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Introduction

A long knot is a smooth embedding f : R ↪→ Rd from R to a Euclidean space
Rd, d ≥ 3, that coincides outside a compact set with a fixed linear embedding
(see Definition 2.1.1). The following is an example of a simple long knot.

The space of long knots, denoted by Knot, is the collection of all long knots
endowed with a suitable topology (see Definition 2.1.2). The goal of this the-
sis is to study the homology of that space. More precisely, we will explicitly
compute its algebraic structure. Further in the work we will extend our study
to spaces of long links and their high dimensional analogues, which are gener-
alizations of long knots spaces.

The homology H∗(Knot) has a very rich structure: we will show that it is a
Gerstenhaber algebra (which can be viewed as a variation of a Poisson algebra).
Roughly speaking, a Gerstenhaber algebra is a graded vector space V =

⊕
k

Vk

endowed with a product × : Vp⊗Vq −→ Vp+q and a bracket {−,−} : Vp⊗Vq −→
Vp+q+1 satisfying some conditions (see Definition 3.2.3).

It is well known that there is a product on Knot constructed as follows. Let
us take two long knots, f and g, and "join" the end of one to the other. The
result is a new long knot, f#g, as shown in the following pictures.

1



2 Introduction

This defines a map #: Knot × Knot −→ Knot called the concatenation
operation. Let #∗ denote the induced map in homology, and consider the
following composite

H∗(Knot)⊗H∗(Knot) // H∗(Knot×Knot)
#∗ // H∗(Knot)

in which the first map is the Künneth morphism. Let us denote this composite
by ×1. We thus have a morphism

×1 : H∗(Knot)⊗H∗(Knot) −→ H∗(Knot)

which endows the homology H∗(Knot) with the structure of a commutative
algebra.

There is a second, more subtle, operation on the homology H∗(Knot) of the
space of long knots which is induced by a map

φ : S1 ×Knot×Knot −→ Knot,

where S1 is the unit circle. For two given long knots f, g ∈ Knot the map

φ(−, f, g) : S1 −→ Knot, z 7→ φ(z, f, g)

can be geometrically understood as making the knot f pass through the knot
g and the knot g pass through the knot f , as is shown in the picture below.

Passing to homology, the map φ induces a map

H∗(S1)⊗H∗(Knot)⊗H∗(Knot) −→ H∗(Knot),

and restricting to the generator of H1(S1) we get an operation

{−,−}1 : Hp(Knot)⊗Hq(Knot) −→ Hp+q+1(Knot).

Let Knot be the following variation of the space of long knots. An element
of Knot can be viewed as a thickened long knot. As before, there is also a
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product ×1 and a bracket {−,−}1 on the homology H∗(Knot), which turns
out to be a Gerstenhaber algebra as proven by Budney in [8]. There is another
Gerstenhaber algebra structure 1 (constructed by Sinha [44] and McClure-
Smith [32]) that we would like to understand. The first result in this thesis will
be a full explicitation of this latter Gerstenhaber algebra structure.

The study of the space of long knots is based on a construction of Sinha
inspired by the Goodwillie-Weiss calculus [19]. Intuitively, a long knot can be
discretized as a sequence of distinct points (see picture below), and this leads
to consider the configuration spaces in the study of Knot. Recall that the
configuration space of k points in Rd is the space

Conf(k,Rd) = {(x1, · · · , xk) ∈ (Rd)k| xi 6= xj whenever i 6= j}.

There exists compactifications Conf
〈
k,Rd

〉
weakly equivalent to Conf(k,Rd).

The spaces Conf
〈
k,Rd

〉
are very easy to understand, and constitute the build-

ing blocks of Sinha’s cosimplicial model for the space Knot (a cosimplicial model
can be understood as a combinatorial model). More precisely Sinha shows [44]

that there is a cosimplicial space (known as Sinha’s cosimplicial space)

Conf
〈
0,Rd

〉
// // Conf

〈
1,Rd

〉oo
////// Conf

〈
2,Rd

〉
· · ·oo oo

1It is the Gerstenhaber algebra structure induced by the action of an E2 operad built by
McClure and Smith in [32]. The question to know whether the McClure-Smith action and
the Budney action are equivalent is still open in my knowledge
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whose totalization or total space is weakly equivalent to Knot. The advantage
of this result is one can compute the homologyH∗(Knot), based on the fact that
the homology H∗(Conf

〈
k,Rd

〉
) is well known (see Fred Cohen [10]), by using a

powerful tool known as Bousfield-Kan spectral sequence. Recall that a spectral
sequence is a tool for computing some algebraic objects, in particular homology,
by taking "successive approximations". It can be viewed as a book (with an
infinite number of pages!) where the homology of one page gives the following
page. The page ∞ encodes the "useful information" for computations. Some-
times, from some page, we read exactly the same thing in the rest of the book.
In that case we say that the spectral sequence collapses at that page, which
therefore contains all the "useful information". So it is very interesting when a
spectral sequence collapses because we can then make computations easily. In
[26], Lambrechts, Turchin and Volić proves that for d ≥ 4 the spectral sequence
computing the homology of Knot collapses at the E2 page rationally. This E2

page was extensively studied by several authors, and one of the first results is
the fact that it is isomorphic to the graded vector space

⊕
k≥0

H∗(Conf
〈
k,Rd

〉
).

It is also equiped with the natural structure of a Gerstenhaber algebra that we
recall now. First define a map

Conf
〈
2,Rd

〉
× Conf

〈
p,Rd

〉
× Conf

〈
q,Rd

〉
−→ Conf

〈
p+ q;Rd

〉
that sends a = (a1, a2) ∈ Conf

〈
2,Rd

〉
, x ∈ Conf

〈
p,Rd

〉
and y ∈ Conf

〈
q,Rd

〉
to

the configuration of p+ q points obtained by "replacing" a1 and a2 respectively
by x and y. The induced map in homology gives a map

β : H0(Sd−1)⊗Hr(Conf
〈
p,Rd

〉
)⊗Hs(Conf

〈
q,Rd

〉
) −→ Hr+s(Conf

〈
p+ q;Rd

〉
),

which defines a product ×2 = β(µ⊗−). Here µ is the generator of H0(Sd−1).
Next define maps

◦i : Conf
〈
p,Rd

〉
× Conf

〈
q,Rd

〉
−→ Conf

〈
p+ q − 1,Rd

〉
, 1 ≤ i ≤ p,

that send x and y to the configuration of p + q − 1 points obtained by "re-
placing" the ith point xi of x by the configuration y. Let us denote again by
◦i the induced map in homology, and define a bracket {−,−}2 by {x, y}2 =
±
∑p
i=1 x ◦i y ±

∑q
j=1 y ◦j x. For appropriate signs, see formula (3.2.6) from

Chapter 3. Notice that the product ×2 can also be expressed in term of the
insertion map ◦i: x ×2 y = (µ ◦2 y) ◦1 x. Define finally a differential DK by
DK(x) = {µ, x}2. Now equip the vector space

⊕
k≥0

(H∗Conf
〈
k,Rd

〉
) with the

differential DK. It is a chain complex, and its homology, equipped with the
product ×2 and the bracket {−,−}2, turns out to be a Gerstenhaber algebra.

From now on we have two Gerstenhaber algebras: the homology of the space
of long knots endowed with the Gerstenhaber algebra structure (constructed by
Sinha and McClure-Smith) we said before, and the explicit one we just defined
in term of the homology of configuration spaces. At first glance, they appear
quite different, but, somewhat miraculously, they turn out to be related. More
precisely, we have the following theorem.
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Theorem A. (Theorem 4.1.5) Let the real numbers be the set of coefficients.
Then, for d ≥ 4, there is an isomorphism

H∗(Knot) ∼= H∗

⊕
k≥0

(H∗Conf
〈
k,Rd

〉
), DK

 (0.0.1)

that respects the Gerstenhaber algebra structure.

Notice that it was already proved in [26] that both sides of (0.0.1) where
isomorphic as graded vector spaces. Notice also that Cattaneo-Cotta-Ramusino-
Longoni [9] and Turchin [54] compute some homology classes of the space of long
knots. Our Theorem A enables us to determine if certain homology classes are
decomposable or not. On that point, we furnish a table at the end of Chapter 4.

In order to prove Theorem A we need to introduce the notion of operad
(nonsymmetric). Roughly speaking, an element of an operad is an operation
with many inputs (their number is called the arity) and one output. An element
of the structure of an operad is a map that sends two operations of arity p and
q to an operation of arity p + q − 1. The example of operad we look at is the
collection

Conf
〈
•,Rd

〉
= {Conf

〈
k,Rd

〉
}k≥0,

equipped with maps ◦i defined before. This operad is known in the littera-
ture as Kontsevich’s operad. When d = 1, we get the nonsymmetric operad
Conf 〈•,R〉, also called the associative operad, which is very simple. If there
is a morphism from the associative operad to another operad O(•), we say
that O(•) is a multiplicative operad. For instance the standard linear inclusion
R ↪→ Rd induces a morphism Conf 〈•,R〉 −→ Conf

〈
•,Rd

〉
, and therefore the

Kontsevich operad Conf
〈
•,Rd

〉
is multiplicative.

Maxim Kontsevich introduced the notion of formality of an operad in his
famous paper [25]. Let us be precise about what this means. A morphism
between two chain complexes is said to be a quasi-isomorphism (we will denote
it by ∼−→) if it induces an isomorphism in homology. An operad O is said to be
formal if its singular chain complex S∗O and its homology H∗O are connected
by a zigzag of quasi-isomorphisms of operads. In 1999, Kontsevich [25] proved
that Conf

〈
•,Rd

〉
is formal. Ten years later, P. Lambrechts and I. Volić [27]

developed the details of Kontsevich’s proof, and construct in particular an
explicit zigzag

S∗Conf
〈
•,Rd

〉 ∼←− · · · ∼−→ H∗Conf
〈
•,Rd

〉
.

Since the operads S∗Conf
〈
•,Rd

〉
and H∗Conf

〈
•,Rd

〉
are all multiplicative,

it is natural to ask whether they are connected by a zigzag of multiplicative
operads. The following theorem answers this question.

Theorem B. (Theorem 4.1.1) For d ≥ 3 the Kontsevich operad is formal over
reals as a multiplicative operad

Notice that in [27] it is only proved that the operad Conf
〈
•,Rd

〉
is formal

as "up to homotopy multiplicative operad". Theorem B admits an interesting
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corollary in the sense that it simplifies considerably the main result of [26] (or
Theorem 2.4.1). Recall that the notion of formality is defined in a similar way
for cosimplicial spaces. That is, a cosimplicial space is formal if its singular
chain complex can be "replaced" by its homology.

Corollary C. (Corollary 4.1.3) For d ≥ 3, Sinha’s cosimplicial space is formal
over reals.

Notice that the main result of [26] is proved only for d > 3, but our approach
also does the work in the three-dimensional space (as shown by Corollary C).

It is known that there exists cosimplicial machinery (built by McClure
and Smith in [32]) that takes a multiplicative operad as input and produces a
cosimplicial space whose totalization admits an action of an operad D2 weakly
equivalent to Conf

〈
•,R2〉. This operad D2 has a complicated description. In

[41] Salvatore shows that it is isomorphic to a much simpler operad: the cacti
operad (an operation of arity k is a cactus with k lobes). This latter operad
has a nice geometric description, and acts (see Salvatore again in [41]) on the
totalization. The natural question one can ask is whether the McClure-Smith
action and the cacti action are equivalent. The following theorem gives a
positive answer.

Theorem D. (Theorem 3.3.19) Let O• be a cosimplicial space associated to
a multiplicative operad. Then the McClure-Smith and the cacti operad actions
on the totalization of O• are equivalent.

To prove Theorem D, we will explicitly construct (in a more combinatorial
way) the cacti operad action.

At the beginning of the introduction, we mentioned that we will study
generalizations of long knots spaces. As first generalization, we have the space
of long links. Let us precise what it means. A long link of m strands is a
smooth embedding f :

∐m
i=1 R ↪→ Rd of m copies of R inside the Euclidean

space Rd that coincides outside a compact set with a fixed linear embedding
(see Definition 5.1.1). A long link of one strand is a long knot. The following
picture is that of a long link of 2 strands.

The space of long links of m strands , denoted by Linkm, is defined to be the
collection of all long links of m strands equipped with a suitable topology (see
Definition 5.1.2). The homology H∗(Linkm) is equipped with the structure of
an algebra, the product being induced by the concatenation operation as in the
case of long knots. The lack of a bracket comes essentially from the fact that
it is not possible in general to "pull one long link through another".
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The study of the space Linkm is mainly based on the theory of Goodwillie-
Weiss [19], which allows rebuilding the space of embeddings of one manifold
inside another by means of configuration spaces of points in the target manifold.
By this theory, an element of the configuration space Conf

〈
mk,Rd

〉
of mk

points in Rd should be thought as a configuration of m × k points such that
there are exactly k points on each strand of a long link. From this point of
view, there is a map

di : Conf
〈
mk,Rd

〉
−→ Conf

〈
m(k + 1),Rd

〉
sending a configuration of mk points to the configuration of m(k + 1) points
obtained by "doubling" simultaneously the ith point of each strand. Let us
denote again by di the induced map in homology, and define a map DL as
the alternating sum of di’s, that is, DL =

∑
i(−1)idi. Since the homology of

configuration spaces is explicitly computable, and since the maps di are defined
explicitly, it follows that the map DL is explicit. It turns out to be a differential
such that the couple (

⊕
k≥0

H∗(Conf
〈
mk,Rd

〉
), DL) is a chain complex. The ho-

mology of that chain complex is therefore explicitly computable, and is related
to the homology of Linkm. To be precise, we have the following theorem in
which Linkm is a variation of the space of long links.

Theorem E. (Theorem 5.1.3 and Corollary 5.1.4) Let the rational numbers be
the set of coefficients. Then there is an isomorphism of vector spaces

H∗(Linkm) ∼= H∗

⊕
k≥0

(
H∗(Conf

〈
mk,Rd

〉
), DL

) .

This theorem with m = 1 looks like Theorem A if one considers only the
vector space structures. But the methods of proof are completely different.
This is due to the fact that the space of long knots can be rebuilt from an
operad (the Kontsevich operad) while the space of long links cannot. To prove
Theorem E we use a variation of the Goodwillie-Weiss theory developed by
Arone and Turchin in [2].

Theorem E can be reformulated as follows. In [35] Munson and Volić con-
struct in the same spirit as Sinha a cosimplicial space {Conf

〈
mk,Rd

〉
}k≥0 that

gives a cosimplicial model for the space of long links. They also conjecture
that the spectral sequence computing the homology H∗(Linkm) collapses. The
following result proves that conjecture.

Theorem F. (Theorem 5.1.6) The spectral sequence associated to the Munson-
Volić cosimplicial model for the space Linkm collapses at the E2 page ratio-
nally.

Theorem E and Theorem F allow us to make computations. Among other
things, they allow us to prove the growth of the Betti numbers of the space
Linkm. More precisely, we can prove the following theorem.

Theorem G. (Theorem 5.1.8) The radius of convergence of the Poincaré se-
ries for the space Linkm is less than or equal to ( 1

m )
1

d−1 . Therefore the Betti
numbers of Linkm have at least an exponential growth.
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An immediate consequence of Theorem G is the following corollary.

Corollary H. (Corollary 5.1.9) The radius of convergence of the Poincaré
series for Linkm tends to 0 as m goes to ∞.

In the particular case m = 1, we have Link1 = Knot, and Turchin [53]
proves that the radius of convergence of the space Knot is less that or equal
to ( 1√

2 )
1

d−1 . Hence the bound of Turchin is much better than our bound in
Theorem G which is 1. Since it is easy to see that the space (Knot)×m of m
copies of long knots is a retract (up to homotopy) of Linkm, it follows that
the radius of convergence of Linkm is also less than or equal to ( 1√

2 )
1

d−1 . Our
Corollary H furnishes a better upper bound for m large.

We have extended our study to the high dimensional analogue of the space
of long links, that is, the space of smooth embeddings of m copies of Rn inside
Rd that coincides outside of compact set with a fixed linear embedding. Let us
denote it by Linknm. As before let Linknm be a variation of the space Linknm.
Let us also denote by kn the number of k-simplices minus 1 in the simplicial
model of the wedge of m copies of the n dimensional sphere (this simplicial
model is well known). The following theorem is a generalization of Theorem E.

Theorem I. (Theorem 5.5.2 and Corollary 5.5.3) With rational coefficients,
there is an isomorphism of vector spaces

H∗(Link
n

m) ∼= H∗

⊕
k≥0

H∗(Conf
〈
kn,Rd

〉
)

 .

Some of the results of this thesis appear already in our paper [47] (Theo-
rem A, Theorem B), and in our preprint [49] (Theorem E, Theorem F, Theo-
rem G).

Organization of the work

This work is divided into five chapters each of them starting with a detailed
introduction. Here is an overview of these introductions.

- In Chapter 1 we recall some basic notions such as simplicial and cosimpli-
cial objects, model categories, operads, and spectral sequences. We also
prove that the relative properness axiom, which says that the pushout
in the model or semimodel category of nonsymmetric operads of a weak
equivalence along a cofibration gives a weak equivalence, holds in the
semimodel category of nonsymmetric operads. This axiom will be used
to prove Theorem B.

- In Chapter 2 we first recall the space of long knots. Next we review the
Kontsevich operad, the Fulton-MacPherson operad, and the operad of
admissible diagrams. These three operads will be used in Chapter 4 in
proving Theorem B. We also review the Sinha cosimplicial model for the
space of long knots by recalling the classical theory of Goodwillie-Weiss.
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We will see a variation of that theory in the last chapter. Finally we
recall the notion of formality of topological operads. Nothing is new in
this chapter apart from some proofs of well known results.

- In Chapter 3 we first recall the definition of a Gerstenhaber algebra and of
the Hochschild homology associated to a multiplicative operad in graded
vector spaces. Next we recall the cacti operad and we explicitly construct
its action on TotO• (many examples are given here). We end the chapter
with the proof of Theorem D.

- In Chapter 4 we first prove the crucial Lemma 4.2.3. The key ingredient
in proving this lemma is the relative properness axiom. Next we prove
Theorem B (by using Lemma 4.2.3) and Corollary C. We also give a very
short proof of the main result of [26] (or Theorem 2.4.1) with d ≥ 3 . The
chapter ends with the proof of Theorem A followed by some computations.

- In Chapter 5 we first recall the space of long links. We also recall the fun-
damental notion of infinitesimal bimodules, and a version of Goodwillie-
Weiss theory. Using this version, we prove Theorem E, Theorem F and
Theorem I. From Theorem F and the main result of [24], we deduce
Theorem G. We end the chapter with the Poincaré series for the space
of long links modulo m copies of long knots.
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CHAPTER 1

Basic Notions

1.1 Introduction

This chapter recalls the notions of simplicial and cosimplicial objects, model
categories, operads and spectral sequences that we will need in this thesis. The
only new thing here is Proposition 1.4.6.

Outline of the chapter

- In Section 1.2 we explain in detail the construction of a simplicial model
for the wedge of m copies of the circle, which will be used in proving
Theorem 5.1.6. We also recall the definition of the totalization and the
homotopy totalization of a cosimplicial space.

- In Section 1.3 we recall axioms of model categories and study the example
of chain complexes, which will be used in the proof of Theorem 4.1.1. We
also recall the notion of semi-model categories.

- In Section 1.4 we first prove Proposition 1.4.6, which says that the axiom
of relative properness holds in the semi-model category of nonsymmetric
operads in any cofibrantly generated symmetric monoidal model category.
This axiom will help to prove the crucial Lemma 4.2.3. We also give a
list of the most used operads in this thesis. We end this section with
the fundamental construction that associates a cosimplicial object to any
multiplicative operad.

- In Section 1.5 we give an example of a spectral sequence that collapses
at the E2 page, and which is such that the algebraic structure on E2 is
not the same as that of the abutment. We also recall the definition of the
homology Bousfield-Kan spectral sequence associated to a cosimplicial
space.

11
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1.2 Simplicial and cosimplicial objects

Throughout this section, C is an arbitrary category. For more explanations
about simplicial and cosimplicial objects, we refer the reader to [28], [16], [56].

1.2.1 Simplicial objects

Let ∆′ denote the category of nonempty totally ordered finite sets and non
decreasing maps as morphisms.

Definition 1.2.1. A simplicial object in C consists of a contravariant functor
X : ∆′ −→ C from ∆′ to C.

Simplicial objects in C and natural transformations form a category that
we denote by sC. When C = Set, the category of sets, X is called a simplicial
set . If C = Ab, the category of abelian groups, X is called a simplicial abelian
group , and so on and so forth. On can define a simplicial object in C as a
covariant functor X : ∆op −→ C from the opposite category of ∆ to C. Here ∆
is the subcategory of ∆′ whose objects are sets on the form [n] = {0, · · · , n},
naturally ordered. Notice that the functor ∆′ −→ ∆ that sends a set S to
[Card(S) − 1] is an equivalence of categories. Notice also that we will adopt
the second definition of a simplicial object, which is the one most used in the
literature, in this thesis. One of the reasons for which it is easier to work with
the category ∆ instead of ∆′ is the fact that the collection of morphisms in ∆
admits a base {di, sj}i,j (in the sense that every morphism in ∆ can be written
as a composition of some di and sj). This base captures the combinatorial
structure of a simplicial object, and it is defined as follows. The morphism
di : [n] −→ [n+ 1], 0 ≤ i ≤ n+ 1 is defined by

di(x) =
{
x if x ≤ i− 1
x+ 1 if x ≥ i. (1.2.1)

Notice that di is an injective map such that i does not lie in its image. The
second important morphism sj : [n+ 1] −→ [n], 1 ≤ j ≤ n+ 1 is defined by

sj(x) =

 x if x < j − 1
j − 1 if x = j − 1 or x = j
x− 1 if x > j.

(1.2.2)

Notice also that sj is a surjective map such that sj(j − 1) = sj(j).
For a simplicial object X : ∆op −→ C, we write Xn for X([n]), the image

of [n] under X. We also write di : Xn+1 −→ Xn for the image X((di)op) of
the opposite morphism (di)op under X, and sj : Xn −→ Xn+1 for the image
X((sj)op). The morphism di is called the face morphism or the face map, and sj
is called the degeneracy morphism or the degeneracy map. It is straightforward
to check that morphisms di and sj satisfy identities (1.2.3) below, which are
called simplicial relations.
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1. didj = dj−1di if i < j 2. disj = sj−1di if i < j
3. djsj = id = dj+1sj 4. disj = sjdi−1 if i > j + 1
5. sisj = sj+1si if i ≤ j

(1.2.3)

One can also define a simplicial object in C as a sequence X• = {Xn}n≥0 of
objects in C equipped with degeneracy morphisms sj : Xn −→ Xn+1 and face
morphisms di : Xn+1 −→ Xn satisfying simplicial relations (1.2.3).

Now assume that X• : ∆op −→ sSet is a simplcial object in sets. We want to
define its geometric realization |X•|. Let us first define the standard geometric
k-simplex ∆k . For us, it is defined by

∆k =
{
∗ if k = 0
{(t1, · · · , tk) ∈ [−1, 1]k : −1 ≤ t1 ≤ · · · ≤ tk ≤ 1} if k ≥ 1. (1.2.4)

Throughout this thesis the standard simplex will be viewed as in (1.2.4). Define
now two maps di : ∆k −→ ∆k+1 and sj : ∆k+1 −→ ∆k as follows.

• For 0 ≤ i ≤ k + 1, for t = (t1, · · · , tk) ∈ ∆k,

di(t) =

 (−1, t1, · · · , tk) if i = 0
(t1, · · · , ti, ti, · · · , tk) if 1 ≤ i ≤ k
(t1, · · · , tk, 1) if i = k + 1.

(1.2.5)

• For 1 ≤ j ≤ k + 1, t = (t1, · · · , tk+1) ∈ ∆k+1,

sj(t) = (t1, · · · , tj−1, tj+1, · · · , tk+1). (1.2.6)

The geometric realization of X• is then defined by

|X•| = (
∐
n≥0

Xn ×∆n)/ ∼,

where the equivalence relation is generated by

(sj(x), t) ∼ (x, sj(t)) and (x, di(t)) ∼ (di(x), t).

This definition gives rise to a functor |− | : sSet −→ Top from simplicial sets to
topological spaces. The following example is actually the motivating example
of simplicial sets.

Example 1.2.2. Let X be a topological space. For n ≥ 0, define Singn(X) =
{σ : ∆n −→ X| σ is continuous}. Then the collection

Sing•(X) = {Singn(X)}n≥0,

equipped with morphisms induced by (1.2.5) and (1.2.6), turns out to be a
simplicial set called the simplicial set of singular simplices .
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Example 1.2.3. Let n ≥ 0 be an integer. Then the simplicial set ∆k
• =

{Hom∆([n], [k])}n≥0 (faces and degeneracies are induced by morphisms from
(1.2.1) and (1.2.2)) is a simplicial model for the standard k-simplex ∆k, that
is |∆k

•| ∼= ∆k.
Let us see another example of a simplcial set, which will be used later in

Chapter 5. Let ∆1
• as in the previous example, and let ∂∆1

• denote its boundary.
Define the simplicial set S1

• to be the quotient

S1
• = ∆1

•
∂∆1
•
.

It is clear that S1
• is a simplicial model of the circle S1. By looking at ∆1

p as
a nondecreasing sequence of length p + 1 on the alphabet {0, 1}, each S1

p is a
finite set pointed at

∗ = 0 · · · 0︸ ︷︷ ︸
p+1

∼ 1 · · · 1︸ ︷︷ ︸
p+1

,

and faces and degeneracies preserve this base point.
Define now the simplicial set (∨mi=1S

1)• to be the wedge of m copies of the
simplicial set S1

• ,
(∨mi=1S

1)• = ∨mi=1(S1
•).

The following proposition is well known in the litterature.
Proposition 1.2.4. The simplicial set (∨mi=1S

1)• is a simplicial model for the
wedge ∨mi=1S

1. Moreover, for each p ≥ 0, the finite pointed set (∨mi=1S
1)p is of

cardinal mp+ 1. That is,

Card((∨mi=1S
1)p) = mp+ 1. (1.2.7)

Proof. It is straightforward to check that (∨mi=1S
1)• is a simplicial model of

∨mi=1S
1.

Let p ≥ 0. Since Card(S1
p) = p+ 1, by the definition of the wedge, we have the

equation (1.2.7).

1.2.2 Cosimplicial objects

A cosimplicial object in C is just the dual of a simplicial object in C. More
precisely, we have the following definition.
Definition 1.2.5. A cosimplicial object in C is a covariant functor Y : ∆′ −→
C from ∆′ to C.

When C = Top, we say that Y is a cosimplicial space , when C = sSet, Y is
called a cosimplicial simplicial set, and so on and so forth. Cosimplcial objects
and natural transformations form a category that we denote by cC.
Remark 1.2.6. Since the categories ∆ and ∆′ are equivalent in the traditional
language of categories, a cosimplicial object in C can be viewed as a covariant
functor Y : ∆ −→ C from ∆ to C. These two definitions of a cosimplicial object
will be used interchangeably in this thesis. For instance, in Section 3.3 from
Chapter 3, we will write ∆ for ∆′.
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For a cosimplicial object Y : ∆ −→ C, let Y n denote the image Y ([n]). Let
di : Y n −→ Y n+1 denote the image of the morphism di from (1.2.1) under Y ,
and let sj : Y n+1 −→ Y n denote the image of the morphism sj from (1.2.2)
under Y again. One can define a cosimplicial object as a sequence Y • =
{Y n}n≥0 of objects in C equipped with morphisms di (called coface morphism)
and sj (called codegeneracy morphism) that satisfy the following identities,
called the cosimplicial relations .

1. djdi = didj−1 if i < j 2. sjdi = disj−1 if i < j
3. sjdj = id = sjdj+1 4. sjdi = di−1sj if i > j + 1
5. sjsi = sisj+1 if i ≤ j.

(1.2.8)

Example 1.2.7. The sequence ∆• = {∆n}n≥0 equipped with maps di and
sj defined by (1.2.5) and (1.2.6) forms a cosimplicial space usually called the
standard cosimplicial space .

Definition 1.2.8. The totalization of a cosimplicial space Y •, denoted by
TotY •, is the space of natural maps from the standard cosimplicial space ∆• to
Y •. That is,

TotY • = Nat(∆•, Y •).
It is topologized as a subspace of the product

∏
k≥0 Map(∆k, Y k).

Here are some examples of cosimplicial spaces and their totalizations.

Example 1.2.9. The sequence ∗• = {∗}n≥0 of one point spaces equipped with
trivial maps di : ∗ −→ ∗ and sj : ∗ −→ ∗ is obviously a cosimplicial space. We
can easily see that its totalization Tot∗• is the one point space.

Example 1.2.10. Let (X, ∗) be a pointed topological space, and let X×• =
{X×n}n≥0 be a sequence of spaces defined by

X×n =

 ∗ if n = 0
X × · · · ×X︸ ︷︷ ︸

n

if n ≥ 1.

Define two maps di : X×n −→ X×n+1 and sj : X×n+1 −→ X×n by

di(x1, · · · , xn) =

 (∗, x1, · · · , xn) if i = 0
(x1, · · · , xi, xi, · · · , xn) if 1 ≤ i ≤ n
(x1, · · · , xn, ∗) if i = n+ 1,

and

sj(x1, · · · , xn+1) = (x1, · · · , xj−1, xj+1, · · · , xn+1), 1 ≤ j ≤ n+ 1.

It is straightforward to see that di and sj satisfy cosimplicial relations (1.2.8).
Hence, X×• is a cosimplicial space that gives a cosimplicial model for the loop
space ΩX of X. More precisely, there is a homeomorphism TotX×•

∼=−→ ΩX
that sends a natural transformation α = (αk)k≥0 to α1 : ∆1 −→ X (the map
α1 is a loop because α1d

0 = α1d
1 by naturality, and X×0 = ∗).
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The construction that associates a topological space TotY • to any cosim-
plicial space Y • gives rise to a covariant functor

Tot: cTop −→ Top

from cosimplicial spaces to topological spaces. This functor is not a homotopy
invariant (in the sense that two levelwise weakly equivalent cosimplicial spaces
does not have in general weakly equivalent totalizations). To get the homotopy
invariant one, called the homotopy totalization, let us first recall the construc-
tion that associates a space to any category C. Let (NC)• be the simplicial set
defined by (NC)n = Hom([n], C), the set of functors from [n] to C (notice that
(NC)n can be viewed as the set of n composable morphisms in C). The faces
and degeneracies in (NC)• are induced in the obvious way by morphisms from
(1.2.1) and (1.2.2). Let BC denote the geometric realization of (NC)•. Define
now a covariant functor

B(C ↓ −) : C −→ Top
as follows. For an object a in C, let C ↓ a be the category whose objects are
couple (c, f) in which c is an object of C and f : c −→ a is a morphism in C.
A morphism from (c, f) to (c′, f ′) consists of a morphism g : c −→ c′ in C such
that f = f ′g. The functor B(C ↓ −) is then defined by

B(C ↓ −)(a) = B(C ↓ a).

By taking C = ∆ as input in the previous construction, we obtain a covariant
functor B(∆ ↓ −) : ∆ −→ Top that we denote by ∆̃•.

Definition 1.2.11. The homotopy totalization of a cosimplicial space Y • is
the space hoTotY • of natural transformations from ∆̃• to Y •. That is,

hoTotY • = Nat(∆̃•, Y •).

Notice that Definition 1.2.11 is nothing other than the definition of the
homotopy limit of Y •. More generally, if F : I −→ Top is a covariant functor
from a small category I (that is, a category in which the collection of objects
and morphisms is a set) to spaces, one defines the homotopy limit of F as the
space of natural transformations from B(I ↓ −) to F . That is,

holim
I

F = Nat(B(I ↓ −), F ).

One also defines the homotopy colimit of F as the space

hocolim
I

F = B(Iop ↓ −)⊗I F = (
∐
i∈I

B(Iop ↓ i)× F (i))/ ∼,

where the equivalence relation ∼ is generated by

(x, F (α)(y)) ∼ (B(Iop ↓ −)(α)(x), y)

for each morphism α : i −→ j in I, x ∈ B(Iop ↓ j) and y ∈ F (i). Notice that
the functor B(Iop ↓ −) from I to topological spaces is a contravariant functor.
A good reference for homotopy limits and homotopy colimits is [22, Chapter
18-Chapter 19] or [7].
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1.3 Model categories and semi-model categories

In this section we just give some basic notions of the theory of model categories,
which is well developed in [23], [22]. We also recall some notions about semi-
model categories [13].

1.3.1 Model categories

A model category is a place where it is possible to set up the basic machinery
of homotopy theory. Here are axioms of such a category. Let X be a category.
A model category structure on X consists of three classes of morphisms, called
weak equivalences, cofibrations and fibrations, so that the following axioms hold:
M1 (two-out-of-three axiom): Let f and g be composable morphisms. If any
two among f , g, and fg are weak equivalences, then so is the third.
M2 (retract axiom): Suppose f is a retract of g. If g is a weak equivalence
(respectively a fibration, a cofibration), then so is f .
M3 (lifting axioms):

- The cofibrations have the left lifting property with respect to the acyclic
fibrations (recall that an acyclic fibration is a fibration which is a weak
equivalence)

- The fibrations have the right lifting property with respect to the acyclic
cofibrations.

M4 (factorization axioms):

- Any morphism has a factorization f = pi, where p is a acyclic fibration
and i is a cofibration.

- Any morphism has a factorization f = pi, where p is a fibration and i is
a acyclic cofibration.

Definition 1.3.1. A model category is a category with all (small) limits and
colimits that satisfy axioms M1, M2, M3 and M4.

The existence of all (small) limits and colimits implies that any model cat-
egory has an initial object, denoted by ∅, and a terminal object, denoted by
∗. By convention, an object A in a model category X is cofibrant if the initial
morphism ∅ −→ A is a cofibration, fibrant if the terminal morphism A −→ ∗
is a fibration.

Example 1.3.2. Among all examples of model categories such as topological
spaces, chain complexes, simplicial sets, differential graded commutive alge-
bras,..., we will give here just the example of non-negatively graded chain com-
plexes because it will be useful in the proof of Theorem 4.1.1. By [23, Theorem
2.3.11], the category of chain complexes ChR of modules over a ring R is a
model category. Recall that a morphism f : A∗ −→ B∗ of chain complexes is a

• weak equivalence if H∗(f) is an isomorphism;

• fibration if fn : An −→ Bn is surjective for n ≥ 1;
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• cofibration if and only if for each n ≥ 0, the map fn : An −→ Bn is an
injection with projective cokernel.

It follows that every object in that category is fibrant, and the cofibrant objects
are chain complexes formed by projective modules. So if R is a field then every
object of ChR is cofibrant since a module over a field K is a K-vector space and
we know that every vector space is free.

Let (C,⊗,1) be a symmetric monoidal category (see [23] for a basic reference
on symmetric monoidal categories) in which all small colimits and all small
limits exist. We assume that the tensor product ⊗ : C × C −→ C preserves all
colimits in each variable separately. This means that the natural morphism

colimi(Ai ⊗B) −→ (colimiAi)⊗B,

is an isomorphism for all diagrams Ai and every fixed object B ∈ C.
For a set S and an object C ∈ C, define a tensor product S ⊗ C to be the
coproduct over S of copies of the object C. That is,

S ⊗ C =
∐
s∈S

C. (1.3.1)

Definition 1.3.3. The category C is called symmetric monoidal model cate-
gory if it is equipped with a model structure such that the following axioms hold
in C.
unit axiom: The unit object 1 is cofibrant in C.
pushout-product axiom: The natural morphism

(i∗, j∗) : A⊗D ⊕A⊗C B ⊗ C −→ B ⊗D

induced by cofibrations i : A // // B and j : C // // D forms a cofibration,
respectively an acyclic cofibration if i or j is also acyclic.

Definition 1.3.4. A model category is said to be cofibrantly generated if it is
equipped with a set of generating cofibrations I, and a set of generating acyclic
cofibrations J , such that

• the fibrations are characterized by the right lifting property with respect
to the acyclic generating cofibrations j ∈ J ;

• The acyclic fibrations are characterized by the right lifting property with
respect to the generating cofibrations i ∈ I.

The importance of cofibrantly generated model categories comes from the
definition of new model categories by adjunction from a cofibrantly generated
model structure. For instance, in Section 1.4, we apply the construction of ad-
joint model structures to get a model (or semi-model) structure on the category
of operads.

From now and in the rest of this chapter and in Chapter 4, we assume that
C is a symmetric monoidal model category that is cofibrantly generated.
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1.3.2 Semi-model categories

Roughly speaking, a semi-model category is a category which satisfies all axioms
of model category , including the lifting axiom and the factorization axiom, but
only for morphisms f : A −→ B whose domain A is a cofibrant object. More
precisely, we have the following axioms.

A semi-model category structure on a category X consists of classes of weak
equivalences, cofibrations and fibrations so that axioms M1, M2 of model cat-
egories hold, but where the lifting axiom M3 and the factorization axiom M4
are replaced by the weaker requirements:
M3’:

- The fibrations have the right lifting property with respect to the acyclic
cofibrations i : A −→ B whose domain A is cofibrant.

- The acyclic fibrations have the right lifting property with respect to the
cofibrations A −→ B whose domain A is cofibrant.

M4’:

- Any morphism f : A −→ B such that the domain A is cofibrant has a
factorization f = pi, where i is a cofibration and p is a acyclic fibration.

- Any morphism f : A −→ B such that the domain A is cofibrant has a
factorization f = pi, where i is a acyclic cofibration and p is a fibration.

Definition 1.3.5. A semi-model category is a category with all (small) limits
and colimits that satisfy axioms M1, M2, M3’ and M4’.

Since the lifting axiom M3’ and the factorization axiom M4’ are not suffi-
cient to imply that the initial object of X is cofibrant, a semi-model category
is then assumed to satisfy the following axiom.
M0’ (initial object axiom): The initial object of X is cofibrant.

Notice that in a semi-model category, the class of (acyclic) cofibrations is
not fully characterized by the left lifting axiom M3’, and similarly as regards
the class of (acyclic) fibrations. The notion of a cofibrantly generated model
category has a natural generalization in the context of semi-model categories.

1.4 Operads

Here we review the homotopy theory for operads, and we recall some useful
results for us. We also give a lot of examples of operads which will be used in
this thesis. In all this section the category C is as in the previous section (that
is, C is a symmetric monoidal model category that is cofibrantly generated).
This category will serve as the base category for operads. This section is based
on [13].

1.4.1 The category of symmetric operads

We begin with the definition of a symmetric operad. A Σ∗-object in C consists
of a sequence {Xn}n∈N, where Xn is an object of C equipped with an action
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of the symmetric group Σn. We denote the category of Σ∗-objects in C by
M. This category turns to be a symmetric monoidal category equipped with
a cofibrantly generated model structure defined in [13].

Definition 1.4.1. A symmetric operad in C consits of a symmetric sequence
P = {P (n)}n≥0 equipped with an unit element 1 −→ P (1), which is just a
morphism in C, and a collection of morphisms

γ : P (k)⊗ P (i1)⊗ · · · ⊗ P (ik) −→ P (i1 + · · ·+ ik)

that satisfy natural equivariance properties, unit and associative axioms (May’s
axioms, see [29, Definition 1.1]).

Let Ops(C) or Ops denote the category of symmetric operads in C. This
category is in general endowed with only a semi-model structure defined as
follows. The category CN of sequences of objects X = {X(n)}n≥0 in C is
endowed with a model structure induced by C levelwise. More explicitly, the
weak equivalences, the cofibrations and fibrations in CN are all levelwise. Since
the model structure in C is cofibrantly generated, then so is the model structure
in CN.
Let U2 : M −→ CN be the obvious forgetful functor fromM to CN. It is clear
that U2 admits a left adjoint F2 : CN −→ M, which maps a collection X to
the object Σ∗ ⊗ X defined by (Σ∗ ⊗ X)(n) = Σn ⊗ X(n) (see (1.3.1) for the
definition of a tensor product of a set by an object in C).
Let U1 : Ops −→ M be the forgetful functor from Ops to M. It is also clear
that this functor admits a left adjoint F1 : M −→ Ops. We thus obtain the
following pairs of functors.

F1 : M� Ops : U1 and F2 : CN �M : U2.

In many other examples, we have a natural adjunction relation F : Z � Y : U ,
where Z is a reference model category, and a model structure on Y is defined by
that of Z. This means that a morphism in Y is a weak equivalence (respectively
a fibration) if its image under U yields a weak equivalence in Z (respectively a
fibration in Z). To see that this definition endows Y with a model structure,
one must check the axioms M1, M2, M3, M4, and this is difficult in general.
However, in the context of cofibrantly generated model categories, the veri-
fications can be reduced to simple conditions as we can see in [13, Theorem
11.1.13]. For instance, one can see that these simple conditions hold with the
adjunction F2 : CN � M : U2, but do not hold with (F1, U1). So we can not
apply the adjunction construction of model structures to get a model structure
on the category Ops. However, if we restrict the lifting and the factorization
axioms of model categories to morphisms with a cofibrant domain (in order
words, if we work with semi-model categories), then these simple conditions
are now verified by the pair F1 : M � Ops : U1. Hence, the category Ops is
endowed with a semi-model structure [13, Theorem 12.2.A].

The following theorem says that the semi-model category Ops of symmetric
operads satisfies the axiom of relative properness.
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Theorem 1.4.2. [13, Theorem 12.2.B] Let P and Q be two symmetric op-
erads that are Σ∗-cofibrant. Then the pushout of a weak equivalence along a
cofibration

P // //

∼
��

R

��
Q // S

gives a weak equivalence R ∼−→ S.

1.4.2 The category of nonsymmetric operads

The goal of this section is to state and prove Proposition 1.4.6, which is the
nonsymmetric version of Theorem 1.4.2.

Roughly speaking, a nonsymmetric operad in C is a symmetric operad O =
{O(n)}n≥0 in which we have omitted, for each n ≥ 0, the Σn action on O(n).
More explicitly, we have the following definition.

Definition 1.4.3. A nonsymmetric operad in C is a collection O = {O(n)}n≥0
of objects in C together with an unit element η : 1 −→ O(1) and the compostition
or the insertion map

◦i : O(r)⊗O(s) −→ O(r + s− 1), 1 ≤ i ≤ r,

satisfying the following three axioms
(OP)1: For 1 ≤ i ≤ r and 1 ≤ j ≤ s, the following diagram commutes

O(r)⊗O(s)⊗O(t) ◦i⊗id //

id⊗◦j

��

O(r + s− 1)⊗O(t)

◦i−1+j

��
O(r)⊗O(s+ t− 1) ◦i // O(r + s+ t− 2).

(OP)2: For 1 ≤ j < i ≤ r, the following diagram commutes

O(r)⊗O(s)⊗O(t) id⊗T //

◦j⊗id
��

O(r)⊗O(t)⊗O(s) ◦i⊗id // O(r + t− 1)⊗O(s)

◦j

��
O(r + s− 1)⊗O(t)

◦i−1+s // O(r + s+ t− 2).

Here T : O(s) ⊗ O(t)
∼=−→ O(t) ⊗ O(s) is the isomorphism coming from the

symmetric structure of C.
(OP)3: For 1 ≤ i ≤ r, the following two compositions are equal to the

identity

O(r)
∼= // 1⊗O(r) η⊗id // O(1)⊗O(r) ◦1 // O(r) ,

O(r)
∼= // O(r)⊗ 1 id⊗η // O(r)⊗O(1) ◦i // O(r) .
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Definition 1.4.4. A morphism f : O −→ O′ between two nonsymmetric op-
erads consists of a collection {fn : O(n) −→ O′(n)}n≥0 of morphisms in C,
sending the unit of O to the one of O′, such that the following square

O(r)⊗O(s) ◦i //

fr⊗fs

��

O(r + s− 1)

fr+s−1

��
O′(r)⊗O′(s)

◦
′
i // O′(r + s− 1)

commutes for all 1 ≤ i ≤ r.

LetOpns(C) or justOpns denote the category of nonsymmetric operads in C.
This category, as the category Ops, usually has only semi-model structure, by
the nonsymmetric version of [13, Theorem 12.2.A]. But, if C satisfies the monoid
axiom (see [36, Definition 6.1]), then the category Opns is equipped with a
model structure cofibrantly generated (see [36, Theorem 1.1]) if we assume
that the sets of generating cofibrations and generating acyclic cofibrations in
C have presentable sources. Recall that an object A of C is presentable if there
exists a cardinal λ such that the representable functor C(A,−) : C −→ Set
commutes with λ-filtered colimits in C. For instance, it is not difficult to see
that the category of non-negatively graded chain complexes ChR satisfies such
conditions.

Remark 1.4.5. The category Opns(ChR) is equipped with a model category
structure in which fibrations and weak equivalences are all levelwise.

Let U : Ops(C) −→ Opns(C) be the obvious forgetful functor. It is clear that
this forgetful functor admits a left adjoint Sym: Opns(C) −→ Ops(C) defined
by

Sym(P )(n) = Σn ⊗ P (n) =
∐
σ∈Σn

P (n).

The following proposition was first proved by Spitzweck [50] and by Berger-
Moerdijk [3] for symmetric operads.

Proposition 1.4.6. The category of nonsymmetric operads in C satisfies the
axiom of relative properness : If P and Q are objects of Opns that are cofibrant
in CN, then the pushout in Opns of a weak equivalence along a cofibration

P // //

∼
��

R

��
Q // S

gives a weak equivalence R ∼−→ S.

Proof. Since P and Q are cofibrant in the category CN, it follows that Sym(P )
and Sym(Q) are Σ∗-cofibrant. By applying the functor Sym to the diagram
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of the statement, we obtain the following pushout diagram in the category of
symmetric operads

Sym(P ) // //

∼
��

Sym(R)

��
Sym(Q) // Sym(S)

.

We apply now [13, Theorem 12.2.B] to get a weak equivalence Sym(R) ∼−→
Sym(S). Since Sym(R)(n) (respectively Sym(S)(n)) is the coproduct over the
set Σn of copies of the object R(n) (respectivelyS(n)), it follows that the mor-
phism R −→ S in Opns is also a weak equivalence.

1.4.3 Some examples of operads

In this section and in next chapters, our operads are supposed to be nonsym-
metric. Let us start with the most fundamental example of an operad.

Example 1.4.7. Let X be an object in C. The endomorphism operad EndX
is the operad defined by

EndX(n) = hom
C

(Xn, X),

where Xn is the tensor product of n copies of X. The ith insertion morphism
◦i is defined as follows. For f ∈ EndX(p) and g ∈ EndX(q),

f ◦i g = f ◦ (id⊗ id︸ ︷︷ ︸
i−1

⊗g ⊗ id⊗ id︸ ︷︷ ︸
p−i

).

The unit 1 ∈ EndX(1) is the identity morphism id : X −→ X.

In next chapters we will see many actions of operads.

Definition 1.4.8. Let O be an operad in C, and let X be an object in C.
We will say that O acts on X (or X is an O-algebra) if there is a morphism
O −→ EndX of operads.

The following operad is just the dual of Example 1.4.7.

Example 1.4.9. Let X be a topological space. The coendomorphism operad
CoendX is the operad defined by CoendX(n) = Map(X,Xn). The ith insertion
morphism ◦i is defined as follows. For

f = (f1, · · · , fp) ∈ CoendX(p), g = (g1, · · · , gq) ∈ CoendX(q),

we have

f ◦i g = (f1, · · · , fi−1, g1 ◦ fi, · · · , gq ◦ fi, fi+1, · · · , fp) : X −→ Xp+q−1.

The unit 1 ∈ CoendX(1) is the identity morphism id : X −→ X.
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A powerful technique to study a manifold is to "scan" it by little disks. This
gives the following operad, which is one of the most important operads in this
work.

Example 1.4.10. Let d ≥ 1 be an integer. The little d-disks operad Bd =
{Bd(k)}k≥0 was introduced by Boardman and Vogt in [4] as a tool for under-
standing d-fold loop spaces. It is the main example that historically motivated
the introduction of operads [29]. For k ≥ 0, the space Bd(k) is defined to be
the space of configurations of k closed d-disks with disjoints interiors contained
in the unit disk Dd of the Euclidean space Rd. The picture below is a typical
element of Bd(3). The insertion operation in Bd is defined in the obvious way.

For more details about this operad, we refer the reader to [29, Chapter 4] or [8,
Section 2]. Notice also that Bd is a suboperad of the coendomorphism operad
CoendDd .

In next chapters we will see many other examples of operads such as the
Kontsevich operad Kd (which will be well defined in Section 2.2.1), the Fulton-
MacPherson operad Fd (Section 2.2.2), the cacti operad MS (Section 3.3.1),
the operad D2 (Section 3.3.2), the operad D̃2 ( Section 3.4).
For a covariant monoidal functor F : C −→ D between symmetric monoidal cat-
egories, if O is an operad in C, then it is easy to see that F (O) = {F (O(n))}≥0
is an operad in D. Hence the singular chains S∗(Kd), S∗(Fd), S∗(Bd), the
homologies H∗(Kd), H∗(Fd) are operads in chain complexes. For us the com-
mutative operad in chain complexes , denoted by Com, is the operad H0(Bd),
the 0th homology group of the little d-disks operad. This operad will appear
in Chapter 5 in the study of the space of long links.

Example 1.4.11. Let As = {As(n)}n≥0 be the sequence defined by As(n) = 1
for each n, the unit for the tensor product of C. It is easy to see that As is a
nonsymmetric operad, called the associative operad .

Remark 1.4.12. The object As is cofibrant in the category CN because the unit
object 1 is cofibrant in C by the unit axiom, which is a part of the definition
(see Definition 1.3.3 or [13, Section 11.3.3]) of a symmetric monoidal model
category.

Certain operads has a distinguish operation in each arity. Such operads are
called multiplicative. More precisely, we have the following definition, which
will be extensively used in Chapters 2, 3, 4. Moreover, one of the main results
(Theorem 4.1.1) of this thesis is expressed in terms of multiplicative operads.
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Definition 1.4.13. A multiplicative operad in C is a couple (O, α) in which
O is a nonsymmetric operad in C and α : As −→ O is a morphism of nonsym-
metric operads from the associative operad to O.

If there is no ambiguity, a multiplicative operad (O, α) will be denoted just
by O. Notice that a multiplicative operad in toplogical spaces Top can be
viewed as an operad in pointed topological spaces, since the associative operad
in Top is As = {∗}n≥0. More generally, a multiplicative operad in C is an
operad O with one special operation µn ∈ O(n) in each arity (here we assume
that objects in C are living objects) such that µp ◦i µq = µp+q−1 for all p, q
and 1 ≤ i ≤ p. The following remark says that it suffices to get one special
operation in arity 0 and one other in arity 2 satisfying the same condition.

Remark 1.4.14. A multiplicative structure on O is equivalent to having mor-
phisms e : 1 −→ O(0) and µ : 1 −→ O(2) satisfying

µ ◦1 µ = µ ◦2 µ and µ ◦1 e = µ ◦2 e = 1.

The following proposition is very easy.

Proposition 1.4.15. Let F : C −→ D be a symmetric monoidal functor. If
O = {O(n)}n≥0 is a multiplicative operad in C, then F (O) = {F (O(n))}n≥0 is
a multiplicative operad in D.

Here is some important construction concerning multiplicative operads.
Note that this construction will appear in several places in this thesis.

Proposition 1.4.16. [31, Section 3] To any multiplicative operad O in C, one
can associate a cosimplicial object O• in C.

Proof. Let O = {O(n)}n≥0 be a multiplicative operad in C, and let e : 1 −→
O(0) and µ : 1 −→ O(2) as in Remark 1.4.14. Define On = O(n). Define also
the cofaces morphisms di : On −→ On+1 and the codegeneracies morphims
sj : On+1 −→ On by the following formulas.

• For 0 ≤ i ≤ n+ 1, di is the composite

di =


On

∼= // 1⊗On µ⊗id // O2 ⊗On ◦2 // On+1 if i = 0

On
∼= // On ⊗ 1 id⊗µ // On ⊗O2 ◦i // On+1 if 1 ≤ i ≤ n

On
∼= // 1⊗On µ⊗id // O2 ⊗On ◦1 // On+1 if i = n+ 1.

• For 1 ≤ j ≤ n+ 1, sj is the composite

On+1 ∼= // On+1 ⊗ 1 id⊗e // On+1 ⊗O0 ◦j // On .

It is straightforward to check cosimplicial relations (1.2.8) with di and sj thus
defined.
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1.5 Homology spectral sequences

It is well known that a short exact sequence of chain complexes produces a
long exact sequence in homology, which allows to compute the homology in a
number of situations. On can generalize the notion of a short exact sequence
by the one of a filtered chain complex. Associated to a chain complex with a
filtration is called a homology spectral sequence, which is a gadget for computing
the homology by "successive approximations", and which we define now.

Definition 1.5.1. A homology spectral sequence or simply a spectral sequence
consists of a sequence (Er, dr, τ r)r≥r0 in which

- r0 is a nonnegative integer;

- Er = {Erp,q}p,q is a bigraded module called the Er page;

- dr : Erp,q −→ Erp−r,q+r−1 is a differential of bidegree (−r, r − 1);

- τ r : H∗(Er)
∼=−→ Er+1 is an isomorphism of bigraded modules.

One can define in the similar way the notion of cohomology spectral sequence
(the only difference is the fact that in cohomology, the differential dr is of
bidegree (r, 1− r)). For our purposes (as said the title of this section) we will
consider only homology spectral sequences. The triple (Er, dr, τ r) is sometimes
just denoted by {Er}r≥r0 or more simply by Erp,q.

Definition 1.5.2. Let {Er}r≥r0 be a spectral sequence. We say that it

- converges if for each (p, q), there is an integer rp,q such that Erpq
p,q =

E
rpq+i
p,q for all i ≥ 0. In that case the E∞p,q term is defined by E∞p,q = E

rpq
p,q ;

- collapses at the Er page if dk = 0 for all k ≥ r. In that case the E∞
page is defined by E∞ = Er.

Let us explain now the construction that associates a spectral sequence to
a chain complex with a filtration. A filtered chain complex is a triple (A∗, d,F)
in which

- the pair (A∗, d) is a chain complex,

- F is an increasing sequence

F = · · · ⊆ Fp−1A∗ ⊆ FpA∗ ⊆ Fp+1A∗ ⊆ · · · ⊆ A∗

of subcomplexes of A∗ such that ∪pFpA∗ = A∗ and ∩pFpA∗ = {0} (such
a F is called a filtration),

- the differential preserves the filtration (that is, d(FpAi) ⊆ FpAi−1 for
each i).
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For a filtered chain complex (A∗, d,F), one associates a spectral sequence
{Er(A∗)}r≥0 defined by

Erp,q(A∗) = {z ∈ FpAp+q| dz ∈ Fp−rAp+q−1}
Fp−1Ap+q + d(Fp+r−1Ap+q+1) . (1.5.1)

The differential d induces a well-defined morphism dr : Erp,q −→ Erp−r,q+r−1
such that (dr)2 = 0. For more nice explanations, see [30] or [12, Chapter
18]. Note that when the filtration is decreasing (in that case it is denoted by
{F pA∗}p), we also have an induced spectral sequence defined as in (1.5.1).

Example 1.5.3. Let L be the free Lie algebra generated by y, u, v, w all in
degree 2, by z in degree 4 and by x in degree 7. Assume that L is equipped with
the zero differential d (here d is of degree −1), and that dx = [y, z] + [u, [v, w]].
Consider now its suspension s−1L (see formula (3.2.1) from Chapter 3 for the
notion of suspension), and equip it with the zero product. It turns out to be
a Gerstenhaber algebra (see Section 3.2.1 for the definition of a Gerstenhaber
algebra) filtered by its bracket-length. We then have the associated spectral
sequence, which collapses at

E2 = H∗(L, d1), d1x = [y, z].

Since the differential d1 is 0, it follows that the bracket [y, z] vanishes at the
E2 page. Notice that it does not vanish in s−1L. Hence, the above spectral
sequence does not collapse as a Gerstenhaber algebra.

The spectral sequence we look at in this work is the one of Bousfield-Kan
in homology. To define it, we need to first recall the notion of the Dold-Kan
normalization. Note that one of the main results (Theorem 5.1.6) in this thesis
says that the homology Bousfield-Kan spectral sequence associated to a certain
cosimplicial space collapses at the E2 page.

1.5.1 The Dold-Kan normalization

Let G• be a simplicial object in abelian groups (that is, a simplicial abelian
group). Let

di : Gk −→ Gk−1, 0 ≤ i ≤ k, and sj : Gk−1 −→ Gk, 1 ≤ j ≤ k

denote face and codegeneracy morphisms. Define a morphism ∂ : Gk −→ Gk−1
by

∂ =
k∑
i=0

(−1)idi.

It is straightforward, using simplicial relations from (1.2.3), to check that ∂
is actually a differential (that is, ∂2 = 0). We thus get the following chain
complex

G∗ = G0
∂←− G1

∂←− G2
∂←− · · · .
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This chain complex admits an interesting subcomplex N∗G defined by

N∗G =
{
G0 if ∗ = 0
Gk ∩ (∩ki=1Ker di) if ∗ = k ≥ 1.

The chain complex N∗G is interesting because the inclusion N∗G ↪→ G∗ induces
an isomorphism in homology (see [16, Chapter III-Theorem 2.4]). Moreover, if
we write N(G•) for N∗G, the previous construction defines a functor

N : sAb −→ Ch∗

from simplicial abelian groups to chain complexes. This functor is called the
Dold-Kan normalization functor, and it is an equivalence of categories (see [16,
Chapter III-Corollary 2.3] or [56, Theorem 8.4.1]).

There exists another description (see [16, Chapter III-Theorem 2.1]) of N∗G
given by

N∗G =
{
G0 if ∗ = 0
Gk/(

∑k
j=1 im sj) if ∗ = k ≥ 1.

We have the dual construction if one starts with a cosimplicial object K•
in abelian groups. If

di : Kp−1 −→ Kp, 0 ≤ i ≤ p, and sj : Kp −→ Kp−1, 1 ≤ j ≤ p

denote the coface and codegeneracy morphisms, then the associated cochain
complex is

(K∗ = K0 δ−→ K1 δ−→ K2 δ−→ · · · , δ =
p∑
i=0

(−1)idi).

The subcomplex N∗K ⊆ K∗ is defined by

K∗ =
{
K0 if ∗ = 0
Kp/(

∑p
i=1 imdi) if ∗ = p ≥ 1.

It also admits an alternative description:

K∗ =
{
K0 if ∗ = 0
Kp ∩ (∩pj=1ker s

j) if ∗ = p ≥ 1.

Of course, the inclusion N∗K ↪→ K∗ also induces an isomorphism in cohomol-
ogy.

1.5.2 The homology Bousfield-Kan spectral sequence associated to
a cosimplicial space

A good reference for this section is [6].
Let G be a cosimplicial object in the category of simplicial abelian groups.

Then (N∗N∗G, ∂, δ) is a bicomplex called the normalized bicomplex associated
to G. From that bicomplex, define a chain complex (TG,D) by
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(TG)n =
∏
k≥0

NkNk+nG and D = ∂ + (−1)n+1δ.

Here D : (TG)n −→ (TG)n−1. Of course, it is very easy to check that D2 = 0.
The chain complex (TG,D) is called the total complex associated to G, and it
admits a natural decreasing filtration

· · ·Fm+1TG ⊆ FmTG ⊆ Fm−1TG ⊆ · · · ⊆ F 0TG

by the cosmplicial degree, which is explicitly defined by

(FmTG)n =
∏
k≥m

NkNk+nG.

One can also associate a total complex to any cosimplicial space X•. Let A
be an abelian group. Recall that the tensor product S⊗A of a set S by A is the
abelian group defined by S⊗A = ⊕s∈SA. So the tensor product Sing•(X•)⊗A
of Sing•(X•) by A cosimplicial degreewise is a cosimplicial simplicial abelian
group. Here Sing•(−) : Top −→ sSet from toplogical spaces to simplicial sets
is the functor defined in Example 1.2.2, and Sing•(X•) = {Sing•(Xn)}n≥0 is
a cosimplicial simplicial set. By applying now the previous construction with
the cosimplicial simplicial abelian group Sing•(X•)⊗A, we obtain the filtered
chain complex T (Sing•(X•)⊗A).

Definition 1.5.4. The spectral sequence associated to the filtered chain com-
plex T (Sing•(X•)⊗A) is called the homology Bousfield-Kan spectral sequence
associated to X•.

This spectral sequence will be denoted by Er{S∗(X•;A)}r≥0 or, if A is
understood, by Er{S∗(X•)}r≥0. More generally, for a cosimplicial chain com-
plex C•∗ , the spectral sequence induced by the filtration by the cosimplicial
degree will be denoted by {Er(C•∗ )}r≥0. We will sometimes use the abrevi-
ation H∗BKSS for homology Bousfield-Kan spectral sequence. Under good
assumptions [6], it converges to the homology H∗(hoTotX•) of the homotopy
totalization of X•. The E1 and E2 pages of that spectral sequence have a nice
description via the following isomorphisms from [6]

E1
p,q = Hq−p(F p/F p+1)T (A⊗X) ∼= NpHq(X;A) ' Hq(Xp),

and
E2
p,q
∼= HpN∗Hq(X;A).

Here X denotes the cosimplicial simplicial set Sing•(X•). Notice that if we
assume p ≤ 0 and q ≥ 0, then we have a second quadrant spectral sequence
(the differential dr is of course of bidegree (−r, r − 1)) with E1

p,q ' Hq(X−p).
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CHAPTER 2

Rational homology of Embc(R,Rd) as a vector space

2.1 Introduction

In this chapter, we essentially summarize some results obtained in the past
several years in the study of the space of long knots. The two main results
we look at are Theorem 2.3.3 (which says that Sinha’s cosimplicial space K•d
is a cosimplicial model for the space of long knots) and Theorem 2.4.1 (which
says that the H∗BKSS associated to K•d collapses at the E2 page rationally,
when d ≥ 4). As an immediate consequence of Theorem 2.4.1, there exists an
isomorphism of vector spaces between the rational homology of the space of
long knots and the E2 page. In Chapter 4, we will prove that this isomorphism
also respects the Gerstenhaber algebra structure (this is one of the main results
of this thesis). A part from some proofs, nothing is new in this chapter.

Let us give now the definition of a long knot. Fix an integer d ≥ 1, which
represents the dimension of the ambient space, and let I be the interval defined
by I = [−1, 1]. Let a1 = (0, . . . , 0, 1) and b1 = (0, · · · , 0,−1) be two fixed
points in the opposite faces of the cube Id, and let ~S = (0, · · · , 0,−1) ∈ Sd−1

denote the direction between a1 and b1. Fix a linear embedding ε : R ↪→ Rd
defined by ε(t) = (0, · · · , 0,−t).

Definition 2.1.1. A long knot is a smooth embedding f : R ↪→ Rd that satisfies
the boundary conditions{

f(I) ⊆ Rd−1 × I
f(t) = ε(t) if |t| ≥ 1. (2.1.1)

This definition implies that

• f(−1) = a1, f(1) = b1;

• f ′(−1)
‖f ′(−1)‖ = f ′(1)

‖f ′(1)‖ = ~S.

31
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One can define a long knot as a smooth embedding f : R ↪→ Rd that coin-
cides outside any fixed compact set with a fixed linear embedding. It is clear
that this definition is equivalent to Definition 2.1.1. Notice that the case d = 1
or d = 2 is not so interesting because every long knot is then isotopic to the
trivial long knot. This is the reason for which we will assume d ≥ 3, unless
mentioned otherwise.

One of the main objects of our study is the space of long knots. Before
defining it, we recall the notion of weak C∞-topology (a good reference for that
topology is Hirsch [21, pages 34-35]). Let M and N be two Ck manifolds,
0 ≤ k ≤ ∞, and let Ck(M,N) denote the collection of Ck maps from M to N .
For two charts (U, φ) ⊆ M and (V, ψ) ⊆ N , for a compact subset K ⊆ U , for
f ∈ Ck(M,N) such that f(K) ⊆ V , for 0 < δ ≤ ∞, define a weak subbasic
neighborhood

N := N k(f ; (U, φ), (V, ψ),K, δ)

to be the set of Ck maps g : M −→ N such that g(K) ⊆ V and∥∥Dp(ψfφ−1)(x)−Dp(ψgφ−1)(x)
∥∥ < δ

for all x ∈ φ(K), and for all p ∈ {0, · · · , k}.
(WT) The weak Ck-topology on the collection Ck(M,N) is generated by

sets N . On C∞(M,N), it is called the weak C∞-topology.

Definition 2.1.2. The space of long knots is the collection

{f : R ↪→ Rd such that f is a long knot}

endowed with the weak C∞-topology described by (WT).

The space of long knots will be denoted by Embc(R,Rd). We put the letter
"c" in subscript to make the difference with the classical space Emb(R,Rd) of
all smooth embeddings of R in Rd. One can read Embc(R,Rd) as the space of
compactly supported smooth embeddings of R inside Rd. One of our goals, as
mentioned in the introduction of this thesis, is to study this latter space. More
precisely, we want to understand its rational homology.

In [42], Shubert proves that the connected-sum of two long knots induces
a commutative monoidal structure on the path-components, π0Embc(R,Rd),
of Embc(R,Rd). His idea for the commutativity is the fact that one can "pull
one knot through another", and this suggests the existence of a map S1 ×
(Embc(R,Rd))2 −→ Embc(R,Rd). It is known that such a map would exist
if the connected-sum operation was induced by the action of the little 2-disks
operad on Embc(R,Rd). Unfortunately, this latter operad acts only up to
homotopy (in the sense that certain diagrams are only commutative up to
homotopy), and this poses a problem. To get around it, one works with the
space of "thickened long knots" or "long knots modulo immersions", which we
define now.

Definition 2.1.3. • A long immersion is a smooth immersion f : R ↪→ Rd
satisfying boundary conditions (2.1.1).
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• The space of long immersions is the collection

{f : R ↪→ Rd such that f is a long immersion}

endowed with the weak C∞-topology described by (WT) above. We denote
it by Immc(R,Rd).

• The space of long knots modulo immersions is defined to be the homotopy
fiber of the inclusion Embc(R,Rd) ↪→ Immc(R,Rd), and it is denoted by
Embc(R,Rd).

Remark 2.1.4. By abuse of terminology, in the rest of this thesis, we will
sometimes say "long knot" in the place of "long knot modulo immersions".

Now we have two spaces: Embc(R,Rd) and Embc(R,Rd). The natural
question one can ask is to know if they are at least weakly equivalent. Although
this question has a negative answer, they are at least related by the weak
equivalence (2.1.2), which is obtained as follows. It is known that by Smale-
Hirsch theory [46], there is a weak equivalence Immc(R,Rd) ' ΩSd−1. It is
also known that the inclusion Embc(R,Rd) ↪→ Immc(R,Rd) is null-homotopic
[44, Proposition 5.17]. Therefore, there is a weak equivalence

Embc(R,Rd) ' Embc(R,Rd)× Ω2Sd−1. (2.1.2)

From (2.1.2), to understand the rational homology of Embc(R,Rd), it suffices
to understand the one of Embc(R,Rd). This is because the rational homology
of Ω2Sd−1 is very simple (it is isomorphic to a free graded commutative algebra
on one or two generators depending of the parity of d).

The main result of [44] due to Sinha states that the space Embc(R,Rd) is
weakly equivalent to the homotopy totalization hoTotK•d of the Sinha cosim-
plicial space (see Theorem 2.3.3). Therefore, one can understand the rational
homology of Embc(R,Rd) by the mean of the H∗BKSS associated to K•d.

Outline of the chapter

- In Section 2.2 we review the Kontsevich operad Kd, the Fulton and
MacPherson operad Fd, and the operad of admissible diagrams D∨d . We
also show that Kd and D∨d are multiplicative operads while Fd is only an
"up to homotopy" multiplicative operad. All these results will be used in
the proof of Theorem 4.1.1 (from Chapter 4), which is one of the most
important results in this thesis.

- In Section 2.3 we first define the Sinha cosimplcial space K•d. Then we
review the proof of Theorem 2.3.3, which says that K•d is actually a cosim-
plicial model for the space of long knots.

- In Section 2.4 we state the main result of [26, Theorem 1.2] due to Lam-
brechts, Turchin and Volić. Next we recall the definition of formality for
morphisms of operads. Finally we state the relative formality theorem
of the little d-disks operad Bd, which will be used in Section 4.3 from
Chapter 4.
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2.2 The Kontsevich operad Kd, the Fulton-MacPherson
operad Fd and the operad of admissible diagrams D∨d

In this section we review operads Kd, Fd and D∨d .

2.2.1 The Kontsevich operad Kd
Here we first define Kd, for d ≥ 1. Then we make the observation that K1
is the associative operad in topological spaces. Finally we show that Kd is a
multiplicative operad.

In order to define the space Kd(k) we need to introduce the configuration
space of k points in Rd. For two sets E and F , we denote by Inj(E,F ) the
set of injective maps from E to F . For k ≥ 0 be an integer, define a natural
ordered set k = {1, · · · , k}.

Definition 2.2.1. The configuration space of k points in Rd, denoted by
Conf(k,Rd), is the space defined by

Conf(k,Rd) = Inj(k,Rd).

It is topologized as a subspace of the product (Rd)k =
∏k
i=1 Rd.

For k ≥ 1 and for x : k ↪→ Rd be a configuration of k points in Rd, we set
x = (x1, · · · , xk), where xi = x(i). So an element of Conf(k,Rd) can be written
on the form (x1, · · · , xk).

We also need (again in order to define Kd(k)) to define a map. Define first,
for i, j ∈ k such that 1 ≤ i < j ≤ k, a map αij : Conf(k,Rd) −→ Sd−1 by

αij(x1, · · · , xk) = xj − xi
‖xj − xi‖

.

Notice that αij(x1, · · · , xk) is nothing other than the direction between the
points xi and xj with i < j. Next define a map α by

α = (αij)1≤i<j≤k : Conf(k,Rd) −→
∏

1≤i<j≤k
Sd−1. (2.2.1)

Definition 2.2.2. The space Kd(k) (d ≥ 1) is defined to be the closure of the
image of α, and is called the Kontsevich compactification of the configuration
space Conf(k,Rd),

Kd(k) = im(α).

Remark 2.2.3. If x = (x1, x2, x3) is a configuration of three aligned points in
Rd, the components of α are all the same on x (that is, α12(x) = α13(x) =
α23(x)). This implies that the map α is not injective, but Sinha [43, Theorem
5.10] shows that there exists a weak equivalence

Kd(k) ' Conf(k,Rd). (2.2.2)

Remark 2.2.4. The space Kd(0), as well as the space Kd(1), is the one point
space (this comes immediately from Definition 2.2.2).



2.2. The operads Kd, Fd and D∨d 35

Intuitively, one should think an element x ∈ Kd(k) as a "virtual" configu-
ration of k points in which it is possible to get two or more points that are
infinitesimally close to each other in such a way that the direction between any
two of them is always well recorded. From this point of view, given two virtual
configurations x = (x1, · · · , xp) ∈ Kd(p) and y = (y1, · · · , yq) ∈ Kd(q), given an
integer 1 ≤ i ≤ p, we can form a new virtual configuration x◦i y ∈ Kd(p+q−1)
of p+ q − 1 points by "substituting" the point xi by the configuration y made
infinitesimal, and by keeping the other points of the configuration x. This de-
fines an operad structure. To be more precise, let Bd(k) be the space defined
by

Bd(k) = (Sd−1)
k(k−1)

2 .

By convention we set Bd(0) = ∗ and Bd(1) = ∗. Then the collection {Bd(k)}k≥0
is a topological operad [44]. Its structure

◦r : Bd(p)× Bd(q) −→ Bd(p+ q − 1), 1 ≤ r ≤ p,

is defined by

(α ◦r β)ij =


αij if i < j ≤ r
βi−r+1,j−r+1 if r ≤ i < j ≤ r + q − 1
αi−q+1,j−q+1 if r + q ≤ i < j
αir if i < r ≤ j < r + q
αrj if r ≤ i < r + q ≤ j.

(2.2.3)

Theorem 2.2.5. [44, Definition 4.1 and Theorem 4.5] For d ≥ 1, the collection
Kd(•) = {Kd(k)}k≥0 forms a suboperad of Bd.

Definition 2.2.6. The operad Kd(•), d ≥ 1, is called the Kontsevich operad .
We will denote it just by Kd.

Remark 2.2.7. Since there is only one direction on the real line R, it follows
that K1 is the associative operad in topological spaces. That is,

K1 = As. (2.2.4)

Now we are going to make an important observation (the following propo-
sition) about the Kontsevich operad. At the beginning of the introduction of
this chapter, we have defined two points: a1 and b1. Consider these two points
and the direction ~S = (0, · · · , 0,−1) between them. By definition, the map
α from (2.2.1) sends the configuration (a1, b1) ∈ Conf(2,Rd) to ~S. Therefore,
the unit vector ~S is an element of Kd(2) by the definition of Kd(2). Define
now µ ∈ Kd(2) by µ = ~S, and define also e ∈ Kd(0) to be the unique element
of Kd(0) = ∗. Then, recalling the definition of a multiplicative operad from
Definition 1.4.13, we have the following proposition.

Proposition 2.2.8. [44] For d ≥ 1 the Kontsevich operad Kd is a multiplicative
operad.
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Proof. By (2.2.3) the three components of µ ◦1 µ ∈ (Sd−1)3 are the same (they
are all equal to ~S). Similarly, the three components of µ ◦2 µ are all equal to
~S. Therefore we have the equality

µ ◦1 µ = µ ◦2 µ. (2.2.5)

On the other hand, if id denotes the unique element of Kd(1) = ∗, we have the
following equality

µ ◦1 e = µ ◦2 e = id. (2.2.6)

Using now equations (2.2.5), (2.2.6) and Remark 1.4.14 from Chapter 1, the
desired result follows.

We end this section with the following theorem (due to Sinha), which con-
nects operads Bd and Kd.

Theorem 2.2.9. [43] The Kontsevich operad Kd and the little d-disks operad
Bd are weakly equivalent as topological operads. That is,

Kd ' Bd.

2.2.2 The Fulton-MacPherson operad Fd
Here we first define the operad Fd for d ≥ 1. Next we show that it is not a
multiplicative operad, but an "up to homotopy multiplicative operad".

The Fulton-MacPherson operad [15, 39] was simultaneously introduced by
several people, in particular by Getzler and Jones in [15]. However we suggest
[27, Chapter 5] for more details about Fd. It is defined in the "similar way"
as the Kontsevich operad Kd (see Section 2.2.1) except that one also takes in
consideration the relative distance between three points taken in a configuration
of points. So an element x ∈ Fd(p) can be viewed as a "‘virtual" configuration
of p points in which points are allowed to be infinitesimally close to each other
while the directions and the relative distances of their approach are recorded.
To be more precise, consider the map

β : Conf(p,Rd) −→

 ∏
1≤i<j≤p

Sd−1

×
 ∏

1≤i<j<k≤p
[0,+∞]


defined by

β(x) = (βij(x), δijk(x)),

where (for x = (x1, · · · , xp) ∈ Conf(p,Rd))

βij(x) = xj − xi
‖xj − xi‖

and δijk(x) = ‖xi − xj‖
‖xi − xk‖

.

Notice that the vector βij(x) thus defined gives the direction between the points
xi and xj , whereas the real number δijk(x) gives the relative distance between
the points xi, xj and xk.
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Definition 2.2.10. The space Fd(p) is defined to be the closure of the image of
β, and is called the Fulton-MacPherson compactification of the configuration
space Conf(p,Rd),

Fd(p) = im(β).

The following proposition is proved in the similar way as Theorem 2.2.5.

Proposition 2.2.11. [44, Section 4] For d ≥ 1, the collection of spaces Fd(•) =
{Fd(p)}p≥0 is an operad. We will denote it just by Fd.

Definition 2.2.12. The operad Fd is called the Fulton-MacPherson operad.

The operad structure of Fd (the reader can refer to [27, Chapter 5] for
more details about this structure) is like that of the Kontsevich operad Kd,
which was defined in Section 2.2.1. In that section, we have seen that the
Kontsevich operad is multiplicative. Since these two operads are defined in the
"similar way", one could ask whether the Fulton-MacPherson operad is also
multiplicative. The following proposition gives a negative answer.

Proposition 2.2.13. For d ≥ 1, the Fulton-MacPherson operad Fd is not
a multiplicative operad, but it is an up to homotopy multiplicative operad in
topological spaces.

For the meaning of "up to homotopy multiplicative operad" , see Defini-
tion 4.2.1 from Chapter 4.

Proof. For d ≥ 1 there is a natural morphism ϕd : Fd −→ Kd in the category of
topological operads, which is defined by the projection on the first component.
It is straightforward to see that this map turns out to be a weak equivalence.
In particular, we have the weak equivalence ϕ1 : F1

∼−→ K1 = As.
On the other hand, the inclusion R ↪→ Rd induces two morphisms of operads:

µ : K1 −→ Kd and η : F1 −→ Fd.

We thus form the commutative square

K1
µ // Kd

F1

ϕ1∼

OO

η // Fd.

ϕd∼

OO (2.2.7)

This square tells us that the Fulon-MacPherson operad is not a multiplicative
operad, but an up to homotopy multiplicative operad. Of course, by definition,
the operad F1 is not homeomorphic to K1. For instance the space F1(3) is
homeomorphic to the interval I, whereas the space K1(3) is the one point
space.
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2.2.3 The operad of admissible diagrams D∨d
The goal of this section is to recall the construction (for d ≥ 2) of the operad
D∨d (•) = {D∨d (k)}k≥0, which is the dual of the cooperad Dd(•) of admissible
diagrams. The case d = 1 is trivial and will be mentioned at the end of the
section. We show that D∨1 is the associative operad, and D∨d is a multiplicative
operad in chain complexes. This section is based on [27, Chapter 6 and Chapter
7].

Definition 2.2.14. A diagram G consists of the following data:

• a finite set AG whose elements are called external vertices;

• an ordered finite set IG disjoint from AG, and whose elements are called
internal vertices;

• an ordered finite set EG whose elements are called edges;

• two functions sG , tG : EG −→ : AG
∐
IG called the source function and the

target function respectively.

The following picture is an example of a diagram. The set of external
vertices is {1, 2, 3, 4, 5}, and the set of internal vertices is {6, · · · , 15}.

Figure 2.1: An example of a diagram

We will say that two diagrams G and G′ are isomorphic if AG = AG′ and
there exists two order-preserving bijections ϕE : EG

∼=−→ EG′ and ϕI : IG
∼=−→

IG′ such that ϕV ◦ sG = sG′ ◦ ϕE and ϕV ◦ tG = tG′ ◦ ϕE , where ϕV :=
idAG

∐
ϕI : VG

∼=−→ VG′ is the obvious extension of ϕI . Notice that the finite
set AG is sometimes taken to be the set k = {1, · · · , k}. In that case G is called
diagram with k external vertices.

Definition 2.2.15. Let K be a field of characteristic 0. For d ≥ 2 and k ≥
0, define D̂d(k) to be the free K-module generated by isomorphism classes of
diagrams with k external vertices modulo some signed relations when the order
of internal vertices or edges is permuted, or the orientation of some edge is
reversed (for a precise definition see [27, Definition 6.2.2]).
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We put on the module D̂d(k) a grading defined by the formula

deg(G) = |EG | (d− 1)− |IG | d, (2.2.8)

where |EG | is the number of edges and |IG | the number of internal vertices.
The module D̂d(k) is also equipped with a product and a differential, which
we define now. Let us begin with the product. Let G′ and G′′ be two diagrams
with the same set A of external vertices. We can assume, without lost the
generality, that the sets I ′G and I ′′G are disjoint as well as the sets E′G and E′′G .
The product G = G′G′′ is the diagram with

• A as the set of external vertices;

• IG := I ′G
∐
I ′′G as the set of internal vertices;

• EG := E′G
∐
E′′G as the set of edges;

• sG = sG′
∐
sG′′ as the source function and tG = tG′

∐
tG′′ as the target

function.

Here is an example of a product of two diagrams.

Let 1 denote the diagram with k as the set external vertices, the empty set
as the set of internal vertices and the set of edges. It is easy to check that this
special diagram is the unit for the previous product. It is then call the unit
diagram.

Proposition 2.2.16. [27, Proposition 6.3.2] The module D̂d(k), equipped with
the above product, turns out to be a commutative Z-graded algebra, when d ≥ 2.

Define now the differential. Let G be a diagram, for example the diagram
in Figure 2.1. Before defining the differential of G, we recall four notions:

- a loop in G is an edge whose endpoints are identical. For instance, in
Figure 2.1, we have three loops, at vertices 14 and 8;

- a chord in G is an edge connecting two distinct external vertices. In
Figure 2.1, there is only one chord, (3, 4);

- a dead end is an edge that is not a loop and such that at least one if its
endpoints is internal and has only one adjacent vertex. In our example,
we have three dead ends, (8, 9), (12, 14)1, and (12, 14)2;
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- a contractible edge is an edge that is neither a chord, nor a loop, nor a dead
end. For example, again in Figure 2.1, we have two double contractible
edges (6, 7)1 and (6, 7)2; and nine other simple contractible edges.

Roughly speaking, the differential of G is an alternating sum of diagrams ob-
tained from G by contracting the contractible edges (a precise definition is given
in [27, Formula (6.1)]). The following picture is a contraction of an edge.

By endowing the module D̂d(k) with this differential, we get the following
theorem.

Theorem 2.2.17. [27, Theorem 6.4.7] For k ≥ 0 and d ≥ 2, the module D̂d(k)
is a commutative differential Z-graded algebra.

Let us define now the notion of admissible diagram. Recall that double edges
are distinct edges that have the same set of endpoints.

Definition 2.2.18. [27, Definition 6.5.1]

• An admissible diagram is a diagram that contains no double edges, no
loops, no internal vertices of valence less than or equal to two, and if
each of its internal vertices is connected to some external vertex.

• A non-admissible diagram is a diagram, which is not admissible.

The Figure 2.2 below is an example of an admissible diagram.

Figure 2.2: An admissible diagram

Definition 2.2.19. For k ≥ 0 and d ≥ 2, the commutative differential Z-
graded algebra Dd(k) of admissible diagrams is defined to be the quotient of
D̂d(k) by the ideal generated by the non-admissible diagrams.

Theorem 2.2.20. [27, Theorem 7.4.3] The collection Dd(•) = {Dd(k)}k≥0 is
a cooperad in commutative differential graded algebras (Z graded if d = 2).
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Proof. We will just give an idea of the proof. In particular we will explain the
cooperad structure with an explicit example. For the full proof we refer the
reader to [27, Chapter 7].

Let ν : k −→ P be a map (called weak ordered partition in [27]) from k =
{1, · · · , k} to an ordered set P . Take for instance ν : 5 −→ {α, β}, with α < β,
defined by

ν(v) =
{
α if v = 1, 2, 3
β if v = 4, 5.

We want to build cooperad structure maps

Ψν : Dd(k) −→ Dd(P )⊗ ⊗
p∈P
Dd(kp),

where kp = ν−1(p). The plan is to build maps

Ψ̂ν : D̂d(k) −→ D̂d(P )⊗ ⊗
p∈P
D̂d(kp)

inducing the linear maps Ψν . We will do it in our example. That is, we will
build a map

Ψ̂ν : D̂d(5) −→ D̂d(2)⊗ (D̂d(3)⊗ D̂d(2)).

Let G be the diagram of Figure 2.2 above. Let λ : 7 = VG −→ P ∗ = {0, α, β}
be a map (called condensation of VG relative to ν, that is, λ|AG = ν) defined
by

λ(v) =

 α if v = 1, 2, 3
β if v = 4, 5, 7
0 if v = 6.

Define G(λ) = ±G(λ, 0)⊗ G(λ, α)⊗ G(λ, β) by the following pictures.

G(λ, 0) = G(λ, α) = G(λ, β) =

Then Ψ̂ν(G) is defined by

Ψ̂ν(G) =
∑
λ

G(λ),

where λ runs over condensations of VG relative to ν.

We are now ready to define D∨d .

Definition 2.2.21. The operad of admissible diagrams , denoted by D∨d (•) or
simply by D∨d , is defined to be the dual of the cooperad Dd(•).
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Let us treat now the trivial case d = 1. In that case, we set for k ≥ 0

D1(k) = H∗(F1(k)), (2.2.9)

and define D∨1 (k) to be the dual of D1(k). It is clear that D∨1 is the associative
operad in chain complexes. That is,

D∨1 = As. (2.2.10)

Proposition 2.2.22. For d ≥ 1 the operad D∨d is a multiplicative operad in
chain complexes.
Proof. For k ≥ 0, define the morphism ψk : Dd(k) −→ D1(k) by

ψk(G) =
{

1 if G = 1 the unit diagram
0 otherwise.

By [27, Lemma 10.1], the morphism ψ = {ψk}k≥0 : Dd −→ D1 is a morphism
of cooperads in CDGA. Therefore the dual morphism ψ∨ : D∨1 −→ D∨d is a
morphism of operads in chain complexes. Since D∨1 = As (by (2.2.10) above),
the desired result follows.

2.3 Sinha’s cosimplicial model for the space of long knots

In this section we first define the Sinha cosimplicial space K•d. Next we review
the proof of the fact that it gives a cosimplicial model for the space of long
knots (see [44] for full details about this proof).

In [32, Section 10], McClure and Smith show that to any multiplicative
operad O in toplogical spaces is associated a cosimplicial space O• (recall that
this construction has been done in Proposition 1.4.16 from Chapter 1 for multi-
plicative operads in any symmetric monoidal category). In the particular case
of the Kontsevich operad Kd, which is a multiplicative operad (by Proposi-
tion 2.2.8) in topological spaces, this construction gives rise to a cosimplicial
space denoted by K•d.
Definition 2.3.1. The Sinha cosimplicial space is the cosimplicial space K•d.
Remark 2.3.2. Let ~v be a fixed unit vector in Rd. The coface map di : Kkd −→
Kk+1
d consists of doubling the ith point (the direction between the ith point and

the new one is taken to be ~v), when 1 ≤ i ≤ k. However, the coface maps d0

and dk+1 consist of adding a point at the infinity (at +∞ for d0 and at −∞
for dk+1). If all the points of the "virtual" configuration x ∈ Kkd are inside the
cube Id, then the coface d0 consists of inserting a0 whereas dk+1 consists of
inserting a1. The codegeneracy map sj : Kk+1

d −→ Kkd consists of forgetting the
jth point in the configuration and relabeling appropriately.

The following theorem, due to Sinha, is the main result of [44].
Theorem 2.3.3. [44] For d ≥ 4, the Sinha cosimplicial space K•d gives a
cosimplicial model for the space of long knots . That is, the homotopy totaliza-
tion of K•d is weakly equivalent to the space Embc(R,Rd) of long knots modulo
immersions,

hoTotK•d ' Embc(R,Rd). (2.3.1)
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The rest of this section is devoted to an overview of the proof of Theo-
rem 2.3.3. Note that this proof uses in general Goodwillie calculus or the
calculus of functors [17, 18], which is a technique that consits of studying a
functor F by its "succesive approximations" TkF . The functor TkF is called
the kth approximation of F , and the collection {TkF}k≥0 is called the Taylor
tower of F . In the proof of Theorem 2.3.3 we will not use the general theory
of Goodwillie , but the Weiss embedding calculus [57] which is more adapted
in our case (since the functor with which we are concerned is the compactly
supported embedding functor Embc(−,Rd)).

Let us start with the definition of Embc(−,Rd).

Definition 2.3.4. • Define Oc(R) to be the category of open subsets U ⊆ R
on the form U = R\K, where K is a compact subset of I. Morphisms in
Oc(R) are the inclusions.

• The contravariant functor

Embc(−,Rd) : Oc(R) −→ Top

from the category Oc(R) to topological spaces is defined by

Embc(−,Rd)(U) = Embc(U,Rd).

Let us define now for each 0 ≤ k ≤ ∞, the category Ock(R) and the kth
approximation TkEmbc(−,Rd) of the contravariant functor Embc(−,Rd).

Definition 2.3.5. A family {Ai}0≤i≤k of subsets of R is said to be ordered if
the following two conditions hold

- each Ai is a nonempty set;

- x < y whenever x ∈ Ai, y ∈ Aj and i < j.

This definition implies that elements of an ordered family {Ai}0≤i≤k are
pairwise disjoint.

Definition 2.3.6. Let k ≥ 0 be an integer. Define the category Ock(R) (respec-
tively the category Oc∞(R)) to be the subcategory of Oc(R) consisting of open
subsets

U = R\(∪pi=0Ai)

such that the following two conditions are satisfied

• p is an integer less than or equal to k (respectively p is any integer);

• {Ai}0≤i≤p is an ordered family of closed subintervals of I.

The following remark gives an equivalent definition of the category Ock(R).

Remark 2.3.7. For 0 ≤ k ≤ ∞, an open subset U ⊆ R is an object of the
category Ock(R) if and only if it can be written on the form U = U0 ∪U1, where

• U0 is on the form U0 =]−∞, a[∪]b,+∞[ with a, b ∈ I and a < b;
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• U1 is a finite disjoint union of at most k open intervals;

• U0 ∩ U1 = ∅.

Notice that the open subset U0 is just the complement of a closed subin-
terval of I and this is the reason for which it is called an anti-interval. In
Chapter 5 (where we will study the space Embc(N,Rd) of "compactly sup-
ported" embeddings of an open submanifold N ⊆ Rn in Rd), the notion of an
anti-interval will be generalized by an anti-ball.
Consider now the commutative diagram

Ock(R)
Embc(−,Rd)/Oc

k(R) //
� _

i

��

Top

Oc(R)
Embc(−,Rd)

44 (2.3.2)

Definition 2.3.8. For 0 ≤ k ≤ ∞, the kth approximation

TkEmbc(−,Rd) : Oc(R) −→ Top

of the contravariant functor Embc(−,Rd) is defined to be the homotopy left
Kan extension of the restriction functor Embc(−,Rd)/Ock(R) : Ock(R) −→ Top
along the inclusion functor i : Ock(R) ↪→ Oc(R).

By the definition of the homotopy left Kan extension, the kth approximation
TkEmbc(−,Rd) is explicitly given by the formula

TkEmbc(U,Rd) = holim
V⊆U

(Embc(V,Rd)), (2.3.3)

where the homotopy limit of the right hand side of (2.3.3) runs over open
subsets V ⊆ U on the form V = V0 ∪ V1 such that the three conditions
of Remark 2.3.7 hold with V0 and V1. As a property of the homotopy left
Kan extension there exists, for each 0 ≤ k ≤ ∞, a natural transformation
Embc(−,Rd) −→ TkEmbc(−,Rd) [57]. In [44], Sinha proves that the natural
map

Embc(R,Rd)
∼−→ T∞Embc(R,Rd) = holim

V ∈Oc
∞(R)

Embc(V,Rd) (2.3.4)

is a weak equivalence, when d ≥ 4.
Before continuing the overview of the proof of Theorem 2.3.3, we recall the

notion of a left cofinal functor. Let θ : C −→ D be a functor. For d ∈ D be an
object of D, let C ↓ d be the category whose objects are couple (c, f), where
c is an object of C and f : θ(c) −→ d is a morphism in D. A morphism from
(c, f) to (c′, f ′) consists of a morphism g : c −→ c′ in C such that the obvious
induced diagram in D commutes, that is f ′θ(g) = f if θ is a covariant functor
and fθ(g) = f ′ otherwise.

Definition 2.3.9. A functor θ : C −→ D is said to be left cofinal if for each
d ∈ D, the over category C ↓ d is contractible.
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Now we define a contravariant functor θ : Oc∞(R) −→ ∆, which turns out
to be left cofinal. Recall first the definition of that functor. Let {Ai}1≤i≤p be a
family of ordered closed intervals as above. Set U = R\(∪pi=0Ai). The functor
θ is defined on objects by

θ(U) = [p] = {0, · · · , p}.

Consider another family {Bi}1≤i≤q of ordered closed intervals, and set V =
R\(∪qi=0Bi). Assume that there is a morphism in Oc∞(R) from U to V , that is
U ⊆ V . Then for each i ∈ [q], there exists a unique ji ∈ [p] such that Bi ⊆ Aji .
Moreover, since the families {Ai}1≤i≤p and {Bi}1≤i≤q are ordered, we have
ji1 < ji2 whenever i1 < i2. This defines θ on morphisms by

θ(U ⊆ V ) : [q] −→ [p] with θ(U ⊆ V )(i) = ji.

One can prove the following proposition.

Proposition 2.3.10. The functor

θ : Oc∞(R) −→ ∆

is left cofinal.

Proposition 2.3.11. [45, Proposition 5.15] Let U = U0 ∪ U1 be an object
of the category Oc∞(R) such that U1 is the disjoint union of exactly k open
subintervals of I. Then there is a weak equivalence

Embc(U,R) ' Conf(k,Rd). (2.3.5)

The idea of the proof of Proposition 2.3.11 lies on the fact that one can
retract each interval of U1 to its midpoint.
From weak equivalences (2.2.2) and (2.3.5), it follows that the diagram

Oc∞(R)

θ

��

Embc(−,Rd) // Top

∆
K•d

44

is commutative up to homotopy. In addition the functor θ is left cofinal by
Proposition 2.3.10. This implies the following weak equivalence

holim
V ∈Oc

∞(R)
(Embc(V,R)) ' hoTotK•d. (2.3.6)

Actually the proof of Theorem 2.3.3 follows immediately from (2.3.4) and
(2.3.6).
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2.4 Collapsing of the H∗BKSS associated to the Sinha
cosimplicial model K•d

This section recalls the main results of [26] and [27], and makes a comment
concerning them. Here K is a field of characteristic 0.

In [44] Sinha proves that the H∗BKSS associated to K•d converges to the
homology H∗(hoTotK•d) ∼= H∗(Embc(R,Rd)), when d ≥ 4. Therefore it is
natural to ask whether this spectral sequence collapses or not. This question
was studied by Lambrechts, Turchin and Volić in [26], who proved the following
result.

Theorem 2.4.1. [26, Theorem 1.2] For d ≥ 4 the homology Bousfield-Kan
spectral sequence associated to Sinha’s cosimplicial space K•d collapses at the
E2 page rationally.

Definition 2.4.2. A morphism f : P −→ Q between two topological operads is
said to be K-formal if there exists, in the category of operads in chain complexes,
a zigzag

S∗(Q;K) •∼oo ∼ // · · · •∼oo ∼ // H∗(Q;K)

S∗(P ;K)

S∗(f)

OO

•

OO

∼oo ∼ // · · · •∼oo

OO

∼ // H∗(P ;K)

H∗(f)

OO

such that each horizontal arrow is a quasi-isomorphism and each square com-
mutes.

In [27] P. Lambrechts and I. Volić detailed the Kontsevich proof [25] of the R-
formality of the little d-disks operad Bd. Moreover, they show another version
of this formality: the relative R-formality (see the following theorem). Notice
that the Kontsevich formality and its relative version hold in the category of
nonsymmetric operads in chain complexes over R.

Theorem 2.4.3. [27, Theorem 1.4] For d ≥ 2q+ 1 and q ≥ 1, the inclusion of
operads Bq ↪→ Bd is R-formal.

In the case q = 1, the authors of [27] prove Theorem 2.4.3 by building
explicitly the following diagram

C∗(Kd;R) C∗(Fd;R)∼oo ∼ // D∨d H∗(Kd;R)∼oo

C∗(K1;R)

OO

C∗(F1;R)

OO

∼oo ∼ // D∨1

OO

H∗(K1;R).

OO

∼oo

(2.4.1)

In that diagram C∗(−) is a symmetric monoidal functor much like the sin-
gular chain functor (further in Section 4.3 we will come back to that functor)

Definition 2.4.4. Let I be a small category. A diagram F : I −→ Top is
said to be K-formal if S∗(F ;K) and H∗(F ;K) are weakly equivalent in the
category of I-diagrams in chain complexes. In particular, a cosimplicial space
X• : ∆ −→ Top is K-formal if it is K-formal as a ∆-diagram.
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The following proposition is proved in [26].

Proposition 2.4.5. [26, Proposition 3.2] Let X• : ∆ −→ Top be a K-formal
cosimplicial space. Then the homology Bousfield-Kan spectral sequence associ-
ated to X• collapses at the E2 page rationally.

Comment In diagram (2.4.1), the operads C∗Kd and H∗Kd are multi-
plicative (by Proposition 1.4.15 and Proposition 2.2.8), and the operad D∨d
is also multiplicative (by Proposition 2.2.22). So we can associate to each of
them (by Proposition 1.4.16) a cosimplicial object in chain complexes. If the
operad C∗Fd was multiplicative (unfortunately, as an immediate consequence
of Proposition 2.2.8, it isn’t), one would deduce the R-formality of the Sinha
cosimplicial space K•d, and the proof of Theorem 2.4.1 would follow easily (by
Proposition 2.4.5). So the problem here is the fact that it is impossible to
associate a cosimplicial object, as in the spirit of McClure-Smith (that is, as
in Proposition 1.4.16), to the operad C∗Fd. To get around this problem, the
authors of [26] introduce certain finite diagrams of spaces called fanic diagrams.

In Chapter 4 we will directly prove the R-formality of the Sinha cosimplicial
space K•d, and therefore this will give us a very short proof (using no fans) of
Theorem 2.4.1. Our method will lead us to one of the main results of this
thesis: Theorem 4.1.5.
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CHAPTER 3

Gerstenhaber algebra structures

3.1 Introduction

This chapter describes Gerstenhaber algebra structures on the Hochschild ho-
mology HH(S∗O) associated to a singular chain operad S∗O, on the homology
H∗(TotO•) of the totalization of O•, and on the homology H∗(hoTotO•) of the
homotopy totalization of O•, when the cosimplicial space O• is associated to
a multiplicative operad O. In all the chapter O• will be always like this (that
is, defined by O). We also prove Theorem D (which is the main result of our
preprint [48]) announced in the introduction of this thesis.

Outline of the chapter

- In Section 3.2 we first recall the definition of a Gerstenhaber algebra.
Next we recall the Hochschild homology HH(V ) associated to a multi-
plicative operad V in graded vector spaces. Finally we equip HH(V )
with the natural Gerstenhaber algebra structure induced by the operad
structure of V .

- In Section 3.3 we first recall the cacti operad MS, which acts on TotO•.
This action was geometrically defined by P. Salvatore in [41, Theorem
5.4]. His idea is to associate from a cactus, elements a•1, · · · , a•n ∈ TotO•,
and t ∈ ∆k , a planar tree whose vertices (except the root and the leaves)
are labelled by the entries of O. Using now the operad structure of O, he
gets an operation θ ∈ Ok.
From the same data as those of Salvatore we explicitly construct θ (with-
out using trees), in the proof of Theorem 3.3.11. Our construction is
more combinatorial. In fact, we first associate a word (instead of a la-
belled tree) on the alphabet n = {1, · · · , n}. Next, by "suitable cutting"
this word, we obtain an explicit formula for θ (many illustrative exam-
ples are given). After proving Theorem 3.3.11, we recall the E2 operad

49
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D2 (introduced in [32] by McClure and Smith), and its action on TotO•.
Actually it is isomorphic to the cacti operad (see [41, Proposition 8.2]).
We end the section with Theorem 3.3.19, which says that the D2 andMS
actions are compatible in the sense that some squares commute. This is
the reason for which we need explicit formulas for θ.

- In Section 3.4 we first recall the action of the circle S1 on TotO• (it was
explicitly defined by Sakai in [38, Section 4.1]). From this action he ex-
plicitly defines, without proving the compatibility between the S1 action
and the D2 action, the Gerstenhaber algebra structure (on the homology
H∗(TotO•)) induced by the D2 action. We prove (via theMS action) this
compatibility, and therefore the induced Gerstenhaber algebra structures
are the same. We end the section with a result of Sakai [38], which states
that there exists an isomorphism betweenHH(S∗O) andH∗(TotO•) that
respects the Gerstenhaber algebra structure, when O• is fibrant. He ob-
tains a similar result (that we also recall in Theorem 3.4.5) [38] in the
non-fibrant case. Note that in the next chapter, Theorem 3.4.5 (with
O replaced by the Kontsevich operad) will be one of the ingredients in
proving Theorem 4.1.5, which is one of the main results in this work.

3.2 Gerstenhaber algebra structure on the Hochschild
homology

In this section we first recall the definition of a Gerstenhaber algebra. Next we
define the Hochschild homology HH(V ) associated to a multiplicative operad
V in graded vector spaces. Finally we show that HH(V ) is equipped with a
natural Gerstenhaber algebra structure. The ground field here is any field K
of characteristic 0.

3.2.1 Definition of a Gerstenhaber algebra

Let us start with some preliminaries definitions.

Definition 3.2.1. • A Z-graded vector space is a direct sum A = ⊕
k∈Z

Ak,
where each Ak is a K-vector space. If A = ⊕

k≥0
Ak we say that A is a

positively graded vector space. An element a ∈ Ak ⊆ A is of degree k.
Let us denote that degree by |a|.

• For p ∈ Z, the p-suspension of a Z-graded vector space A is the Z-graded
vector space denoted by spA and defined by

(spA)k = Ak−p. (3.2.1)

• We say that a linear map f : A −→ B between two Z-graded vector spaces
is of degree p if the image under f of an element of A of degree n is an
element of B of degree n + p, that is, f(An) ⊆ Bn+p for all n. A linear
map f : A −→ B of degree 0 is called a morphism.
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• Let A = ⊕k∈ZAk and B = ⊕k∈ZBk be two Z-graded vector spaces. The
tensor product (respectively the direct sum) of A and B is the Z-graded
vector space denoted by A⊗B (respectively by A⊕B) and defined by

(A⊗B)n = ⊕
p+q=n

Ap ⊗Bq (respectively by (A⊕B)n = An ⊕Bn).

The p-suspension of an element a ∈ A will be denoted by spa. Notice that
if for instance a ∈ A is of degree p+k, then |s−pa| = k (this comes from (3.2.1)
above).

Definition 3.2.2. A Poisson algebra of degree r or a r-Poisson algebra (for
r > 1) is a triple (A,×, {−,−}), where

• A = ⊕
k∈Z

Ak is a Z-graded vector space,

• × : A ⊗ A −→ A is an associative bilinear operation of degree 0, called
the product,

• {−,−} : A ⊗ A −→ A is a bilinear operation of degree r − 1, called the
bracket,

such that we have the

- graded commutativity of the product,

a× b = (−1)|a||b|b× a;

- graded antisymmetry relation,

{a, b} = −(−1)(|a|+1−r)(|b|+1−r){b, a};

- graded Jacobi identity,

{a, {b, c}} = {{a, b}, c}+ (−1)(|a|+1−r)(|b|+1−r){b, {a, c}};

- biderivative of the bracket with respect to the product,

{a, b× c} = {a, b} × c+ (−1)|b|(|a|+1−r)b× {a, c}.

The product a× b will be denoted just by ab.
A Gerstenhaber algebra is a particular case of a Poisson algebra. More

precisely, we have the following definition.

Definition 3.2.3. A Gerstenhaber algebra is a Poisson algebra of degree 2.
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3.2.2 Hochschild homology of a multiplicative operad in graded vec-
tor spaces

Let V = {V (k)}k≥0 be a multiplicative operad in graded vector spaces (the no-
tion of a multiplicative operad was introduced in Definition 1.4.13). In Propo-
sition 1.4.16, we have seen the construction that associates a cosimplicial object
to any multiplicative operad. Taking V as input in that construction, we get
the cosimplicial object V •. Recall that V k is defined by V k = V (k). Define a
morphism d : V (k) −→ V (k + 1) by

d =
k+1∑
i=0

(−1)idi, (3.2.2)

where (for 0 ≤ i ≤ k+ 1), di : V (k) −→ V (k+ 1) is the ith coface morphism of
V •. Using the cosimplicial relations (from (1.2.8) of Chapter 1) one can show
that d is a differential. That is,

d2 = 0. (3.2.3)

We will define two complexes associated to V : a chain complex C∗H(V ) and
a cochain complex C∗H(V ). Let us start with C∗H(V ). Since each V (k) is a
graded vector space, we can set V (k) = ⊕

i∈Z
V (k)i. First define a vector space

CnH(V ) =
⊕
k≥0

(snV (k))k.

Next define C∗H(V ) by

C∗H(V ) =
⊕
n≥0

CnH(V ).

Finally define δ : CnH(V ) −→ Cn+1H(V ) by

δ( ⊕
k≥0

xk) = ⊕
k≥0

d(xk).

It is clear that δ is a differential since d2 = 0 from (3.2.3). We then form the
cochain complex (C∗H(V ), δ), which will be called the Hochschild cocomplex
associated to V . We call it like this because, under good conditions, it is
related to the classical Hochschild cocomplex as we will see now. Let A be
an associative algebra. As usual let C∗(A,A) denote the classical Hochschild
cocomplex. Recall that

Cn(A,A) = Hom(A⊗n, A), where A⊗n = A⊗ · · · ⊗A︸ ︷︷ ︸
n

.

The differential

δ̃ : Cn(A,A) −→ Cn+1(A,A) is defined by δ̃(f) =
n+1∑
i=0

(−1)id̃i(f),
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where for every a = (a1, · · · , an+1) ∈ A⊗(n+1),

d̃i(f)(a) =

 a1f(a2, · · · , an+1) if i = 0
f(a1, · · · , ai−1, aiai+1, ai+2, · · · , an+1) if 1 ≤ i ≤ n
f(a1, · · · , an)an+1 if i = n+ 1.

Consider now the endomorphism operad EndA (it was defined in Exam-
ple 1.4.7 from Chapter 1). This operad turns out to be a multiplicative operad
in vector spaces, the special operation in EndA(n) = Hom(A⊗n , A) being in-
duced by the multiplication in A. This makes sense because of the associativity
of A. Taking EndA as input in the previous construction, we get the cochain
complex C∗H(EndA). The following proposition, which is very easy to prove,
says that this latter complex is nothing other than the classical Hochschild
cocomplex associated to A.

Proposition 3.2.4. Let A be an associative algebra. Then we have the equality

C∗H(EndA) = C∗(A,A).

Let us define now C∗H(V ) (we will denote it just by CH(V )), which is
roughly speaking the dual of C∗H(V ). Set

CH(V )n =
⊕
k≥0

(s−kV (k))n,

and define CH(V ) =
⊕
n≥0

(CH(V ))n. We want to endow CH(V ) with a differ-

ential ∂ : CH(V )n −→ CH(V )n−1. Let x = ⊕
k≥0

xk be an element of CH(V )n.

Then each xk ∈ (s−kV (k))n = V (k)n+k (by (3.2.1) above). Applying the
differential d to each xk, we have the element

d(xk) ∈ V (k + 1)n+k = (s−(k+1)V (k + 1))n−1.

So ∂(x) = ⊕
k≥0

d(xk) is an element of CH(V )n−1. This defines ∂ by

∂( ⊕
k≥0

xk) = ⊕
k≥0

d(xk). (3.2.4)

Proposition 3.2.5. The morphism ∂ : CH(V )n −→ CH(V )n−1 is a differen-
tial.

Proof. Let x = ⊕
k≥0

xk be an element of CH(V )n. Then

∂2(x) = ∂( ⊕
k≥0

d(xk)) by (3.2.4)

= ⊕
k≥0

d2(xk) by (3.2.4)

= 0 since d2 = 0 by (3.2.3).
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Definition 3.2.6. Consider the chain complex (CH(V ), ∂) we just defined.

• (CH(V ), ∂) is called the Hochschild complex associated to the multiplica-
tive operad V .

• The homology of the Hochschild complex is called the Hochschild homol-
ogy of V , and it is denoted by HH(V ).

The Hochschild homology HH(V ) is equipped with a natural Gerstenhaber
algebra structure induced by the multiplicative structure of the operad V . To
be precise, define on the Hochschild complex CH(V ) a product × and a bracket
{−,−} as follows. Let µ ∈ V (2) denote the special operation in arity 2 (such
an operation exists because V is multiplicative). For a ∈ (s−pV (p))i = V (p)i+p
and b ∈ (s−qV (q))j = V (q)j+q, define a× b by

a× b = (µ ◦2 b) ◦1 a = µ(a, b), (3.2.5)

and define {a, b} by

{a, b} =
p∑
r=1

(−1)εa ◦r b− (−1)(i+1)(j+1)
q∑
t=1

(−1)ε
′
b ◦t a, (3.2.6)

where

ε = (i− 1)(p− r) + (p− 1)(q+ j) and ε′ = (p− 1)(q− t) + (p+ i)(q− 1).

Here ◦i is the ith insertion morphism of the operad structure of V . Notice that
the product a× b sits in

V (p+ q)i+j+p+q = (s−(p+q)V (p+ q))i+j ,

while the bracket {a, b} sits in

V (p+ q − 1)i+j+p+q = (s−(p+q−1)V (p+ q − 1))i+j+1.

So the formulas (3.2.5) and (3.2.6) respectively induce a linear map

× : CH(V )⊗ CH(V ) −→ CH(V ) of degree 0,

and a linear map

{−,−} : CH(V )⊗ CH(V ) −→ CH(V ) of degree 1.

Notice that the differential ∂ (defined by the formula (3.2.4) above) of the chain
complex CH(V ) can be redefined in term of the bracket. More exactly, we have

∂(x) = {µ, x}.

Proposition 3.2.7. [14] The product (3.2.5) and the bracket (3.2.6) induce a
Gerstenhaber algebra structure on the Hochschild homology HH(V ).
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3.3 The cacti operad MS, the McClure-Smith operad D2
and their actions on TotO•

In this section we first define the cacti operad MS (see Definition 3.3.9) and
show that it explicitly acts on TotO• (Theorem 3.3.11), where O• is a cosim-
plicial space defined by a multiplicative operad O. Next we recall the definition
of the operad D2 (built by McClure-Smith in [32]) and its action on TotO•.
We end with Theorem 3.3.19, which states that the MS and D2 actions are
compatible. In all this section, for n ≥ 0, the set n is defined by n = {1, · · · , n}.

3.3.1 The cacti operad MS and its action on TotO•

We begin with the definition of the cacti operad MS. Let S1 be the unit circle
viewed as the quotient of the interval I = [−1, 1] by the relation −1 ∼ 1. Let
π : [−1, 1] −→ S1 denote the canonical surjection, and let ∗ = π(1) denote the
base point of S1. To define MS we need to define first a family of topological
spaces

I = {Ik(n) : n ≥ 0 and 0 ≤ k ≤ ∞}.
Let n ≥ 1 be an integer. We start by defining the space I∞(n). Next we will
define Ik(n) as a subspace of I∞(n).
Let K = {Ki = [xKi , xKi+1]}pK−1

i=0 be a family of closed subintervals of I satisfy-
ing the following two conditions:

(P1) : pK ≥ n, xK0 = −1, xKp = 1 and the points xK0 , · · · , xKp are pairwise
distinct.

(P2) : The intervals Ki define n 1-manifolds IK1 , · · · , IKn of disjoint interiors and
with equal length. This means that each IKj is an union of some Ki.

We denote by Pn the collection of such a family K. That is,

Pn = {K = {Ki = [xKi , xKi+1]}pK−1
i=0 | K satisfies (P1) and (P2)}. (3.3.1)

The image of a n-tuple (IK1 , · · · , IKn ) (respectively the image of intervals Ki)
under the canonical surjection π will be denoted again by (IK1 , · · · , IKn ) (re-
spectively by {Ki}). The set I∞(n) is then defined by

I∞(n) = {(IK1 , · · · , IKn )| K ∈ Pn}.

From now and in the rest of this section, we will denote an element x ∈ I∞(n)
by x = (I1(x), · · · , In(x)) or just by x = (I1, · · · , In). The family K = {Ki =
[xKi , xKi+1]}pK−1

i=0 will be sometimes just denoted by K = {Ki = [xi, xi+1]}p−1
i=0 .

Let us equip now the set I∞(n) with the following topology. Two elements

x = (I1(x), · · · , In(x)) and y = (I1(y), · · · , In(y))

of I∞(n) are said to be close if for each i there is εi > 0 too small such that

length ((Ii(x) ∪ Ii(y))\(Ii(x) ∩ Ii(y))) < εi.

Notice that I∞(1) is the one point space. In order to define the space Ik(n)
(for k ≥ 0 be an integer), recall first the notion of the complexity of a map.
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Definition 3.3.1. Let T be a finite totally ordered set, n be an integer, and
f : T −→ n = {1, · · · , n} be a map. The complexity of f , denoted by cplx(f),
is defined as follows.

• If n = 0 or n = 1 then cplx(f) = 0.

• If n = 2, let ∼ be the equivalence relation on T generated by

a ∼ b if a is adjacent to b and f(a) = f(b).

The complexity of f is equal to the number of equivalence classes minus
1.

• If n > 2, let fij : f−1({i, j}) −→ {i, j} denote the restriction of f on
f−1({i, j}). The complexity of f is equal to the maximum of complexities
of the restrictions fij as {i, j} ranges over the two-element subsets of n.
That is,

cplx(f) = Max
1≤i<j≤n

(cplx(fij)). (3.3.2)

Note that a map f : T −→ {1, · · · , n} can be viewed as a word of length |T |
on the alphabet {1, · · · , n} (here |T | denotes the cardinal of T ). The length of
the alphabet {1, · · ·n} is defined to be its cardinal.

Example 3.3.2. (a) If |T | = 5, n = 2 and f is defined by the word f =
12212 then cplx(f) = 3.

(b) Assume that |T | = 8, n = 3 and f = 31232113, and consider the following
tabular

map f12 = 12211 f13 = 313113 f23 = 32323
complexity cplx(f12) = 2 cplx(f13) = 4 cplx(f23) = 4

By this tabular and by (3.3.2), we deduce that cplx(f) = 4.

Let x = (I1, · · · , In) ∈ I∞(n) defined by a partition K = {Ki}p−1
i=0 ∈ Pn.

Let Tx be the set defined by Tx = {0, 1, · · · , p− 1}. For each k ∈ Tx, it is clear
that there exixts a unique ik ∈ {1, · · · , n} such that Kk ⊆ Iik (this comes from
the condition (P2) above). This defines a map

fx : Tx −→ {1, · · · , n} (3.3.3)

Definition 3.3.3. The complexity of an element x ∈ I∞(n), denoted by
cplx(x), is defined to be the complexity of the map fx. That is,

cplx(x) = cplx(fx).

We are now ready to define Ik(n).

Definition 3.3.4. For k ≥ 0, the space Ik(n) is the subspace of I∞(n) defined
by

Ik(n) = {x ∈ I∞(n)| cplx(x) ≤ k}.
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The picture above is an element of I2(4).

Remark 3.3.5. The space I2(n) is a finite regular CW -complex with one cell
for each fx(Tx) (see (3.3.3) above for the definition of fx). A cell labelled by
some fx(Tx) is homeomorphic to

∏n
i=1 ∆|f

−1
x (i)|−1. For instance, the element

of the picture above is an element of a cell homeomorphic to ∆1 ×∆1, which
is labelled by 314123.

Now we want to define a cactus with n lobes. Let x = (I1, · · · , In) ∈ I2(n)
defined by a family of closed intervals K = {Ki1, · · · ,Kili}

q
i=1 ∈ Pn. Assume

that each Ii is on the form Ii = ∪lir=1Kir, and define on S1 the equivalence
relation ∼i (for 1 ≤ i ≤ n) generated by

(t1 ∼i t2) if and only if (t1, t2 ∈ Kjr with jr /∈ {i1, · · · , ili}).

It is easy to see that the quotient of S1 by this equivalence is homeomorphic
to S1. Let us denote by πi the canonical surjection.

πi : S1 −→ S1/ ∼i∼= S1.

We thus construct a map

c(x) : S1 −→ (S1)n

defined by c(x) = (π1, · · · , πn), and called the cactus map. Its image is called
the cactus with n lobes associated to x ∈ I2(n). Recalling the definition of the
coendomorphism operad CoendS1 from Example 1.4.9, there is an embedding

τn : I2(n) −→ CoendS1(n)

defined by
τ(x) = c(x).

Remark 3.3.6. The collection of spaces {τn(I2(n))}n≥0 is not a suboperad
of CoendS1(•). Indeed, let x be an element of I2(2) laballed by 212. Then
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c(x) = (π1, π2) ∈ CoendS1(2). Using now the operad structure of CoendS1 , we
get

c(x) ◦2 c(x) = (π1, π1 ◦ π2, π2 ◦ π2) = (π1, constant map, π2 ◦ π2),

and it is impossible to find an element z ∈ F2(3) such that

c(z) = (π1, constant map, π2 ◦ π2).

Since the collection {τn(F2(n))}n≥0 is not far to be an operad, to get the
right one, we introduce the space Mon(I, ∂I) defined as follows. Let ∂I =
{−1, 1} denotes the boundary of I. Let ϕ : I −→ I be a weakly monotone map
such that its restriction on ∂I coincides with the identity map id∂I . Then the
map ϕ passes to the quotient and gives a map ϕ̃ : S1 −→ S1, which is a typical
element of Mon(I, ∂I).

Remark 3.3.7. The space Mon(I, ∂I) is homeomorphic to the totalization
Tot∆• ' ∗. The homeomorphism Mon(I, ∂I)

∼=−→ Tot∆• sends ϕ̃ ∈ Mon(I, ∂I)
to (t1, · · · , tk) 7−→ (ϕ(t1), · · · , ϕ(tk)).

Considering the embedding

τn : I2(n)×Mon(I, ∂I) −→ CoendS1(n)

defined by
τn(x, ϕ̃) = c(x) ◦ ϕ̃ : S1 −→ (S1)n,

we have the following proposition.

Proposition 3.3.8. The collection

{im(τn)}n≥0 = {τn(I2(n)×Mon(I, ∂I))}n≥0

is a suboperad of CoendS1 .

Proof. The proof follows immediately from [41, Proposition 4.5].

Let MS = {MS(n)}n≥0 be the collection of topological spaces defined by

MS(n) =
{
I2(n)×Mon(I, ∂I) if n ≥ 1
∗ if n = 0. (3.3.4)

By transferring the operad structure of {im(τn)}n≥0 (which is given by Proposi-
tion 3.3.8) onMS via embeddings τn, we endowMS with an operad structure.

Definition 3.3.9. The operad MS is called the cacti operad.

Proposition 3.3.10. There exists a weak equivalence (φ, id) : S1 ∼−→MS(2).
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Proof. Define first intervals K0, K1 and K2 by


K0 = [−1, τ ],K1 = [τ, 1 + τ ],K2 = [1 + τ, 1] if −1 < τ < 0
K0 = [−1, τ − 1],K1 = [τ − 1, τ ],K2 = [τ, 1] if 0 < τ < 1
K0 = [−1, 0],K1 = [0, 1] if τ = 0
K0 = [−1, 0],K1 = [0, 1] if τ = ±1.

Define next a map φ : S1 −→ I2(2) by

φ(τ) =


(I1 = K0 ∪K2, I2 = K1) if −1 < τ < 0
(I1 = K1, I2 = K0 ∪K2) if 0 < τ < 1
(I1 = K0, I2 = K1) if τ = 0
(I1 = K1, I2 = K0) if τ = ±1.

(3.3.5)

It is not difficult to see that φ is a homeomorphism. Therefore the map

(φ, id) : S1 −→MS(2) = I2(2)×Mon(I, ∂I), (3.3.6)

where id is the map that sends each point of S1 to the identity map idS1 : S1 −→
S1, is a weak equivalence since the space Mon(I, ∂I) is contractible by Re-
mark 3.3.7.

The following theorem is originally due to Salvatore in [41]. He gives a nice
geometric proof to it. Here we give another proof, which is more combinatorial.
We provide in fact explicit formulas of the action of MS on TotO•.

Theorem 3.3.11. [41, Theorem 5.4] Let O• be a cosimplicial space defined by
a multiplicative operad O. Then the cacti operad MS acts on the totalization
TotO•.

Proof. Let (x, ϕ̃) ∈ MS(n) = I2(n) ×Mon(I, ∂I), let a•i ∈ TotO•, 1 ≤ i ≤ n.
Our aim is to construct from these data a family

θn((x, ϕ̃), (a•1, · · · , a•n))k : ∆k −→ Ok, k ≥ 0, (3.3.7)

of maps that commute with cofaces and codegeneracies.
Let t = (−1 = t0 ≤ t1 ≤ · · · ≤ tk ≤ tk+1 = 1) be an element of ∆k. Define

a family of closed intervals {Jj}kj=0 by setting Jj = [ϕ(tj), ϕ(tj+1)]. Assume
that x ∈ I2(n) is defined by a family of p closed intervals K = {[xi, xi+1]}p−1

i=0 ,
and consider the set

E = {ϕ(tj)| 0 ≤ j ≤ k + 1} ∪ {xi| 0 ≤ i ≤ p}.

Define now a family {Ll = [al, bl]}ml=0 of closed subintervals of I as follows.

- each al or bl belongs to E;

- the interior of each Ll contains no element of E;

- ∪ml=0Ll = I and

m = k + p− 1. (3.3.8)
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(a) Assume that for all i and for all j, xi 6= ϕ(tj)

In this case there exists, for each l ∈ {0, · · · ,m}, an unique element il ∈
{1, · · · , n} and an unique element jl ∈ {0, · · · , k} such that Ll ⊆ Iil and
Ll ⊆ Jjl

. This gives two maps

[k] [m]hoo f // n (3.3.9)

defined by
h(l) = jl and f(l) = il.

It is easy to see that the map h is a morphism in the simplicial category ∆. It
is also easy to see that f is a surjective map, and its complexity is less than or
equal to 2 (this is because we have taken x in I2(n), and by Definition 3.3.4
we have cplx(x) ≤ 2).

Let i ∈ n. We want to explicitly construct an element yi ∈ ∆f−1(i) =
∆|f

−1(i)|−1. Let us set

Ii = ∪lij=0Kij ,Kij = [xij , xij+1] ⊆ [−1, 1], and xili+1 = 1.

Define by induction a family {giq : [−1, 1] −→ [−1, 1]}li+1
q=0 of maps as follows.

gi0(z) =
{
−1 if z ∈ [−1, xi0 ]
z − (xi0 + 1) if z > xi0 .

(3.3.10)

For 0 ≤ q ≤ li, set gq = giq ◦ · · · ◦ gi0 and define

giq+1(z) =

 z if z ∈ [−1, gq(xiq+1)]
gq(xiq+1) if z ∈ [gq(xiq+1), gq(xiq+1)]
z − (xiq+1 − xiq+1) if z > gq(xiq+1).

(3.3.11)

Intuitively, the map gi0 contracts the interval [−1, xi0 ] to −1, and moves other
points by the translation of vector −(xi0 +1), the map gi1 contracts the interval
[gi0(xi0+1), gi0(xi1)] to gi0(xi0+1), and moves other points by the translation
of vector −(xi1 − xi0+1), and so on. At the end of this process, we obtain an
interval of length 2

n . More precisely, if we define g to be the composite

g = gili+1 ◦ gili
◦ · · · ◦ gi1 ◦ gi0 , (3.3.12)

then
g([−1, 1]) = [−1, 2− n

n
].

Define also a map α : [−1, 2−n
n ] −→ [−1, 1] by

α(z) = nz + n− 1. (3.3.13)

Notice the map α fixes −1, and sends 2−n
n to 1. In fact α allows to rescale the

interval [−1, 2−n
n ]. Consider now the map g̃ : [−1, 1] −→ [−1, 1] defined by

g̃ = α ◦ g.
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For j ∈ {0, · · · , li}, if t1ij , · · · , t
vj

ij
denote elements of the set {ϕ(t1), · · · , ϕ(tk)}

that belong to Kij , then yi ∈ ∆|f
−1(i)|−1 is defined by

yi = (g̃(t1i0), · · · , g̃(tv0
i0

), g̃(xi0+1)), · · · , g̃(t1ili
), · · · , g̃(tvli

ili
)). (3.3.14)

An illustration for yi is given in the first part of Example 3.3.12.
Let us construct now by induction on n the operation

θn(((x, ϕ̃), (a•1, · · · , a•n))k(t) ∈ O(k).

The map f will be thought as a word of lengthm+1 on the alphabet {1, · · · , n}.
If W is a word on an alphabet of length ∗, we will write θ∗(W ) for the asso-
ciated operation. For instance, the operation θn(((x, ϕ̃), (a•1, · · · , a•n))k(t) will
be sometimes denoted by θn(f).

If n = 1 then c(x) = idS1 . Define θ1((x, ϕ̃), a•1)(t) ∈ O(k) by

θ1((x, ϕ̃), a•1)(t) = ak1(t)

If n = 2, let i, j be two distinct elements inside {1, 2}. Since the complexity of
f is less than or equal to 2, there are two possibilities for writing the word f .

• Assume that the map f : [m] −→ {1, 2} is on the form f = i · · · i︸ ︷︷ ︸
r+1

j · · · j︸ ︷︷ ︸
s+1

.

This implies that we have exactly two closed intervals K0,K1 defining
x = (I1, I2) ∈ I2(2), and therefore, p = 2 (recall that p is the number of
intervals Ki defining x ∈ I2(2)). We claim that r + s = k. Indeed, since
the length of the word f is equal to m+ 1, it follows that

(r + 1) + (s+ 1) = m+ 1
= k + p since m = k + p− 1 by (3.3.8) above
= k + 2 since p = 2.

Let µ ∈ O(2) denote the multiplication. Define θ2((x, ϕ̃), (a•1, a•2))k(t) ∈
O(r + s) = O(k) by the formula

θ2(f) = θ2(i · · · ij · · · j) = µ(ari (yi), asj(yj)). (3.3.15)

• Now we assume that the word f is on the form f = i · · · i︸ ︷︷ ︸
r1

j · · · j︸ ︷︷ ︸
s+1

i · · · i︸ ︷︷ ︸
r2

.

This implies that p = 3. Like before, we can check that r1+r2−1+s−1 =
k. Define the operation

θ2((x, ϕ̃), (a•1, a•2))k(t) ∈ O(r1 + r2 − 1 + s− 1) = O(k)

by

θ2(f) = θ2(i · · · ij · · · ji · · · i) = ar1+r2−1
i (yi) ◦r1 asj(yj). (3.3.16)
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Let n ≥ 3. For i ≤ n−1, the operation θi((x, ϕ̃), (a•1, · · · , a•i ))k will be denoted
just by θ∗(−). Assume that θ∗(W ) is constructed for each word W on an
alphabet of length ∗ ≤ n− 1. We want to construct θn(f). Set f(0) = i0 and
define the integer

m0 = Max{j ∈ [m]| f(j) = i0}.
There are two possibilities depending of the fact that the word f ends by the
letter i0 or not.

If m0 = m then the map f is on the form

f = i0 · · · i0︸ ︷︷ ︸
r1

b11 · · · b1s1 i0 · · · i0︸ ︷︷ ︸
r2

b21 · · · b2s2 · · · i0 · · · i0︸ ︷︷ ︸
rq

bq1 · · · bqsq
i0 · · · i0︸ ︷︷ ︸
rq+1

,

with bjs 6= i0 for all j and for all s, and with r1 + · · · + rq+1 copies of i0. Let
us set

u =
(
q+1∑
i=1

ri

)
− 1 and v =

q∑
i=1

ri.

Define θn(f) by the formula

θn(f) = (((aui0(yi0) ◦v θ∗(bq1 · · · bqsq
)) ◦v−rq

· · · ) ◦r1 θ∗(b11 · · · b1s1). (3.3.17)

A perfect illustration for this formula is given by Example 3.3.13 below.
If m0 < m then the map f is on the form

f = i0 · · · i0b1 · · · bwi0 · · · i0c1 · · · cs

with cj 6= i0 for all j. Let r be the number of letters (in the alphabet {1, · · · , n})
appearing in the word

f({0, · · · ,m0}) = i0 · · · i0b1 · · · bwi0 · · · i0.

Then, since each letter of the word b1 · · · bw does not appear in the word c1 · · · cs
(because the complexity of f is less than or equal to 2), there is exactly n− r
letters appearing in the word c1 · · · cs. Define

θn(f) = µ(θr(i0 · · · i0b1 · · · bwi0 · · · i0), θn−r(c1 · · · cs)). (3.3.18)

(b) Now we assume that there exists some integers i and j such
that xi = ϕ(tj)

In this case, there is a finite number of possibilities (depending of the fact
that we consider the interval [ϕ(tj), xi] or [xi, ϕ(tj)] in the family {Ll}ml=0)
to define the word f . It is not difficult to show, by using the naturality of
the maps a•r : ∆• −→ O• and the fact that µ(µ, id) = µ(id, µ) (we have this
equality because O is a multiplicative operad), that all these possibilities lead
to the same element θn((x, ϕ̃), (a•1, · · · , a•n))k(t) ∈ O(k). A good illustration of
that is given by the second part of Example 3.3.12 below.

We can check that the maps θn((x, ϕ̃), (a•1, · · · , a•n))k : ∆k −→ Ok thus
defined are continuous and commute with cofaces and codegeneracies. The
continuity comes essentially from the fact that µ(µ, id) = µ(id, µ). The conti-
nuity of the map θn : MS(n)× (TotO•)n −→ TotO• also comes from the same
fact.
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Figure a Figure b

Example 3.3.12. (a) Let n = 4, x ∈ I2(4) and t = (t1, · · · , t6) ∈ ∆6 (see
Figure a). Assume that ϕ̃ = idS1 . Then k = 6, p = 5, m = k +
p − 1 = 10 and the map f : [10] −→ {1, 2, 3, 4} is defined by the word
f = 33111422333. Now let us explicitly define y1 ∈ ∆|f

−1(1)| = ∆2. First
of all, we have I1 = [x1, x2]. So the map g (see (3.3.12)) is just equal
to gi0 (notice that here i0 = 1), and by the definition of this latter map
(see (3.3.10)) we have gi0(z) = z − (x1 + 1) for each z ∈ [x1, x2]. On the
other hand, the map α here is defined by α(z) = 4z + 3 (see (3.3.13)).
Therefore the image of each z ∈ [x1, x2] under the composite g̃ = α ◦ gi0
gives 4z − 4x1 − 1. Hence,

y1 = (4t2 − 4x1 − 1, 4t3 − 4x1 − 1) ∈ ∆2

A similar computation gives y2 = 4t4 − 4x3 − 1 ∈ ∆1. For y3 we use the
formula (3.3.14), and we obtain

y3 = (4t1 + 3, 4x1 + 3, 4t5 − 4x4 + 4x1 + 3, 4t6 − 4x4 + 4x1 + 3) ∈ ∆4.

Now we can define θ4(f).

θ4(f) = a4
3(y3) ◦2 θ3(111244) by (3.3.17)

= a4
3(y3) ◦2 µ(a2

1(y1), θ2(244)) by (3.3.18)
= a4

3(y3) ◦2 µ(a2
1(y1), µ(a0

4(∗), a1
2(y2))) ∈ O(6) by (3.3.15).

(b) Let n = 6, x ∈ I2(6) and t = (t1, · · · , t9) ∈ ∆9 (see Figure b above).
Assume that ϕ̃ = idS1 . Then k = 9, p = 9 and m = k + p − 1 = 17.
Since t8 = x8, it follows that there are two possibilities to define the map
f : [17] −→ {1, 2, 3, 4, 5, 6}.
If f = 441113222114456655 then we have (by applying formulas (3.3.18),
(3.3.17), (3.3.15) and (3.3.16))

θ6(f) = µ(a3
4(y4) ◦2 (a4

1(y1) ◦3 µ(a0
3(∗), a2

2(y2))), a2
5(y5) ◦1 a1

6(y6)) ∈ O(9).

Here y5 = (−1 ≤ y51 ≤ y52 ≤ 1) is an element of ∆2. Let us denote it by
y2

5.
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If f = 441113222114456555 then we have (again by formulas (3.3.18),
(3.3.17), (3.3.15) and (3.3.16))

θ6(f) = µ(a3
4(y4) ◦2 (a4

1(y1) ◦3 µ(a0
3(∗), a2

2(y2))), a3
5(y5) ◦1 a0

6(∗)) ∈ O(9).

Here y5 = (−1 ≤ y50 ≤ y51 ≤ y52 ≤ 1) is an element of ∆3 with y50 = y51.
Let us denote it by y3

5.
To check that these two possibilities lead to the same operation in O(9),
it suffices to check that

a3
5(y3

5) ◦1 a0
6(∗) = a2

5(y2
5) ◦1 a1

6(y6).

Here we go

a3
5(y3

5) ◦1 a0
6(∗) = a3

5(y50, y51, y52) ◦1 a0
6(∗)

= a3
5(d1(y51, y52)) ◦1 a0

6(∗) because y50 = y51
= (d1(a2

5(y51, y52)) ◦1 a0
6(∗) by the naturality of a•5

= (a2
5(y51, y52) ◦1 µ) ◦1 a0

6(∗) by the definition of d1

= a2
5(y51, y52) ◦1 (µ ◦1 a0

6(∗)) by the associativity
= a2

5(y51, y52) ◦1 (d1(a0
6(∗))) by the definition of d1

= a2
5(y51, y52) ◦1 a1

6(d1(∗)) by the naturality of a•6
= a2

5(y2
5) ◦1 a1

6(y6).

Example 3.3.13. In this example, we are in the case (a) of the proof of The-
orem 3.3.11. Take t = (t1, · · · , t14) ∈ ∆14 such that ti 6= tj whenever i 6= j,
and take f = 1112244221111333555511. The operation θ5(f) ∈ O(14) is then
defined by

θ5(f) = (a8
1(y1) ◦7 θ2(3335555)) ◦3 θ2(224422) by (3.3.17)

= (a8
1(y1) ◦7 µ(a2

3(y3), a3
5(y5))) ◦3 (a3

2(y2) ◦2 a1
4(y4)),

where the last equality comes from (3.3.15) and (3.3.16).

3.3.2 The McClure-Smith operad D2 and its action on TotO•

Here we recall the construction of the operad D2, which was introduced by
McClure and Smith in [32]. We also give the details of its action on TotO•. We
will write ∆+ for the category ∆∪{∅}, and a covariant functorX• : ∆+ −→ Top
will be called an augmented cosimplicial space. In all this section, the standard
cosimplicial space ∆• will be viewed as an augmented cosimplicial space with
∆∅ = ∅.

Let us begin with the definition of the augmented cosimplicial space

Ξ2
n(X•, · · · , X•) : ∆+ −→ Top

in which we have n copies of X•.
Let n as in the previous section. Define Qn to be the category whose objects

are pairs (T, f), where T is an object of the category ∆+ and f : T −→ n is a
morphism in sets. A morphism from (T, f) to (T ′, f ′) consists of a morphism
g : T −→ T ′ in ∆+ such that f = f ′g. Define also Q2

n to be the full subcategory
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of Qn consisting of pairs (T, f) such that cplx(f) ≤ 2. Consider now the
diagram

Q2
n
� � ρ2 //

φn

��

Qn
ψn // Topn

∏
n // Top

∆+

in which

- ρ2 is the inclusion functor,

- ψn is defined to be ψn(T, f) = (Xf−1(1), · · · , Xf−1(n)),

-
∏
n is the product functor and

- φn is the projection on the first component.

The covariant functor Ξ2
n(X•, · · · , X•) : ∆+ −→ Top is defined to be the left

Kan extension of the composite
∏
n ◦ψn ◦ ρ2 along φn. By the definition of a

left Kan extension, the functor Ξ2
n(X•, · · · , X•) is explicitly defined as follows.

Let S be an object of the category ∆+. We want to define the space
Ξ2
n(X•, · · · , X•)(S) associated to S. First we define the category AnS whose

objects are triples (h, T, f) where T is an object in ∆+, h : T −→ S is a mor-
phism in ∆+, and (T, f) is an object in Q2

n. A morphism from (h, T, f) to
(h′, T ′, f ′) consists of a morphism g : T −→ T ′ such that h = h′g and f = f ′g.
We will sometimes write S h←− T

f−→ n for an object (h, T, f) of the category
AnS . Next we define the functor pn : AnS −→ Q2

n by pn(h, T, f) = (T, f), and
we consider the AnS-diagram

FnS =
∏
n

◦ψn ◦ ρ2 ◦ pn : AnS −→ Top.

The space Ξ2
n(X•, · · · , X•)(S) is then explicitly defined to be the colimit of

FnS . That is,

Ξ2
n(X•, · · · , X•)(S) = colim

AnS

FnS . (3.3.19)

Notice that Ξ2
0(X•, · · · , X•)(S) is the one point space since each Cartesian

product
∏
i∈0
f−1(i) is a point (because 0 = ∅). Notice also that Ξ2

1(X•) = X•.

On morphisms, the functor Ξ2
n(X•, · · · , X•) : ∆+ −→ Top is defined in the

obvious way. We are now ready to define the operad D2.

Definition 3.3.14. For n ≥ 0 the space D2(n) is defined to be

D2(n) = Tot(Ξ2
n(∆•, · · · ,∆•)) = Nat(∆•,Ξ2

n(∆•, · · · ,∆•)).

McClure and Smith show [32, Section 9] that the collection {D2(n)}n≥0 is
a topological operad. They also show [32, Theorem 9.1 (a)] that this operad is
actually weakly equivalent in the category of operads to the operad B2 of little
2-disks.
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Definition 3.3.15. An augmented cosimplicial space X• is a Ξ2-algebra or is
endowed with a Ξ2-structure if there is a family

{Θn : Ξ2
n(X•, · · · , X•) −→ X•}n≥0

of natural transformations such that
- Θ1 : Ξ2

1(X•) = X• −→ X• is the identity map;
- for each choice of j1, · · · , jn ≥ 0, there is a natural transformation

Γ: Ξ2
n(Ξ2

j1 , · · · ,Ξ
2
jn

) −→ Ξ2
j1+···+jn

making the following diagram commutative

Ξ2
n(Ξ2

j1
(X•, · · · , X•), · · · ,Ξ2

jn
(X•, · · · , X•))

Γ //

Ξ2
n(Θj1 ,··· ,Θjn )

��

Ξ2
j1+···+jn

(X•, · · · , X•)

Θj1+···+jn

��
Ξ2
n(X•, · · · , X•)

Θn // X•;

- for each permutation σ ∈ Σn, Θn ◦ σ∗ = Θn.
Definition 3.3.16. An augmented cosimplicial space X• is said to be reduced
if X∅ is the one point space.
Proposition 3.3.17. [32, Proposition 10.3] A sequence O = {O(n)}n≥0 of
topological spaces is endowed with a structure of multiplicative operad if and
only if the associated reduced augmented cosimplicial space O• is a Ξ2-algebra.

In [32, Theorem 9.1 (b)], McClure and Smith prove that the operad D2 acts
on TotO•, when the reduced augmented cosimplicial space O• is built from a
multiplicative operad O. We now recall this action. To do that, we will define
(for each n ≥ 0) a map

βn : D2(n)× (TotO•)n −→ TotO•.

Let α = {αk}k≥0 ∈ D2(n), and let (a•1, · · · , a•n) ∈ (TotO•)n. We want to define
βn(α, (a•1, · · · , a•n)) ∈ TotO•. Form the diagram

∆• α // Ξ2
n(∆•, · · · ,∆•)

∏n

i=1
a•i // Ξ2

n(O•, · · · ,O•) Θn // O•

in which
- the natural transformation

∏n
i=1 a

•
i is induced by a•1, · · · , a•n, and

- Θn is furnished by the Ξ2-structure on O• (we have such a structure by
Proposition 3.3.17).

The natural transformation βn(α, (a•1, · · · , a•n)) : ∆• −→ O• is then defined to
be the composite

βn(α, (a•1, · · · , a•n)) = Θn ◦
n∏
i=1

a•i ◦ α.

One can interpret a Ξ2-structure in another way. McClure and Smith [32]
show that the following definition is equivalent to Definition 3.3.15.
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Definition 3.3.18. An augmented cosimplicial space X• is equipped with a
Ξ2-structure if for each map f : T −→ n (here T is a totally ordered set and
n ≥ 0) with complexity ≤ 2, there exists a map

〈f〉 : Xf−1(1) × · · · ×Xf−1(n) −→ XT

such that the collection of maps {〈f〉} is

- consistent in the sense that for every commutative diagram

T
f //

h
��

n

T ′
g

??

in which f and g have complexity ≤ 2, the following diagram commutes.

∏n
i=1X

f−1(i) 〈f〉 //∏
(hi)∗

��

XT

h∗
��∏n

i=1X
g−1(i) 〈g〉 // XT ′

Here hi is the restriction of h to f−1(i).

- commutative in the sense that for each f with complexity ≤ 2 and each
σ ∈ Σn, the following diagram commutes.

∏n
i=1X

f−1(i) 〈f〉 //

s

��

XT

=
��∏n

i=1X
f−1(σ(i)) 〈σ−1◦f〉

// XT

Here s is the obvious permutation of the factors.

- associative in the sense that for every choice of f and g1, · · · , gn with
complexity ≤ 2, the following diagram commutes.

∏n
i=1
∏ji

p=1X
g−1

i
(p)

=
��

∏
〈gi〉 // ∏n

i=1X
f−1(i)

〈f〉
��∏j

q=1X
g−1(q) 〈g〉 // XT .

Here the maps gi : f−1(i) −→ ji determine in an evident way a map
g : T −→ j, where j =

∑n
i ji.
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- unital in the sense that there is an element ζ ∈ X∅ satisfying the equality

〈λi〉 ◦ f(x1, · · · , xi−1, ζ, xi, · · · , xn−1) = 〈f〉 (x1, · · · , xi−1, xi, · · · , xn−1)

for all f : T −→ n− 1 with complexity ≤ 2, all i ∈ n, and all choices
of x1, · · · , xn−1. Here λi : n− 1 −→ n is the order-preserving monomor-
phism whose image does not contains i.

We are going to interpret (in the new language of the Ξ2-structure on O•)
the action of D2 on TotO•. We need this interpretation because it will be used
in the proof of Theorem 3.3.19 below. Let α, a•1, · · · , a•n as before. We want to
construct a natural transformation

{βn(α, (a•1, · · · , a•n))k : ∆k −→ Ok}k≥0.

So let [k] be an object of the category ∆, and let t ∈ ∆k. By Definition 3.3.14,
αk is a map from ∆k to Ξ2

n(∆•, · · · ,∆•)([k]). Recalling that this latter space is
the colimit of certain An[k]-diagram (see (3.3.19) above), there exists an object

[k] T
hoo f // n

in the category An[k] such that αk(t) is the equivalence class of some α̃k(t) ∈
∆f−1(1) × · · · ×∆f−1(n). That is,

αk(t) = [α̃k(t)].

Define βn(α, (a•1, · · · , a•n))k(t) to be the image of α̃k(t) under the composite

∆f−1(1) × · · · ×∆f−1(n) (af−1(1)
1 ,··· ,af−1(n)

n ) //

((

Of−1(1) × · · · × Of−1(n)

〈f〉
��
OT

h∗
��
Ok,

where h∗ is the map induced by h, and 〈f〉 is given by the Ξ2-structure of O•,
which is itself induced by the multiplicative structure of the operad O (we will
recall the construction of 〈f〉 [32, Section 10] in the following lines). That is,

βn(α, (a•1, · · · , a•n))k(t) = h∗ ◦ 〈f〉 ◦ (af
−1(1)

1 , · · · , af
−1(n)
n )(α̃k(t)). (3.3.20)

It is straightforward to check that the map βn(α, (a•1, · · · , a•n))k : ∆k −→ Ok
is well defined. It is also straightforward to check that the collection of maps
{βn}n≥0 defines an action of D2 on TotO•.

We now recall the construction of 〈f〉. Let µ ∈ O(2) as in the proof of
Theorem 3.3.11, and let us denote the operad structure of O by

γ : O(n)×O(i1)× · · · × O(in) −→ O(i1 + · · ·+ in).
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• If f : [r + s + 1] −→ 2 is defined by the word f = 1 · · · 1︸ ︷︷ ︸
r+1

2 · · · 2︸ ︷︷ ︸
s+1

, then

〈f〉 : Or ×Os −→ Or+s+1 is defined by the formula

〈f〉 (x, y) = µ(x, d0y). (3.3.21)

• If f : [2n+ i1 + · · ·+ in] −→ n+ 1 is on the form

f = 1 2 · · · 2︸ ︷︷ ︸
i1+1

1 3 · · · 3︸ ︷︷ ︸
i2+1

1 · · · 1n+ 1 · · ·n+ 1︸ ︷︷ ︸
in+1

1,

then 〈f〉 : On×Oi1×· · ·×Oin −→ O2n+i1+···in is defined by the formula

〈f〉 (x, y1, · · · , yn) = γ(x, d0di1+1y1, · · · , d0din+1yn). (3.3.22)

• For a general f : T −→ n of complexity less than or equal to 2, the map
〈f〉 : Of−1(1) × · · · × Of−1(1) −→ OT is defined (as a "combination" of
formulas (3.3.21) and (3.3.22)) by induction on ‖T‖ = |T | − 1. We refer
the reader to [32, Section 10] for that induction.

3.3.3 The compatiblity between the MS and the D2 actions on
TotO•

The goal of this section is to prove Theorem D announced in the introduction
of this thesis.

Recalling the definition of the cacti operad MS from Section 3.3.1, we have
the following theorem in which the second part is a more precise formulation
of Theorem D.

Theorem 3.3.19. (a) There exists an isomorphism q : MS
∼=−→ D2.

(b) Let O• be a cosimplicial space defined by a multiplicative operad O. Then,
for each n ≥ 0, the square

MS(n)× (TotO•)n θn //

qn×idn

��

TotO•

id

��
D2(n)× (TotO•)n βn // TotO•

commutes.

Proof. Proof of (a). This part was proved in [41] by P. Salvatore. We will
still recall the explicit construction of q : MS −→ D2 since we need it to prove
part (b). To see that q is an isomorphism of operads, we will refer the reader
to [41, Proposition 8.2].

For each n ≥ 0, we will construct an isomorphism qn : MS(n) −→ D2(n)
in such a way that the collection q = {qn}n≥0 : MS −→ D2 turns out to be a
morphism of operads. So let n ≥ 0 be an integer.
If n = 0 then q0 : ∗ = MS(0) −→ D2(0) = ∗ is the unique map from the one
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point space to itself.
If n = 1 then, by (3.3.4), we have

MS(1) = {ϕ : S1 −→ S1 such that ϕ is weakly monotone and ϕ(∗) = ∗}.

We also have (by Definition 3.3.14)

D2(1) = Nat(∆•,Ξ2
1(∆•)) = Nat(∆•,∆•) = Tot∆•.

Let ϕ ∈ MS(1), and let t = (−1 ≤ t1 ≤ · · · ≤ tk ≤ 1) ∈ ∆k. Define
q1(ϕ) : ∆k −→ ∆k by

q1(ϕ)(t) = (−1 ≤ ϕ(t1) ≤ · · · ≤ ϕ(tk) ≤ 1).

Now we assume that n ≥ 2. Let (x, ϕ̃) ∈ MS(n) = I2(n) ×Mon(I, ∂I). Set
x = (I1, · · · , In). Our goal is to construct

qn(x, ϕ̃) ∈ D2(n) = Nat(∆•,Ξ2
k(∆•, · · · ,∆•)).

Let [k] ∈ ∆. We want to build a map

Gx : ∆k −→ Ξ2
n(∆•, · · · ,∆•)([k]).

So let t = (−1 ≤ t1 ≤ · · · ≤ tk ≤ 1) ∈ ∆k. Consider families {Ji}mi=0 and
{Ll}ml=0 of closed intervals as defined in the beginning of the proof of Theo-
rem 3.3.11. Let us take back the diagram (see (3.3.9))

[k] [m]hoo f // n .

Clearly we have cplx(f) ≤ 2 (this is because cplx(x) ≤ 2 by Definition 3.3.4),
and h is a morphism in the category ∆+. Hence, the triple (h, [m], f) is an
object in the category An[k]. Recalling that (by (3.3.19) above)

Ξ2
n(∆•, · · · ,∆•)([k]) = colimAn[k]Fn[k],

we are going now to built an explicit element Gx([k])(t) of the space

Fn[k](h, [m], f) =
n∏
i=1

∆|f
−1(i)|−1.

Let i ∈ n. As in the proof of Theorem 3.3.11, we construct an element yi ∈
∆|f

−1(i)|−1 (see (3.3.14) for the definition of yi). We thus have an element

y = (y1, · · · , yn) ∈
n∏
i=1

∆|f
−1(i)|−1.

Define now Gx([k])(t) ∈ colimAn[k]Fn[k] to be the equivalence class of y. That
is,

Gx([k])(t) = [(y1, · · · , yn)].
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It is straightforward to check that the family Gx = {Gx([k])}k≥0 is a natural
transformation. The map qn : MS(n) −→ D2(n) is then defined by

qn(x, ϕ̃) = Gx.

It is also straightforward to check that the map q = {qn}n≥0 : MS −→ D2
respects the operad structure.

Proof of (b). The result follows immediately when n = 0.
Let n ≥ 1, a•1, · · · , a•n ∈ TotO• and (x, f̃) ∈MS(n). We want to show that

βn(Gx, (a•1, · · · , a•n)) = θn((x, ϕ̃), (a•1, · · · , a•n)) ∈ TotO•.

To do that, we will prove the following equality (for each k ≥ 0)

βn(Gx, (a•1, · · · , a•n))k = θn((x, ϕ̃), (a•1, · · · , a•n))k : ∆k −→ Ok.

Let [k] ∈ ∆. If k = 0 then the desired equality follows.
Now take k ≥ 1, and let t = (t1, · · · , tk) ∈ ∆k. We have

βn(Gx, (a•1, · · · , a•n))k(t) = h∗ ◦ 〈f〉 ◦ (af
−1(1)

1 , · · · , af
−1(n)
n )(y) by (3.3.20)

= h∗ ◦ 〈f〉 (af
−1(1)

1 (y1), · · · , af
−1(n)
n (yn)).

To end the proof of this part, it suffices to get the following equality

h∗ ◦ 〈f〉 (af
−1(1)

1 (y1), · · · , af
−1(n)
n (yn)) = θn(f), (3.3.23)

when

f = 1 · · · 1︸ ︷︷ ︸
r+1

2 · · · 2︸ ︷︷ ︸
s+1

and f = 1 2 · · · 2︸ ︷︷ ︸
i1+1

1 3 · · · 3︸ ︷︷ ︸
i2+1

1 · · · 1n+ 1 · · ·n+ 1︸ ︷︷ ︸
in+1

1.

If f = 1 · · · 1︸ ︷︷ ︸
r+1

2 · · · 2︸ ︷︷ ︸
s+1

then the map h in the diagram

[r + s] [r + s+ 1]hoo f // 2

is equal to the codegeneracy map sr+1. Recalling that id ∈ O(1) is the identity
operation, we first have

〈f〉 (ar1(y1), as2(y2)) = µ(ar1(y1), d0as2(y2)) by (3.3.21)
= µ(ar1(y1), µ(id, as2(y2))) ∈ Or+s+1.

Next, recalling that e ∈ O(0) is the distinguish operation in arity 0, we have

h∗(〈f〉 (ar1(y1), as2(y2))) = sr+1(〈f〉 (ar1(y1), as2(y2))) since h∗ = sr+1

= (µ(ar1(y1), µ(id, as2(y2)))) ◦r+1 e
= µ(ar1(y1), as2(y2))
= θ2(f) ∈ Or+s by (3.3.15),

thus giving the equality (3.3.23).
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Now we assume that f is on the form

f = 1 2 · · · 2︸ ︷︷ ︸
i1+1

1 3 · · · 3︸ ︷︷ ︸
i2+1

1 · · · 1n+ 1 · · ·n+ 1︸ ︷︷ ︸
in+1

1.

We will prove the equality (3.3.23) when n = 3 and

f = 1 2 · · · 2︸ ︷︷ ︸
3+1

1 3 · · · 3︸ ︷︷ ︸
5+1

1 4 · · · 4︸ ︷︷ ︸
1+1

1

for instance (the proof being the same for general n and f).
By the formula (3.3.22), we have the operation

〈f〉 (a3
1(y1), a3

2(y2), a5
3(y3), a1

4(y4))

in O15, which is equal to

γ(a3
1(y1), d0d4a3

2(y2), d0d6a5
3(y3), d0d2a1

4(y4)).

Since f is on the above form, it follows that the map h in the diagram

[9] [15]hoo f // 4

is defined by the word h = 0012333456788899. It is not difficult to see that
h = s15 ◦ s13 ◦ s12 ◦ s6 ◦ s5 ◦ s1. Therefore

h∗(〈f〉 (a3
1(y1), a3

2(y2), a5
3(y3), a1

4(y4))) = γ(a3
1(y1), a3

2(y2), a5
3(y3), a1

4(y4)).

Moreover we have

γ(a3
1(y1), a3

2(y2), a5
3(y3), a1

4(y4)) = ((a3
1(y1) ◦3 a1

4(y4)) ◦2 a5
3(y3)) ◦1 a3

2(y2)
= θ4(f) ∈ O9 by (3.3.17),

which completes the proof.

3.4 Gerstenhaber algebra structure on H∗(TotO•)

In this short section we first define an action of the circle S1 on the totaliza-
tion TotO•, and we prove that it is compatible with the D2 action defined in
the previous section. Next we recall a result of Sakai, which states that the
Hochschild homology HH(S∗O) is isomorphic as a Gerstenhaber algebra to
the homology H∗(hoTotO•).

Proposition 3.4.1. The circle S1 acts on TotO• in the sense that there exists
a map

θ : S1 × (TotO•)2 −→ TotO•. (3.4.1)
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Proof. Let τ ∈ S1, (a•1, a•2) ∈ (TotO•)2 and t = (t1, · · · , tk) ∈ ∆k. We want to
construct an operation θ(τ, (a•1, a•2))k(t) ∈ Ok. Let us set (φ, id)(τ) = (x, id) ∈
MS(2), where the map (φ, id) : S1 −→ MS(2) is given by (3.3.6). Racalling
the definition of the operation θ2((x, id), (a•1, a•2))k(t) from formulas (3.3.15)
and (3.3.16), we define

θ(τ, (a•1, a•2))k(t) = θ2((x, id), (a•1, a•2))k(t),

thus giving the desired result.

The following corollary is an immediate consequence of Proposition 3.4.1.

Corollary 3.4.2. The square

S1 × (TotO•)2 θ //

(φ,id)×id2

��

TotO•

id

��
MS(2)× (TotO•)2 θ2 // TotO•

commutes.

In the following theorem, which says that the S1 action is compatible with
the D2 action on TotO•, the map q2 : MS(2) −→ D2(2) is the one constructed
in the proof of Theorem 3.3.19.

Theorem 3.4.3. Under the hypothesis of Theorem 3.3.11, the following square

S1 × (TotO•)2 θ //

(q2◦(φ,id))×id2

��

TotO•

id

��
D2(2)× (TotO•)2 θ2 // TotO•

commutes.

It is well known that the action of an operad P , which is weakly equivalent
to the little 2-disks operad B2, on a space X induces a Gerstenhaber algebra
structure on the homology H∗(X). If the family {ψn : P (n) ×Xn −→ X}n≥0
denotes the action of P on X, if x0 and x1 respectively denote the generators
in degree 0 and in degree 1 of the homology H∗(P (2)) ∼= H∗(S1) (we have this
isomorphism because P (2) is weakly equivalent to B2(2) which is itself weakly
equvalent to the circle S1), then the product and the bracket on H∗(X) are
defined by

a× b = H∗(ψ2)(x0 ⊗ a⊗ b) and {a, b} = H∗(ψ2)(x1 ⊗ a⊗ b).

We come back now to the S1 and D2 actions on TotO•. In Proposition 3.4.1
we have defined an action of S1 on TotO•. From this action, Sakai deduces a
formula (see [38, Theorem 4.5]) for the bracket on the homology H∗(TotO•).
Notice that this bracket coincides with the one induced by the D2 action on
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TotO• because of Theorem 3.4.3. In the case where the cosimplicial space O•
is fibrant, he proves the following theorem.

(G1) The Hochschild homology HH(S∗O) is equipped with the Gersten-
haber algebra structure induced by (3.2.5) and (3.2.6).

(G2) The homology H∗(TotO•) is equipped with the Gerstenhaber algebra
structure induced by the D2 action on TotO•.

Theorem 3.4.4. [38] There is an isomorphism of Gerstenhaber algebras be-
tween HH(S∗O) and H∗(TotO•) when HH(S∗O) is equipped with the Ger-
stenhaber algebra structure described by (G1), and H∗(TotO•) is equipped with
the one described by (G2).

Proof. The proof follows immediately from [38, Theorem 4.6, Theorem 4.7,
Proposition 4.8].

In the case where O• is not fibrant, he [38] proves Theorem 3.4.5 below,
which is just the homotopy version of Theorem 3.4.4. Before stating it, recall
that in [32, Section 15] McClure and Smith construct an operad D̃2 weakly
equivalent to the little 2-disks operad. It is defined in the similar way as D2,
except that we must replace in Definition 3.3.14 ∆• by ∆̃• (see the end of
Section 1.2.2 for the definition of ∆̃•). That is,

D̃2(n) = Tot(Ξ2
n(∆̃•, · · · , ∆̃•)). (3.4.2)

They show [32, Theorem 15.3] that D̃2 acts on the homotopy totalization
hoTotO•, and thus inducing a Gerstenhaber algebra structure on the homology
H∗(hoTotO•).

(G3) The homology H∗(hoTotO•) is equipped with the Gerstenhaber alge-
bra structure induced by the D̃2 action on hoTotO•.

Theorem 3.4.5. [38, Theorem 2.3] There is an isomorphism of Gerstenhaber
algebras between HH(S∗O) and H∗(hoTotO•) when HH(S∗O) is equipped with
the Gerstenhaber algebra structure described by (G1), and H∗(hoTotO•) is
equipped with the one described by (G3).

Remark 3.4.6. Notice that Theorem 3.4.5 with O = Kd, the Kontsevich op-
erad, has been announced earlier by Salvatore in [40, Proposition 22].



CHAPTER 4

Gerstenhaber algebra structure on H∗(Embc(R,Rd))

4.1 Introduction

The goal of this chapter is to prove Theorem A and Theorem B announced
in the introduction of this thesis. Most of the results of this chapter appear
in our paper [47]. We conclude the chapter with a few computations of the
Gerstenhaber algebra of long knots. Here is a more detailed summary of this
chapter.

In this chapter, we prove (see Theorem 4.1.1 below) that the Kontsevich
operad Kd (which was recalled in Section 2.2.1 from Chapter 2) is R-formal
as a multiplicative operad, when d ≥ 3. This result has two strong conse-
quences: the first one (Corollary 4.1.3) says that Sinha’s cosimplicial space
K•d, which was also recalled at the beginning of Section 2.3, is R-formal. This
R-formality gives a very short proof of Theorem 2.4.1, which states that the
H∗BKSS associated to K•d collapses at the E2 page rationally. The second
consequence (Theorem 4.1.5) and the most important gives the Gerstenhaber
algebra structure on the homology H∗(Embc(R,Rd)) of the space of long knots.
More precisely, it says that the isomorphism between the E2 page and the ho-
mology H∗(Embc(R,Rd)) respects the Gerstenhaber algebra structure, when
d ≥ 4.

We have seen in Theorem 2.4.1 that the H∗BKSS computing the rational
homology of the space of long knots collapses at the E2 page only for d > 3.
Notice that our approach in this chapter also does the work for d = 3 since we
have the formality of the Sinha cosimplicial space for d ≥ 3.

At the end of Section 2.4 we have made a comment about the zigzag (2.4.1).
Here we prove that the second vertical morphism of that zigzag can be replaced
by a morphism of operads on the form As −→ O, and this gives us the following
result, which is one of the main results in this thesis.

Theorem 4.1.1. For d ≥ 3, the operads S∗(Kd;R) and H∗(Kd;R) are weakly
equivalent as multiplicative operads .

75
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For the meaning of "weakly equivalent as multiplicative operads", see Defi-
nition 4.2.2.

Remark 4.1.2. In [27] it is only proved that S∗(Kd;R) and H∗(Kd;R) are
weakly equivalent as "up to homotopy multiplicative operads" (Definition 4.2.2),
when d ≥ 3. Notice that this result is not proved for d = 2 but only for d ≥ 3
(see [27, Theorem 1.4]).

An immediate consequence of Theorem 4.1.1 is the following formality re-
sult.

Corollary 4.1.3. For d ≥ 3 Sinha’s cosimplicial space K•d is formal over R.

Our method enables us also to determine the Gerstenhaber structure on
the homology of the space of long knots.

We explain now with which Gerstenhaber structures we endow

H∗(Embc(R,Rd);R) and HH(H∗Kd;R).

McClure and Smith construct in [32] two operads, D2 (this operad was
recalled in Section 3.3.2 from Chapter 3) and D̃2 (see equation (3.4.2) from
Chapter 3), both weakly equivalent to the little 2-disks operad B2. They show
that if a cosimplicial space O• is built from a multiplicative operad O, then
D2 acts on the totalization TotO• (this action was detailed in Section 3.3.2),
and D̃2 acts on the homotopy totalization hoTotO• [32, Theorem 15.3]. If in
addition O is reduced (that is, both O(0) and O(1) are weakly contractible),
then the homotopy totalization of O• is weakly homotopy equivalent to the
double loop space of a certain explicit space of maps of operads (Dwyer-Hess
[11] and Turchin [52] prove this result by using different approaches). Notice
that neither Dwyer-Hess nor Turchin actually prove that their delooping is the
delooping with respect to the McClure-Smith D̃2 action.

Let us come back now to the particular case of Kontsevich’s operad Kd,
which is reduced by Remark 2.2.4. Since it is multiplicative by Proposi-
tion 2.2.8, it follows that the operad D̃2 acts on hoTotK•d ' Embc(R,Rd) (recall
that this weak equivalence was reviewed in Section 2.3). We also have a B2
geometric action (constructed by Budney in [8]) on (framed) long knots. One
question arises: are these two actions equivalent? This question is still open
to my knowledge. But one thing is certain: each of these actions induces a
Gerstenhaber algebra structure on H∗(Embc(R,Rd);R), and apparently it has
never been checked whether these structures coincide. We now specify which
one we choose.

Consider the following three facts.
(A) The H∗BKSS associated to K•d collapses (Theorem 2.4.1) at the E2

page, and converges to the homology H∗(Embc(R,Rd)) ([44, Theorem 7.2]).
Associated to a multiplicative operad B∗(•) in chain complexes is its Hochschild
homology HH(B∗(•)), defined first by Gerstenhaber and Voronov in [14]. It is
endowed with a natural Gerstenhaber algebra structure (see [14] or [40, Section
4] for more details about this natural structure).
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(B) The E2 page, which is isomorphic to HH(H∗Kd;R), is equipped with
the natural Gerstenhaber algebra structure. This structure is in fact the one
induced by formulas (3.2.5) and (3.2.6) from Chapter 3

(C) The homology H∗(Embc(R,Rd)) is equipped with the Gerstenhaber
algebra structure induced by the action of D̃2 on hoTotK•d ' Emb(R,Rd).

The fact (A) implies that there is an isomorphism

ψ : E2 ∼=−→ H∗(Embc(R,Rd))

of vector spaces. From (A), (B) and (C), we would like to directly deduce
that the isomorphism ψ also respects the Gerstenhaber algebra structure. But
the Example 1.5.3 from Chapter 1, as many other examples, prevents us from
affirming that.

We can then ask the following question.

Question 4.1.4. Does the isomorphism ψ respect the Gerstenhaber algebra
structure?

Our method enables us to answer this question.

Theorem 4.1.5. For d ≥ 4, there exists an isomorphism of Gerstenhaber al-
gebras between the homology of space of long knots modulo immersions and
the Hochschild homology HH(H∗Kd) associated to H∗(Kd;R) when the ho-
mology H∗(Emb(R,Rd);R) is equipped with the Gerstenhaber algebra structure
described by (C), and HH(H∗Kd;R) is equipped with the one described by (B).
That is,

H∗(Emb(R,Rd);R) ∼= HH(H∗Kd;R). (4.1.1)

Remark 4.1.6. For d ≥ 4, it is proved in [26] that

HH(H∗Kd;Q) and H∗(Emb(R,Rd);Q)

are isomorphic as vector spaces but not as Gerstenhaber algebras.

Remark 4.1.7. When a version of this chapter was ready, Syunji Moriya put
in arXiv a paper [34] in which equivalent results are independently discovered.

Outline of the chapter

- In Section 4.2 we prove Lemma 4.2.3, which is crucial for the rest of the
chapter.

- In Section 4.3 we apply Lemma 4.2.3 to the specific zig-zag between
S∗(Kd;R) and its homology operad H∗(Kd;R), and we obtain Theo-
rem 4.1.1. This result implies immediately that Sinha’s cosimplicial space
is formal over R (Corollary 4.1.3). Using now this formality, we give a very
short proof of the collapse of the Vassiliev spectral sequence over rationals
(Theorem 2.4.1). We end the section with the proof of Theorem 4.1.5,
which is essentially a consequence of Theorem 4.1.1 and Theorem 3.4.5.
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- In Section 4.4 we use our Theorem 4.1.5 to compute some homology
classes of the space of long knots that are not directly induced by chord
diagrams. We also give a little table for d odd. Using that table we show
(Proposition 4.4.2) that the homology H∗(Embc(R,Rd)) is not free as a
Gerstenhaber algebra, when d ≥ 4 is odd.

4.2 Equivalences of multiplicative operads

The goal of this section is to state and prove the crucial Lemma 4.2.3. This
lemma will be used in the next section to prove Theorem 4.1.1, which is one of
the main results in this thesis. The category C here is as in Section 1.4 from
Chapter 1, that is, C is a symmetric monoidal model category that is cofibrantly
generated. Recall that by CN we denote the category of sequences in C, and
by Opns we denote the category of nonsymmetric operads in C. Recall also
that the associative operad As in C was introduced in Example 1.4.11 from
Chapter 1, where we have reviewed the homotopy theory for operads.

Let us begin with some necessary definitions.
Definition 4.2.1. An up-to-homotopy multiplicative operad consists of a
triple (O,A, η) in which O is a nonsymmetric operad in C, A is an operad
weakly equivalent to the associative operad As, and η : A −→ O is a morphism
of nonsymmetric operads.

Notice that by Definition 1.4.13 from Chapter 1, every multiplicative op-
erad is an up-to-homotopy multiplicative operad. Therefore the category of
multiplicative operads is a full subcategory of the category of up-to-homotopy
multiplicative operads. In the latter category, a morphism from (O,A, η) to
(O′,A′, η′) consists of morphisms g : O −→ O′ and f : A −→ A′ such that
gη = η′f .
Definition 4.2.2. Two multiplicative operadsM andM′ are said to be weakly
equivalent as multiplicative operads (respectively weakly equivalent as up-to-
homotopy multiplicative operads) if there is a zig-zag

M O1
∼oo ∼ // · · · Op

∼oo ∼ //M′

in the category of multiplicative operads (respectively in the category of up-to-
homotopy multiplicative operads).

We are ready to state and prove our crucial lemma.
Lemma 4.2.3. In the category Opns of nonsymmetric operads in C, consider
the following commutative diagram

M1 O∼
f1

oo ∼
f2

//M2

As

α1

OO

A∼
σ
oo ∼

σ
//

η

OO

As.

α2

OO

Assume that A is cofibrant as an object of CN. Then the operadsM1 andM2
are weakly equivalent as multiplicative operads.
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Proof. We begin by the following commutative diagram

As α1 //M1

A
η //

σ ∼

OO

σ ∼
��

O

f1 ∼

OO

f2 ∼
��

As α2 //M2

Since the object A is cofibrant in the category CN, by applying the factorization
axiom to the morphism η : A −→ O, we obtain the diagram

As α1 //M1

A
η //

σ ∼

OO

σ ∼

��

  
η1

  

O

f1 ∼

OO

f2 ∼

��

Y

∼
η2

== ==

As α2 //M2

By taking the pushout of the diagram

A // η1 //

∼σ

��

Y

As

we obtain
As α1 //M1

A
η //

σ ∼

OO

σ ∼

��

  
η1

  

O

f1 ∼

OO

f2 ∼

��

Y

∼
η2

<< <<

g ∼
��
Õ

!!
As α2 //

η̃

>>

M2.

Since the operad As is cofibrant in CN(see Remark 1.4.12 from Chapter 1) and
A is also cofibrant in CN by hypothesis, and since the morphism σ : A −→ As is
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a weak-equivalence and the morphism η1 : A −→ Y is a cofibration, it follows
by Proposition 1.4.6 (again from Chapter 1) that the morphism g : Y −→ Õ is
a weak-equivalence.
Consider now the following pushout diagram

A // η1 //

σ ∼
��

Y

f2η2∼

��

∼ g
��

As

α2 ++

η̃ // Õ

!!
M2.

The universal property of the pushout and the two-out-of-three axiom M2
allow us to obtain a weak-equivalence

f̃2 : Õ ∼−→M2.

Similarly, by considering the pushout diagram

A // η1 //

σ ∼
��

Y

f1η2∼

��

∼ g
��

As

α1 ++

η̃ // Õ

!!
M1.

we deduce the existence of a weak-equivalence

f̃1 : Õ ∼−→M1.

Finally, we obtain the following commutative diagram

M1 Õ∼
f̃1oo

∼
f̃2 //M2

As

α1

OO

As∼oo ∼ //

η̃

OO

As.

α2

OO

4.3 Formality of the Kontsevich operad as a multiplica-
tive operad

The goal of this section is to prove Theorem 4.1.1, Corollary 4.1.3 and Theo-
rem 4.1.5 announced in the introduction of this chapter. We will also give a
very short proof of Theorem 2.4.1. The ground field in this section is R. Recall
that the Kontsevich operad Kd was defined in Section 2.2.1 from Chapter 2.
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4.3.1 Proof of Theorem 4.1.1

To prove Theorem 4.1.1, we need to detail the zig-zag of quasi-isomorphisms
connecting the singular chains S∗(Kd;R) to the homology H∗(Kd;R) of the
Kontsevich operad Kd. Since the operad C∗(Kd;R) of semi-algebraic chains
on Kd appears in that zig-zag, it will be more convenient to first recall the
notion of semi-algebraic chains (a good reference for semi-algebraic chains is
[20]). A semi-algebraic set is a subset of Rp that is obtained by finite unions, fi-
nite intersection, and complements of subsets defined by polynomial equations
and inequalities. A semi-algebraic map is a continuous map between semi-
algebraic sets whose graph is a semi-algebraic set. A semi-algebraic manifold
of dimension k is semi-algebraic set such that each point has a semi-algebraic
neighborhood semi-algebraically homeomorphic to Rk or to R+ × Rk−1. Let
SemiAlg denote the category of semi-algebraic sets. It turns out to be a sym-
metric monoidal category with the Cartesian product as the tensor product,
and the one point space as the unit. There is an obvious functor from SemiAlg
to topological spaces: the forgetful functor

U : SemiAlg −→ Top,

which is of course a symmetric monoidal functor.

Example 4.3.1. The Kontsevich operad Kd and the Fulton-MacPherson op-
erad Fd (see Section 2.2.2 for the definition of Fd) are operads in SemiAlg.

In [20, Section 3], one constructs a functor

C∗(−;R) : SemiAlg −→ ChR,

called the functor of semi-algebraic chains. For a semi-algebraic setX, a typical
element of Ck(X) is represented by a semi-algebraic map σ : M −→ X from
a semi-algebraic compact oriented manifold M of dimension k to X. So the
functor C∗ is much like the classical functor of singular chains

S∗(−;R) : Top −→ ChR.

Notice that the functor C∗ is a symmetric monoidal functor because of [20,
Proposition 3.8] (this implies that C∗(Kd) and C∗(Fd) are operads in semi-
algebraic chains). Notice also that the composite S∗ ◦ U : Semialg −→ ChR is
symmetric monoidal. We thus have two symmetric monoidal functors C∗, S∗ ◦
U : Semialg −→ ChR, which are weakly equivalent by Proposition 7.2 in [20].
In the proof of that proposition, one constructs a zig-zag

S∗(X) ∼←− SPA∗ (X) ∼−→ C∗(X)

for every semi-algebraic set X. Here the chain complex SPA∗ (X) of semi-
algebraic singular chains is defined as the normalized chain complex associated
to the simplicial set SPA• (X) with

SPAk (X) = {σ : ∆k −→ X| σ is a semi-algebraic map}.
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Note that the functor SPA∗ : SemiAlg −→ ChR is also symmetric monoidal.
Let us come back now to the formality of the operad of little d-disks, and

consider the Theorem 2.4.3 (which says in particular that the little d-disks
operad is relatively formal over the real numbers when d ≥ 3) from Chapter 2.
The authors of [27] prove that theorem by explicitly constructing a diagram

S∗(Kd) SPA∗ (Kd)
∼oo ∼ // C∗(Kd) C∗(Fd)

∼oo ∼ // D∨d H∗(Kd)
∼oo

S∗(K1)

OO

SPA∗ (K1)∼oo ∼ //

OO

C∗(K1)

OO

C∗(F1)∼oo ∼ //

OO

D∨1

OO

H∗(K1).∼oo

OO

In that diagram, the quasi-isomorphism C∗(Fd)
∼−→ D∨d is built in [27, Chap-

ter 9], and the quasi-isomorphism H∗(Kd)
∼−→ D∨d is built in [27, Chap-

ter 8] (we precise that the morphism C∗(F1) ∼ // D∨1 is specially defined
in [27, Chapter 10]). Again in the same diagram, the quasi-isomorphism
C∗(Kd) C∗(Fd)

∼oo is obtained by applying the functor C∗ to the diagram
(2.2.7) from Chapter 2.

Before starting the proof of Theorem 4.1.1, we recall that the unit 1∗ in the
symmetric monoidal category (ChNR,⊗,1∗) of chain complexes is defined by

1∗ =
{

R if ∗ = 0
0 if ∗ ≥ 1.

This implies that the associative operad in chain complexes is As = {1∗}n≥0.

Proof of Theorem 4.1.1. Since

• the operads S∗(Kd), SPA∗ (Kd), H∗(Kd) are all multiplicative (by Propo-
sition 1.4.15 and Proposition 2.2.8), and S∗(K1), SPA∗ (K1), H∗(K1) are
all the associative operad because S∗(−), SPA∗ (−), H∗(−) are symmetric
monoidal functors and K1 is the associative operad (Remark 2.2.7 from
Chapter 2 claims that K1 = As);

• the operad D∨d is multiplicative by Proposition 2.2.22,

we can consider the following subdiagram of the big diagram above

C∗(Kd) C∗(Fd)
∼oo ∼ // D∨d

C∗(K1)

OO

C∗(F1)∼oo ∼ //

OO

D∨1 .

OO
(4.3.1)

In the lower row of (4.3.1),

- C∗(F1) is not the associative operad because, for instance, F1(3) is home-
omorphic to the unit interval I of R and the chain complex C∗(I) is not
the unit 1∗,
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- C∗(K1) is the associative operad because the functor C∗ is symmetric
monoidal and K1 is the associative operad,

- D∨1 is the associative operad too because of equation (2.2.10) from Chap-
ter 2,

- the two morphisms from C∗(F1) to As are the same because they agree
in degree 0,

- the objects C∗(K1) and C∗(F1) are cofibrant in the model category ChNR
of nonsymmetric sequences in ChR. This comes from Example 1.3.2 and
the fact that the model structure on ChNR is levelwise (that is, weak equiv-
alences, fibrations and cofibrations are all levelwise).

Applying now Lemma 4.2.3 with the diagram (4.3.1), we get the desired result.

4.3.2 Proof of Corollary 4.1.3 and Theorem 2.4.1

Recalling the Definition 2.4.4 from Chapter 2 of the formality of a cosimplicial
space, we have the following proof.

Proof of Corollary 4.1.3 and Theorem 2.4.1. By Theorem 4.1.1 the op-
erads S∗(Kd) and H∗(Kd) are weakly equivalent as multiplicative operads.
Therefore the associated cosimplicial objects (S∗(Kd))• and (H∗(Kd))• are
weakly equivalent in the category of cosimplicial chain complexes over R, hence
S∗(K•d) is formal over R. Now the collapsing of the Bousfield Kan spectral se-
quence comes from the fact that in the E2 page we can replace the column
S∗(Kpd) by the homology H∗(Kpd), hence the vertical differential vanishes and
the spectral sequence collapses over R (see [26, Proposition 3.2]). Notice that
it also collapses over Q because of the following isomorphism (recalling the
notation Er(−) introduced in the last section of Chapter 1)

{Er(S∗(K•d;R))}r≥0 ∼= {Er(S∗(K•d;Q))⊗Q R}r≥0.

4.3.3 Gerstenhaber algebra structure on the homology of the space
of long knots

The goal here is to prove Theorem 4.1.5 announced in the introduction.
In [33] McClure and Smith construct an E2 chain operad T2 (which is the

algebraic version of the operad D2 defined in Section 3.3.2) that acts on the
Hochschild complex CH(V ) (well defined in Section 3.2), when V is an operad
with multiplication in chain complexes (recall that an E2 chain operad is a
chain operad weakly equivalent to the normalized singular chain of the little 2-
disks operad B2). This action induces a Gerstenhaber algebra structure on the
Hochschild homology HH(V ). It is very important to note that this structure
coincides with the natural one (the one induced by formulas (3.2.5) and (3.2.6)
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from Chapter 3) because T2 is a solution of Deligne’s conjecture. Let T2-
algebras denote the category of chain complexes equipped with an action of the
operad T2. Let Op∗(ChR) denote the category of multiplicative nonsymmetric
operads in chain complexes over real numbers.

Lemma 4.3.2. [33] There exists a functor

CH : Op∗(ChR) −→ T2-algebras

that preserves weak equivalences.

Recalling (G3) from the end of Chapter 3, we have the following proposition.

Proposition 4.3.3. Let O be a multiplicative operad, and O• be the associated
cosimplicial space. Assume that operads S∗(O) and H∗(O) are weakly equiva-
lent as multiplicative operads. Then there exists an isomorphism of Gersten-
haber algebras between the Hochschild homology HH(H∗(O) and the homology
H∗(hoTotO•) when HH(H∗(O)) is equipped with the natural Gerstenhaber al-
gebra structure and H∗(hoTotO•) is equipped with the one described by (G3).

Proof. First, in the category of multiplicative operads in chain complexes, we
have by hypothesis a zig-zag

S∗(O) · · ·∼oo ∼ // H∗(O). (4.3.2)

Next, by applying the normalized Hochschild complex functor CH to (4.3.2),
we obtain a zig-zag

CH(S∗(O) · · ·∼oo ∼ // CH(H∗(O)) (4.3.3)

in the category of T2-algebras by Lemma 4.3.2. Therefore the homology of
(4.3.3) gives

HH(S∗(O)) · · ·
∼=oo ∼= // HH(H∗(O)) , (4.3.4)

which respects the Gerstenhaber algebra structure induced by the H∗(T2) ac-
tion. Finally, the desired result follows from (4.3.4) and Theorem 3.4.5.

We are now ready to prove Theorem 4.1.5.

Proof of Theorem 4.1.5. It suffices to apply Proposition 4.3.3 with O =
Kd.

4.4 Some homology classes in the space of long knots

It is well known that one can compute a number of homology classes of the
space Embc(R,Rd) of long knots by the mean of chord diagrams (see Cattaneo-
Cotta-Ramusino-Longoni [9]). Such homology classes live in degrees multiple
of d − 3 (here we assume d ≥ 4). In this section we will compute, using our
Theorem 4.1.5, some non trivial homology classes that are not directly induced
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by chord diagrams. As in the previous section, the ground field here is R. Note
that we can also make computations over Q because of the rational collapsing.

We have seen in Theorem 4.1.5 that the H∗BKSS computing the homology
H∗(Embc(R,Rd);R) of the space of long knots (modulo immersions) collapses
at the E2 page as a gerstenhaber algebra. Therefore, to compute the produit
and the bracket on H∗(Embc(R,Rd);R), it suffices to do it at the E2 page level,
which is isomorphic to the Hochschild homology HH(H∗Kd). Using now the
weak equivalence

Embc(R,Rd) ' Embc(R,Rd)× Ω2Sd−1 (4.4.1)

from equation (2.1.2), one can deduce the homology H∗(Embc(R,Rd)) since
the homology H∗(Ω2Sd−1) is well known. Recall that it is the free graded
commutative algebra generated by u and {u, u} (u is the diagram of Figure 2
below, and the bracket here is the one induced by the natural action of the
little 2-disks operad on Ω2Sd−1) if d is odd, and by u otherwise.
Recall that the above E2 page was extensively studied by Turchin in [54].
He makes computations at that page by using the fact that the homology
H∗(Kd(−p)) can be replaced by a complex of chord diagrams with p vertices.
For instance, when p = −2, the homology H∗(Kd(−p)) ∼= H∗(Sd−1) (since
Kd(2) ' Conf(2,Rd) ' Sd−1) is generated by the following diagrams

Figure 1 Figure 2

The first diagram is in bidegree (−2, 0) and the second one in bidegree
(−2, d− 1). In fact, one defines the bidegree of a diagram Γ with k chords and
j vertices by the formula

(−j, k(d− 1)).
The correponding degree of Γ in the homology of the space of long knots is
then k(d − 1) − j. For instance the diagram of Figure 3 below is of bidegree
(−4, 2(d−1)), and it lives in degree 2(d−3) in the homology H∗(Embc(R,Rd)).

Figure 3

Figure 4
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Let v ∈ E1
−4,2(d−1) denote the diagram of Figure 3. Note that u ∈ E1

−2,d−1,
and recall that the E1 page is equipped with the horizontal differential of bide-
gree (−1, 0) obtained by taking the alternate sum of cofaces after normalizing
(see the end of Section 1.5.1 for the notion of normalization of a cosimplicial
chain complex). Since there is nothing to kill u, it suvives at the E2 page and
represents the generator of Hd−3(Embc(R,Rd)). Hence,

Hd−3(Embc(R,Rd);R) ∼= R.

Notice that this generator comes from the second factor of (4.4.1). This implies
that Hd−3(Embc(R,Rd)) = 0. By a similar reasoning, we have

H2d−6(Embc(R,Rd);R) ∼= R2.

Here the generators are u2 and v, and therefore we have an isomorphism (since
u2 lives in H∗(Ω2Sd−1))

H2d−6(Embc(R,Rd)) ∼= R.

More generally, there is at least one diagram that belongs to E1
−2k,k(d−1) (for

instance, the diagram of Figure 4 when k = 3), survives at the E2 page and
which is a generator of Hk(d−3)(Embc(R,Rd)). We thus obtain generators of
H∗(Embc(R,Rd)) in degrees k(d−3), k ≥ 0. In [9], Cattaneo-Cotta-Ramusino-
Longoni obtain these generators using another approach. Their idea consists
to associate from a chord diagram with k chords a long immersion with k
transversal self-intrsections points, and then "solve" them. Since the resolution
of each of these points is parametrized by the d−3 dimensional sphere Sd−3, it
follows that there is a map (Sd−3)k −→ Embc(R,Rd). Taking the image of the
fundamental class of (Sd−3)k under the induced map in homology, one obtains
the above generators.

All the generators we have seen until now live in degrees multiple of d− 3,
and are induced directly by chord diagrams. By using the bracket {−,−}
of H∗(Embc(R,Rd)), we can produce new homology classes. Indeed, by [54,
Equation (2.9.21)], there are two generators {u, v} and {u, u2} in E1

−5,3(d−1)
(or only one generator depending of the parity of d) that survive in the E2

page and represent the generators of H3d−8(Embc(R,Rd)). More precisely, we
have an isomorphism

H3d−8(Embc(R,Rd);R) ∼=
{

R2 if d odd
R if d even.

This is because by the biderevative of the bracket with respect to the product,
and by the graded commutativity of the product (see Section 3.2), we have

{u, u2} =
{

2u{u, u} if d odd
0 if d even

As before, only the generator {u, u2} comes from the second factor of (4.4.1)
when d is odd. Hence, we have

H3d−8(Embc(R,Rd);R) ∼= R.
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By using our Theorem 4.1.5, it is possible to compute more homology classes
in high degrees (see the explicit computations that Turchin makes at the E2

page in [54] and [55]).

Let us end the section with a remark, a table and a proposition. In [40,
Theorem 1] Salvatore proves that the space Embc(R,Rd) of long knots is a
double loop space for d > 3. Notice that the double loop space structure is not
induced directly by an operad as hoped in [44], but by a fibration argument of
a diagram of cosimplicial spaces. On the other hand, the space Embc(R,Rd) is
a double loop space because of the weak equivalence Embc(R,Rd) ' hoTotK•d
(see Theorem 2.3.3) and Theorem 15.3 of [32]. Consider now the projection

p : Embc(R,Rd) −→ Embc(R,Rd).

It is natural to ask whether p preserves the double loop space structure. This
question was studied by Salvatore [40, Theorem 2], who obtained a negative
answer in odd dimension. His argument lies on the fact that in homology,
p∗ sends u to zero by the dimensional reason, and sends the bracket {u, v}
to the generator of H3d−8(Embc(R,Rd);R). Notice that in even dimension
the morphism E2(p) at the E2 pages level respects the Gerstenhaber algebra
structure. Hence, the obstruction argument does not work in that dimension.

Remark 4.4.1. Salvatore did not need our Theorem 4.1.5 to conclude that
the bracket {u, v} is not equal to 0 in the homology H∗(Embc(R,Rd)) of the
space of long knots. Moreover he did not need the collapse of the Vassiliev
spectral sequence (see Theorem 2.4.1). His argument is the following. Consider
a filtration of H∗(Embc(R,Rd)) that gives the E∞ page, which contains the
bracket {u, v} since we are in low degree and there is no differential to kill
him. This bracket is not zero (because of Turchin computations [54]) in the
quotient associated to the filtration. Therefore, by a simple argument of spectral
sequences, it is not zero in the homology H∗(Embc(R,Rd)).

The following conjectural table is made for d odd and concerns the homology

H∗(Embc(R,Rd)) ∼= H∗(Embc(R,Rd))⊗H∗(Ω2Sd−1)

of the space of long knots modulo immersions. It follows from Turchin com-
putations (see Table 4 and Table 6 in [55]) on the E2 page and from our
Theorem 4.1.5. In that table, the abbreviation N.G means number of gener-
ators, and the abbreviation N.P.G means number of primitive generators (for
us, a primitive generator is generator that is not decomposable as a product of
generators of degree greater than or equal to 1).
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Degree Generators N.G N.P.G
0 1 1 0

d− 3 u 1 1
2d− 6 u2, v 2 1
2d− 5 {u, u} 1 1
3d− 9 u3, uv, w 3 1
3d− 8 u{u, u}, {u, v} 2 1
4d− 12 u4, v2, uw, u2v, x, x′ 6 2
4d− 11 u2{u, u}, v{u, u}, u{u, v}, {v, v}, {u,w} 5 2
5d− 15 u5, uv2, u2w, u3v, vw, ux, ux′, y, y′, y′′ 10 3

5d− 14 u{u,w}, u{v, v}, u2{u, v}, u3{u, u}, v{u, v},
w{u, u}, uv{u, u}, {v, w}, {u, x}, {u, x′} 10 3

In that table we can easily see that the homology classes {u, v} (in degree
3d−8), {v, v} and {u,w} (in degree 4d−11), {v, w}, {u, x} and {u, x′} (in degree
5d − 14) live in the homology H∗(Embc(R,Rd)) of the space Embc(R,Rd) of
long knots, and do not come directly from chord diagrams. These are primitive
generators (see Turchin’s Table 6 in [55]).

In the Table above, we easily see that the bracket {u, {u, v}} is equal to
zero because it lives in degree 4d − 10, and there is nothing there. This leads
us to the following result.

Proposition 4.4.2. For odd d ≥ 4, the homology H∗(Embc(R,Rd)) is not free
as a Gerstenhaber algebra.

Remark 4.4.3. For d = 3, Budney [8] shows that the Gerstenhaber algebra 1

H∗(Embc(R,Rd)) is free.

1Here the Gerstenhaber algebra structure is induced by the action of the little 2-disks
operad. The question to know whether the Budney action and the McClure-Smith action
are equivalent is still open



CHAPTER 5

Rational homology of spaces of long links

5.1 Introduction

This chapter proves Theorem E, Theorem F, Theorem G and Theorem I an-
nounced in the introduction of this thesis. All these theorems, except Theo-
rem I, appear in our preprint [49], which determines the rational homology of
the space of long links. Here is a more detailed summary of this chapter.

Let us start with the definition of a long link. As in Chapter 2 and Chapter 4,
the integer d ≥ 3 still denotes the dimension of the ambient space. Roughly
speaking, if one thinks a long knot (see Definition 2.1.1) as a strand or a string,
the definition of a long link is a generalization of Definition 2.1.1 to multiple
strands. More precisely, let m ≥ 1 be an integer (m represents the number of
strands), and let {a1, · · · , am} be a family of real numbers inside I = [−1, 1]
defined by

ai = 2i−m− 1
m+ 1 . (5.1.1)

This family defines in fact a partition of I into intervals with equal lengths.
Define m = {1, · · · ,m}, and fix a family {εi : R ↪→ Rd} of linear embeddings
defined by

εi(t) = (0, · · · , 0, ai,−t), 1 ≤ i ≤ m.

Definition 5.1.1. A long link of m strands in Rd is a smooth embedding
f : R×m ↪→ Rd of m copies of R inside Rd satisfying the boundary conditions{

f(I ×m) ⊆ Rd−1 × I
f(t, i) = εi(t), 1 ≤ i ≤ m if |t| ≥ 1. (5.1.2)

Notice that this definition coincides with that of a long knot, when m = 1
(one can observe that the equation (5.1.1) above gives a1 = 0 in that case).
Let us define now the space we study in this chapter.

89
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Definition 5.1.2. The space of long links of m strands is the collection

{f : R×m ↪→ Rd such that f is a long link of m strands}

endowed with the weak C∞-topology (for that topology, see (WT) from the
introduction of Chapter 2).

We denote this space by Embc(
∐m

1 R,Rd) or simply by Ldm. Define the
space Immc(

∐m
1 R,Rd) of long immersions of m strands analogously. It is

clear that there is an inclusion Embc(
∐m

1 R,Rd) ↪→ Immc(
∐m

1 R,Rd), and its
homotopy fiber is called the space of long links modulo immersions. Let us
denote this latter space, which is the object of our study in this chapter, by
Embc(

∐m
i=1 R,Rd) or simply by Ldm.

In this chapter we provide a complete understanding of the rational homol-
ogy of the space Ldm, when d > 5. First, we construct explicitly a cosimplicial
chain complex L•∗ whose totalization is quasi-isomorphic to the singular chain
complex of the space of long links. Next we show (using the fact that the
Bousfield-Kan spectral sequence associated to L•∗ collapses at the E2 page)
that the homology Bousfield-Kan spectral sequence associated to the Munson-
Volić cosimplicial model for the space of long links collapses at the E2 page
rationally, and this solves a conjecture of Munson-Volić. Our method enables
us also to obtain the collapsing at the E2 page of the spectral sequence comput-
ing the rational homology of the space Embc(

∐m
i=1 Rn,Rd), which is the high

dimensional analogues of spaces of long links. The last result of the chapter
states that the radius of convergence of the Poincaré series for the space Ldm
and for the pair (Ldm, (L

d

1)×m) tends to 0 when m goes to the infinity.
Now we are going to state properly the main results of the chapter. As in

Chapter 2, let Conf(k,Rd) denote the space of configuration of k points in Rd.
We will construct an explicit cosimplicial chain complex L•∗, where

Lp∗ = H∗(Conf(mp,Rd);Q).

As in the previous chapters, let Bd denote the little d-disks operad (recall that
this operad was introduced in Example 1.4.10), and let s−p be the suspension
functor of degree −p (it was defined in equation (3.2.1) from Chapter 3). Define
the totalization TotL•∗ by

TotL•∗ =
⊕
p≥0

(s−pLp∗),

the differential being the alternating sum of cofaces. We will see in Section 5.3
that the homology H∗(TotL•∗) can be interpreted by the ∨mi=1S

1-homology of
H∗(Bd;Q).

Here is the first result of the chapter, which says that the cosimplicial chain
complex L•∗ gives a cosimplicial model for the singular chain complex of the
space of long links.
Theorem 5.1.3. For d > 5, the totalization of L•∗ is weakly equivalent to the
singular chain complex of the space of long links of m strands in Rd. That is,

TotL•∗ ' S∗(L
d

m)⊗Q.
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The following corollary is an immediate consequence of Theorem 5.1.3.

Corollary 5.1.4. For d > 5, the rational homology of the space of long links
of m strands is isomorphic to the ∨mi=1S

1-homology of H∗(Bd;Q). That is,

H∗(L
d

m;Q) ∼= HH∨
m
i=1S

1
(H∗(Bd;Q)).

For the meaning of the X-homology of something, see Definition 5.3.5.
Let us state now the second and the most important result of the chapter,

which is also one of the main results of this thesis. Actually, this result solves
(for d > 5) a conjecture of Munson-Volić that we state now. In [35], B. Munson
and I. Volić built a cosimplicial space (we denote it by Ld•m ) that gives a cosim-
plicial model for the space Ldm of long links of m strands in Rd, when d ≥ 4.
They also define two spectral sequences that converge respectively to the homo-
topy and cohomology of the space Ldm of long links modulo immersions. In this
chapter, we look at the homology Bousfield-Kan spectral sequence associated
to Ld•m , which converges to the homology H∗(L

d

m) by Theorem 5.1.3.

Conjecture 5.1.5. [Munson-Volić] This spectral sequence collapses at the E2

page rationally for d ≥ 4.

Theorem 5.1.6. For d > 5, the homology Bousfield-Kan spectral sequence
associated to the Munson-Volić cosimplicial model Ld•m for the space of long
links of m strands in Rd collapses at the E2 page rationally.

Remark 5.1.7. Our method enables us also to determine the rational homology
of the high dimensional analogues of spaces Embc(

∐m
i=1 Rn,Rd) of long links

modulo immersions. More precisely, as in the case of long links, we construct
an explicit cosimplicial chain complex Ln•∗ and we prove (in the similar way as
Theorem E) that it gives a cosimplicial model for the singular chain complex
of Embc(

∐m
i=1 Rn,Rd). We thus obtain Theorem 5.5.2, Corollary 5.5.3 and

Proposition 5.5.4.

The case m = 1 (this case corresponds to the space Embc(R,Rd) of long
knots) was studied in the previous chapters. Here is a summary of obtained
results.
First, Sinha constructs in [44] a cosimplicial model K•d of the space of long
knots Embc(R,Rd), when d ≥ 4. Next, Lambrechts, Turchin and Volić prove
[26] that the H∗BKSS associated to K•d collapses at the E2 page rationally,
when d ≥ 4. Few years later, we prove (see Corollary 4.1.3) that the collapsing
result still holds for d ≥ 3, and thus simplify the proof of the main result of
[26].
Again for m = 1, the spectral sequence {Er(L•∗)}r≥0 computing the rational
homology of Ld1 is isomorphic from the E1 page to the H∗BKSS associated to
K•d, therefore Theorem 5.1.6 is a generalization of the above results.
Recall other interesting results obtained in the study of the space of long knots.
We have discovered in Theorem 4.1.1 the multiplicative formality (for d ≥ 3)
of the Kontsevich operad Kd(•). This result gave us (for d ≥ 3) the formality
of Sinha’s cosimplicial space K•d, and Theorem 4.1.5 (this theorem furnishes a
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complete understanding of the rational homology of the space of long knots as
a Gerstenhaber algebra).

We end this introduction with the last result of the chapter, which con-
cerns the Poincaré series for the space of long links. In [24] Komawila and
Lambrechts study the E2 page of the cohomology Bousfield-Kan spectral se-
quence associated to the Munson-Volić cosimplicial space. They show that the
coefficients of the associated Euler series have an exponential growth of rate
m

1
d−1 > 1. Using now our collapsing Theorem 5.1.6, we deduce the following

result.

Theorem 5.1.8. For d > 5 the radius of convergence of the Poincaré series
for the space of long links (modulo immersions) Ldm is less than or equal to
( 1
m )

1
d−1 . Therefore the Betti numbers of Ldm have an exponential growth.

An immediate consequence of Theorem 5.1.8 is the following corollary.

Corollary 5.1.9. For d > 5 the previous radius of convergence tends to 0 as
m goes to ∞.

When m = 1 the upper bound of Theorem 5.1.8 is equal to 1, and the
following theorem, due to Turchin, gives a better upper bound in that case.

Theorem 5.1.10. [53] For d ≥ 4 the radius of convergence of the Poincaré
series for the space of long knots (modulo immersions) is less than or equal to
( 1√

2 )
1

d−1 .

Since the space of m copies of long knots is a retraction up to homotopy of
the space of long links, Theorem 5.1.10 implies that the radius of convergence of
the Poincaré series for Ldm is less than or equal to ( 1√

2 )
1

d−1 . Our Corollary 5.1.9
gives a better upper bound for m large.

Outline of the chapter

- In Section 5.2 we first define a manifoldM , and prove (Proposition 5.2.2)
that the study of the space of long links (modulo immersions) is reduced
to the study of the space Embc(M,Rd) of compactly supported embed-
dings of M into Rd. Next we recall the notion of infinitesimal bimodules
with a lot of examples. We also recall some results (related to the Tay-
lor tower associated to Embc(Rn,Rd) and S∗Embc(Rn,Rd) ) obtained by
Arone and Turchin in [2]. These results say that the kth approximation
of the Taylor tower can be expressed in terms of morphisms of infinites-
imal bimodules. Finally we show that similar results (Proposition 5.2.24,
Proposition 5.2.25, Proposition 5.2.27 and Proposition 5.2.28) hold for
the space Embc(N,Rd), where N is the complement of a compact subset
of Rq.

- In Section 5.3 we construct an explicit cosimplicial chain complex L•∗
that gives a cosimplicial model for S∗(Embc(M,Rd);Q) (this is Theo-
rem 5.1.3). To prove Theorem 5.1.3, we will use all the results obtained
in Section 5.2.3 , and also Proposition 5.3.6, Lemma 5.3.2 and Theo-
rem 5.3.7.
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- In Section 5.4 we first prove (Lemma 5.4.1) that the E1 pages of spectral
sequences {Er(L•∗)}r≥0 and {Er(S∗(Ld•m ;Q))}r≥0 are isomorphic. Using
now the fact that the spectral sequence {Er(L•∗)}r≥0 collapses at the E2

page (Lemma 5.4.2) and Theorem 5.1.3, we deduce Theorem 5.1.6.

- In Section 5.5 we show (using our approach) that the spectral sequence
computing the rational homology of the high dimensional analogues of
spaces of long links collapses at the E2 page.

- In Section 5.6 we show that the radius of convergence of the Poincaré
series for the space of long links modulo m copies of the space of long
knots tends to 0 when m goes to the infinity. To get this we use our
Theorem 5.1.6 and a theorem of Komawila-Lambrechts [24].

5.2 A compactly supported version of Goodwillie-Weiss
embedding calculus for the space of long links

We introduce this section with a proposition, which allows us to reduce the
study of the space Ldm to the study of the space Embc(M,Rd) of compactly
supported embeddings of a manifoldM into Rd. Before stating this proposition,
we properly define our manifold M , which is roughly speaking the complement
in R2 of a slightly thickening ofm copies of the interval I = [−1, 1]. The ground
field in this section is Q.

Let I be the interval I = [−1, 1], and let m ≥ 1 be an integer. Consider the
familly {a0, a1, · · · , am} ⊆ I defined by (5.1.1) above. Let 0 < ε < 2

m+1 be a
fixed real number. For 0 ≤ i ≤ m, define

Kin = In × [ai, ai + ε], and Kn = ∪mi=oKin.

Definition 5.2.1. We define M to be the complement of K1 in R2. That is,

M = R2\K1. (5.2.1)

To study the rational homology of high dimensional analogues of spaces of
long links, we will consider the manifold Mn defined by

Mn = Rn+1\Kn. (5.2.2)

Proposition 5.2.2. For d ≥ 3, the space of long links modulo immersions in
Rd is weakly equivalent to the space of smooth compactly supported embeddings
of M in Rd,

Ldm ' Embc(M,Rd).

Proof. Since Ldm(R) is the space of compactly supported embeddings of m
copies of R in Rd, it follows that it is weakly equivalent to the space of embed-
dings (with endpoints and tangent vectors at those endpoints fixed on oppposite
faces of the cube) modulo immersions of m copies of the interval I in the cube
Id,

Ldm ' Embc(
m∐
1
I, Id).
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Moreover, for each 0 ≤ i ≤ m− 1, the subspace of I2, which is between Ki and
Ki+1, is weakly equivalent to I. This ends the proof.

Remark 5.2.3. The Proposition 5.2.2 is easily generalized to the high dimen-
sional analogue Embc(

∐m
i=1 Rn,Rd) of the space of long links. That is, we have

the following weak equivalence

Embc(
m∐
i=1

Rn,Rd) ' Embc(Mn,Rd).

Here and in the rest of this chapter, S∗(−) is the normalized singular chain
functor. The advantage to work with the space Embc(Mn,Rd) instead of the
space Embc(

∐m
i=1 Rn,Rd) is the fact that we can directly use the same tech-

niques (which was developed by Arone and Turchin [2] in the study of the space
Embc(Rq,Rd)) to study Embc(Mn,Rd). They show that the kth approximation
of the Taylor tower associated to the chain complex S∗(Embc(Rq,Rd)), that is
the Taylor tower of the functor V 7−→ S∗(Embc(V,Rd)) can be expressed in
terms of morphisms between infinitesimal bimodules over the operad S∗(Bq).
The goal of this section is to obtain similar results (for the Taylor tower of
Embc(Mn,Rd) ) as them. To state and prove our results, it is easiest to first
review what is done in [2]. Let us start with infinitesimal bimodules.

5.2.1 Infinitesimal bimodules

Let (C,⊗,1) be a symmetric monoidal category.

Definition 5.2.4. For an operad O in C, a right module over O is a symmetric
sequence P = {P (r)}r≥0 in C endowed with insertions maps

◦i : P (r)⊗O(t) −→ P (r + t− 1), 1 ≤ i ≤ r,

satisfying the following three axioms
(RM)1: For 1 ≤ i ≤ s and 1 ≤ j ≤ r, the following diagram commutes

P (r)⊗O(s)×O(t) id⊗◦i //

◦j⊗id
��

P (r)⊗O(s+ t− 1)

◦j

��
P (r + s− 1)⊗O(t)

◦j−1+i // P (r + s+ t− 2).

(RM)2: For 1 ≤ j < i ≤ r, the following diagram commutes

P (r)⊗O(s)⊗O(t) id⊗T //

◦j⊗id

��

P (r)⊗O(t)⊗O(s)

◦i⊗id
��

P (r + t− 1)⊗O(s)

◦j

��
P (r + s− 1)⊗O(t)

◦i−1+s // P (r + s+ t− 2).

(5.2.3)
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Here T : O(s) ⊗ O(t)
∼=−→ O(t) ⊗ O(s) is the isomorphism coming from the

symmetric structure of C.
(RM)3: For 1 ≤ i ≤ r, the composite

P (r)
∼= // P (r)⊗ 1 id⊗η // P (r)⊗O(1) ◦i // P (r)

is the identity. Here η : 1 −→ O(1) is the unit of the operad O.

Definition 5.2.5. For an operad O in C, a weak left module over O is a
symmetric sequence P = {P (r)}r≥0 in C endowed with insertions maps

◦i : O(r)⊗ P (t) −→ P (r + t− 1), 1 ≤ i ≤ r,

satisfying the following two axioms
(WLM)1: For 1 ≤ i ≤ r and 1 ≤ j ≤ s, the following diagram commutes

O(r)⊗O(s)⊗ P (t) ◦i⊗id //

id⊗◦j

��

O(r + s− 1)⊗ P (t)

◦i−1+j

��
O(r)⊗ P (s+ t− 1) ◦i // P (r + s+ t− 2).

(5.2.4)

(WLM)2: The following composition is the identity

P (r)
∼= // 1⊗ P (r) η⊗id // O(1)⊗ P (r) ◦1 // P (r) .

Notice that in general the notion of a weak left module is different to the
standard one of a left module. In fact, a left module structure does not always
imply a weak left module structure. This is because a left module over O is
usually defined as a symmetric sequence P = {P (r)}r≥0 in C equipped with
structure morphisms

O(k)⊗ P (i1)⊗ · · · ⊗ P (ik) −→ P (i1 + · · ·+ ik),

and the sequence P does not contain in general the unit element 1 −→ P (1).

Definition 5.2.6. For an operad O in C, a weak bimodule or infinitesimal
bimodule over O is a symmetric sequence P = {P (r)}r≥0 in C endowed with
a right module and a weak left module structures over O that are compatible in
the sense that the following two axioms hold

(IB)1: The diagram obtained from (5.2.4) by replacing O(s) by P (s), P (t)
by O(t), and O(r + s− 1) by P (r + s− 1) commutes.

(IB)2: The diagram obtained from (5.2.3) by replacing P (r) by O(r), O(t)
by P (t), and P (r + s− 1) by O(r + s− 1) commutes.

Let InfBim
O

denote the category of infinitesimal bimodules over an operad
O, and let InfBim≤k

O
denote its kth truncation. If B1 and B2 are two infinites-

imal bimodules over O, we denote by hInfBim
O

(B1,B2) the derived object of
infinitesimal bimodules morphisms from B1 to B2.
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Example 5.2.7. Let g : O −→ P be a morphism in the category of operads.
Then P is equipped with a canonical structure of infinitesimal bimodule over
O. The weak left module structure is given by the composite

O(r)⊗ P(s) gr⊗id // P(r)⊗ P(s) ◦i // P(r + s− 1) ,

and the right one by

P(r)⊗O(s) id⊗gs // P(r)⊗ P(s) ◦i // P(r + s− 1) .

Remark 5.2.8. Let As be the associative operad in C (it was introduced in
Example 1.4.11). It is not difficult to see that an infinitesimal bimodule over
As is a cosimplicial object O• in C (notice that the converse is not true in
general). For 1 ≤ i ≤ p, the cofaces morphisms di : Op −→ Op+1 are defined
using the right module structure (di(x) = x ◦i µ, where µ : 1 −→ As(2) is
the special operation in arity 2), and for i ∈ {0, p + 1}, di is defined using
the weak left module structure (d0(x) = µ ◦2 x and dp+1(x) = µ ◦1 x). The
codegeneracies morphisms sj : Op+1 −→ Op are defined using the right module
structure (sj(y) = y ◦j e, where e : 1 −→ As(0) is the special operation in arity
0).

Let O be a multiplicative operad in topological spaces Top, that is, there
exists a map As −→ O from the associative operad to O. Then, by Exam-
ple 5.2.7, the sequence {O(n)}n≥0 is endowed with an infinitesimal bimodule
structure over As. Therefore, by Remark 5.2.8, we have an associated cosim-
plicial object O• in C. Notice that the homotopy totalization hoTotO• (that we
have introduced in Definition 1.2.11) can also be expressed in terms of derived
morphisms between infinitesimal bimodules over As. That is,

hoTotO• = Nat
cTop

(∆̃•,O•) ' hNat
cTop

(∆̃•,O•) ' hNat
cTop

(As•,O•)

' hInfBim
As

(As,O).
(5.2.5)

Here hNat(−,−) denotes the space of derived natural transformations.
In the case of Kontsevich’s operad Kd, which is a multiplicative operad by
Proposition 2.2.8, its weak left module structure encodes the fact adding a
point at the infinity (−∞ for d0 and +∞ for dp+1), and its right module
structure encodes the fact doubling a point. Recall that Kd(p) is define to
be the Kontsevich compactification (see Definition 2.2.2) of the configuration
space of p points in Rd. By (5.2.5), we have

hoTotK•d ' hInfBim
As

(As,O). (5.2.6)

One can view an infinitesimal bimodule as a contravariant functor from a
certain category. To be more precise, let us first give the following definition.

Definition 5.2.9. We define Γ to be the category of finite pointed sets r+ =
{1, · · · , r, ∗} whose morphisms are maps preserving the base point ∗.
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For two objects r+ and s+ in Γ, we write Γ(r+, s+) for the set of morphisms
in Γ from r+ to s+. Define now (for an operad O in C) an enriched category
over C, Γ̃(O), as follows. The objects of Γ̃(O) are finite pointed sets r+. If r+
and s+ are two objects in Γ̃(O), then

hom
Γ̃(O)

(r+, s+) =
⊕

f∈Γ(r+,s+)

⊗
x∈s+

O(f−1(x)).

Proposition 5.2.10. [2, Proposition 2.15] Let C be a symmetric monoidal
category, and let O be an operad in C. Then the category of contravariant
functors from Γ̃(O) to C is equivalent to the category of infinitesimal bimodules
over O.

Let us make two remarks.

Remark 5.2.11. Let Com = {∗}r≥0 be the commutative symmetric operad
in topological spaces. Then it is easy to see that Γ̃(Com) = Γ. Therefore, by
Proposition 5.2.10, an infinitesimal bimodule over Com is the same thing as a
contravariant functor from Γ to Top.

Before making the second remark concerning Γ̃(Bq), where Bq is of course
the little q-disks operad, we first recall some necessary definitions. A self home-
omorphism of Rq is said to be a standard isomorphism if it is the composition
of a translation and a multiplication by a positive scalar. Let X be a subset
of Rq. We will say that a map f : X −→ Rq is a standard embedding if it is
the composition of the inclusion and a standard isomorphism of Rq. Given
another subset Y of Rq, the map f : X −→ Y is called a standard embedding if
f : X −→ Rq is a standard embedding, and its image lies in Y . We denote by
sEmb(X,Y ) the space of standard embeddings from X to Y . When X = Dq,
the unit open ball of Rq, the image f(Dq) is called a standard ball in Y , and the
complement Y \f(Dn) is called a standard antiball in Y . The following remark
gives an explicit description of the category Γ̃(Bq).

Remark 5.2.12. [2, Proposition 4.9] The category Γ̃(Bq) is equivalent to the
category whose

- an object is a finite pointed set r+, which is viewed as r standard balls
with one standard antiball,

- the space of morphisms from r+ to s+ is

hom
Γ̃(Bq)

(r+, s+) = sEmb
(

(
r∐
i=1

Dq)
∐

(Rq\Dq), (
s∐
i=1

Dq)
∐

(Rq\Dq)
)
.

We end this section with examples of infinitesimal bimodules that will be
used in the following sections. Let

sEmb(−, Y ) : Γ̃(Bq) −→ Top

be a functor defined by sEmb(−, Y )(U) = sEmb(U, Y ). It is very easy to see
that it is a contravariant functor. This implies (by Proposition 5.2.10 above)
the following example.
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Example 5.2.13. The collection

sEmb(−, Y ) := {sEmb(
r∐
i=1

Dq)
∐

(Rq\Dq), Y )}r≥0

is an infinitesimal bimodule over Bq.

Example 5.2.14. Let (X, ∗) be a pointed space, and let X×− : Γ −→ Top be
the functor defined by

X×−(r+) = Map∗(r+, X) = X×r = X × · · · ×X︸ ︷︷ ︸
r

.

This functor turns out to be a contravariant functor, and therefore (by Propo-
sition 5.2.10 and Remark 5.2.11) the collection {X×r}r≥0 is an infinitesimal
bimodule over Com = {∗}n≥0.

Example 5.2.15. For a symmetric monoidal functor F : C −→ D, for an
operad O in C, and for an infinitesimal bimodule P = {P (r)}r≥0 over O, the
image F (P ) = {F (P (r))}r≥0 is obviously an infinitesimal bimodule over F (O).
Hence, S∗(Bd) and S∗(sEmb(−, Y )) are infinitesimal bimodules over S∗(Bq),
and S∗(X×−) is an infinitesimal bimodule over Com = {S∗(∗)}n≥0. Recall that
S∗(−) is the normalized singular chain functor.

Example 5.2.16. Since the associative operad As is the terminal object in
the category of topological operads, it follows that there is a unique morphism
Bd −→ As. Applying the normalized singular chain functor S∗(−), we obtain
a morphism S∗(Bd) −→ Com = {S∗(∗)}n≥0. Moreover, there is a natural
isomorphism Com

∼=−→ H0(Bd) (because d ≥ 2 implies Bd connected). There
is also an obvious morphism H0(Bd) −→ H∗(Bd). We thus get the sequence of
morphisms

S∗(Bd) // Com
∼= // H0(Bd) // H∗(Bd) , (5.2.7)

which endowed H∗(Bd) with an infinitesimal bimodule structure over S∗(Bd),
and with an infinitesimal bimodule structure over Com by Example 5.2.7.

5.2.2 Review of the Taylor tower associated to Embc(Rq,Rd)

Here we recall some results of [2]. For more details, the reader can refer there.
Let O(Rq) be the poset of open subsets of Rq. Define the category Oc(Rq)

to be the subcategory of O(Rq) whose objects are the complement of compact
subsets of Rq. Define also the category Ock(Rq) to be the subcategory of Oc(Rq)
consisting of disjoint unions U = U0 ∪ U1 such that U0 is the complement of a
closed ball, and U1 is the disjoint union of at most k open balls in Rq. Consider
now the functor

Embc(−,Rd) : Oc(Rq) −→ Top
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of compactly-supported embeddings. We are going to make the "compactly
supported" version of Goodwillie-Weiss embedding calculus [57, 19] with that
functor. First of all, its kth approximation

TkEmbc(−,Rd) : Oc(Rq) −→ Top

is defined by

TkEmbc(V,Rd) = holim
U⊆V,U∈Oc

k
(Rq)

Embc(U,Rd).

One shows that TkEmbc(−Rd) can be expressed in terms of morphisms
of infinitesimal bimodules over the little q-disks operad Bq. In the following
proposition, there is sEmb(−,Rq) in the place of Embc(−,Rq) because of [1,
Proposition 7.1].

Proposition 5.2.17. [2, Theorem 5.10] or [51, Theorem 6.1] For d > q and
k ≤ ∞, we have the weak equivalences

TkEmbc(Rq,Rd) ' hInfBim≤k
Bq

(sEmb(−,Rq), Bd)

' hInfBim≤k
Bq

(Bq, Bd).

Notice that a version of Proposition 5.2.17 was proved [5] by Boavida de
Brito and Weiss (they develop the details of the proof of that proposition). The
following remark says that the space of long knots can be expressed in terms
of derived morphisms between infinitesimal bimodules.

Remark 5.2.18. When q = 1 and d > q+ 2, Proposition 5.2.17 gives another
proof of Theorem 2.3.3 due to Sinha. Indeed, since the little p-disks operad Bp is
weakly equivalent (for all p ≥ 1) to the Kontsevich operad Kp by Theorem 2.2.9,
and since K1 is the associative operad As by Remark 2.2.7, we deduce the
following weak equivalences in which the last one comes from (5.2.6)

Embc(R1,Rd) ' hInfbim
B1

(B1, Bd) ' hInfbim
As

(As,Kd) ' hoTotK•d.

Proposition 5.2.17 admits an algebraic version, which is obtained by con-
sidering the composite

Oc(Rq)
Embc(−,Rd) // Top

S∗(−) // Ch∗

from the category Oc(Rq) to chain complexes.

Proposition 5.2.19. [2, Proposition 5.13] For d > q and k ≤ ∞ there are
weak equivalences

TkS∗Embc(Rq,Rd) ' hInfBim≤k
S∗Bq

(S∗sEmb(−,Rq), S∗Bd)

' hInfBim≤k
S∗Bq

(S∗Bq, S∗Bd).
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Let Sq be the q dimensional sphere, which is viewed as the one-point com-
pactification of Rq, that is Sq = Rq ∪{∞}, and which is pointed at ∞. By Ex-
ample 5.2.15, the sequence of chain complexes S∗((Sq)×−) = {S∗((Sq)×r )}r≥0
is an infinitesimal bimodule over com. In the following proposition, the first
weak equivalence is proved in [2, Proposition 6.1] and the second one in [2,
Proposition 7.3].
Proposition 5.2.20. [2, Proposition 6.1 and Proposition 7.3] For d ≥ 2q + 1
and k ≤ ∞, we have the following weak equivalences
•

TkS∗Embc(Rq,Rd) ' hInfBim≤k
S∗Bq

(S∗Bq, H∗(Bd;Q)

•
TkS∗Embc(Rq,Rd) ' hInfBim≤k

Com
(S∗((Sq)×−), H∗(Bd;Q)).

5.2.3 The Taylor tower associated to Embc(N,Rd)

In [2] Arone and Turchin study the space Emb(N,Rd) of all smooth embeddings
of an open submanifold N ⊆ Rq in Rd. They prove that kth approximation of
the Taylor tower associated to Emb(N,Rd) can be expressed in terms of derived
morphisms between right modules over Bq. In this section we look at the space
Embc(N,Rd) of compactly supported embeddings, where N is the complement
of a compact subset of Rq. The goal here is to show that similar results as
those mentioned in Section 5.2.2 hold for that space. Further in Section 5.3,
we will apply (in order to prove Theorem 5.1.3) the results of this section with
N = M = M1, and further in Section 5.5 we will apply them with N = Mn

(see (5.2.2) for the definition of Mn).
Let us begin with the definition of Embc(N,Rd) . Let K ⊆ Rq be a compact

subset, let D = B(x, δ) ⊆ Rq be an open ball containing K, and let ε : Rq ↪→ Rd
be a fixed linear embedding defined by ε(t) = (0, · · · , 0,−t1, · · · ,−tq) where
t = (t1, · · · , tq). Define N to be the complement of K. That is,

N = Rq\K.

In the following definition D is of course the closed ball associated to D.
Definition 5.2.21. • A long embedding , q ≥ 1 and d ≥ 3, is a smooth

embedding f : Rq ↪→ Rd satisfying the boundary conditions{
f(D) ⊆ Rd−q ×D
f(t) = ε(t) if t /∈ D

• Given a long embedding f : Rq ↪→ Rd, the image f(N) is called a com-
pactly supported embedding of N in Rd.

Notice that when D =] − 1, 1[ and q = 1, Definition 5.2.21 coincides with
Definition 2.1.1 of a long knot. Let Embc(N,Rd) denote the space of com-
pactly supported embeddings of N inside Rd (as in the case of long knots
and long links, it is equipped with the weak C∞-topology). Define the space
Immc(N,Rd) of compactly supported immersions analogously.
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Definition 5.2.22. The space Embc(N,Rd) is defined to be the homotopy fiber
of the inclusion

Embc(N,Rd) ↪→ Immc(N,Rd).
By abuse of terminology, we call it the space of compactly supported embed-
dings.

Notice that when N = M the space Embc(N,Rd) is weakly equivalent to
the space of long links (this has been proved in Proposition 5.2.2), which is the
space we study in this chapter.
Define now O(N) to be the category whose objects are open subsets of N and
morphisms are inclusions. Define also the categories Oc(N) and Ock(N) as
follows.

Definition 5.2.23. • We define Oc(N) to be the subcategory of O(N) the
objects of which are the complements of compact subsets in N .

• We define Ock(N) to be the subcategory of Oc(N) consisting of U = V ∪W
such that

- V ∩W = ∅;
- V is the complement of a closed ball in N ;
- W is the disjoint union of at most k open balls.

Taking the functors

Embc(−,Rd) : Oc(N) −→ Top and S∗Embc(−,Rd) : Oc(N) −→ Ch∗

as inputs in Goodwillie-Weiss embedding calculus, we have the following two
propositions.

Proposition 5.2.24. For d > q and k ≤ ∞ there is a weak equivalence

TkEmbc(N,Rd) ' hInfBim≤k
Bq

(sEmb(−, N), Bd).

Proof. The proof works exactly in the similar way as that of the first weak
equivalence of Proposition 5.2.17.

Proposition 5.2.25. For d > q and k ≤ ∞ there is a weak equivalence

TkS∗Embc(N,Rd) ' hInfBim≤k
S∗Bq

(S∗sEmb(−, N), S∗Bd).

Proof. Here the proof also works exactly in the similar way as that of the first
equivalence of Proposition 5.2.19.

Remark 5.2.26. In Proposition 5.2.24 we don’t have the equivalence

hInfBim≤k
Bq

(sEmb(−, N), Bd) ' hInfBim≤k
Bq

(Bq, Bd)

as in Proposition 5.2.17. This is because sEmb(−, N) is not weakly equivalent
to Bq for general N . Obviously, the same remark holds for Proposition 5.2.25.
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Applying now the relative formality Theorem 2.4.3 (which says that for
d ≥ 2q+1 the inclusion Bq ↪→ Bd is R-formal) to Proposition 5.2.25, we obtain
the following proposition.

Proposition 5.2.27. For d ≥ 2q + 1 and k ≤ ∞, there is a weak equivalence

TkS∗(Embc(N,Rd);Q) ' hInfBim≤k
S∗Bq

(S∗(sEmb(−, N);Q), H∗(Bd;Q)).

Proof. The proof is the same as that of [2, Proposition 6.1]. The idea is to
prove the assertion which states that the zigzag of quasi-isomorphisms con-
necting S∗(Bq;R) −→ S∗(Bd;R) to H∗(Bq;R) −→ H∗(Bd;R) holds in the
category hInfBim

S∗Bq

of derived infinitesimal bimodules over S∗Bq. This assertion

is proved using essentially the general construction that associates to a mor-
phism g : O −→ P of operads in C (here we assume that C is a symmetric
monoidal model category may be cofibrantly generated) a pair

ĩnd: hInfBim
O

� hInfBim
P

: res (5.2.8)

of adjoint functors (ĩnd being the derived left adjoint). Here res is just the
restriction functor , and ĩnd is the induction functor defined as the derived left
Kan extension

Γ̃(O) //

Γ̃(g)
��

C

Γ̃(P)

88

along the functor Γ̃(g) : Γ̃(O) −→ Γ̃(P) induced by g. Recall that by Proposi-
tion 5.2.10, the category InfBim

O
is equivalent to the category of contravariant

functors from Γ̃(O) to C, similarly to the category InfBim
P

.

Let N̂ be the one-point compactification of N pointed at ∞,

N̂ = N ∪ {∞}.

Recalling that S∗(N̂×−) and H∗(Bd;Q) are infinitesimal bimodules over Com
from Example 5.2.15 and Example 5.2.16, we have the following proposition
which is proved in the similar way as the second part of Proposition 5.2.20.

Proposition 5.2.28. For d ≥ 2q + 1 and k ≤ ∞, there is a weak equivalence

TkS∗(Embc(N,Rd);Q) ' hInfBim≤k
Com

(S∗(N̂×−), H∗(Bd;Q)).

Proof. Let g : Bq −→ Com = {∗}n≥0 be the unique morphism of operads from
Bq to Com. By (5.2.8) the morphisms g and S∗(g) : S∗Bq −→ S∗(Com) = Com
induce respectively the pairs

ĩnd: hInfBim
Bq

� hInfBim
Com

: res (5.2.9)
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and

ĩnd: hInfBim
S∗Bq

� hInfBim
Com

: res (5.2.10)

of adjoint functors. Notice that by the sequence (5.2.7), the restriction
functor sends H∗Bq (viewed as an infinitesimal bimodule over Com) to itself
(viewed as an infinitesimal bimodule over S∗Bq). That is,

res(H∗Bq) = H∗Bq. (5.2.11)

Since we have the following weak equivalences (the first one comes from Propo-
sition 5.2.27, and the second one from the adjunction (5.2.10))

TkS∗Embc(N,Rd) ' hInfBim≤k
S∗Bq

(S∗sEmb(−, N), H∗Bd)

= hInfBim≤k
S∗Bq

(S∗sEmb(−, N), res(H∗Bd)) by (5.2.11)

∼= hInfBim≤k
Com

(ĩnd(S∗sEmb(−, N)), H∗Bd),

to prove Proposition 5.2.28, it suffices to prove that the functors S∗(N̂×−)
and ĩnd(S∗sEmb(−, N)) are weakly equivalent as infinitesimal bimodules over
Com. Since the functor ĩnd(S∗sEmb(−, N)) is the homotopy colimit of a certain
diagram, and since the singular chain functor S∗(−) commutes with homotopy
colimits, it suffices to prove that there is a weak equivalence

ĩnd(sEmb(−, N)) ' N̂×− (5.2.12)

holding in the category hInfBim
Com

. The rest of the proof is devoted to (5.2.12).

Recall first that the functor ĩnd(sEmb(−, N)) is the homotopy left Kan exten-
sion

Γ̃(Bq)
sEmb(−,N) //

Γ̃(g)
��

C

Γ̃(Com) = Γ
ĩnd(sEmb(−,N))

55

of sEmb(−, N) along Γ̃(g), and let us prove (5.2.12) with N = U ∈ Γ̃(Bq).
In that case, sEmb(−, U) is the free functor generated by U (recall that by
Remark 5.2.12, the object U can be viewed as a disjoint union of standard
balls with one standard antiball), and therefore ĩnd(sEmb(−, U)) is the free
functor generated by Γ̃(g)(U). That is,

ĩnd(sEmb(−, U)) ' Map∗(−, Γ̃(g)(U)). (5.2.13)

Notice that (5.2.13) is natural in U . Notice also that Map∗(−, Γ̃(g)(U)) is not
weakly equivalent to the functor Map∗(−, U) because the antiball of U is not
contractible. To correct this, let us define Û to be the one-point compactifica-
tion of U , that is Û = U ∪ {∞}. Here the point ∞ is of course added to the
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antiball of U , and it is the base point of Û . We now have the following weak
equivalence

Map∗(−, Γ̃(g)(U)) ' Map∗(−, Û), (5.2.14)

which is also natural in U . Combining (5.2.13) and (5.2.14), we get

ĩnd(sEmb(−, U)) ' Map∗(−, Û). (5.2.15)

Let us consider now the general case sEmb(−, N). It is not difficult to see that
this functor is the homotopy colimit

sEmb(−, N) ' hocolim
U

sEmb(−, U).

Therefore we have the following weak equivalences (the first one comes from
the fact that the functor ĩnd commutes with homotopy colimits)

ĩnd(sEmb(−, N)) ' hocolim
U

ĩnd(sEmb(−, U))
' hocolim

U
Map∗(−, Û) by (5.2.15)

' Map∗(−, N̂),

thus completing the proof.

5.3 A cosimplicial model for the singular chain complex
of the space of long links

The goal of this section is to detail the proof of Theorem 5.1.3 announced in
the introduction. Before doing that, we state some intermediate results. As in
Section 5.2, the ground field is Q here.

Let us start with the definition of a right Γ-module. Recall from Defini-
tion 5.2.9 the category Γ. Pirashvili [37] defines a right Γ-module as a con-
travariant functor from Γ to vector spaces. For our purposes, it is defined as
follows.

Definition 5.3.1. A right Γ-module is a contravariant functor from Γ to chain
complexes Ch∗.

We denote by Rmod
Γ

the category of right Γ-modules. IfM1 andM2 are two
right Γ-modules, by hRmod

Γ
(M1,M2), we denote the derived chain complex of

right Γ-modules morphisms fromM1 toM2. Right Γ-modules are related to
infinitesimal bimodules (that we have seen in Section 5.2.1) as is shown in the
following lemma, which is just the algebraic version of Remark 5.2.11.

Lemma 5.3.2. The category of infinitesimal bimodules over the commutative
operad (in chain complexes) is equivalent to the category of right Γ-modules.
That is,

InfBim
Com

∼= Rmod
Γ

.
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Here are two examples of right Γ-modules that will be used in this section
and in Section 5.4.

Example 5.3.3. (i) The homology H∗(Bd) : Γ −→ Ch∗ defined by

H∗(Bd)(r+) = H∗(Bd(r)),

where r+ = {1, · · · , r, ∗}, is a right Γ-module. This comes from Exam-
ple 5.2.16 and Lemma 5.3.2.

(ii) Let (X, ∗) be a pointed topological space. Then, by Example 5.2.15 and
Lemma 5.3.2, the singular chain functor S∗(X×−) : Γ −→ Ch∗ defined by

S∗(X×−)(r+) = S∗(hom
Γ

(r+, X)) ∼= S∗(X×r )

is a right Γ-module.

We are now going to properly define the cosimplicial chain complex L•∗,
which appears in Theorem 5.1.3. From now and in the rest of this chapter,
if X• is a simplicial set, we will denote by X its geometric realization. Let
us consider the simplicial model (∨mi=1S

1)• of the wedge ∨mi=1S
1 of m copies

of the circle, which has a unique 0-simplex and exactly m non degenerate 1-
simplices (it was well defined at the end of Section 1.2.1 from Chapter 1). This
simplicial model is actually a simplicial object in Γ, where the base points
are taken to be the 0-simplex and its degeneracies. Hence, we can form the
composite H∗(Bd)((∨mi=1S

1)•) : ∆ −→ Ch∗, which yields a cosimplicial chain
complex.

Definition 5.3.4. The cosimplicial chain complex L•∗ is defined to be the com-
posite H∗(Bd)((∨mi=1S

1)•),

L•∗ = H∗(Bd)((∨mi=1S
1)•).

Definition 5.3.5. Let X• be a simplicial object in Γ, and let A be a right
Γ-module. Then the composite A(X•) : ∆ −→ Ch∗ is a cosimplicial chain com-
plex, and the homology of its totalization is called the X-homology of A.

The following proposition is known to specialists, but its proof is written
nowhere in my knowledge.

Proposition 5.3.6. Consider the data of the previous definition. Then there
is a weak equivalence of chain complexes

TotA(X•) ' hRmod
Γ

(S∗(|X•|×−), A). (5.3.1)

Proof. We will work with a field K of characteristic 0. For a set S we denote by
K[S] the vector space generated by S, which will be viewed as a chain complex
concentrated in degree 0.
We begin the proof by showing that there is an isomorphism

S∗

(∣∣∣X×−• ∣∣∣) ∼= S∗(|X•|×−). (5.3.2)
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of right Γ-modules. To do that, let us consider the pair of functors

Γ ∣∣X×−• ∣∣ //
|X•|×− // Top.

It is well known [28, Theorem 14.3](since the simplicial set X• is countable)
that there is an isomorphism

|X•| × |X•|
∼=←− |X• ×X•|

in the category of topological spaces, and we can easily see that this isomor-
phism induces for each p+ ∈ Γ an isomorphism

φp+ : |X•|×p
∼=←−
∣∣∣X×p
•

∣∣∣ ,
which is natural in p+. We thus get a natural isomorphism φ : |X•|×−

∼=←−∣∣∣X×−• ∣∣∣ and therefore, the isomorphism (5.3.2) holds in the category of right
Γ-modules. From this latter isomorphism, we deduce the following one

hRmod
Γ

(S∗(|X•|×−), A) ∼= hRmod
Γ

(
S∗

(∣∣∣X×−• ∣∣∣) , A) . (5.3.3)

In the second part of this proof, we are going to show (since the totalization
Tot(A(X•)) is weakly equivalent to the homotopy limit of the ∆-diagram A(X•)
in chain complexes) that the right hand side of (5.3.3) is quasi-isomorphism to
the homotopy limit of a certain ∆-diagram. From now and in the rest of this
proof, the standard simplicial set ∆p

• will be viewed as a simplicial object in Γ,
where the base point of ∆p

k = hom
∆

([k], [p]) is taken to be the null morphism.
We denote by sΓ the category of simplicial objects in Γ, and by N the Dold-
Kan normalization functor (it was defined in Section 1.5.1 from Chapter 1).
Let us consider the pair of contravariant functors

Γ

hocolim
[p]∈∆op

(
K[hom

Γ
(−,Xp)]

)
//

S∗
(∣∣X×−• ∣∣) // Ch∗. (5.3.4)

We want to build a natural weak equivalence between these two functors. So
let r+ ∈ Γ be a finite pointed set. Then the simplicial structure of X• induces
a simplicial structure on hom

Γ
(r+, X•). By Yoneda’s lemma, we have for each

p ≥ 0 the following isomorphism

hom
sΓ

(∆p
•,homΓ (r+, X•)) = hom

sΓ
(hom

∆
(•, [p]),hom

Γ
(r+, X•) ∼= hom

Γ
(r+, Xp),

which implies

hocolim
[p]∈∆op

(
K[hom

Γ
(r+, Xp)]

)
∼= hocolim

[p]∈∆op

(
K[hom

sΓ
(∆p
•,homΓ (r+, X•))]

)
' NV•(r+). (5.3.5)
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Here V•(r+) is the simplicial chain complex defined by

Vp(r+) = K[hom
sΓ

(∆p
•,homΓ (r+, X•))].

Notice that the isomorphism and the weak equivalence of (5.3.5) are natural in
r+.

On the other hand, let W•(r+) be the simplicial chain complex defined by
Wp(r+) = K[hom

Top
(∆p, |X×r

• |)]. Then the associated chain complex (as defined

at the beginning of Section 1.5.1) is nothing other than the singular chain
complex S∗ (|X×r

• |). Therefore, since the chain complex associated to a simpli-
cial abelian group is quasi-isomorphic to its Dold-Kan normalization (see [16,
Chapter III-Theorem 2.4]), there is a natural quasi-isomorphism

S∗
(∣∣X×r

•
∣∣) ' NW•(r+). (5.3.6)

We have just defined a pair of contravariant functors

Γ
NV• //

NW•

// Ch∗.

Define now αr+ : NVp(r+) −→ NWp(r+) by the formula αr+(f) = |f |, where
f : ∆p

• −→ hom(r+, X•)
Γ

is a morphism in simplicial sets. It is straightforward

to check that α : NV• −→ NW• is a quasi-isomorphism natural in r+. This
implies (with (5.3.5) and (5.3.6)) that there is a quasi-isomorphism

hocolim
[p]∈∆op

(
K[hom

Γ
(−, Xp)]

)
' S∗

(∣∣∣X×−• ∣∣∣) . (5.3.7)

in the category of right Γ-modules. We end the proof with the following sum-
marizing in which the second line is because of (5.3.7)

hRmod
Γ

(C∗(|X•|×−), A) ∼= hRmod
Γ

(
S∗

(∣∣∣X×−• ∣∣∣) , A) by (5.3.3)

' hRmod
Γ

(
hocolim
[p]∈∆op

(
K[hom

Γ
(−, Xp)]

)
, A

)
' holim

[p]∈∆

(
hRmod

Γ

(
K[hom

Γ
(−, Xp)], A

))
∼= holim

[p]∈∆
(A(Xp)) by Yoneda’s lemma

∼= Tot(A(X•)).

Before starting the proof of Theorem 5.1.3, let us state the following the-
orem, which is proved by using Goodwillie-Weiss techniques for embedding
calculus [58, 19].

Theorem 5.3.7. [58] Let N be the complement of a compact subset of Rq.
Then, for d > 2q + 1, the natural map

S∗(Embc(N,Rd);Q) −→ T∞S∗(Embc(N,Rd);Q)

is a quasi-isomorphism.
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Remark 5.3.8. In the case N = M ⊆ R2 (see Definition 5.2.1), we have
q = 2. We also have the following weak equivalence, which states that the
pointed manifold M̂ is weakly equivalent to the wedge of m copies of the circle.
That is,

M̂ ' ∨mi=1S
1.

We are now ready to prove Theorem 5.1.3, which states that L•∗ defined
above (see Definition 5.3.4) is a cosimplicial model for the singular chain com-
plex of the space Ldm of long links with m strings in Rd.

Proof of Theorem 5.1.3. For d > 5, we have the following weak equivalences
in which Theorem 5.3.7, Proposition 5.2.25, Proposition 5.2.27 and Proposi-
tion 5.2.28 are applied with N = M .

S∗(L
d

m)⊗Q ' S∗(Embc(M,Rd);Q) by Proposition 5.2.2
' T∞S∗(Embc(M,Rd);Q) by Theorem 5.3.7
' hInfBim

S∗B2
(S∗sEmb(−,M), S∗Bd) by Proposition 5.2.25

' hInfBim
S∗B2

(S∗sEmb(−,M), H∗Bd) by Proposition 5.2.27

' hInfBim
Com

(S∗(M̂×−), H∗Bd) by Proposition 5.2.28

' hRmod
Γ

(S∗(M̂×−), H∗Bd) by Lemma 5.3.2

' hRmod
Γ

(S∗((∨mi=1S
1)×−), H∗Bd) since M̂ ' ∨mi=1S

1

' TotH∗Bd((∨mi=1S
1)•) by Proposition 5.3.6

= TotL•∗ by Definition 5.3.4 of L•∗.

5.4 Collapsing of the H∗BKSS associated to the Munson-
Volić cosimplicial model Ld•

m

The goal of this section is to prove one of the main results of this thesis (The-
orem 5.1.6), which states that the H∗BKSS associated to the Munson-Volić
cosimplicial model for the space of long links collapses at the E2 page rationally.
As in the previous sections, the ground field here is Q.

Let us start with a crucial Lemma 5.4.1. Before stating it, we recall that
in [35] Munson and Volić build a cosimplicial space that gives a cosimplicial
model for the space of long links of m strands in Rd. Let us denote it by Ld•m .
It is built in the "same spirit" as the Sinha cosimplicial model K•d (which was
reviewed in Section 2.3) for the space of long knots. Besides that, one can
easily check the following equality

Ld•1 = K•d.

When we say"in the same spirit", it means that the pth space Ldpm is the
Kontsevich compactification (see Definition 2.2.2) of the configuration space
Conf(mp,Rd), and cofaces and codegeneracies consist of doubling and forget-
ting some points. More precisely, the ith coface map consists of doubling



5.4. Collapsing of the H∗BKSS associated to Ld•m 109

simultaneously the ith point of each strand, while the jth codegeneracy map
consists of forgetting simultaneously the jth point of each strand.

Recalling the notations {Er(C•∗ )}r≥0 (where C•∗ is a cosimplicial chain
complex), and {Er(S∗(X•))}r≥0 (where X• is a cosimplicial space) from Sec-
tion 1.5, we have the following lemma.

Lemma 5.4.1. For d ≥ 3, the E1 pages of spectral sequences {Er(L•∗)}r≥0
and {Er(S∗(Ld•m ;Q))}r≥0 are isomorphic. That is,

{Er(L•∗)}r=1 ∼= {Er(S∗(Ld•m ;Q))}r=1.

Before proving Lemma 5.4.1, recall that we have seen in Example 5.2.16
the Com-infinitesimal bimodule structure of H∗(Bd). The homology H∗(Kd)
of Kontsevich’s operad Kd is endowed with a similar infinitesimal bimodule
structure because of the sequence of morphisms

Com = S∗(As)
∼= // H0(Kd) // H∗(Kd) .

As said before, S∗(−) is the normalized singular chain functor. Recall also that
a simplicial model (∨mi=1S

1)• of the wedge ∨mi=1S
1 of m copies of the circle has

been provided at the end of Section 1.2.1.

Proof of Lemma 5.4.1. Since the diagram

H∗(Bd)
∼= // H∗(Kd)

H0(Bd)

OO

∼= // H0(Kd)

OO

is commutative, it follows that the upper isomorphism (which is an immediate
consequence of Theorem 2.2.9) holds in the category InfBim

Com
. Therefore, since

an infinitesimal bimodule over Com is the same thing as a right Γ-module (see
Lemma 5.3.2), the same isomorphism (H∗(Bd) ∼= H∗(Kd)) holds in the category
of right Γ-modules. This implies that the isomorphism

L•∗ = H∗(Bd)((∨mi=1S
1)•)

∼= H∗(Kd)((∨mi=1S
1)•)

= H∗(Ld•m ) by Proposition 1.2.4 from Chapter 1

holds in the category of cosimplicial chain complexes, thus completing the
proof.

Lemma 5.4.2. For d ≥ 3 the spectral sequence {Er(L•∗)}r≥0 collapses at the
E2 page rationally.

Proof. By Proposition 1.2.4 and Definition 5.3.4, we have Lp∗ = H∗(Bd(mp))
for each p ≥ 0. Since the homology H∗(Bd(mp) is a chain complex with 0
differential, it follows that the vertical differential in the bicomplex associated
to L•∗ is trivial. Therefore, the spectral sequence {Er(L•∗)}r≥0 collapses at the
E2 page.
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We are now ready to prove Theorem 5.1.6.

Proof of Theorem 5.1.6. The proof follows from the following three points:

• the E1 pages of {Er(L•∗)}r≥0 and {Er(S∗(Ld•m ;Q))}r≥0 are isomorphic
(by Lemma 5.4.1);

• for d > 5, the spectral sequences {Er(L•∗)}r≥0 and {Er(S∗(Ld•m ;Q))}r≥0
have the same abutment (by Theorem 5.1.3);

• the spectral sequence {Er(L•∗)}r≥0 collapses at the E2 page (because of
Lemma 5.4.2).

5.5 High dimensional analogues of spaces of long links

The goal of this short section is show that our method enables us to get the
collapsing at the E2 page of the spectral sequence computing the rational ho-
mology of he high dimensional analogues of spaces of long links.

Let us start with a definition.

Definition 5.5.1. The high dimensional analogues of spaces of long links is
the homotopy fiber of the inclusion

Emb(
m∐
i=1

Rn,Rd) ↪→ Imm(
m∐
i=1

Rn,Rd),

and it is denoted by Embc(
∐m
i=1 Rn,Rd).

As in the case of long links, let us consider the cosimplicial chain complex

Ln•∗ := H∗(Bd,Q)((∨mi=1S
n)•)

in which (∨mi=1S
n)• is the simplicial model (built in the similar way as (∨mi=1S

1)•
) of the wedge ∨mi=1S

n ofm copies of the n dimensional sphere Sn. The following
theorem says that it gives a cosimplicial model for the singular chain complex
S∗Embc(

∐m
i=1 Rn,Rd).

Theorem 5.5.2. For d > 2n+ 3 there is a weak equivalence

TotLn•∗ ' S∗(Embc(
m∐
i=1

Rn,Rd))⊗Q.

Proof. The proof works exactly in the similar way as that of Theorem 5.1.3
given in Section 5.3. It suffices to replace M by Mn (recall that the open
submanifold Mn ⊆ Rn+1 was defined in equation (5.2.2)), B2 by Bn+1, and of
course S1 by Sn and L•∗ by Ln•∗ , the rest being unchanged.

The following corollary is a generalization of Corollary 5.1.4. It is also an
immediate consequence of Theorem 5.5.2.
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Corollary 5.5.3. For d > 2n+ 3 there is an isomorphism

H∗(Embc(
m∐
i=1

Rn,Rd);Q) ∼= HH∨
m
i=1S

n

(H∗(Bd;Q)).

Let us consider now the spectral sequence {Er(Ln•∗ )}r≥0. It is clear (by
Theorem 5.5.2) that it converges to the homology H∗(Embc(

∐m
i=1 Rn,Rd);Q),

when d > 2n+ 3. We prove (exactly as Lemma 5.4.2 below) that this spectral
sequence collapses at the E2 page.

Proposition 5.5.4. For d > 2n+ 3, the spectral sequence {Er(Ln•∗ )}r≥0 com-
puting the rational homology H∗(Embc(

∐m
i=1 Rn,Rd);Q) collapses at the E2

page rationally.

5.6 Poincaré series for the space of long links modulo m
copies of long knots

The aim of this section is to prove that the radius of convergence, of the
Poincaré series for the pair formed by the space of long links and the space
of m copies of long knots, tends to 0 as m goes to the infinity. We also state
a conjecture followed by a theorem concerning the radius of convergence for
that pair. Here, the abreviation H∗BKSS means cohomology Bousfield-Kan
spectral sequence.

Let us start by defining expressions that appear in the title of the section.

Definition 5.6.1. Let X be a topological space.

- For k ≥ 0 the kth Betti number , bk(X), of X is the rank of its kth
homology group Hk(X).

- The Poincaré series of X, denoted by PX [x], is the series PX [x] =∑∞
k=0 bk(X)xk.

Up to now we have denoted the space of long knots (modulo immersions)
by Embc(R,Rd). For the sake of simplicity, we will denote it here by K. Let
K×m denote the space of m copies of long knots. Recall also the notation Ldm
for the space of long links (modulo immersions) of m strands in Rd. It is clear
that K×m is a subspace of Ldm.

Definition 5.6.2. The pair (Ldm,K×m) is called the space of long links modulo
m copies of long knots.

In [24], Komawila and Lambrechts studied the Euler series of the E1 page
of the H∗BKSS associated to the Munson-Volić cosimplicial model (we have
seen it in Section 5.4, and we have denoted it by Ld•m ) for the space of long
links, and they obtained the following theorem and corollary. Recall that the
Euler series associated to a bigraded vector space V = {Vp,q}p,q≥0 is defined
by

χ(V )[x] =
∞∑
q=0

( ∞∑
p=0

(−1)pdim(Vp,q)
)
xq.
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Theorem 5.6.3. [24, Theorem 5.1] For d ≥ 4 the Euler series χ(E1)[x] of the
E1 page of the H∗BKSS associated to Ld•m is given by

χ(E1)[x] = 1
(1− xd−1)(1− 2xd−1) · · · (1−mxd−1) . (5.6.1)

The following corollary gives the Euler series of the pair (Ldm,K×m). Be-
fore stating it, we recall that the pair (Ldm,K×m) admits a cosimplicial model
(Ld•m , (K•d)×m). The second component of that cosimplicial model is just the
product (K•d)×m of m copies of the Sinha cosimplicial model K•d.

Corollary 5.6.4. [24] For d ≥ 4 the Euler series of the E2 page of the H∗BKSS
associated to the pair (Ld•m , (K•d)×m) is given by

χ(E2)[x] = 1
(1− xd−1)(1− 2xd−1) · · · (1−mxd−1) −

1
(1− xd−1)m . (5.6.2)

Proof. The proof comes from Theorem 5.6.3 and the fact that the retraction
(up to homotopy) Ldm −→ K×m (see [24, Section 2.1] for an explicit definition
of that retraction) holds at the level of cosimplicial models so that we have the
following isomorphism of spectral sequences

{Er((L
d

m,K×m))}r≥0 ∼=
{Er(L

d

m)}r≥0

{Er(K×m)}r≥0
. (5.6.3)

From Corollary 5.6.4 and our collapsing Theorem 5.1.6, we have the growth
of the Betti numbers of the pair (Ldm,K×m).

Proposition 5.6.5. For d > 5 the Betti numbers of the pair (Ldm,K×m) have
an exponential growth.

Proof. By (5.6.3) and Theorem 5.1.6, the H∗BKSS of the pair (Ld•m , (K•d)×m)
collapses at the E2 page. Moreover the coefficients of (5.6.2) have an exponen-
tial growth of rate m

1
d−1 > 1, and by [24, Proposition 4.5] the Betti numbers

of the pair (Ldm,K×m) have the same growth.

One can also see Proposition 5.6.5 as a consequence of a theorem of Turchin
(see [53, Theorem 17.1]), which states that the Betti numbers of the space K
of long knots grow at least exponentially. Notice first that the concatenation
operation endows Ldm and K×m with a structure of H-space. Let 1 ∈ K×m
denote the unit, and consider the diagram

F
i // Ldm

ρ // K×m

F

id

OO

g // F ×K×m

ψ

OO

f // K×m,

id

OO (5.6.4)

where
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- F is the fiber of ρ over the unit 1, id is the identity map,

- the map ψ is defined by ψ(x, y) = i(x) × s(y), where s : K×m −→ Ldm is
a section of ρ,

- the maps g and f are defined by g(x) = (x,1) and f(x, y) = y,

- the map ρ is the one constructed in [24, Section 2].

It is clear that the left square of (5.6.4) commutes. The right square also
commutes because of the following

ρ(ψ(x, y)) = ρ(i(x)× s(y))
= ρ(i(x))× ρ(s(y)) because ρ is a morphism of H-spaces
= 1× y because s is a section of ρ
= f(x, y).

This implies that the triple (id, ψ, id) is a morphism of fibrations, and therefore
the space Ldm is homeomorphic to the product F × K×m. We thus have the
following inequality

dim(H∗(L
d

m)) > dim(H∗(K×m)).

Since dim(H∗(K×m)) grows exponentially (because, by Theorem 17.1 in [53],
the dimension dim(H∗(K)) grows exponentially), the Proposition 5.6.5 follows.

We will make a remark on the Turchin approach and on our approach in
proving Proposition 5.6.5. In the proof of Proposition 5.6.5 we have seen that
the Betti numbers of the pair (Ldm,K×m) have an exponential growth of rate
m

1
d−1 . This implies the following corollary.

Corollary 5.6.6. For d > 5, the radius of convergence of the Poncaré series
for the pair (Ldm,K×m) is less than or equal to ( 1

m )
1

d−1 , and therefore tends to
0 as m goes to ∞.

Let us denote by RC(X) the radius of convergence of the Poincaré series
for a space X. Specially for the space of long knots, we will denote it by R.

Remark 5.6.7. As a consequence of Theorem 5.1.10 we have the inequality
RC(Ldm,K×m) ≤ ( 1√

2 )
1

d−1 . Our approach gives a better upper bound of this
radius because of Corollary 5.6.6.

We end this section with a conjecture (we believe in that conjecture) and a
theorem.

Conjecture 5.6.8. The radius of convergence of the Poincaré series of the
space of long knots (modulo immersions) is greater than 0. That is, R > 0.

The Corollary 5.6.6 tells us that the radius of convergence of the Poincaré
series for (Ldm,K×m) is less than or equal to ( 1

m )
1

d−1 , but does not tell us that
it is less than the one R of the space of long knots. We therefore have the
following theorem.
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Theorem 5.6.9. If Conjecture 5.6.8 is true, then for d > 5 and for m > 1
Rd−1

the radius of convergence of the Poincaré series for the pair (Ldm,K×m) is less
than R. That is, RC(Ldm,K×m) < R.

Proof. The proof comes immediately from Corollary 5.6.6 and the hypothesis
m > 1

Rd−1 .
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