applying the �rst isomorphism
theorem to ϕ2. We get:
H2(RP 2)
kerϕ2

∼= Imϕ2 = Kerϕ3 = 0, since Kerϕ2 = Imϕ1 = 0. Hence H2(RP 2) = 0.

Let now look for the value of H1(RP 2). We apply once more the �rst isomorphism theorem to ϕ4

to get:

Z
Kerϕ4

∼= Imϕ4, (4.5.1)

because of the exactness, we have Kerϕ4 = Imϕ3 = 2Z. Moreover Imϕ4 = Kerϕ5 = H1(RP 2).
The equation 4.5.1 becomes Z

2Z
∼= H1(RP 2). Finally, H1(RP 2) ∼= Z

2Z .

Hence, we have the expected homology of the projective plane:

Hn(RP 2) =


Z if n = 0

Z/2Z if n = 1
0 if n ≥ 2.



5. Conclusion

The goal of this essay was to master the Mayer-Vietoris sequence and treat some applications. We �rst
presented some notions in singular homology, and then we established one of the most important results
in homological algebra [18], which says that, any short exact sequence of chain complexes in this form:

0→ A
i→ B

j→ C → 0 induces a long exact sequence in homology groups

· · · → Hn(A)
i∗−→ Hn(B)

j∗−→ Hn(C)
∂−→ Hn−1(A)

i∗−→ Hn−1(B)→ · · · .

Then we proved that for two elements cover {A,B} of X there exists a short sequence

0→ Cn(A ∩B)
φ−→ Cn(A)⊕ Cn(B)

ψ−→ Cn(A+B) −→ 0.

So the Mayer-Vietoris sequence given below

· · · → Hn(A ∩B)
φ−→ Hn(A)⊕Hn(B)

ψ−→ Hn(X)
∂−→ Hn−1(A ∩B) −→ · · · → H0(X)→ 0 (5.0.1)

turned out to be the long exact sequence induced by it. After mastering very well the Mayer-Vietoris
theorem (Theorem 3.3.2), we used it to make some calculations. In fact, we calculated the homology of
many spaces, including the homology of the sphere. Actually, its homology yielded a lot of consequences
that we had to clarify. One of them was the Brouwer �xed-point theorem, in fact, we justi�ed why for
n ≥ 0, every continuous map f : Dn −→ Dn has a �xed point. And also, we proved the following
statement, "the spaces Rm and Rn are homeomorphic if and only if m = n," known on the name,
invariant of dimension theorem. We also discussed the problem of the non contractibility of the sphere.
And we come to the conclusion with rigorous arguments that the sphere Sn is not contractible. From
all these results, we can conclude that the tool Mayer-Vietoris sequence is very applicable. On the other
hand, the homology of the wedge of spaces (Section 4.2) was also very rich in consequences, in the sense
that for two spaces X and Y, we had the following isomorphism:

H̃∗(X ∨ Y ) ∼= H̃∗(X)⊕ H̃∗(Y ),

which is very meaningful, actually it means that the homology functor H̃∗ : Top → GrAb from the
category of pointed topological spaces to the category of graded abelian groups is additive [11]. In the
future, we plan to go further in that direction and try to provide the details of the fact that H̃∗ is excisive
in the sense of Goodwillie calculus of functors [9]. So we will try to understand (by going over the
de�nition of excisive in [19],) why the excisiveness of the functor H̃∗ is related to the fact that it has
Mayer-Vietoris sequences for pushout squares [12].

35



Appendix A.

A.1 Some group notions

In this section, we recall some de�nitions and theorems on group theory for a well understanding of this
essay.

A.1.1 De�nition (Group). A group is a set G, together with an operation "·" (called the group law of
G) that combines any two elements a and b to form another element, denoted a · b or ab. Such that, the
set and operation (G, ·), satis�ed four requirements known as the group axioms:

• For all a, b in G, the result of the operation a.b, is also in G. This axiom is called closure.

• For all a, b and c in G, (a · b) · c = a · (b · c). This axiom is called associativity.

• There exists an element e in G such that, for every element a in G, the equation e · a = a · e = a
holds. This axiom is called inverse element.

• For each a in G, there exists an element b in G, commonly denoted a−1, such that a · b = e and
b · a = e. This axiom is called identity element.

A.1.2 Remark. If moreover for all a, b in A; a · b = b · a, we say that (G, ·) is an abelian group.

A.1.3 Theorem (First Isomorphic Theorem). Let φ : G→ G′ be a group homomorphism. Then

G/ker(φ) ∼= Im(φ).

Proof. We set H = ker(φ), since ker(φ) is a normal subgroup of G. This gives us a homomorphism
ψ : G/H → Im(φ) such that ψ ◦ π = φ, where π : G → G/H is the canonical surjection. Let
g′ ∈ Im(φ). Then there is a g ∈ G such that φ(g) = g′. But then ψ([g]) = φ(g) = g′ and hence ψ is
surjective. Suppose ψ[g] = 0. Then φ(g) = 0, which means that g ∈ ker(φ). But then [g] = [0], which
shows that ψ is injective. Thus ψ is an isomorphism.

Here is a variation that is more used.

A.1.4 Theorem. Let φ : G→ G′ be a surjective group homomorphism. Then

G/ker(φ) ∼= G′.

A.1.5 De�nition (Free abelian group). [11] An abelian group G is free if there exists a subset A ⊆ G
(called a basis) such that every element g ∈ G has a unique representation

g =
∑
x∈A

nx · x

where nx is an integer and equal to zero for all but �nitely many x ∈ A.
A.1.6 De�nition (Graded abelian group). A graded abelian group G is a collection of abelian groups
{Gn}n≥0. In particular, we call the graded group {Hn(X)}n≥0 the homology of a topological space X.

Throughout this essay, we referred to the free abelian group with a given basis. The following result
show that such a group always exists.

A.1.7 Theorem. [11] Given an arbitrary set A there exists a free abelian group with basis A.
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