Neuromyths in Education: Why do they persist?

In a post last year we discussed issues with the lack of evidence-based education, and during some recent professional development sessions and conversations at my university, this came to mind again, as some of the ideas that seem to be taken for granted in higher education seem to have very little supporting evidence. Indeed, education does seem an area where some of the so called “neuromyths” persist, and are even championed.

I came up against this when challenging some of the constructivists and postmodern educational ideas being discussed by a PhD student and a senior member of faculty in education. I was told “I didn’t realize people actually still thought that sort of thing” as if I was some sort of ludite dinosaur. Sadly, I have found members of nursing faculty are often patronized in such ways by academics from other disciplines, which usually signals to me an inability to make any useful counter-argument to a point, and possibly also a rather closed mind!

Neuromyths are really ideas about neurological/cognitive processes that have been repeated often enough to become considered as fact. Unfortunately some misconceptions about the brain persist in the classroom and beyond. Let us consider a few of these established ideas that pervade higher education that have mainly arisen from dubious educational psychology and persist as contemporary wisdom.

Left Brain – Right Brain

The idea is often suggested that people are predominately left or right brained in terms of their skills and aptitudes. E.g. left-brain predominant = logical and mathematically skilled, more organized and systematic whilst right brain predominant = artistic and creative. Just google “left-brain right brain” for many examples. Current research suggests regardless of personality or skill set, you use both the right and left hemispheres of your brain together to perform everyday tasks. Although certain functions, such as speech production, handedness, and facial recognition, tend to be dominated by one side of the brain in the great majority of people, most tasks require parallel processing from both hemispheres. The integration of input is made possible by the fibre connections between right and left sides of the brain called the corpus callosum. Unless an entire hemisphere is completely removed or damaged, no one should really be considered to be “right”- or “left”-brained

The Utility of Learning and Teaching Styles 

As educator James Atherton notes: most teachers would not argue with the proposition that people learn or teach in different ways. This has given rise to a whole host of theories of learning (and teaching) styles. There are at least 71 different learning styles inventories published. However, the assumptions of the “styles” adherents in education are that it is possible to develop a relatively simple typology of learning or teaching styles and then develop test instruments to ascertain where individuals fit, teach to address them, and (more worryingly)  assess the quality of teaching with reference to this.

The evidence to support this is unfortunately weak at best. The research does not support the notion that there are hard-wired styles, and many of the theories conflate learning styles with learning strategies, cognitive theories, or personality type theories. Certainly, students may well have learning preferences but they are not as clear-cut as these various inventories suggest, and motivation would appear to over-ride them every time (Pashler et al. 2008; Scott, 2010). Nevertheless, if you look at many university education and professional development sites they continue to be taught at sage wisdom, and many commercial enterprises exist who are happy to sell you a test.

The Learning Pyramid

The following diagram (or versions of it) appears in around 15,000 web sites (if you do a reverse image search on google – or simply search “learning pyramid”), and yet the evidence that supports it is very vague. It purportedly depicts the degree of retention of material with various teaching methods.

ntl_learning_pyramid

 

 

 

 

 

 

 

It may come from early work by Dale (1946/1969) but even the US based National Training Laboratories Institute for Applied Behavioural Science (who cite it) admit: “NTL believes it to be accurate” but says that they “can no longer trace the original research that supports the numbers” Magennis and Farrell (2005:48). It is also often conflated with the notion of the “cone of experience” in education and the Washington Post also did a nice article on the flaws with it in 2013. Again, there is probably some use and truth in the notion that some teaching methods will work better for some subjects and in some situations. However, the idea that there is a strong validated theoretical model with clearly defined categories is far from the truth.

Multiple Intelligences and Thinking Hats

Howard Gardner’s multiple intelligences model and Edward de Bono’s thinking hats are other good examples of theories I often hear discussed or quoted to support pedagogic approaches. Yet both are also good examples of modern neuromyths. Gardner first proposed his theory of different types of intelligence in 1983. Since then, it has undergone incremental changes, including the addition of one additional intelligence (bringing the total to eight). These different forms of intelligence have been advocated as a basis for changing the way in which we teach. But, repeated research and meta-analysis has found no evidence that individuals actually conform to Gardner’s theoretical categories. Also, according to a 2006 study many of Gardner’s “intelligences” correlate with the g factor, supporting the idea of a single dominant type of intelligence. 

Indeed, even intelligence quotient (IQ) theory itself is commonly misinterpreted. The first IQ test was made by French psychologist Alfred Binet in 1905, and since then the IQ test has become the most recognized tool for predicting academic and professional success. However, although well validated as a psychometric measure there are a number of myths about it that persist, such as:

  • It measures intelligence
  • IQ cant change
  • IQ is genetic

Lastly as a predictive factor for success, it would seem rather simplistic, and although generally a good predicator of performance, does not explain the many confounding examples of successful people who have lower IQ scores than those less successful.

The Thinking Hats site www.debonoforschools.com reads like rather a satire on the subject. It was originally proposed by Edward de Bono in 1985. The premise of the method is that the human brain thinks in a number of distinct ways which can be deliberately challenged, and hence planned for use in a structured way allowing one to develop tactics for thinking about particular issues. However,there is virtually no empirical evidence supporting the model, and it has often been parodied.

In the end, Gardner’s theory or de Bono’s thinking hats interesting ideas but probably not all that helpful for adoption in formal education.

 You Only Use 10% of Your Brain

Again this seems a a widespread common belief, but though the 10-percent myth is widespread, recent neuro-imaging technology has conclusively destroyed this. While not all of the brain is active all at once, functional magnetic resonance images (fMRI) show several brain areas are at work for any given activity, depending on what function is needed, and that we use the majority of our brain matter daily.

Lack of Theoretical Development and Testing?

Overall, I fear part of the problem here is the trend towards accepting postmodern constructivist epistemologies, over thorough scientific investigation, or what I might call the “its all good” syndrome. I worry that this ambivalence towards good evidence in academic inquiry is actually gathering steam, rather than diminishing with key examples being the current rise of so-called integrative science and quackademic medicine. Good scientific practice involves developing ideas into theories, and testing them repeatedly to identify the best of a set of competing hypotheses or explanations. That does not mean we have found the truth but the best explanation given our current understanding. An approach that accepts them all as equally valid explanations of the world offers little in practical value, apart from the ongoing generation of even more unsubstantiated theory.

Enough Already!

The call that we need more research into these theories is often suggested, but we should also recognize the comes a point when it is reasonable to say we have enough evidence, and move on to something new. It is not so much that these neuromyths are wrong, but that the evidence base and/or research methodology is flaky at best, and they have often been misinterpreted and generalized beyond their legitimate use, and make little sense in the real world of education. So, time to move educational theory on towards more productive areas where student performance can actually be shown to improve, such as with the use of improved feedback/formative assessment strategies.

There is an excellent balanced chapter on “neuromyths” from a recent book by the co-ordinator of the Neuroeducational.net site Howard-Jones, that is well worth a look.

Onwards and Upwards

Bernie

References

Atherton J. Read more on misrepresentation, myths and misleading ideas on James Atherton’s site at:http://www.learningandteaching.info/learning/myths.htm#ixzz33zAJEO7S

Dale, E. (1969) Audiovisual methods in teaching, third edition.  New York: The Dryden Press; Holt, Rinehart and Winston.

Doidge, N. The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science. Penguin Books, 2007

Howard-Jones P (2009) Introducing Neuroeducational Research London; Routledge.

Jarrett C. Why the Left-Brain Right-Brain Myth Will Probably Never DiePsychology Today, June 27, 2012

Magennis S and Farrell A (2005) “Teaching and Learning Activities: expanding the repertoire to support student learning” in G O’Neill, S Moore and B McMullin Emerging Issues in the Practice of University Learning and Teaching, Dublin; All Ireland Society for Higher Education/Higher Education Authority

Pashler H, McDaniel M, Rohrer D and Bjork R (2008) “Learning Styles; concepts and evidence” Psychological Science in the Public Interest vol. 9 no.3; available on-line at http://www.psychologicalscience.org/journals/pspi/PSPI_9_3.pdf accessed 21 May 2014.

Scott, C. (2010) The Enduring Appeal of ‘Learning Styles’ Australian Journal of Education 2010 54: 5 DOI: 10.1177/000494411005400102

Visser, Beth A.; Ashton, Michael C.; Vernon, Philip A. (2006), “g and the measurement of Multiple Intelligences: A response to Gardner”, Intelligence 34 (5): 507–510,

 

The Placebo Effect; how does it work?

There was an interesting discussion recently posted on the neurophysiologist Dr. Marcello Costa’s blog about the nature of the placebo and nocebo effects. See: http://tinyurl.com/6mmd8pz

Basically, he argues a well researched position that there is now consideable evidence showing expectations to get better have significant effects on how patients actually feel, and gives some suggested physiological explanations of the phenomena.

We hear a lot about the placebo effect, so what is it?

A placebo (Latin for “to please”) is the measurable, observable, or experienced improvement in health or behavior not attributable to a medication or invasive treatment that has been administered.

It is frequently argued (see http://www.skepdic.com/placebo.html  for example) that the placebo effect is not really mind over matter; and has become a catchall term for a positive change in health not attributable to a therapeutic intervention.

The change seen with placebos has been suggested to be due to a number of things:

1) Regression to the mean –  the fascinating statistical phenomenon that if a variable is extreme on its first measurement, it will tend to be closer to the average on a second measurement. A 2004 paper by Barnett et al. has a good explanation (Barnett et al, 2005). Regression to the mean is another reason why we need repeat studies to reinforce findings.

2) Spontaneous Resolution – Leave people alone and frequently they often get better without any therapeutic interventions (much to the chagrin of many surgeons)! A proportion of the population will naturally resolve an illness without treatment. This is a good argument for minimizing interventions, vs. the “lets throw the kitchen sink at this health problem” approach.

3) Reduction of psychological stress (stress has a direct physiological link through the neuro-endocrine response) and a reduction of stress can have positive physiological benefits.

4) Misdiagnosis – frequently conditions are misdiagnosed (especially in early phases), and differential diagnosis remains as much an art as a science

5) Subject expectancy e.g. classical conditioning. Remember Pavlov?

The Placebo effect is nicely characterized by this quote:

“The physician’s belief in the treatment and the patient’s faith in the physician exert a mutually reinforcing effect; the result is a powerful remedy that is almost guaranteed to produce an improvement and sometimes a cure.” — Petr Skrabanek and James McCormick, Follies and Fallacies in Medicine, p. 13.

In this way we can see that placebo effect can work very well to support dubious non-evidence based health practices such as nutritional supplements (and I mean of the “wonder -food” variety) or other  dodgy and fake practices,; drinking sharks-fin soup (now thought toxic), rhino horn for increased potency, psychic surgery etc etc.

In scientific experimentation we frequently use controls such as inert substances (e.g. normal saline) and have to consider that is some cases these will produce an effect similar to what would be expected with an active substance (e.g. an IV analgesic). However we can counter this with large samples, double blind and repeat studies. Indeed, in scientific clinical trials we are required to take the placebo effect into account (a requirement was introduced in a revision of the Declaration of Helsinki )

A related phenomena is the nocebo (Latin for “to harm”) effect, which is basically the same as the placebo effect but this time  the subject experiences harmful, unpleasant, or undesirable effects after receiving a placebo. Nocebo responses are thought to be due only to the subject’s pessimistic belief and expectation that the inert drug will produce negative consequences. One well known example is that C. K. Meador claimed that people who believe in voodoo can actually die because of their belief (Meadow, 1992), and there are other studies that have demonstrated this effect.

Dr Costa suggests that these effects are neurological mediated by higher brain centres, and pain for example, is significantly affected by the higher brain, so it’s very open to the placebo/nocebo effects.

He also makes a good point about the ethical issues using placebos in research. Clearly research using nocebos has ethical problems but even with placebos is it ethical to deceive patients in this way for the sake of science (even if they know they “might” get a placebo)  or for physicians to give antibiotics for viral infections, and vitamins for fatigue (a common practice, even though it is not for the overall good of the population)?

So it seems there is lots of room for more research into this interesting phenomenon. We would be interested on what people think of the ethics of using placebos in both scientific research and practice.

Bernie

Reference

Barnett, A. G., van der Pols, J. C., & Dobson, A. J. (2005). Regression to the mean: What it is and how to deal with it International Journal of Epidemiology, 34(1), 215-220. doi:10.1093/ije/dyh299

Meador C.K. (1992) Hex Death: Voodoo Magic or Persuasion?” Southern Medical Journal 85(3): 244-47).