
  

 

 

 

 

 

Evaluating and Improving  the Accuracy of 

Computational Gene-Finding  

on Mammalian DNA Sequences 

by 

Sanja Rogic 

 1



  

 

 

 

Abstract 
 

 

This thesis presents work in one of the main research areas in Computational Biology: 

computational gene-finding in higher eukaryotic genomic DNA. Programs for identification 

of gene structures have been in existence for more than a decade, but today they are used 

more extensively than ever to analyze the enormous amount of sequence data coming from 

various genome sequencing projects. Consequently, their impact on research in the area of 

genomics and beyond is substantial. 

 The thesis has two distinguishable parts: the first presents an evaluation and 

comprehensive analysis of the current generation of gene-finding programs. For this purpose 

a new, thoroughly filtered and biologically validated test dataset of genomic sequences was 

assembled. The basic prediction accuracy of the programs tested was calculated and the 

relationships between various sequence and prediction features and programs’ accuracy were 

analyzed. The second part of the thesis presents the development and results of methods for 

combination of the predictions from two gene-finding programs. Three methods were 

developed, each having some advantages over the other two, and each of them offering 

higher prediction accuracy on the test dataset than any gene-finding program currently 

available. 
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Chapter 1 
 

Introduction 
 

 

This thesis presents work in one of the main research areas in Computational Biology: the 

identification of exon/intron structures of genes in higher eukaryotic genomic DNA 

sequences. Computational gene-finding has been an active area of research for the last 15 

years and has became increasingly attractive in the recent years with the development of 

techniques for automated DNA sequencing that allowed for large scale genomic sequencing. 

This resulted in a steady influx of raw genomic data that can only be efficiently analyzed by 

computational approaches. A large body of literature on the subject of gene prediction as well 

as dozens of developed gene-finding algorithms further illustrate the importance of this area 

of research, but despite the considerable effort gene-finding still remains an open problem. 

This thesis has two goals: 

1) to offer an independent comparative evaluation and analysis of the current generation 

of gene-finding programs; 

2) based on this analysis, to explore ways to integrate predictions from two gene-finding 

programs in order to obtain better prediction accuracy. 

The work presented here is interdisciplinary in nature, since the results of primarily 

biological interest are obtained by computational approaches. 
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1.1 Motivation 
 

 

In this era of intensive genomic sequencing, when millions of bases of genomic DNA are 

sequenced daily in genome centres worldwide and the list of completely sequenced genomes 

from different organisms is growing rapidly, tools for interpreting the content of these 

genomes are more important than ever. The first step in deciphering the DNA sequence 

information is finding all the genes contained in a sequence and elucidating their structure. 

Although many gene-finding programs have been developed in the past 10 years and their 

prediction accuracy is constantly improving, we are still far away from completely automatic 

gene discovery with 100% accuracy. Current programs, although very good in discovering 

the majority of coding nucleotides (more than 90% predicted correctly) and moderately good 

in discovering exact exon boundaries (70-75% of exons predicted correctly) are still weak 

when it comes to predicting complete gene structures: less than 50% of predicted genes 

correspond exactly to the actual genes. Consequently, predictions given by these programs 

need to be verified by other evidence such as similarity to a cDNA sequence, or similarity to 

a known protein or expressed sequence tag (EST) sequence. However, in many cases this 

additional evidence is not available: it has been shown that only a fraction of newly 

discovered genes have identifiable homologs in the current databases (Oliver et al., 1992; 

Wilson et al., 1994; Durham et al., 1999). Ab initio gene-finding remains the only available 

computational approach for identifying novel genes that do not have detectable similarities to 

known proteins and hence the predictions thus obtained have significant effect on our 

understanding of the genomes and on future experimental directions.  

 Recognizing the strengths and weaknesses of gene-finding programs and knowing 

their prediction accuracy levels are therefore essential for drawing realistic and truthful 

conclusions from the obtained results. This indicates a need for a comprehensive evaluation 

of existing gene-finding programs, which would be a valuable resource not only for users but 

also for developers of the programs. Two analysis of this kind have been done in the past, the 

last one in 1995/96 by Burset and Guigo (1996). Since then many programs have been 

developed or upgraded and although some of them are extensively used to identify genes in 
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newly sequenced clones or genomes, independently computed accuracy results are not 

available. This motivated us to conduct an evaluation of the programs for gene prediction 

made available after Burset and Guigo published the results of their analysis. 

Seven gene-finding programs: FGENES, GeneMark.hmm, Genie, Genscan, 

HMMgene, Morgan and MZEF were tested. For evaluation purposes a new, thoroughly 

filtered and biologically validated dataset of genomic sequences was developed that does not 

overlap with the training sets of the programs analyzed. For all the programs tested the basic 

accuracy measures introduced by Burset and Guigo (1996) were calculated. The accuracy of 

the programs was also examined as a function of various sequence and prediction features, 

such as: G+C content of the sequence, length and type of exons, signal type and score of the 

exon prediction. The results obtained offer an insight into the strengths and weaknesses of 

each individual program as well as of computational gene-finding in general.  

This evaluation of programs has laid a foundation for our further research in 

combining the results of gene-finding programs in order to obtain higher prediction accuracy. 

Improving the accuracy would lead to faster, less expensive and above all more accurate 

interpretation of sequenced genomes, and thus any advance in this direction would be 

beneficial in many ways.  

Three novel methods were developed for combining the predictions from Genscan 

and HMMgene. The methods primarily attempt to improve exon level prediction accuracy by 

identifying more probable exon boundaries and by eliminating false positive exon 

predictions. Each of the methods improved prediction accuracy on all three datasets it was 

tested on. The improvements were obtained at both nucleotide and exon levels, but were 

more substantial on the latter. Of particular practical interest are the improvements obtained 

on a long genomic sequence: the substantially decreased number of false positive exons 

resulted in the significantly increased specificity of the prediction while the sensitivity was 

still comparable to the sensitivity of the individual programs. 
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1.2 Outline of the thesis 
 

 

Chapter 2 provides a brief description of biological background on the structure of genes and 

contents of the genomes; it also gives an overview of methods for computational gene 

identification. After descriptions of the novel test dataset HMR195, the programs tested and 

the accuracy measures applied, the chapter presents the results and discussion of the gene-

finding evaluation performed. Chapter 3 gives the motivation and background for combining 

the predictions from gene-finding programs. It further introduces the newly developed 

combination methods and discusses the results of their testing on three different datasets. 

Chapter 4 gives an overall conclusion of the thesis and offers directions for further work. 

Appendix A discusses the implementation of the methods introduced in Chapter 3. Appendix 

B gives a list of the accession numbers and definition lines from GenBank entries for the 

sequences in HMR195. Two sample output files from Genscan and HMMgene are shown in 

Appendix C. For the reader’s convenience, a glossary of biological terms used in this thesis is 

given in Appendix D. 
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Chapter 2 
 

Evaluation of gene-finding programs 
 

2.1 Background 
 

2.1.1 Gene structure 
 

The genes of most eukaryotic organisms are neither continuous nor contiguous: they are 

separated by long stretches of intergenic DNA and their coding sequences are interrupted by 

non-coding introns. Coding sequences occupy just a small fraction of a typical higher 

eukaryotic genome; the extreme example is the human genome where an estimate of that 

fraction at 3% (Duret et al., 1995) was recently confirmed for chromosome 22 (Dunham et 

al., 1999). To obtain a continuous coding sequence, which will be translated into a protein 

sequence, genes are transcribed into mRNA molecules that subsequently undergo complex 

processing to remove intronic sequences and assemble gene exons. However, assembly of the 

gene exons in the mature mRNA is not always the same; Mironov et al. (1999) have found 

that at least 35% of human genes are alternatively spliced - having more then one possible 

exon assembly. The arrangement of genes in genomes is also prone to exceptions. Although 

usually separated with an intergenic region, there are examples of genes nested within each 

other (Dunham et al., 1999) - one gene located in an intron of another gene or examples of 

overlapping genes on the same (Schulz and Butler, 1989; Ashburner et al., 1999) or opposite 

(Cooper et al., 1998) DNA strands. The presence of pseudogenes, nonfunctional sequences 
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resembling real genes, which are distributed in numerous copies throughout the genome, 

further complicates identification of true protein coding genes. 

Regulatory regions play a crucial role in gene expression and their identification is 

needed to fully comprehend a gene's function, activity and role in cellular processes. The 

location of regulatory regions relative to their target gene is not uniquely determined: the 

basic regulatory elements, such as the TATA and CAT boxes, are usually found in the 

upstream proximity of the transcription start site (TSS), while the other elements, such as 

enhancers and silencers, can be located in distant upstream and downstream regions of a gene 

and sometimes even within the introns of the gene.  

This brief overview of genome organization and gene architecture highlights the 

complexity of gene identification in the sequences of uncharacterized DNA. For further 

reading see Griffiths et al. (1996). 

 

2.1.2 Computational methods for identification of genes 
 

There are several methods for experimental discovery of genes, but they are time-consuming 

and costly. Accordingly, for the last 15 years researchers have been developing 

computational methods for gene-finding that could automate, or facilitate, identification of 

genes. Two basic approaches have been established for computational gene-finding: the 

sequence similarity search or lookup method (Fickett, 1996) and the integrated compositional 

and signal search or template method (Fickett, 1996). The latter one is also commonly 

referred to as ab initio gene finding. 

Sequence similarity search is a well established computational method for gene 

discovery, which has been used extensively with considerable success. It is based on 

sequence conservation due to the functional constraints and is used to search for regions of 

similarity between uncharacterized sequence of interest and already characterized sequences 

in a sequence database. A query sequence can be compared with DNA, protein or EST 

sequences or it can be searched for known sequence motifs. If a query sequence is found to 

be significantly similar to an already annotated sequence (DNA or protein), we can -  

assuming that these two sequences are homologous, i.e., have common evolutionary origin -  
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use the information from the annotated sequence to maybe infer gene structure or function of 

the query sequence. Comparison with an EST database can provide information if the 

sequence of interest is transcribed, i.e., contains a gene coding for a protein, but will only 

give incomplete clues about the structure of the whole gene or its function. 

Although sequence similarity search has been proven useful in many cases, it has 

been shown that only a fraction of newly discovered sequences have identifiable homologs in 

the current databases (Oliver et al., 1992; Wilson et al., 1994; Dunham et al., 1999). 

Furthermore, Green et al. (1993) suggested that currently known proteins may already 

include representatives of most ancient conserved regions (or ACRs, regions of protein 

sequences showing highly significant similarity across phyla) and that new sequences not 

similar to any database sequence are unlikely to contain ACRs. The proportion of vertebrate 

genes with no detectable similarity in other phyla is estimated to be around 50% (Claverie, 

1997). This is supported by recent analysis of human chromosome 22 (Dunham et al., 1999) 

where only 50% of the proteins are found to be similar to previously known proteins. 

These results suggest that, even today, only one half of all new vertebrate genes may 

be discovered by sequence similarity search across phyla. Considering that a complete 

vertebrate genome is still not available and that the most prominent vertebrate organisms in 

GenBank (Benson et al., 2000), Homo sapiens and Mus musculus, have only ~18% and 

~0.5% of their genomes present in finished sequences, respectively (data from April, 2000) it 

is obvious that sequence similarity search within vertebrates is currently limited. When more 

vertebrate sequences become available in GenBank (such as mouse, zebrafish, or pufferfish), 

matches within phyla will be more likely and this will facilitate detection of genes coding for 

non-ACR-containing proteins. 

 The second computational approach for prediction of genes structures in the genomic 

DNA sequences, termed the template approach, integrates coding statistics with signal 

detection into one framework. Coding statistics are measures indicative of protein coding 

function since they behave differently on coding and non-coding regions. A number of these 

measures have been evaluated in Fickett and Tung (1992) and it has been concluded that the 

in-phase hexamer measure, which measures the frequency of occurrence of oligonucleotides 

of length six in a specific reading frame, is the most effective. Indeed, this measure was used 
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successfully in many recently developed programs such as GeneMark.hmm (Lukashin and 

Borodovski, 1998), Genscan (Burge, 1997) and HMMgene (Krogh, 1997). This coding 

statistic is usually implemented as a 5th order Hidden Markov Model (HMM) (the theory of 

HMMs is reviewed in Rabiner, 1989).  

Signal sensors attempt to mimic closely processes occurring within the cell. They are 

intended to identify sequence signals, usually just several-nucleotides-long subsequences, 

which are recognized by cell machinery and are initiators of certain processes. The signals 

that are usually modeled by gene-finding programs are: promoter elements, start and stop 

codons, splice sites, and polyA sites. Many different pattern recognition methods have been 

used as signal detectors, including simple consensus sequences, weight matrices, weight 

arrays, neural network, and decision trees . 

DNA sequence signals have low information content; they are usually degenerate and 

highly unspecific since it is almost impossible to distinguish the signals truly processed by 

the cell from those that are apparently non-functional. Therefore, signal sensors are not 

sufficient to elucidate gene structure and it is necessary to combine them with coding 

statistics methods in order to obtain satisfactory predictive power. 

Both codon statistics and signal models are 'learned' from a training set: frequencies 

of oligonucleotide occurrence in different regions of the genes are calculated from sequences 

in the training set and the signal models are constructed using the multiple alignment of the 

signal sequences from the training set. 

There is also a group of programs that integrate a third component in their systems: 

similarity with an annotated sequence. Examples of such programs are GeneID+ (Guigo et 

al., 1992), GeneParser3 (Snyder and Stormo, 1995), Procrustes (Gelfand, 1996) and AAT 

(Huang et al., 1997).      

Existing gene-finding programs have been designed to identify gene structure simpler 

than the intricate structure described above; most of the programs, especially the older ones, 

are trained to identify just one gene in a sequence, rarely predicting any promoter elements. 

Some progress has been made with recently developed programs, which are capable of 

identifying more complex genomic structure: any number of genes with either complete or 

partial structure. This is the case with Genie (Kulp et al., 1996), GeneMark.hmm, Genscan, 
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and HMMgene. Still, regulatory regions and polyA sites usually remain unidentified, 5' and 

3' untranslated regions are not specified, alternative splice variants are not considered, and 

overlapping or nested genes are not detected. 

Nevertheless, the prediction of the coding sequence of typical genes is an important 

first step in deciphering the content of any genome and gene-finding programs are used 

extensively for this task with considerable success. 

 

2.1.3 Evaluation of gene-finders 
 

Since in many cases there is no additional evidence to support the gene predictions provided 

by ab initio gene-finding programs, it is very important to know the accuracy of these 

programs. The reliability of the programs concerns both users and developers. Lab bench 

experiments are often based on the gene/exon predictions and they usually require a 

substantial investment in time and resources. This is why it is important for a user to know 

how well a certain algorithm performs, what its strengths and weaknesses are, and how to 

interpret a particular score given by the program. For developers it is valuable to know the 

current state of the art, to relate the programs' efficiency and reliability to the methods used 

and to recognize the weaknesses that need to be addressed. 

Previous comparative analyses of gene-finding programs have been performed by 

Snyder and Stormo in 1995 and Burset and Guigo in 1996. Snyder and Stormo (1995) 

analyzed three gene-finding programs GeneID, GRAIL (Xu et al., 1994) (two versions), and 

GeneParser (three versions of the program) on rather limited test sets containing 28 and 34 

sequences. More comprehensive evaluation of gene structure prediction programs was done 

by Burset and Guigo (1996). These authors tested 9 programs on a test set of 570 sequences 

and introduced a number of performance metrics to measure accuracy of prediction on three 

levels: nucleotide, exon, and gene level. Some of these measures were known and used 

before (sensitivity, specificity, and correlation coefficient at the nucleotide level) and some 

were newly introduced (approximate correlation, sensitivity, and specificity at the exon 

level). The authors also investigated the behaviour of the programs on sequences with errors 

(frameshift mutations), sequences with differing G+C content and sequences from different 
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phylogenic groups within the vertebrates. This comprehensive analysis has been a valuable 

resource for both users and developers of gene prediction programs, and the Burset/Guigo 

dataset has been extensively used as a benchmark dataset for testing new generations of 

programs. 

In the last four years, since the Burset/Guigo analysis was published, many new 

programs have been developed. For most of them the accuracy measures have been reported 

for the Burset/Guigo dataset. The reason for concern is not just that authors tested their 

programs themselves, but also in many cases it is not clear how the sequences from a 

program's training set overlap with the Burset/Guigo test set. It is realistic to assume that, in 

many cases, the training sets of these programs do overlap with the Burset/Guigo dataset 

since it used to contain the vast majority of available vertebrate genomic sequences. 

This lack of independent performance results of gene-finding programs motivated the 

development of an evaluation similar to one done by Burset and Guigo. To evaluate gene-

finding programs meaningfully it is necessary to do it uniformly on one test set of sequences. 

It is also important to avoid using sequences used for the training of programs analyzed or 

otherwise the accuracy of the programs may be overestimated. The next section describes the 

assembly and the characteristics of the new dataset of genomic sequences that was used as a 

test set in the analysis. 

 

 

2.2 The novel test dataset HMR195 
 

 

The primary requirement for the construction of the dataset to be used for the evaluation of 

gene structure prediction programs was to exclude sequences already used for training those 

programs. Since for some of the programs the training datasets are not specified, the best 

solution was to choose only sequences entered into GenBank after the programs were 

developed and trained. For that reason only sequences submitted to GenBank after August, 

1997 were considered.  
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Although we first considered including only human sequences in the dataset, after a 

few filtering steps it was obvious that the size of the dataset would be relatively small, so we 

decided to expand the list of organisms. Sequences from Mus musculus and Rattus 

norvegicus were included because the mouse and rat genomes are relatively well studied and 

a number of murine sequences are present in GenBank. Also human, mouse and rat genomes 

are phylogenetically close enough to be analyzed with the same parameter files used in the 

gene-finding programs (parameter values specific to mouse or rat sequences are not available 

for any program). 2.6.5 on phylogenetic specificity offers further discussion and justification 

of this hypothesis. 

With these considerations the dataset was constructed as follows: 

DNA sequences were extracted from GenBank release 111.0 (April 1999). The basic 

requirements in sequence selection were: 

• the sequence was entered in GenBank after August, 1997; 

• the source organism is Homo sapiens, Mus musculus or Rattus norvegicus ; 

• only genomic sequences that contain exactly one gene were considered; 

• mRNA sequences and sequences containing pseudo genes or alternatively spliced 

genes were excluded. 

 Sequences collected according to those principles were further filtered to meet the 

following requirements: 

• all annotated coding sequences started with the ATG initiation codon and ended with 

one of the stop codons: TAA, TAG, TGA; 

• all exons had dinucleotide AG at their acceptor site and dinucleotide GT at their 

donor site; 

• sequences that did not contain any nucleotides in their 5' or 3' UTR were discarded; 

• sequences longer than 200,000 bp were discarded because some of the programs 

analyzed can only accept sequences up to that length; 

• sequences whose coding region contains in-frame stop codons were discarded. 

Sequences that passed these filtering steps were further subjected to non-redundancy 

testing. All-against-all neighbour search with the Entrez Browser (command line Entrez - 

Nentrcmd from the NCBI tool kit) (Schuler et al., 1996) was performed and if two sequences 
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were linked as neighbors only one of them was selected to enter the final dataset. Neighbour 

linkage in Entrez represents high similarity between two sequences. 

The final restriction of the dataset was done to confirm exon locations annotated in 

the GenBank records. For each sequence in the dataset we used the BLAST algorithm 

(Altschul et al., 1990; Altschul et al., 1997) to find a corresponding mRNA sequence that had 

been independently sequenced and not derived from the genomic sequence. If such an 

mRNA sequence existed, the sim4 program (Florea et al., 1998) was used to align the 

genomic sequence and the mRNA sequence. The result of the sim4 alignment is the list of 

exon locations, which were then compared with the annotation in the GenBank record. Only 

those sequences whose exon annotation perfectly matched the sim4 results were selected for 

the final version of the dataset. Unfortunately, this analysis could not confirm the start 

location of the initial exon and the end location of the terminal exon, since mRNAs also 

contain 5' and 3' untranslated regions (UTR) that also align to the genomic sequence, so these 

annotations remained unconfirmed. 

The resulting dataset contains 195 sequences with exactly one complete, either single-

exon or multi-exon, gene and it is named HMR195.  

HMR195 has the following characteristics:  

• the ratio of human:mouse:rat sequences is 103:82:10 ; 

• the mean length of the sequences in the set is 7,096 bp; 

• the number of single-exon genes is 43 and the number of multi-exon genes is 152; 

• the average number of exons per gene is 4.86; 

• the mean exon length is 208 bp, the mean intron length is 678 bp, and the mean 

coding length of a gene is 1,015 bp (~340 amino acids); 

• the proportion of coding sequence in this dataset is 14%, of the intronic sequence 

46%, and of the intergenic DNA 40%. 

The HMR195 dataset is available at http://www.cs.ubc.ca/labs/beta/genefinding/. 

This dataset is not a typical subset of sequences from human and murine genomes: 

the fraction of coding sequence in the dataset (14%) is much higher than the estimated 3% 

for these genomes. The mean coding length of ~340 amino acids is shorter than the 

calculated mean of ~450 aa for C. elegans and S. cerevisiae (Zhang, 2000). It is realistic to 
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expect that the average protein in human, mouse and rat will be at least this long, since the 

analysis in Zhang (2000) shows that protein length seems to increase with the complexity of 

organism. Also, the average number of exons in a gene in HMR195, 4.86, is lower than the 

calculated 5.4 for human chromosome 22 (Dunham et al., 1999). These discrepancies are a 

direct product of biases in GenBank and other public sequence databases, which are 

discussed below in Section 2.7. With the current limited amount of data it is not yet feasible 

to generate a dataset which would perfectly model human and murine genomes. Also, the 

proportion of single-exon genes in HMR195 substantially exceeds this proportion in real 

genomes. Again, overrepresentation of these sequences in GenBank is a source of this 

discrepancy. Since there were no other biological reasons to eliminate single-exon genes we 

chose to keep them within the dataset. 

 

 

2.3 Programs tested 
 

 

 All gene-finding programs made available after the evaluation by Burset and Guigo in 1996 

were considered for this analysis. Since the goal of this experiment was to asses the programs 

that solely use statistics and pattern recognition methods for gene-finding, programs that use 

other resources, such as database similarity search, were not included in the testing. Also, 

only programs trained on vertebrate sequences were considered. 

The seven programs tested were (in alphabetical order) FGENES, GeneMark.hmm, 

Genie, Genscan, HMMgene, Morgan, and MZEF. 

 Some of the programs analyzed allow the user to change some of the parameters of 

the program (e.g. prior probability for MZEF and exon size in Morgan), depending on the 

properties of the input sequences. Although this might be beneficial for expert users working 

on specific sequences it is not suitable for automatic testing of large sequence dataset. 

Therefore, all the programs analyzed here were run with the suggested default parameters. 

 All programs were installed and run locally except for Genie, which was accessed 
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through the Genie web server http://www.fruitfly.org/seq_tools/genie.html. The programs 

were run on a SUN Ultra 60 computer, under the Solaris 5.6 operating system. 

The programs analyzed in this survey are enumerated below. For each program a 

short description of methods used by the program is given, information about its training set, 

the parameter files used when running it, the subset of the HMR195 dataset it was tested on, 

and some characteristics of its output format. 

 

1. FGENES (Solovyev and Salamov, 1997) [version 1.6]. Information about this 

program can be found on the Sanger Center Computational Genomic Group web site 

http://genomic.sanger.ac.uk/gf/gf.html and details about an earlier version of the program 

FGENEH can be found in Solovyev et al. (1995). FGENES uses dynamic programming to 

find the optimal combination of exons, promoters and polyA sites detected by a pattern 

recognition algorithm, constructing a set of gene models along a given sequence. The model 

is very flexible and allows prediction of single- and multi-genes in a sequence, that are either 

complete or partial. The program has been trained on a non-redundant dataset of 660 human 

sequences extracted from GenBank release 100. Details about the dataset can be found in 

(Salamov and Solovyev, 1997). The type (first, internal, last, single) and location of each 

exon is specified in the output of the program, and for each exon there is an associated score 

for the prediction. 

 All the sequences from HMR195 were submitted to FGENES, which predicted genes 

in 190 out of 195 sequences. 

 

 2. GeneMark.hmm (Borodovsky et al., 1998) [version 2.2]. Initially, this program 

was developed for bacterial gene-finding (Lukashin and Borodovsky, 1998) and it has been 

only recently modified to predict gene structure in eukaryotic organisms. A paper about the 

eukaryotic version of the program has not been published, but from the program's web site at 

http://genemark.biology.gatech.edu/GeneMark/ it can be concluded that it uses an explicit 

state duration HMM, which is often used in gene-finding programs (Genie, Genscan). The 

optimal gene candidates selected by the HMM and dynamic programming are further 
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processed by a ribosomal binding site recognition algorithm. The dataset used for training is 

not described. The output is similar to that of FGENES, but no scores are given. 

In this analysis GeneMark.hmm was run with the human.mtx matrix for every 

sequence in HMR195, and it predicted genes in every sequence.  

 

 3. Genie (Kulp et al., 1996) [version 1.x and version 2.1, from October 1999]. 

Similarly to GeneMark.hmm, Genie uses a generalized HMM with arbitrary length 

distributions associated with some states of the model. The system is described as modular, 

since each state is trained separately and new states can be easily added. The mechanisms 

underlying some states are neural networks for splicing sites, with Markov chains for coding 

regions. The training set is assembled from the human sequences extracted from GenBank 

release 89.0 (1995) and details describing sequences and filtering processes can be found at 

http://www.fruitfly.org/sequence/human-datasets.html. This dataset has also been used for 

training other gene-finding systems (HMMgene, Genscan). Genie can predict single- or 

multiple-exon genes and any number of them in the sequence. The Genie web site is at 

http://www.fruitfly.org/seq_tools/genie.html. 

  During the testing period a new version of Genie, 2.1, became available, so we used 

the opportunity to test both versions. In this thesis only the results of the new Genie's 

prediction will be considered and the name Genie will refer to version 2.1 of this program. 

The results for the 1.x version of Genie exist but are not presented here. 

 In order to test the new, upgraded version of Genie we sent all our sequences to 

Martin Reese at Lawrence Berkeley National Laboratory who ran them through the program. 

Genie's output is in GFF (General Feature Format) format with the location and score for 

each feature in the sequence. Genie predicted genes in 180 out of 195 sequences. 

 

4. Genscan (Burge, 1997; Burge and Karlin, 1997) [version 1.0]. In this program the 

structure of the genomic sequence is modeled by an explicit state duration HMM. The states 

of this HMM are probabilistic models themselves. Signals are modeled by weight matrices, 

weight arrays and maximal dependence decomposition (Burge, 1997), a new technique used 

for recognition of donor sites. Genscan's model can predict the absence of genes or the 
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presence of a single gene or multiple genes, which can be either complete or partial. It also 

has the option to predict suboptimal exons, which are defined as potential exons with a 

probability higher than a certain threshold but which are not contained in the optimal parse of 

the sequence. This type of exon can potentially represent alternatively spliced exons. 

Genscan was trained on Kulp and Reese's dataset of human genomic sequences and an 

additional set of 1999 human cDNA sequences was used for training the coding region 

HMM. The maximal length of the input sequence for this version of Genscan is 200 kb. The 

output of Genscan is similar to the output of the other programs, giving information about 

exon locations and their probabilistic scores, but scores for other sequence features such as 

splicing sites are also given. The web version of Genscan is at http://CCR-

081.mit.edu/GENSCAN.html.  

 Genscan was run with parameter file HumanIso.smat for all the sequences in 

HMR195. It predicted genes in 192 out of 195 sequences. 

 

 5. HMMgene (Krogh, 1997) [version 1.1d]. The program is based on HMMs and it is 

trained using a criterion called conditional maximum likelihood, which maximizes the 

probability of correct prediction. If the sequence analyzed already has some subregions 

identified (hits to EST or protein database, repeated elements), those regions can be locked as 

coding or non-coding and then submitted to HMMgene. The underlying gene structure model 

can predict both partial and complete genes in sequence and any number of them. The 

program has the option to give more than one prediction, which could indicate alternative 

splicing of the gene in the sequence. The dataset of human single- and multi-exon genes 

collected by Kulp and Reese was used for the training of this program. The output is given in 

GFF format, slightly different from that used by Genie: it does not give the location of the 

splicing sites, but only of the exons, whose type is also specified. HMMgene's web site is at 

http://www.cbs.dtu.dk/services/HMMgene/. 

 Every sequence from the testing dataset HMR195 was submitted to the program, 

which predicted genes in 190 out of 195 sequences. 
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 6. Morgan (Salzberg et al., 1998) [version from June 1997]. The underlying method 

behind Morgan is a combination of decision trees, dynamic programming and Markov 

chains. The most distinctive technique used is a decision tree classifier that classifies 

subsequences into different classes: initial, internal, and final exons. Morgan has been trained 

on the Burset and Guigo dataset of 570 sequences containing only multi-exon genes and for 

that reason its prediction is limited to only this class of genes. Also it is not capable of 

analyzing sequences that contain symbols other then A, C, G, T (e.g., N, M, R, Y) which 

further reduces the number of sequences from HMR195 that can be used for the analysis. 

Morgan has the standard output with exon locations and probability scores. The 

recommended length of DNA sequence is up to 200 kb. 

 Morgan was tested on 127 acceptable sequences from HMR195 and it predicted a 

gene in every sequence analyzed. 

 

 7. MZEF (Zhang, 1997) [version from April 1998]. It uses a quadratic discriminant 

function to distinguish between two classes: coding and non-coding. Its training set consists 

of 3440 human exons extracted from GenBank release 87.0 and it's trained to predict only 

internal coding exons. The output of the program gives the location of every internal exon 

predicted, along with a probability score for it and some other measures for different reading 

frames. MZEF can only analyze sequences shorter than 200 kb. The program has an option to 

set the prior probability for the sequence analyzed which depends on gene density and G+C 

content of the sequence. The default value of 0.4 was used for the prior when submitting the 

sequences from the HMR195 dataset to MZEF. The program's web site is at 

http://sciclio.cshl.org/genefinder/. 

 Since MZEF can predict only internal exons, only sequences that contain more than 

two exons from the dataset HMR195 were considered. The accuracy measures were 

calculated considering only annotated internal exons. There were 119 of the HMR195  

sequences and it predicted exons in 111 of them. 
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2.4 Measuring predictive accuracy 
 

 

In order to evaluate the predictive accuracy of a gene-finding program we need to compare 

the exons predicted by the program with the actual coding exons, as annotated in the 

GenBank record under the "CDS" feature (annotated non-coding exons are not considered, 

since the programs analyzed do not predict them). From this comparison, nucleotide and 

exon level accuracy measures were calculated. 

 

2.4.1 Nucleotide level accuracy 
 

If we define the values TP (true positives), TN (true negatives), FP (false positives) and FN 

(false negatives) as follows: 

 

TP - the number of coding nucleotides predicted correctly as coding 

TN - the number of non-coding nucleotides predicted correctly as non-coding 

FP - the number of non-coding nucleotides predicted incorrectly as coding 

FN - the number of coding nucleotides predicted incorrectly as non-coding 

 

then we define sensitivity as the proportion of coding nucleotides that are correctly predicted 

as coding: 

FNTP
TPSn
+

=

     

and specificity as the proportion of nucleotides predicted as coding that are actually coding: 

   
FPTP

TPSp
+

=

These are widely used measurements of accuracy for gene prediction programs. 
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Both Sn and Sp range independently over [0,1], with perfect prediction occurring only 

when both measures are equal to 1. Each of these measures is not sufficient by itself because 

perfect sensitivity can be obtained if all the nucleotides were predicted as coding and perfect 

specificity if all nucleotides were predicted as non-coding. 

A single measure that captures both specificity and sensitivity called the correlation 

coefficient (CC) is defined as:  

 

)(*)(*)(*)(
)*()*(

FNTNFPTPFPTNFNTP
FPFNTNTPCC

++++
−

=

 

This measure has been extensively used for evaluating gene structure prediction programs, 

but it has the undesirable property that it is not defined for some sequences (e.g. if there is 

not any coding region in an input sequence or an input sequence has been predicted to be 

entirely non-coding). A measure with similar characteristics, but defined under any 

circumstance, is the approximate correlation (AC), introduced in Burset and Guigo (1996), 

defined as: 

2*)5.0( −= ACPAC
 

where ACP is the average conditional probability defined as: 

 









+
+

+
+

+
+

+
=

FPTN
TN

FNTN
TN

FNTP
TP

FNTP
TPACP

4
1

 

 

Since at least two of the conditional probabilities in this formula are always defined, ACP can 

always be calculated as the average of the ones defined. CC and AC range over [-1,1] and 

usually are close to each other whenever CC is defined. 

Nucleotide level accuracy measures indicate how good the 'search by content' element 

of the program is, but they don't tell us much about the 'search by signal' component. For 

measuring those prediction characteristics we use exon level prediction accuracy. 
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2.4.2 Exon level accuracy 
 

Exon level prediction is also estimated by sensitivity and specificity, but in this case true 

positives are exactly predicted exons (identical to an annotated exon). The formulas for exon 

level sensitivity (ESn) and specificity (ESp) are: 

AE
TEESn =

PE
TEESp =

 

where TE (true exons) is the number of exactly predicted exons and AE and PE are the 

numbers of annotated and predicted exons, respectively.  

Similarly to nucleotide level accuracy these measures cannot be used alone and 

usually their average is used as a reliable measure of program's exon level accuracy. 

Sometimes, knowing just the proportion of the exactly predicted exons may 

underestimate the performance of the program, especially if its 'search by signal' component 

is weaker. To get a better estimate of the prediction accuracy of the analyzed programs we 

can also considered other categories of predicted and annotated exons. Predicted exons can 

be divided into four categories: exactly predicted, partially predicted (only one exon 

boundary is correctly predicted), overlapped (neither exon boundary is correct, but it overlaps 

an actual exon) and wrong (does not overlap any actual exon). Analogously, annotated exons 

can be divided in those that are exactly predicted, partially predicted, overlapped and missed 

(not overlapped with any predicted exon). 

The tables show values for: 

CRa - proportion of annotated exons that are correctly predicted  

CRp - proportion of predicted exons that are exactly correct 

PCa - proportion of partially predicted annotated exons 

PCp - proportion of predicted exons that are partially correct 

OL - proportion of predicted exons that overlap actual exons 

ME - proportion of missed exons  

WE - proportion of wrong exons.  
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From the definition of the exon level sensitivity we can see that this measure is not 

defined when a program does not predict any exons in a sequence. In this case, 0 is assigned 

to both ESn and ESp, and this sequence will not be considered when calculating the average 

values for the whole dataset. Even though ESn is defined for every sequence containing 

actual exons we do not average it over the sequences for which ESp is not defined in order to 

obtain a more realistic relationship between two measures (in real genomic sequences the 

sequences without exon prediction would be less common than the sequences without actual 

exons). On the sequence level CRa and CRp are identical to ESn and ESp, except for PE=0 

when CRp=0, but they are averaged over all sequences in the dataset. For this reasons we 

used CRa and CRp as more credible measures when programs were run on the subsets of the 

dataset and when sequences without predictions could strongly influence the results for ESn 

and ESp. 

 

 

2.5 Implementation and results of the evaluation 
 

 

Sequences from the HMR195 dataset were run through the seven gene prediction programs. 

For each sequence, the exons predicted on the forward strand (predictions for the reverse 

strand were ignored) were compared to the actual coding exons, as annotated in the GenBank 

‘CDS’ feature. Although all of the programs tested, except Morgan, can predict genes and 

exons on both DNA strands simultaneously, the GenBank records for most of the sequences 

in HMR195 contain only annotation for the Watson/plus strand and consequently only 

prediction for that strand could be confirmed. From this comparison accuracy measures at the 

nucleotide and the exon level were computed and then averaged. 

For each gene-finding program tested a Perl script was written that parses the 

prediction from the program and compares predicted exons to the annotated exons read from 

the annotation file for HMR195. The separate scripts were necessary since the outputs of the 

programs tested are different for each program. For each sequence in HMR195 all the 

accuracy measures are calculated and written to the output file. The final output from each 
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Perl script are the averaged nucleotide and exon level prediction accuracy measures on the 

HMR195 dataset. The scripts for the computation of the accuracy measures for Genscan and 

HMMgene are posted on the web site at http://www.cs.ubc.ca/labs/beta/genefinding/. 

 The gene level accuracy measures were not computed since the prediction of the 

entire gene structure is still unreliable and seldom used. As an illustration, Dunham et al. 

(1999) identified 94% at least partially predicted exons on human chromosome 22 using 

Genscan, but only 20% of genes had all exons predicted exactly. 

We chose to use averaging by sequence, where measures are first calculated for each 

gene then averaged over all genes, as opposed to averaging by base, where measures are 

summed for all sequences and then averaged by nucleotide or by exon, depending on the 

measure type. The former is thought to give better indication of the success rate for the 

individual sequence entry. For discussion see Dong and Searls (1995) and Burset and Guigo 

(1996). 

The measures are averaged only over sequences for which they are defined. This 

might overestimate the values for Sn, Sp, AC, CC, ESn, ESp and the average of the latter two 

(CR, PC, OL, WE and ME are always defined) on the sets that have many sequences without 

prediction. So, in order to have a realistic estimate of the gene-finders' performance one must 

also look at the number of sequences where no genes were predicted. The accuracy measures 

for all of the programs analyzed, averaged for the entire HMR195 dataset are presented in 

Table 1. 

The next step was to examine accuracy as a function of various sequence or 

prediction features, such as: G+C content of the sequence, length and type of the annotated 

and the predicted exons, signal type for both annotated and predicted genes, and the 

score/probability of the exon prediction. For each of these characteristics the dataset was 

divided into the subsets exhibiting different value ranges or types of the characteristic 

examined and the accuracy measures were calculated and averaged over all the sequences 

belonging to a particular subset. For each of the programs and each of the sequence or 

prediction features a separate Perl script was written. The results obtained are presented in 

Tables 2-6.  
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2.6 Discussion 
 

 

Comparing the results presented in Burset and Guigo (1996) with the results obtained in this 

study (Table 1) it is apparent that the new generation of programs has, overall, substantially 

higher prediction accuracy then the programs analyzed by Burset and Guigo in 1996. At that 

time the program with the best approximate correlation (among the programs not using any 

database similarity search) was FGENEH, with AC = 0.78, while the highest AC in 1999 is  

0.91, exhibited by both Genscan and HMMgene. On the exon level, (ESn+ESp)/2 has 

increased from 0.64 for FGENEH to 0.76 for HMMgene. Also, earlier gene-finders were 

programmed to have low false positive rates at the expense of losing valid predictions, which 

resulted in, on average, 20% higher specificity than sensitivity. Programs of the new 

generation are tuned to have equally high sensitivity and specificity, which is more desirable. 

These improvements have come about as a result of developing more accurate models 

for gene structure that are capable of recognizing many different gene features in the 

sequence. Most of the gene-finders analyzed use explicit duration HMMs with associated 

length distributions for each state. These models of genomic structure are hierarchical, with 

generalized HMMs modeling the overall gene structure, where states of the model are 

independent probabilistic models themselves, such as HMMs and neural networks. Also, new 

methods have been developed for signal recognition, such as maximal dependence 

decomposition used for donor site recognition in Genscan and neural networks in Genie. The 

training sets are carefully selected and the average number of training sequences in the 

dataset has increased, allowing for more diversity in genomic content of the training 

sequences. 

With the accuracy measures at the nucleotide level as high as 0.91 for Genscan’s and 

HMMgene’s AC we might conclude that the problem of computational gene-finding is 

almost solved. But looking at the results for exon sensitivity and specificity and their 

average, we see that the goal is still far away. Why is there such a gap between AC and 

(ESn+ESp)/2? Since ESn and ESp are defined as TE divided by AE and PE, respectively, this 

means that in calculating these two measures only exons with both boundaries predicted 
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Nucleotide accuracy Exon accuracy 
Programs # of 

sequences Sn  Sp AC CC   ESn ESp (ESn+Esp)/2 ME     WE PCa PCp OL

FGENES 195 (5) 0.86 0.88 0.84 ± 0.19 0.83   0.67 0.67 0.67 ± 0.32 0.12     0.09 0.20 0.17 0.02

GeneMark.hmm 195 (0) 0.87 0.89 0.84 ± 0.18 0.83   0.53 0.54 0.54 ± 0.36 0.13     0.11 0.29 0.27 0.09

Genie 195 (15) 0.91 0.90 0.89 ± 0.16 0.88   0.71 0.70 0.71 ± 0.30 0.19     0.11 0.15 0.15 0.02

Genscan 195 (3) 0.95 0.90 0.91 ± 0.12 0.91   0.70 0.70 0.70 ± 0.32 0.08     0.09 0.21 0.19 0.02

HMMgene 195 (5) 0.93 0.93 0.91 ± 0.13 0.91   0.76 0.77 0.76 ± 0.30 0.12     0.07 0.14 0.14 0.02

Morgan 127 (0) 0.75 0.74 0.70 ± 0.21 0.69   0.46 0.41 0.43 ± 0.26 0.20     0.28 0.28 0.25 0.07

MZEF 119 (8) 0.70 0.73 0.68 ± 0.21 0.66   0.58 0.59 0.59 ± 0.28 0.32     0.23 0.08 0.16 0.01

 
 

Table 1: Nucleotide and exon level accuracy – For each sequence in the HMR195 dataset, the exons predicted on the forward 
(+) strand were compared to the annotated exons. The standard measures of predictive accuracy on nucleotide and exon level 
were calculated for each sequence and averaged over all sequences for which they were defined. This was done separately for 
each of the programs tested.  # of sequences – number of sequences effectively analyzed by each program; in parentheses is the 
number of sequences where the absence of gene was predicted; Sn –nucleotide level sensitivity; Sp – nucleotide level specificity, 
AC – approximate correlation; CC – correlation coefficient; ESn – exon level sensitivity; ESp - exon level specificity;  ME – 
missed exons; WE – wrong exons; PCa – proportion of real exons that were partially predicted (only one exon boundary correct); 
PCp – proportion of predicted exons that were only partially correct; OL – proportion of predicted exons that overlap an actual 
exon. AC and (ESn+ESp)/2 are given with standard deviation. 
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correctly will be considered. An almost perfectly predicted exon, covering the whole 

sequence of an actual exon, but exceeding the splicing site by just few nucleotides will not be 

counted in TE. In order to predict the exact boundaries of an exon a program has to have a 

strong "search by signal" component - signal sensors for identifying start and stop codons and 

splicing sites. However, signal detection, especially of start and stop codon, is probably the 

weakest component of current gene-finding programs, as can be observed in Table 5. 

Although discrimination among coding and non-coding regions, most often done by 

measuring the hexamer frequencies in these regions, has shown to be quite successful, signal 

recognition could still be improved. There has been significant effort to improve prediction 

of acceptor and donor splice sites and many different methods have been used for this task, 

such as neural networks and maximal dependence decomposition (the methods for splice site 

detection are not known to us for all the programs analyzed). The success of these methods is 

apparent in Table 5. On the other hand we are not aware of any systematic effort to tackle the 

problem of start and stop codon detection. These signals are considered to have low 

information content and they are usually detected by using weight (positional) matrices, 

weight arrays that capture dependencies between adjacent nucleotides or, in the case of 

Genie, neural networks for translation initiation site. 

The tendency to miss actual signals can also be observed from the proportion of 

partially predicted exons (PCa) that ranges from 0.08 for Genie to 0.29 for GeneMark.hmm 

(Table 1). GeneMark.hmm and Morgan besides having high proportion of PCa also have a 

relatively high proportion of OL (0.09 and 0.07, respectively, in Table 1) and according to 

these results they are the programs with the poorest signal detection. If we add the number of 

the partially predicted exons to the number of correctly predicted exons and use this number 

for calculating ESn and ESp then AC and (ESn+ESp)/2 would have similar values. 

 

2.6.1 G+C content 
 

The human genome (and the genomes of other warm-blooded vertebrates) is not a 

structurally homogenous sequence of nucleotides. Instead, it's a mosaic of isochores, long 

(>300 kb, on average) DNA regions whose base composition is locally homogenous, but 
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varies significantly between disjoint regions. The genome is usually divided into 5 different 

compositional categories: L1, L2 (A+T rich regions), H1, H2 and H3 (G+C rich regions) in 

increasing order of G+C%. It has been observed (Bernardi, 1993) that L1+L2 constitute 

approximately 60% of human genome, H1+H2 30% and H3 only 5%. These compositional 

regions widely vary in gene density: Zoubak et al. (1996) calculated that L1+L2 regions have 

a relative gene concentration of 4%, H1+H2 20% and H3 76% respectively. This means that 

the gene density in very G+C rich DNA segments is almost 20 times higher than in A+T rich 

regions. 

Important structural properties of genes are found to be strongly correlated with G+C 

content (Duret et al., 1995): genes from G+C poor isochores code for proteins that are on 

average longer then those from G+C rich isochores, intronic DNA is on average three times 

longer in L1+L2 than in H3 and the number of introns per gene is higher in L1+L2 than in 

H3. 

How does compositional variability in genomic sequences affect performance of 

gene-finding programs? Burset and Guigo (1996), Snyder and Stormo (1995) and Lopez et 

al. (1994) have shown in their analyses that gene-finding programs usually perform worse 

when the G+C content is low. The proposed reasons for this anomaly are that G+C rich genes 

have stronger codon bias that makes them easier to identify and that they are more frequent 

than the genes in A+T rich isochores. In another study Guigo and Fickett (1995) have shown 

that coding statistics used by gene-finding programs (codon, dicodon and hexamer 

frequency) are strongly dependent on G+C content.  

  It is obvious that if a program has only one set of parameters intended to model gene 

structure (oligonucleotide frequency, length of coding and intergenic region, exon and intron 

length and number) it will not be able to perform equally well in both A+T and G+C rich 

sequences due to the significant structural differences between genes in these sequences. The 

reason why programs perform better for G+C rich sequences could also be because they are 

trained on the sequence subset of GenBank, which is biased towards G+C rich sequences. 

According to Duret et al. (1995) genes from G+C rich isochores are much more frequently 

sequenced than those from G+C poor isochores. 
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< 40 % 40 –50 % 50 –60 % > 60% 
C+G content 

AC (Esn+Esp)
/2 AC (Esn+Esp)

/2 AC (Esn+Esp)
/2 AC (Esn+Esp)

/2 

FGENES 0.84 0.70 0.81 0.64 0.85 0.71 0.87 0.66 

GeneMark.hmm 0.79 0.48 0.80 0.46 0.87 0.62 0.85 0.48 

Genie 0.85 0.69 0.85 0.60 0.92 0.75 0.87 0.79 

Genscan 0.94 0.80 0.91 0.66 0.91 0.74 0.88 0.70 

HMMgene 0.91 0.76 0.90 0.73 0.92 0.79 0.91 0.77 

Morgan 0.65 0.29 0.72 0.49 0.69 0.43 0.69 0.37 

MZEF 0.66 0.71 0.65 0.50 0.70 0.62 0.58 0.53 

 
Table 2: Accuracy versus G+C content - The HMR195 dataset was partitioned according to 
the G+C% content of the sequences. For each program, AC and (Esn+Esp)/2 are averaged 
over all sequences belonging to particular partition for which they are defined. The best result 
ina column is given in bold face. 
 

 

Recently some programs, such as Genscan, HMMgene and MZEF tested in this 

survey, have adopted the approach of using distinct, empirically derived model parameters 

for distinct G+C compositional regions. 

Table 2 presents the programs' accuracy measures on the sequences with different 

G+C content. The HMR195 dataset was partitioned into four groups according to G+C 

content of the sequences. These groups are closely related to previously defined isochores 

except that the very G+C rich isochore was split into two groups because it was heavily 

populated. 7% (14/195) of the sequences came from L1+L2 isochores (more precisely with 

G+C% ≤ 40%), 35% (69/195) of sequences from H1+H2 (40% < G+C% ≤ 50%) and 58% 

(112/195) of sequences from H3 (G+C% > 50%), which were subsequently split into two  
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groups (50% < G+C% ≤60% and G+C% > 60%), containing 93 and 19 sequences, 

respectively. These percentages are significantly inconsistent with the results from Bernardi 

(1993), which points out the huge bias for the G+C rich sequences in GenBank.  

Consistent with the observations made in Burset and Guigo (1996), it seems that 

some programs are sensitive to G+C content of a sequence, performing better when the 

sequence is G+C rich. Programs exhibiting this behaviour in our analysis are FGENES on the 

nucleotide level, GeneMark.hmm and Genie on both levels and HMMgene marginally on the 

exon level. Among programs that are known to use different parameter sets for different G+C 

content, the Genscan and HMMgene prediction accuracy is relatively independent of the base 

composition, but MZEF still has very variable results, especially on the exon level, that are 

not proportional to the G+C content of a sequence. The situation is similar for Morgan. 

There is one peculiarity in Table 2: all the programs, except Morgan, have the lowest 

accuracy measures averaged on the sequences with G+C content between 40 and 50 %. Since 

this is not the region with the lowest G+C composition, it is not clear if the program really do 

perform most poorly for this type of sequences or there is some characteristic of the test set 

that causes this slight drop in prediction accuracy. 

 

2.6.2 Exon length 
 

The length distributions of different gene elements differ considerably between each other. 

Introns seem to have an approximate geometric length distribution (Burge, 1997; Hawkins, 

1988), which is a characteristic of a discrete stochastic process with the ‘memoryless’ 

property (Karlin and Taylor, 1975). This supports the idea that introns do not have any 

significant constraints on their length, except that the minimal number of nucleotides (70-80) 

is required (Wieringa et al., 1984). 

On the other hand, exons have significant functional constraints. The exon length 

plays an important role in proper splicing and inclusion in the mature mRNA (Dominski and 

Kole, 1991). These constraints have shaped the exon length distribution quite differently 

from a geometric distribution. The length distribution depends on the exon type. Internal 

exons have length distribution close to a Gaussian distribution with a broad peak between 
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100 and 170 bp (Hawkins, 1988). Hawkins calculated the mean internal exon length to be 

137 bp (in the HMR195 dataset 136 bp) and he observed very few exons shorter than 50 and 

longer than 300 nucleotides. Length distributions for initial and terminal coding exons are not 

recognizable statistical distributions. They are still substantially peaked around 60 and 160 bp 

respectively (Hawkins, 1988; Burge, 1997), but do not have a steep drop-off in density after 

300 bp. Both types of exons are more variable in length than internal exons and their 

calculated means are 134 bp for initial exons and 198 bp for terminal exons (Hawkins, 1988)  

(in the HMR195 dataset 207 bp for initial and 265 bp for terminal). For the fourth class of 

exons, single-exons, the length distribution is not known, but in general they are much longer 

than any other type of exons and their mean length is calculated to be 1300 bp (Hawkins, 

1988) (in the HMR195 dataset 1010 bp). 

In our analysis we have grouped exons by both their annotated length and their 

predicted length and averaged the accuracy measures in each group. Since many programs 

tested in this analysis (Genie, GeneMark.hmm, Genscan, HMMgene) use explicit duration 

HMMs, which have length distribution associated with each state of the model, it is 

interesting to see how these distributions influence the accuracy of their exon prediction. 

From Table 3 it can be observed that the general trend of all the programs is to have a 

very low proportion of correctly predicted short exons, which then slowly but monotonically 

rises with the length of annotated exons. For almost all of the programs exons are most 

accurately predicted if their length ranges between 75 and 200 nucleotides (these exons were 

the most common: 560 out of 839). The exons longer than 200 nucleotides (the HMR195 

dataset contained 131 of these exons) seem more difficult to predict correctly and the 

accuracy measures drop further as the length increases. The exception is HMMgene that 

predicts longer exons with the same accuracy as the more common medium length exons. 

The exons shorter than 25 bases (there were only 17) are missed in 41% of cases for 

FGENES up to 88% for MZEF. The most plausible explanation for this phenomenon is that 

the length of the coding region is too short to be clearly distinguished from surrounding non-

coding regions. Also, there is biochemical evidence that this type of exon is inefficiently 

spliced in vivo without the presence of special splicing activating sequences (Dominski and 

Kole, 1991). And finally, the associated length distributions used by some programs do not  
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Length range of exons in bp 

Programs 0 – 24 25 – 49 50 – 74 75 – 99 100 – 199 200 – 299 300 + 

FGENES 0.45 
(0.33) 

0.55 
(0.42) 

0.71 
(0.64) 

0.80 
(0.75) 

0.80 
(0.81) 

0.71 
(0.61) 

0.59 
(0.66) 

GeneMark.hmm 0.05 
(0.12) 

0.39 
(0.51) 

0.60 
(0.58) 

0.77 
(0.72) 

0.75 
(0.73) 

0.67 
(0.62) 

0.46 
(0.45) 

Genie 0.27 
(0.18) 

0.53 
(0.47) 

0.60 
(0.66) 

0.80 
(0.81) 

0.70 
(0.83) 

0.71 
(0.68) 

0.69 
(0.69) 

Genscan 0.18 
(0.29) 

0.45  
(0.81) 

0.68 
(0.79) 

0.89 
(0.85) 

0.84 
(0.76) 

0.87 
(0.71) 

0.66 
(0.65) 

HMMgene 0.23 
(0.42) 

0.59 
(0.76) 

0.64 
(0.75) 

0.79 
(0.77) 

0.80 
(0.85) 

0.78 
(0.72) 

0.77 
(0.74) 

Morgan 0.30 
(0.14) 

0.37 
(0.14) 

0.38 
(0.31) 

0.61 
(0.57) 

0.51 
(0.57) 

0.51 
(0.41) 

0.42 
(0.35) 

MZEF 0.00 
(0.00) 

0.16 
(0.44) 

0.32 
(0.45) 

0.40 
(0.58) 

0.49 
(0.73) 

0.45 
(0.53) 

0.12 
(0.26) 

  
Table 3: Accuracy versus exon length - The HMR195 dataset was partitioned according to 
the length of the annotated exons. For each program, CRa - the proportion of real exons that 
are correctly predicted (the upper number) and CRp – the proportion of predicted exons that 
are correct (the number in parentheses), are averaged over all sequences belonging to 
particular partition.  
 

 

favour very short exons, and depending how these distributions are used by the systems this 

may cause poor prediction for this type of exons. 

Although very long exons are less likely to be predicted correctly than medium length 

exons, they are most unlikely to be completely missed. The number of partially predicted 

exons longer than 300 nucleotides is relatively large (data not shown) and only less then 7% 

of them are completely missed (the exception is MZEF with 33% of exons missed).  

Finally, it can be noted from Table 3 that there is usually a significant difference 

between CRa and CRp for very short exons. The reason for this is that while programs 

FGENES, Genie and Morgan overpredict short exons the rest of the programs underpredict 
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them - the total number of short exons predicted by each of these programs is much lower 

than the actual number of exons of the same size. Again, this may be the consequence of 

exon length distribution built into the gene-finding programs. This discrepancy in number of 

real and predicted exons is much smaller for the longer exons. 

 

2.6.3 Exon type and signal prediction 
 

Table 4 summarizes accuracy measures for different exon types. What can be observed is a 

striking difference between the proportion of correctly predicted internal exons on one side 

and the proportion of correctly predicted initial and terminal exons on the other side. This 

difference is partially eroded with a high number of partially predicted initial and terminal 

exons (data not shown), especially if we allow the predicted exon to be of any type, but still 

initial and terminal exons are more likely to be completely missed than internal exons. For 

single-exon genes the situation is similar in the sense that the CR is usually significantly 

lower than for internal exons (the exceptions are HMMgene and Genie), but they have very 

high values for PC (the extreme case is GeneMark.hmm with CRa=0.30 and PCa=0.56 for 

single exons). The difference is that single exon genes are very rarely missed and the 

proportion of missed exons of this type is the lowest among all exon types and all programs. 

The only program that is almost equally successful in predicting exons of any type is 

HMMgene, which also has the highest proportion of correctly predicted exons (CRp) for 

initial, terminal and single exon among all other programs. This HMMgene characteristic 

surely contributes to its excellent results on the HMR195 dataset. 

Why are initial, terminal and single exons more difficult to identify? The only 

obvious structural differences between different types of exons are the signals bordering 

them: there are no studies showing that codon usage (hexamer frequency) fluctuates between 

different exon types. The difference in exon length could be a possible reason, since internal 

exons (136 bp in the HMR195 dataset) belong to a group of exons more likely to be 

identified correctly than exons longer than 200 bp which is the case with initial and terminal 

exons (207 bp and 265 bp, respectively) (see Table 3). However, the difference in accuracy  
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                                         Exon type 

Programs Initial Internal Terminal Single 

FGENES 0.64 
(0.55) 

0.79 
(0.78) 

0.66 
(0.58) 

0.58 
(0.83) 

GeneMark.hmm 0.40 
(0.48) 

0.78 
(0.72) 

0.52 
(0.51) 

0.30 
(0.65) 

Genie 0.49 
(0.45) 

0.76 
(0.82) 

0.61 
(0.57) 

0.70 
(0.68) 

Genscan 0.57 
(0.71) 

0.87 
(0.76) 

0.67 
(0.73) 

0.63 
(0.83) 

HMMgene 0.68 
(0.72) 

0.78 
(0.83) 

0.70 
(0.73) 

0.77 
(0.79) 

Morgan 0.35 
(0.35) 

0.55 
(0.46) 

0.36 
(0.36) - 

MZEF - - - - 

 
Table 4: Accuracy versus exon type - The HMR195 dataset was partitioned according to 
the type of the annotated exons. For each program, CRa (the upper number) and CRp (the 
number in parentheses), are averaged over all sequences belonging to that particular 
partition. 
 

 

level observed in Table 3 do not compensate for the high differences observed in Table 4. 

The hypothesis that signal prediction is mainly responsible for the difference we see in 

accuracy levels is supported by the results in Table 5: detection of start and stop codons is 

much less accurate than of acceptor and donor sites (again, the exception is HMMgene) and 

the difference in accuracy level is proportional to the accuracy level difference for initial and 

terminal exons versus internal exons in Table 4. As noted above, during the assembly of 

HMR195 we were not able to validate the locations of annotated start and stop codons. 

Consequently, prediction accuracy measures calculated for these signals, as well as 

subsequent analysis and discussion strongly rely on the correctness of their annotation in 

GenBank. 
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Signal type 

Programs Start codon Acceptor site Donor site Stop codon 

FGENES 0.67 
(0.63) 

0.80 
(0.77) 

0.85 
(0.82) 

0.75 
(0.72) 

GeneMark.hmm 0.46 
(0.60) 

0.81 
(0.75) 

0.82 
(0.78) 

0.57 
(0.64) 

Genie 0.56 
(0.57) 

0.77 
(0.82) 

0.78 
(0.83) 

0.72 
(0.73) 

Genscan 0.61 
(0.78) 

0.87 
(0.80) 

0.90 
(0.84) 

0.76 
(0.86) 

HMMgene 0.75 
(0.78) 

0.81 
(0.85) 

0.83 
(0.87) 

0.78 
(0.81) 

Morgan 0.43 
(0.43) 

0.66 
(0.57) 

0.65 
(0.56) 

0.39 
(0.39) 

MZEF - 0.59 
(0.65) 

0.66 
(0.73) - 

 
Table 5: Accuracy versus signal type - The HMR195 dataset was partitioned according to 
the signal type in the annotated genes. For each program, CRa (the upper number) and CRp 
(the number in parentheses), are averaged over all sequences belonging to that particular 
partition. 
 

 

The situation is a bit more complex for single-exon genes: on the one hand they 

contain both start and terminal codons which should complicate their identification even 

further, but on the other their average length in the dataset is 1010 bp, which according to the 

analysis in Section 2.6.2 makes them hard to predict exactly, but difficult to miss. This 

directly corresponds to the results in Table 4. 

What can also be observed in Table 4 is that for programs FGENES, GeneMark.hmm 

and Genscan there is a significant difference between CRa and CRp for the single-exons. 

Analogously to the case of very short exons the cause of this phenomenon is that these 

programs are conservative in predicting single-exon genes: the number of single-exons 

predicted by any of these programs is much lower then the number of real ones in the dataset. 
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The consequence of this is that single-exons predicted by these programs have a very good 

chance of being correct, while many real ones remain unidentified. 

 

2.6.4 Exon probabilities and scores 

 

Each of the programs evaluated in this study, except GeneMark.hmm, has a scoring scheme 

for its exon prediction. Genscan, HMMgene and MZEF have a probability score for each 

exon predicted that is supposed to be a quantitative measure of the likelihood that the given 

exon is correct. Morgan's scores were originally intended to be probabilities but that intention 

was not followed through subsequent upgrades and what is left is a scale with no formal 

meaning except that very high scores result from motifs that Morgan has seen before. Genie 

uses the bit score against a background distribution that is dependent on the length of the 

predicted exon and thus can not be meaningfully compared to other exon scores. The way 

FGENES calculates exon scores is not known to us. 

Since the nature of Morgan's and Genie's scores makes them uninformative for a user, 

we tested the reliability of the exon scores for the other four programs: FGENES, Genscan, 

HMMgene and MZEF. 

The results for FGENES (not presented) appear to show that its scores are not directly 

useful. Most of the exons predicted have a score less than 10 and CR values average to the 

similar levels for any subregion on the scale from 0 to10. The only informative exon score is 

above 10, since, at least in the HMR195 dataset, these exons are correctly predicted in 90% 

of cases, which is significantly higher than CR for exons with lower scores. However, scores 

this high are rarely assigned to an exon prediction. 

The accuracy measures for different regions of probability scores for Genscan, 

HMMgene and MZEF are displayed in Table 6. What can be observed is that CR values are 

monotonically rising with the increase in exon probability. For Genscan and HMMgene these 

values are usually close to the lower boundary of a probability range (the exception is the 

probability region 0.90 - 0.95, where CR values are lower than probabilities). MZEF, on the 

other hand, significantly overestimates probabilities for its exon predictions. If the partially 

predicted exons are included (the results for PC are not shown) CR values will reach and  
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Probability range of predicted exons 

Programs 0.00 – 0.50 0.50 – 0.75 0.75 – 0.90 0.90 – 0.95 0.95 + 

Genscan 0.32 0.45 0.75 0.84 0.94 

HMMgene 0.32 0.65 0.79 0.83 0.95 

MZEF - 0.43 0.54 0.64 0.74 

 
Table 6: Accuracy versus probability - The HMR195 dataset was partitioned according to 
probability of the predicted exons. For each program, CRp - proportion of predicted exons 
that are correct, is averaged over all sequences belonging to that particular partition.  
 

 

sometimes overreach the upper boundary of a probability region (CR for MZEF will 

correspond to probability region average). 

This analysis shows that in the case of Genscan and HMMgene the exon probability 

score can be a very useful guide to the reliability of the exon prediction. 

 

2.6.5 Phylogenetic specificity 
  

All of the programs analyzed in this survey were trained on human sequences, except 

Morgan, which was trained on the dataset of vertebrate sequences collected by Burset and 

Guigo (1996). Since the dataset used to test the programs was composed of 103 human and 

92 murine (82 Mus musculus and 10 Rattus norvegicus) sequences we wanted to investigate 

if such a phylogenetic mix can corrupt the performance of the gene-finding programs, 

especially those calibrated for human sequences. 

Results for AC on nucleotide level and for (ESn+ESp)/2 on exon level for each of the 

programs, but separately for human and murine sequences, are given in Table 7. It can be 

observed that the difference in accuracy measures between human and mouse/rat are 
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Nucleotide accuracy - AC Exon accuracy – 
(ESn+ESp)/2 Programs Trained on 

Human Murine Human Murine 

FGENES Human 0.85 0.82 0.67 0.68 

GeneMark.hmm human 0.83 0.84 0.56 0.51 

Genie human 0.88 0.89 0.73 0.67 

Genscan human 0.89 0.92 0.72 0.70 

HMMgene human 0.90 0.92 0.74 0.79 

Morgan vertebrate 0.64 0.75 0.43 0.44 

MZEF human 0.65 0.66 0.59 0.58 

 
Table 7: Phylogenetic specificity – The HMR195 dataset was split into two species 
subsets containing 103 human and 92 murine sequences. For each subset and each program 
AC and (ESn+ESp)/2 were averaged over all sequences belonging to the particular subset. 

 
 

marginal. Even more interesting is that in most cases the values for murine sequences are 

higher then the values for human sequence, even though the model parameters of the 

programs were learned from the set of human sequences. 

It is likely that such differences are not statistically significant and that they would 

also be observed if the results on two different human sequence sets were compared. This 

hypothesis is also supported by comparison of the human and mouse grammars constructed 

by Dong and Searls (1994) where no statistically significant differences were found. 
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2.7 Conclusions from the evaluation of gene-finding programs 
 

 

The results obtained in this analysis indicate that the new generation of programs has 

significantly higher accuracy than the programs analyzed in Burset and Guigo (1996). 

Comparing the programs with the highest approximation correlation in their study and our 

study, we find that it has improved from 0.78 (FGENEH) to 0.91 (Genscan and HMMgene), 

a 17% increase, while the highest averaged exon sensitivity and specificity has improved 

from 0.64 (FGENEH) to 0.76 (HMMgene), a 19% increase. 

The behaviour of the programs on the sequences with different G+C content is not 

systematic: some programs' accuracy appears to be slightly dependent on the G+C content, 

while programs such as Genscan and HMMgene, which use different parameter sets for 

different G+C content, perform steadily for any G+C content.  

The accuracy of exon prediction is dependent on the length of the exon. The general 

trend of the programs is to have a very low proportion of correctly predicted short exons, 

which then rises with the length of annotated exons. For almost all of the programs ‘medium’ 

exons, whose length ranges between 70 and 200 nucleotides, are most accurately predicted. 

The accuracy decreases again for exons longer then 200 bp (the exception is HMMgene), but 

very few of them are missed completely. 

The analysis of accuracy prediction as a function of the exon type reveals that internal 

exons are much more likely to be predicted correctly than other types of exons. The cause of 

this phenomenon is a weakness in the detection of start and stop codons, which border other 

types of exons. Initial and terminal exons are most likely to be missed completely, while 

single exons although difficult to predict exactly (they contain both start and stop signals) are 

rarely missed due to their substantial length. 

Among all the programs analyzed only Genscan and HMMgene have reliable scores 

for exon prediction. 

Our goal was not to obtain the ultimate accuracy results for the programs tested, but 

rather to conduct the first independent, comparative evaluation of the recently developed 

gene-finding algorithms. Obtaining definitive accuracy results is an impossible task since the 
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performance of the programs is very sensitive to the dataset they are tested on, as observed 

by many authors.  

Our evaluation was based on a dataset that was carefully prepared, containing only 

‘text book’ genes. Even if the sequences had been selected in more flexible manner, they 

would still be biased because the present public sequence databases are biased: genes that are 

more difficult to isolate or to sequence (e.g., very long genes found in A+T rich regions) are 

underrepresented, while there is a great deal of redundancy with overrepresentation of some 

gene families. Also genes currently present in databases reflect the interests of the scientific 

community (e.g., disease genes) and are not a random sample of the genome. More details 

about biases in the sequence databases can be found in (Duret et al., 1995). The evaluation of 

gene-finding programs on more realistic sequence datasets (longer genomic sequences with 

more complex gene structure and less coding density) would almost certainly result in 

considerably lower accuracy measures than those obtained in this study. The results 

presented here should be considered as upper bound estimates of the programs' accuracy 

when they are used on typical genomic sequences. This situation may improve when the 

programs get retrained on new, more diverse genomic sequences. 

There are certain assumptions that had to be made in order to obtain accuracy 

measures for the programs tested. Although we were able to validate exon/intron boundaries, 

we did not have a methodology to confirm start and stop codon positions and therefore had to 

assume that they were correctly annotated in GenBank. Also, 5' and 3' flanking sequences 

were assumed to be exonless and every prediction made in those regions was considered 

incorrect, which might eliminate some perfectly valid predictions. On the other hand, it is 

very unlikely that some predicted internal exons were in fact real, but not previously 

detected, because in that case we would have observed an unaligned mRNA piece when 

using the sim4 algorithm. The possibility exists that some of the genes in the HMR195 testset 

have other, still unknown, splice variants, and that some of the exons predicted actually 

belong to some of them. 

Although, the programs for gene structure predictions have greatly improved in the 

last decade, from the simple ORF finders to sophisticated heterogeneous systems 

incorporating various evidence for gene structure, even the best of them cannot be used 
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autonomously for the detection of genes and other genomic elements. The programs still 

have a considerable proportion of incorrect and missed exons and additional evidence is 

usually needed to confirm their predictions. Also, they concentrate only on detection of 

coding exons, while 5' and 3' UTRs, promoter elements and polyA sites often remain 

undetected. Elucidation of complex genome organization, such as nested and overlapping 

genes or alternative splicing, has not yet been considered by any program. Even the signal 

sensors, especially for start and stop codon, which have been in use for a long time, seem to 

be rather weak and should allow significant room for improvement.  

To achieve the ultimate goal of automatic annotation of genomes, better 

understanding of the biological processes involved in transcription, mRNA processing and 

translation is required. However, improvements can also be made by further development of 

existing methods, especially signal sensors and regulatory regions models, and calibration of 

programs' parameters on more diverse genomic sequences. 
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Chapter 3 
 

Combining predictions from gene-finding programs 
 

 

In the second part of the thesis a different approach to improving gene prediction accuracy is 

explored; instead of attempting to improve some components of gene prediction algorithms 

or designing a new one from a scratch we developed methods for combining the evidence 

(i.e., predictions) from two gene-finding experts (i.e., programs). This approach was 

motivated by previous attempts to use gene-finding programs in this manner as well as by the 

results of the evaluation presented in previous chapter. The evaluation allowed us to identify 

the most accurate programs, which were used as gene-finding experts, and also to recognize 

the weaknesses of gene prediction that could be remedied by this approach and the strengths 

of the individual programs that could be used to achieve the highest possible accuracy. This 

chapter describes in details the motivation for and implementation and results of methods for 

combining the predictions from two gene-finding programs. 
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3.1 Background and related work 
 

 

Current gene prediction programs are sophisticated systems that integrate many different 

methods for identifying elements of the genes, as discussed in the previous chapter. The set 

of methods used and the way they are integrated differs among individual programs, as well 

as the sequence training sets used to build signal models and tune programs' parameters. 

Being distinct in their architecture and training, programs often give different gene structure 

predictions for the same DNA sequence. This characteristic of programs' predictions has 

motivated several authors to investigate the benefits of combining several gene-finding 

programs. 

  Burset and Guigo (1996) investigated the correlation between six ab initio gene-

finding programs that they evaluated. The approximate correlation of the predictions at the 

nucleotide level varied from 49% to 68% and the average exon accuracy varied from 24% to 

47%, when predictions from two programs were compared. The exons predicted by all of the 

programs tested were correct in 99% of cases and the proportion of exons completely missed 

by any of the programs was 1%. This analysis shows that the programs' predictions are 

considerably different and that each program can contribute to finding all annotated exons 

(only 1% missed), maximally increasing the sensitivity of the prediction, but decreasing 

specificity. On the other hand, if an exon is predicted by all programs that almost certainly 

guarantees the correctness of the prediction (only 1% wrong), maximally increasing the 

specificity of the prediction, but decreasing sensitivity. This indicates that by combining 

several gene-finding programs it is possible to improve prediction accuracy, but in order to 

improve overall accuracy sensitivity and specificity have to be increased simultaneously. 

A more comprehensive study of methods for combining gene-finding programs was 

done by Murakami and Takagi (1998). They used five different methods to combine four 

gene-finding programs: FEXN (Solovyev et al., 1994), GeneParser3 (Snyder and Stormo, 

1995), Genscan (Burge and Karlin, 1997) and Grail2 (Uberbacher and Mural, 1991). The 

methods they tested were: the AND-based method, the OR-based method, the HIGHEST 

method, the RULE method and the BOUNDARY method. The first two methods coincide 
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with Burset and Guigo's approach of accepting only exons predicted by all the programs or 

accepting exons predicted by any of the programs. The other three methods use normalized 

exon or splice site scores to decide on the exon candidates. While approximate correlation 

was significantly improved when FEXN, GeneParser3 and Grail2 were combined by some of 

the methods (up to 10%), improvements were more marginal when Genscan was used 

because it was more difficult to outperform Genscan's high prediction accuracy. The best 

result of this analysis was a 4.7% increase of AC and a 2.5% increase of average exon 

accuracy comparing to the best individual program (Genscan). 

The approach that we am proposing in this thesis is different from the ones previously 

described. Rather then combining several gene-finding programs including those with 

generally low prediction accuracy we decided to combine only the two best-performing ones. 

Relying on the results of the evaluation of recently developed programs presented in the 

previous chapter as well as on some analysis described in the next couple of sections the two 

best candidates for this study were chosen. 

 

 

3.2 Selection of the programs and datasets 
 

3.2.1 Correlation between the programs 
 

Five of the seven tested programs were selected to investigate correlation between pairs of 

programs. Each of these five programs can predict one or more single- or multi-exon genes in 

a sequence. The remaining two programs were not considered because of their limitations: 

Morgan can predict only a single multi-exon gene in a sequence and MZEF can predict only 

internal exons. 

 The results of the correlation analysis are shown in Table 8. For each pair of 

programs we calculated the number of exons predicted exactly (both exon boundaries 

predicted correctly) by at least one of the two programs. The numbers of exactly predicted  
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 FGENES     

FGENES 697 
(0.74) GeneMark.hmm    

GeneMark.hmm 799 
(0.84) 

625 
(0.66) Genie   

Genie 824 
(0.87) 

773 
(0.82) 

651 
(0.69) Genscan  

Genscan 840 
(0.89) 

796 
(0.84) 

807 
(0.85) 

735 
(0.78) HMMgene 

HMMgene 825 
(0.87) 

811 
(0.86) 

793 
(0.84) 

826 
(0.87) 

715 
(0.75) 

 
Table 8: Correlation between the programs – For each pair of the programs we calculated 
the number of exons predicted correctly for the whole HMR195 dataset by at least one of the 
two programs. The number in parenthesis is the proportion of real exons that were predicted 
correctly. The numbers on the diagonal are the results for individual programs. The total 
number of annotated (real) exons for the HMR195 is 948. 
 

 

exons by a single program are given on the diagonal of the Table 8. The total number of 

annotated exons for the HMR195 dataset is 948. Comparing the numbers on the diagonal of 

Table 8 with the numbers below it we can see that any pair of programs can predict more 

exons correctly than any single program. The reason for this is that each program when 

compared to any other program has a set of exactly predicted exons that were not predicted 

by the other program. Consequently, any of the gene-finding programs investigated could 

contribute to the sensitivity of the prediction of any other program. But, of course, this 

simplistic approach would simultaneously decrease the specificity of the prediction and our 

goal is to combine the predictions in such a way that the correctly predicted exons are 

preserved while wrong exons are discarded.  
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3.2.2 Exon probability scores 
 

As discussed in the previous chapter, each of the programs evaluated in this study, except 

GeneMark.hmm, has a scoring scheme for its exon prediction. However, our analysis has 

shown that only Genscan and HMMgene exon probability scores, which give the quantitative 

measure of the likelihood that the given exon is correct, are reliable. Figure 1 shows 

therelationship between Genscan and HMMgene exon probability scores and the proportion 

of exactly predicted exons.  We can see that there is an approximate linear dependence 

between these two variables for both programs and that the proportion of exactly predicted 

exons monotonically increases with the increase of exon probability score (disregarding a 

small anomaly for Genscan). This means that the exons with the higher scores are usually 

more accurate then the exons with lower scores and in the case of HMMgene the likelihood  
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Figure 1: Reliability of exon probability scores – Genscan’s and HMMgene’s proportion 

of correctly predicted exons vs. exon probability scores. 
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of correct prediction is almost perfectly estimated with the exon score. This characteristic of 

Genscan and HMMgene exon probability scores makes them very useful guides in deciding 

on the correctness of a predicted exon. 

 

3.2.3 Selection of the programs 
 

Considering the results of the gene prediction program evaluation and Table 1 we concluded 

that Genscan and HMMgene were the best candidates for our study since they have the best 

overall prediction accuracy and almost the highest number of correctly predicted exons when 

combined (only the FGENES - Genscan combination has a better score) (Table 8). However, 

the most important reason for selecting these two programs is the reliability of their exon 

probability scores as shown in Figure 1, since the methods developed rely on these scores 

when combining the predictions from the programs.  

 

3.2.4 Sequence datasets used 
 

The previously described HMR195 sequence dataset, containing 195 human, mouse and rat 

sequences, was used to develop and test methods for combining the Genscan and HMMgene 

predictions. We do not consider it a typical training dataset because it was mostly used to 

study the strengths and weaknesses of the programs and only one method parameter was 

derived from it. However, to ensure independent testing of the methods' two additional 

control datasets were used: the Burset/Guigo dataset and a Drosophila melanogaster Adh 

region used in the Genome Annotation Assessment Project (GASP) (Reese et al., 2000). 

The dataset assembled by Burset and Guigo (1996) consists of 570 vertebrate 

genomic sequences containing exactly one multi-exon gene. Similarly to the HMR195 

dataset it has been filtered to exclude anomalous sequences.  

The Drosophila melanogaster Adh region is nearly 3 Mb long and has been 

extensively studied for the last 20 years (Ashburner, 2000). For the GASP experiment two 

different annotation sets were used to evaluate the gene-finding programs' predictions: st1 

and st3. The first set, called standard set 1, contained only highly accurate annotations, 
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confirmed by aligning full-length cDNA sequences from this region with the high-quality 

genomic sequences. This approach left out many potential genes that did not have a matching 

cDNA. St1 originally contained annotation for 43 transcripts, but after some incorrect 

sequences were removed, the number of genes is 38. The second and more complete 

annotation set, st3, containing 222 gene structures, was compiled by biology experts using 

information from various sources: BLAST results, PFAM alignments, high scoring Genscan 

and Genefinder predictions, ORFFinder results, full-length cDNA alignments and alignments 

with genes from GenBank. Out of 222 annotated genes only 40 were based solely on strong 

Genscan and Genefinder predictions. 

 

 

3.3 Combining the programs' predictions 
 

 

This section describes methods for integrating the Genscan and HMMgene predictions. Our 

goal was to provide computationally straightforward techniques for combining the output 

from these two programs. On the assumption that they can be considered partially 

independent sources of evidence for gene structure, it should be possible to use output from 

the programs as follows: when either program is quite confident of its exon prediction use it 

regardless; in the cases where both programs are less certain of their exon prediction use it if 

they both agree. 

  Both Genscan and HMMgene produce output files for each DNA sequence submitted. 

The output files give the details of the gene structure predictions made by the programs. Each 

file contains enumerated exons with their location, type and probability score. Exons are 

labeled according to the gene they belong to. The sample Genscan and HMMgene output 

files are given in Appendix C. The methods that are described below use the information 

from the output files to decide on the candidate exons. Three different algorithms EUI (Exon 

Union-Intersection), GI (Gene Intersection) and EUI_frame (Exon Union-Intersection with 

Reading Frame Consistency) are described: 

 

 23



  

Algorithm EUI (Exon Union-Intersection) 

 

1. Consider all the Genscan and HMMgene exons that have exon probability score 

greater or equal to a threshold pth. The regions predicted by at least one of the 

programs are labeled as EUI exons (exon union - see Figure 2).  

2. Consider all the Genscan and HMMgene exons that have exon probability score 

less than pth. The regions predicted by both programs are labeled as EUI exons (exon 

intersection - see Figure 2). 

 

 Consequently, a Genscan or HMMgene exon that does not overlap any exon predicted 

by the other program will be accepted if its exon probability is greater or equal to pth and 

refused otherwise. 

There is one exception for step 1: if Genscan's internal exon has the same right 

boundary (donor site) as HMMgene's initial exon (both exons have the score greater or equal 

to pth) choose HMMgene's exon prediction as an EUI exon. This ‘initial exon rule’ was 

incorporated into the EUI method after the analysis showed that Genscan often predicts 

initial exons as internal, which have the correct donor site but false acceptor site preceding 

the true ATG codon. HMMgene's predictions of the initial exons are more accurate (Table 5). 

 

Algorithm GI (Gene Intersection) 

 

1. For each program's prediction select regions predicted as genes (genes are treated 

as continuous sequence from the beginning of the first predicted exon in the gene to  

the end of the last predicted exon). Regions predicted by both programs are labeled as 

GI genes (gene intersection - see Figure 2). 

2. Apply the EUI method to those exons that completely belong to GI genes (where 

both exon boundaries are within a GI gene). 
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 This approach is primarily designed for identification of genes in long genomic 

regions where another level of constraints, namely considering only exons that belong to 

regions predicted as genes by both programs, helps further eliminate numerous wrong exons 

typical for ab initio predictions in the long sequences. 

                                          

Algorithm EUI _frame (Exon Union-Intersection with Reading Frame Consistency) 
 

This method applies the EUI method to the Genscan and HMMgene predictions while 

maintaining reading frame consistency: 

 

1. For each program's prediction determine the gene boundaries and to each gene 

assign a gene probability calculated as the average of exon probability scores for all 

the exons contained in that gene. For each predicted exon determine the positions of 

acceptor and donor site in a reading frame of a gene it belongs to. 

2. If the gene predicted by Genscan overlaps the gene predicted by HMMgene, 

choose the one with the higher gene probability to impose the reading frame. Apply 

the EUI method to the exons belonging to the selected genes accepting EUI exons 

only if they are in the chosen reading frame. 

 

The threshold value pth that is used in all three methods has been empirically derived 

using the HMR195 dataset. The optimal value is pth=0.775. However, the methods' accuracy 

results show very low sensitivity to the threshold variation, as can be observed in Figure 3. 

The average exon accuracy varies from 0.78 to 0.81 for EUI method and 0.79 to 0.82 for the 

GI method when the threshold value changes from 0.45 to 0.95. For both methods 

(ESn+ESp)/2 peaks when pth is between 0.75 and 0.80, and accordingly the average of these 

two values is chosen to be the threshold value. The details about the algorithms previously 

described can be found in Appendix A. 
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Figure 3: Threshold sensitivity – Average exon accuracy vs. threshold value. The optimal 
threshold value is pth = 0.775. 
 

 

3.4 Results 
 

 

Accuracy measures for the three methods as well as for Genscan and HMMgene on the 

HMR195 dataset are given in Table 9. The numbers in bold indicate an improvement when 

compared to either of the two programs. It can be observed that each of the methods 

outperforms Genscan and HMMgene in all categories except for nucleotide level sensitivity 

(Sn) and proportion of missed exons (ME). The results in Table 9 suggest that each of three 

methods improve specificity more than sensitivity at both the nucleotide and exon levels. 

While sensitivity is decreased at the nucleotide level from 0.95 for Genscan to 0.91 - 0.94 for 

the methods, specificity is increased from 0.93 for HMMgene to 0.96 for GI method (3.2% 

increase) and 0.95 for EUI and EUI_frame methods (2.2% increase). At the exon level, 

sensitivity increased from 0.76 for HMMgene to 0.79 for EUI (3.9% increase) and 0.78 for 
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GI and EUI_frame methods (2.6% increase), while specificity increased from 0.77 for 

HMMgene to 0.86 for GI (11.7% increase) and 0.83 for EUI and EUI_frame methods (7.8% 

increase). These numbers also imply that improvements are substantially better at the exon 

level than at the nucleotide level, which is also supported by an increase of 2.2% in AC and 

an increase of 7.9% in (ESn+ESp)/2, when comparing only the highest accuracy values for 

the programs and the methods. While the number of missed exons was not improved by 

either of the methods, the number of wrong exons was substantially decreased: Genscan 

predicted 104 wrong exons, HMMgene 81 and the GI method only 44. 

 Results for the Burset/Guigo control set are summarized in Table 10. Bold numbers in 

Table 10 have the same pattern of appearance as in Table 9, which indicates that 

improvements are accomplished in the same categories. Similarly to the results in Table 9 

improvements are better for specificity at both levels and generally better for exon level 

measures than for nucleotide level measures. The increases in accuracy values for this dataset 

were somewhat lower than for the HMR195 dataset. 
   

Nucleotide accuracy Exon accuracy 
METHODS # no 

prediction 
Sn Sp AC ESn ESp (ESn+Esp)/

2 ME WE 

Genscan  3 0.95 0.90 0.91  0.70 0.70 0.70  0.08 
(76) 

0.09 
(104) 

HMMgene  5 0.93 0.93 0.91  0.76 0.77 0.76  0.12 
(128) 

0.07 
(81) 

EUI  3 0.94 0.95 0.93  0.79 0.83 0.81 0.10 
(104) 

0.04 
(55) 

GI  15 0.91 0.96 0.92 0.78 0.86 0.82 0.19 
(149) 

0.03 
(43) 

EUI_frame  3 0.93 0.95 0.93 0.78 0.83 0.80 0.11 
(115) 

0.03 
(46) 

 
Table 9: Results for HMR195 – For each sequence in the HMR195 test set, the forward (+) 
strand exons in the default outputs of the programs tested were compared to the annotated 
exons. The standard measures of predictive accuracy on nucleotide and exon level were 
calculated for each sequence and averaged over all sequences for which they were defined. 
The second column gives the number of sequences where no prediction was made. The 
numbers in parenthesis in the last two columns are the actual numbers of missed and wrong 
exons, respectively. 
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Nucleotide accuracy Exon accuracy 
METHODS # no 

prediction 
Sn Sp AC ESn ESp (ESn+Esp)/

2 ME WE 

Genscan  8 0.94 0.93 0.92 0.78 0.81 0.80 0.09 
(203) 

0.05 
(188) 

HMMgene  38 0.93 0.94 0.92 0.81 0.83 0.82 0.14 
(308) 

0.04 
(139) 

EUI  20 0.94 0.96 0.93 0.83 0.88 0.85 0.12 
(250) 

0.03 
(98) 

GI  43 0.91 0.97 0.93 0.82 0.90 0.86 0.18 
(386) 

0.02 
(67) 

EUI_frame  27 0.93 0.96 0.93 0.83 0.88 0.85 0.13 
(286) 

0.03 
(87) 

 
Table 10: Results for Burset/Guigo dataset – For each sequence in the Burset/Guigo test 
set, the forward (+) strand exons in the default outputs of the programs tested were compared 
to the annotated exons and the standard measures of accuracy calculated. 

 
 

The results on the 3Mb Adh Drosophila region are shown in Table 11. The values for 

Sn, ESn and ME are calculated using annotation set st1 and the values for Sp, ESp and WE 

are calculated using st3. The rationale for this lies in the way these sets are built: st1 contains 

a subset of all genes in the Adh region that are correct in the details, while the st3 dataset is 

believed to be complete but the confidence in its correctness is not as high as for the st1 

dataset. Thus, sensitivity, which is the measure of how well a program can predict the real 

coding features in a sequence, is more accurately estimated from st1 because we are sure that 

these annotations are correct. On the other hand, specificity, which is the measure of how 

well a program avoids false positive predictions, is better estimated from st3, which is 

thought to be complete. Similarly to the results for the previous two datasets, the three 

introduced methods have improved specificity more than sensitivity. At the nucleotide level  

specificity increased from 0.62 for Genscan to 0.75 for GI and EUI_frame methods (21.0% 

increase) and 0.69 for EUI method (11.3% increase), while the sensitivity values for the 

methods were less than or equal to the ones for the programs. At the exon level specificity  
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Nucleotide accuracy Exon accuracy 
METHODS 

# of 
predicted 

exons Sn Sp ESn ESp ME WE 

Genscan 1696 0.96 0.62 0.59 0.40 0.14 
(15) 

0.51  
(873) 

HMMgene 2101 0.95 0.61 0.49 0.19 0.14 
(16) 

0.66 
(1379) 

EUI 1376 0.96 0.69 0.62 0.40 0.13 
(14) 

0.46 
(632) 

GI 1043 0.92 0.75 0.56 0.49 0.19 
(21) 

0.35 
(366) 

EUI_frame 912 0.83 0.75 0.55 0.53 0.23 
(25) 

0.35 
(318) 

 
Table 11: Results for Drosophila Adh region – Sn, ESn and ME are reported for st1 
annotation set and Sp, ESp and WE are reported for st3 annotation set. All the methods are 
tested on the both strands of Adh region. 
 
 
increased from 0.40 for Genscan to 0.49 for GI (22.5% increase) and 0.53 for EUI_frame 

(32.5% increase), while sensitivity increased by 5.1%,  (from 0.59 to 0.62) for EUI method 

and slightly decreased for the rest two methods when compared to the programs' best 

sensitivity result ESn=0.59. The EUI method has the lowest ME among the programs and the 

methods, while GI and EUI-frame have missed 6 and 5 more exons than Genscan, 

respectively. The last column in Table 11, showing the proportion of the wrong exons, 

illustrates the most important advantage of the methods over Genscan and HMMgene when 

used on a long genomic region: the number of false positive exons decreased from 873 for 

Genscan and 1379 for HMMgene to 632 for EUI, 366 for the GI and 318 for EUI-frame 

methods. The overall high numbers for WE are the result of a known shortcoming of gene-

finding programs: overpredicting exons and genes in long stretches of genomic sequences 

(Dunham, 1999). 

  The results for HMMgene shown in Table 11 differ from those shown in Reese 

(2000) and Krogh (2000) for two reasons: first, the results that we report are only for ab 

initio gene-finding without using any of the additional sources of evidence, which have been 

incorporated in HMMgene for GASP purposes (Krogh, 2000) and second, the st1 standard 

set that we used is a refined version of the set used for the original GASP evaluation.  
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3.5 Discussion 

 

 

The analysis of gene-finding programs presented in the previous chapter shows that the 

weakest component of the current programs is signal detection, especially the detection of 

initiation and termination codons, which lowers the exon level prediction accuracy. From the 

definitions of the exon level sensitivity and specificity in Section 2.4.2 it is obvious that TE 

value is directly proportional to ESn and ESp. Therefore, if the correct splice site is missed, 

even by just a couple of nucleotides, the predicted exon will not be counted as a ‘true’ exon, 

which simultaneously decreases ESn and ESp. Thus, the exon prediction accuracy could be 

improved in two ways: identifying the correct exon boundaries would increase the number of 

‘true’ exons, at the same time increasing both the exon sensitivity and specificity, and 

reducing the number of predicted exons (PE) would increase exon specificity. Of course, 

only the dismissal of the falsely predicted exons would be beneficial for the overall increase 

in ESp. 

The EUI method, which is also incorporated in the other two methods introduced 

above, attempts to simultaneously find more probable exon boundaries and to discard the low 

confidence exons. As shown in Burset and Guigo (1996) and Murakami and Tagaki (1998), 

selecting the union of the exons predicted by two programs (OR-method) would result in 

increased sensitivity but decreased specificity and analogously, the intersection of the exons 

(AND-method) would increase specificity but decrease sensitivity. The EUI method 

integrates these two approaches by using them selectively depending on the confidence in 

exon correctness. When the probability scores for the two overlapping predicted exons are 

high (greater than or equal to pth) the coding region predicted by either of the programs is 

chosen to be a resulting EUI exon. This potentially increases the sensitivity of the prediction, 

which is already supposed to be specific according to Figure 1 (proportion of the correctly 

predicted exons is almost equivalent to the specificity). When the exon scores for the two 

overlapping exons are low (less than pth), the region predicted to be coding by both of the 

programs is selected to be the resulting exon, which potentially improves the specificity of 

the prediction. A ‘stand-alone’ exon that does not overlap with any exon predicted by the 
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other program will be accepted only if it has an exon score greater or equal to pth. This further 

improves exon specificity by eliminating low probability exons that have a high chance of 

being wrong. 

The relationship between Genscan and HMMgene prediction scores is shown in 

Figure 4. Each exon predicted by either of the two programs is represented by a data point in 

the graph. If two exons overlap they are represented by one dot whose coordinates 

correspond to the Genscan and HMMgene exon scores. The dots on the x- and y-axes 

represent exons predicted only by one program. We can distinguish three classes of exons 

from this scatter plot: the exons on the axes of the plot, which are ‘stand-alone’ exons, the 

exons predicted by both programs (they do not have to be exactly identical) with very high 

score, and the exons predicted by both programs whose scores from the two programs are not 

tightly correlated. This graph further emphasizes the non-correlation hypothesis for the two 

programs: first, there are many exons predicted by only one program, as shown in Table 8, 

and also even if the two predictions overlap, very often their scores do not agree closely. 

Figure 5 presents all the false positive exon predictions made by either program. The 

exons are represented in the same way as in Figure 4. Figure 5 clearly shows that most of the 

wrong exons predicted by one program were not predicted by the other – only 55 of 447 dots 

in the graph are not found on the axes. Comparing Figure 4 to Figure 5, we can see that the 

false exons predicted by both programs are buried among numerous true predictions and it 

appears to be impossible to distinguish them using solely the exon scores. However, the 

exons plotted on the axes of the graph in Figure 5 can be easily excluded if we choose to 

keep only the exon predicted by both programs. This is exactly what the EUI algorithm is 

doing, except that it also retains all the ‘stand-alone’ exons with the probability greater than 

the threshold pth. Figure 5 shows that dense clusters of dots on the axes of the plot are 

terminated around pth and there are fewer false positives with a score higher than pth. The 

value for pth determines the trade-off between sensitivity and specificity and by choosing 

pth=0.775 we are making them as balanced as possible. 
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 Figure 4: Probability scores of all the exons predicted by Genscan and HMMgene. 
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Figure 5: Probability scores of all the false positive exons predicted by Genscan and 

HMMgene.
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 The EUI method was primarily designed to improve prediction accuracy on the 

relatively short sequences containing only one gene, which resemble the sequences used for 

training of gene prediction programs. Genscan and HMMgene do rather well when predicting 

genes in these sequences: the majority of the actual exons is identified, at least partially, and 

the fraction of false positive exons is only around 5%. Although this results in fairly high 

accuracy measures at the nucleotide level, the exon level accuracy is affected by weakness of 

the signal detection, which often misses exact exon boundaries. In order to improve the 

prediction accuracy EUI attempts to correct exon boundaries using the union and intersection 

of exons; only a very small number of exons get discarded due to low exon scores. This 

approach gives more correctly predicted exons than any other method resulting in the highest 

exon sensitivity for each of the test datasets.  

On the other hand, GI was designed for longer genomic sequences containing more 

than one gene, for which gene-finding programs generally make more false positive 

predictions. To reduce the high rate of wrong exons GI first chooses gene candidates to be 

those regions predicted as genes by both programs. In this algorithmic step many genes that 

are predicted by just one program and many exons that do not belong completely to the 

newly selected GI gene get eliminated. In the next step the EUI method is applied to the 

resulting GI genes. These two rounds of exon elimination get rid of many falsely predicted 

exons resulting in considerably higher specificity than both programs and the EUI method.  

As can be inferred from the definition of the methods, EUI or GI exons that belong to 

the same gene are not guaranteed to be in the same reading frame. Frame consistency is lost 

when exon boundaries are changed by applying the EUI algorithm. In order to investigate the 

effect of frame consistency on EUI method we designed the EUI_frame method that uses the 

EUI algorithm to combine the predictions from Genscan and HMMgene, while maintaining a 

single reading frame. The program with the highest average exon score dictates the reading 

frame of the final prediction: exons whose boundaries are modified by the EUI method or 

high scoring ‘stand-alone’ exons (score ≥ pth) will be accepted in the final prediction only if 

they do not disrupt the chosen reading frame. Surprisingly, this method gave almost identical 

results to those of EUI on HMR195 and Burset/Guigo datasets. After the analysis of the 

results it was found that EUI_frame missed some of the exons that were correctly predicted 
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by EUI and at the same time eliminated some of the wrong exons predicted by EUI. These 

differences were proportionally too small to change the overall prediction accuracy except 

for the slight decrease in the sensitivity. Being trained on sequences similar to those from 

HMR195 and Burset/Guigo datasets, the Genscan and HMMgene predictions on these two 

datasets are fairly accurate and similar: overlapping exons are usually in the same reading 

frame and there are not many false positive predictions that could disrupt the reading frame. 

This is why EUI and EUI_frame have almost identical results on the first two datasets. 

However, the Adh region sequence is much longer than any of the training sequences and 

contains a couple of hundred of genes, which presents a serious challenge for any gene-

finding program. The Genscan and HMMgene prediction accuracy for this region is 

substantially weaker than for the other two datasets: while most of the coding nucleotides 

have been identified correctly in many cases exact exon boundaries are missed resulting in 

much lower exon sensitivity and specificity. The major problem is the huge number of the 

wrong exons, which outcomes in the drastic decrease in the specificity at both levels. These 

characteristics of the Genscan and HMMgene predictions resulted in many reading frame 

disruptions in the EUI genes and thus caused elimination of more than 400 of exons when 

EUI_frame was applied. Most of the dismissed exons were false positives, but a few of the 

‘true’ exons were also sacrificed. The discrepancy between the EUI and EUI_frame results is 

notable: due to the twofold decrease in the number of wrong exons EUI_frame has 

substantially higher specificity at both levels than EUI, but at the same time sensitivity was 

decreased, especially at the nucleotide level owing to the exceptionally large size of exons 

missed by EUI_frame method. 

 By selecting more probable exon boundaries exon level accuracy is directly 

improved. This does not have to affect the nucleotide level accuracy significantly since the 

correct splice site could have been missed by just a couple of nucleotides and the correction 

will just slightly change Sn, Sp and AC. This explains why exon level accuracy is more 

improved than nucleotide level accuracy, as observed in Tables 9-11. Another phenomenon, 

observable for all three datasets, is that specificity is improved more than sensitivity at both 

levels. Since it is impossible for the EUI and GI methods to predict an exon that was initially 

missed by both programs, which would directly improve sensitivity of the prediction, the 
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methods attempt to improve the accuracy of the predictions by correcting the exon 

boundaries and eliminating potentially wrong exons. The effect of this is that EUI and GI 

have approximately one half as many wrong exons as the individual programs, which 

primarily improves Sp and ESp. 

Although Tables 9-11 show that the methods introduced have improved accuracy 

measures for all three datasets they were tested on, the level of improvement varies among 

them. The results on the Burset/Guigo dataset show the lowest increase in the accuracy 

measures. This dataset has been available since 1996 and it contained the vast majority of 

available vertebrate genomic sequences at the time it was assembled. It is realistic to assume 

that, in many cases, the training sets of gene-finding programs developed afterwards overlap 

with the Burset/Guigo dataset and this is probably the case with the training datasets of 

Genscan and HMMgene. This assumption is supported by the programs' high accuracy 

results on this dataset, shown in Table 10. Since the programs have been trained on at least a 

subset of Burset/Guigo dataset, their predictions are often correct and identical. 

Consequently, the combination of their predictions does not improve prediction accuracy as 

much as for the new HMR195 dataset. 

The highest increase in prediction specificity is achieved on the Adh region. In this 

region the GI and EUI_frame methods have 21% higher specificity at nucleotide level, while 

at the exon level GI has 22.5% and EUI_frame 32.5% higher specificity when compared to 

the Genscan's accuracy results. This unusually high increase in specificity is a direct result of 

decreased number of false positive predictions. In long genomic sequences, such as the 

sequence of the Adh region, gene-finding programs make many false exon predictions, which 

lowers specificity at both levels. The effect of this shortcoming is also observable in our 

tables: the specificity values for Genscan and HMMgene at both levels are substantially 

lower for the Adh region than for the other two datasets. Each of the methods succeeded in 

eliminating many of the wrong exons predicted by Genscan and HMMgene, EUI_frame 

being the most successful by having approximately one quarter of the false positive exon 

predictions of HMMgene. However, this substantially increased specificity was also coupled 

with decreased sensitivity for the GI and EUI_frame methods. The decrease was marginal at 

the exon level since GI and EUI_frame had just a few correctly predicted exons less than 
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Genscan, but more substantial at the nucleotide level due to the unusually large size of the 

exons completely missed by the methods. 

Since Genscan was used to build the st3 annotation set, it is obvious that the values in 

Sp, ESp and WE columns are not truly independent results of Genscan's and the methods' 

performance in the long genomic regions. Although only 40 of 222 annotated genes in st3 did 

not have any additional evidence except for strong Genscan and Genefinder prediction, it is 

very likely that the authors of st3 were also relying on Genscan's exon boundaries when other 

evidence were available. This can be inferred from the significantly higher ESp (and lower 

WE) for Genscan than for HMMgene, which cannot be observed for other datasets. However, 

our goal is to show the performance of the methods, rather than to give an independent 

evaluation of the programs on the Adh region and for that purpose the results in Table 11 are 

useful, showing that even though st3 was tailored using Genscan's predictions our methods 

have higher accuracy than Genscan. 

 

 

3.6 Conclusion from the combination of predictions from 

gene-finding programs 
 

 

We have developed three methods, EUI, GI and EUI_frame, for combining exon predictions 

from two gene-finding programs, Genscan and HMMgene, which successfully improve 

prediction accuracy, especially on long genomic sequences. The improvements have been 

obtained at both the nucleotide and exon levels and for all three datasets used for testing. The 

major advantage of the methods is the elimination of many false positive exon predictions, 

which directly improves the specificity at both levels. 

While other sources of evidence, such as database or EST matches, are indispensable 

in the search for genes it is definitely worthwhile improving accuracy of ab initio gene 

prediction, which is essential when other evidence is not available. Our study demonstrates 

that the accuracy of gene-finders can be improved exploiting only currently available 
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methods. Using the Genscan and HMMgene predictions as two partially independent sources 

of evidence and integrating them using variations of one basic approach the methods 

succeeded in correcting the exon boundaries, getting more exactly predicted exons, and in 

eliminating many false positive exons. The three methods presented have different strengths 

and are suitable for different purposes, depending whether sensitivity, specificity or reading 

frame consistency is the more valued characteristic of the predictions. 
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Chapter 4 
 

Conclusion and future work 
 

 

Separate conclusions for the evaluation of gene-finding programs and the combination of 

programs’ predictions are given at the end of Chapter 2 and Chapter 3, respectively. Here, we 

will discuss the overall contributions of the thesis and give some directions for future work. 

The evaluation of gene-finding programs given in this thesis is the first independent 

analysis of the new generation of programs. Since these programs are extensively used to 

analyze newly sequenced genomes and their predictions have a significant effect on 

interpretation of the genomic data, it is essential to have a realistic conception about their 

performance. The analysis of various aspect of the programs’ prediction accuracy presented 

in Chapter 2 is comprehensive, unbiased and carefully carried out on a new independent 

dataset and as such could serve as a valuable reference to the gene-finding community. 

The analysis of the programs’ performance in relationship with some features of the 

input sequence as well as some features of the predicted genes pinpoints the strength and 

weaknesses of the individual programs analyzed and the gene-finding programs in general. 

Knowing the particular prediction features of the available programs might help users select 

the best program for a specific task. Also, identifying the drawbacks of the programs will 

make the users more aware of the potential mistakes that programs make that could lead to 

inaccurate interpretations and conclusions. 

One of the important contributions of our research is the construction of the HMR195 

dataset. There is a high demand for the datasets of this profile, not only for training and 
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testing of the gene-finding programs, but also for other similar purposes (e.g., TSS and 

promoter recognition, splice site recognition) and very few datasets similar to HMR195 are 

available. The high quality of the dataset lies in its thoroughly filtered sequences, its non-

redundancy and especially in its biologically validated annotation, which is a rare feature 

among other DNA datasets. 

One of the conclusions drown from the analysis of gene-finding programs is that 

current programs, while significantly improved when compared to the programs of the older 

generation, are still not capable of autonomous gene discovery. Considering the huge amount 

of sequence data needed to be analyzed daily and that results of these gene identification 

analysis are basis for further lengthy and costly experiments it is clear that any improvements 

in gene prediction accuracy would have a significant practical importance. Although the 

methods presented in Chapter 3 are computationally straightforward and mostly intuitively 

and empirically derived their prediction accuracy is higher than for any single gene-finding 

program. Besides the practical value of the accuracy results, this approach could also serve as 

a basis or inspiration for development of a future generation of programs. 

Overall, the contributions of this thesis are primarily of interest to biologist and are 

more practical than theoretical, though not without theoretical impact. 

 

Future work 
 

The methods developed in this thesis work well in practice; however, we did not offer 

much in terms of theoretical foundation. Therefore, one immediate extension of the work 

presented here would be to set up a theoretical framework that would explain the success of 

the methods in a more formal way. There is a substantial body of research on the 

combination of evidence from two or more experts (Spiegelhalter et al., 1990); this is one of 

the directions one could explore in search of a theoretical framework that would also allow 

the computation of reliable exon scores and might lead to further improvements in prediction 

accuracy. 

 Another direction one could pursue, based on the results of this thesis, is further 

development and improvement of the methods for combining the predictions from gene-
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finding programs. There are two possible approaches: improving the combination of ab initio 

gene-finders, either by modifying the methods presented in this thesis to include more than 

two programs, or elaborating on the existing algorithms by taking into account some 

additional characteristics of the exon predictions given by Genscan and HMMgene. The other 

obvious approach is to include other sources of evidence, such as similarity to a protein or 

EST sequence, or the presence of repeat elements in a query sequence. Recently, some gene-

finding programs have been developed or upgraded to use prior knowledge about the 

sequence when searching for genes (HMMgene (Krogh, 1997), GeneScope (Burge, in 

preparation)), and it has been shown that this approach results in higher prediction accuracy. 

However, these integrated systems incorporate only one gene-finding program and our 

results presented in this work suggest that using additional programs would lead to further 

improvements.  

 It is our opinion that the newly assembled HMR195 dataset was the most suitable set 

of genomic sequences for the purposes of the gene-finding evaluation and analysis presented 

in Chapter 2. Nevertheless, the sequences in this dataset are not typical of sequences 

submitted to gene prediction algorithms for analysis: they are relatively short sequences 

containing only one complete gene, which is usually less complex than a typical mammalian 

gene (shorter, less exons), and flanked by unrealistically short stretches of intergenic regions. 

With the human genome sequencing project well underway, more realistic sequences that are 

well annotated (which is currently not the case) will become available and these should be 

used to reevaluate gene-finding programs and provide more credible results. Currently, a 

more realistic dataset could be obtained by also including sequences containing partial and 

multiple genes. The problems associated with the selection of these sequences are doubtful 

annotation (many partial genes are not in the final finished form) and increased difficulty of 

verification of the annotation.  

 Finally, as our analysis in Chapter 2 pointed out, the weakest component of current 

gene-finding programs is signal detection and attempting to improve signal sensors appears 

to be a fruitful research direction. 
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Appendix A 
 

Implementation of the algorithms for combining 

Genscan and HMMgene predictions  
 

 

All three algorithms presented in Section 3.3 are implemented in the Perl programming 

language. Each program first parses two input files, the Genscan and HMMgene output files 

for the same DNA sequence, obtaining the information about the exons predicted by the 

programs. For each exon, acceptor and donor site locations and exon type and score are 

stored in separate arrays. From this point the algorithms differ and they are described  

separately: 

 

The EUI algorithm 
 

Once the predicted exons are read from the input files they are divided into two groups: in the 

first group are the exons that have the probability score ≥ pth and in the second group are the 

exons with the lower score. Here is the brief outline of the remainder of the algorithm: 

 

 For each Genscan and HMMgene exon from the first group: 

• If Genscan’s exon is the type “Initial” and has the same donor site as the 

HMMgene’s exon, HMMgene’s exon will be chosen for EUI exon 
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• If two exons overlap: 

o For the acceptor site of the EUI exon select the left boundary of the 

exon that is closer to the beginning of the input sequence 

o For the donor site of the EUI exon select the right boundary of the 

exon that is closer to the end of the input sequence 

• All the exons from this group that do not overlap any other exon are accepted 

as EUI exons 

  

For all the EUI exons found: 

• If the two adjacent exons overlap, merge them (this can occur if, for example, 

Genscan’s exon overlaps two HMMgene’s exons) 

 

For each Genscan and HMMgene exon from the second group: 

• If two exons overlap: 

o For the acceptor site of the EUI exon select the left boundary of the 

exon that is closer to the end of the input sequence 

o For the donor site of the EUI exon select the right boundary of the 

exon that is closer to the beginning of the input sequence 

• ‘Stand-alone’ exons from this group are not considered as EUI exons 

 

Sort the EUI exons by their location in the sequence and print them out to an output 

file. 
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The GI algorithm 
 

While reading the exons from the input files this algorithm also finds the locations of the 

genes predicted in the sequence. 

 

 For each Genscan and HMMgene gene:  

• If two genes overlap:  

o For the beginning of the GI gene select the left boundary of the gene 

that is closer to the end of the input sequence 

o For the end of the GI gene select the right boundary of the gene that is 

closer to the beginning of the input sequence 

• ‘Stand-alone’ genes that do not overlap any other gene predicted by the other 

program are not considered as GI genes 

 

The exons that completely belong to one of the GI genes are divided in two groups 

according to their scores as described in EUI algorithm. From this point on the algorithm 

continues the same as the EUI algorithm. 

 

The EUI_frame algorithm 
 

Similarly to the first part of the GI algorithm, the EUI_frame algorithm also computes the 

locations of the genes predicted in the input sequence and to each gene assigns a gene 

probability as the average of the scores of the exons belonging to that gene. 

 The next step in the algorithm is to determine the acceptor and donor site positions in 

a reading frame for each exon predicted. Position in the reading frame can be 0, 1 or 2 

depending if a splice site is right between the codons, after the first nucleotide in the codon or 

after the second nucleotide in the codon. The reading frame position of the acceptor site of an 

exon (excluding the initial one) is equal to the reading frame position of the donor site of the 

previous exon (see Figure 6). 
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Figure 6: Determining values for acc_exon and don_exon. 

  

 

In the following pseudo-algorithm for determining reading frame position variables 

acc_frame and don_frame denote the position of the acceptor and donor site in the reading 

frame, respectively, and beg_exon and end_exon for the location of the exon acceptor and 

donor site, respectively. 

 

 For each Genscan and HMMgene gene: 

• If the first exon belonging to the gene is the type “Initial” 

o For the first exon 

� acc_frame = 0 

� don_frame = (end_exon – beg_exon +1) % 3 

o for each following exon until the end of the gene 

� acc_frame = don_frame(of previous exon) 

� don_frame = (end_exon – beg_exon +1 – (3 - acc_frame)) % 3 

• If the first exon belonging to the gene is the type “Single” 

o acc_frame = 0 

o don_frame = 0 

• If gene’s first exon is not the type “Initial”, but its last exon is the type 

“Terminal” 

o for the last exon 

� don_frame = 0 

� acc_frame = (end_exon – beg_exon +1) % 3 

o for each preceding exon until the beginning of the gene 
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� don_frame = acc_frame(of previous exon) 

� acc_frame = (end_exon – beg_exon +1 - don_frame) % 3 

• If all the exons in the gene are the type “Internal” 

o Find the exon predicted by the other program that has the same exon 

boundaries as any of the “Internal” exons 

o Copy acc_frame and don_frame from that exon and then proceed ‘left’ 

and ‘right’ to the first and the last exon, computing the values for 

acc_frame and don_frame as previously described 

Divide the predicted exons into two groups according to their scores. 

 

 For each Genscan and HMMgene gene: 

• If two genes overlap: 

o Select the one with the higher gene probability to dictate the reading 

frame. All the exons belonging to that gene with the score ≥ pth are 

initially accepted as EUI exons (but some of their boundaries might 

change if they overlap with the exons predicted by the other program) 

o If two exons overlap: 

� change EUI exon’s left boundary only if the left boundary of 

the exon belonging to the lower probability gene is closer to the 

beginning of the input sequence and  

(beg_exon_EUI – beg_exon) % 3 = 0 

� change EUI exon’s right boundary only if the right boundary of 

the exon belonging to the lower probability gene is closer to the 

end of the input sequence and  

(end_exon – end_exon_EUI) % 3 = 0 

Sort the EUI exons by their location in the input sequence. 

 

All the exons belonging to the lower probability gene that have score ≥ pth and do not 

overlap any of the EUI exons are stored as EUI_cand exons. Also, all the intersections of the 

exons from the second group are stored as EUI_cand exons. 
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Sort the EUI_cand exons by their location. 

 

• Select all the EUI_cand exons that are located before the first EUI exon: 

o Going from the last (closes to the first EUI exon) to the first exon 

� The first exon that has  don_exon = acc_exon_EUI  is accepted 

� The exon preceding the accepted exon is accepted if 

don_exon = acc_exon(accepted exon)  

 

• Select all the EUI_cand exons that are located after the last EUI exon: 

o Going from the first (closest to the last EUI exon) to the last exon 

� The first exon that has  acc_exon = don_exon_EUI  is accepted 

� The exon following the accepted exon is accepted if 

acc_exon = don_exon(accepted exon)  

• For each pair of the adjacent EUI exons select all the EUI_cand exons that are 

located between the two EUI exons: 

o Going from the first (closest to the ‘left’ EUI exon) to the last exon 

� The first exon that has  acc_exon = don_exon_EUI  is stored 

� The exon following the stored exon is also stored if 

don_exon = acc_exon(accepted exon)  

o If the last stored exon has don_exon = acc_exon_EUI  then all the 

stored exons are accepted as EUI exons, else go ‘backwards’ to the 

first stored exon until don_exon = acc_exon_EUI  and then accept all 

the stored exon up to that one 

 

Sort the EUI exons by their location in the sequence and print them out to an output 

file. 
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Appendix B 
 

List of sequences in HMR195 
 
 
Accession Definition line 
 
 
AB016625 Homo sapiens OCTN2 gene  

AF008216 Homo sapiens candidate tumor suppressor pp32r1 (PP32R1) gene 

AF092047 Homo sapiens homeobox protein Six3 (SIX3) gene  

AF096303 Homo sapiens putative sterol reductase SR-1 (TM7SF2) gene  

AF019563 Homo sapiens DAP12 gene  

AB012922 Homo sapiens MTA1-L1 gene  

U25134 Human carbonic anhydrase V (CA-V) gene 

U17081 Human fatty acid binding protein (FABP3) gene  

AB021866 Homo sapiens KIP gene  

AF039704 Homo sapiens lysosomal pepstatin insensitive protease (CLN2) gene 

AF082802 Homo sapiens telencephalin (ICAM5) gene  

AF039954 Homo sapiens CC chemokine LCC-1 precursor gene  

AB018249 Homo sapiens gene for CC chemokine LEC  

AF099731 Homo sapiens connexin 31.1 (GJB5) gene  

AF099730 Homo sapiens connexin 31 (GJB3) gene  

AF039401 Homo sapiens calcium-dependent chloride channel-1 (hCLCA1) gene 

AF084941 Homo sapiens pre-T cell receptor alpha chain 1 precursor gene  

AF059675 Homo sapiens putative RNA helicase Ski2w (SKI2W) gene  

AF007189 Homo sapiens claudin 3 (CLDN3) gene  
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AF016898 Homo sapiens B-ATF gene  

AF076214 Homo sapiens prophet of Pit1 (PROP1) gene  

AB012113 Homo sapiens gene for CC chemokine PARC precursor  

AB019534 Homo sapiens gene for cathepsin L2  

AF080237 Homo sapiens Rho GDP-dissociation inhibitor gamma (ARHGDIG) gene 

AF071596 Homo sapiens apoptosis inhibitor (IEX-1L) gene  

U43842 Homo sapiens bone morphogenetic protein-4 (hBMP-4) gene  

AF053455 Homo sapiens tetraspan TM4SF (TSPAN-5) gene  

AF071216 Homo sapiens beta defensin 2 (HBD2) gene  

AF058761 Homo sapiens ribosomal protein S12 gene 

Y16791 Homo sapiens hHa5 gene 

AB016492 Homo sapiens hJTB gene  

AF001689 Homo sapiens ribosomal protein L23A (RPL23A) gene  

AF029081 Homo sapiens 14-3-3 sigma protein promoter and gene  

U96846 Human natural killer protein group 2-F (NKG2-F) gene  

AF027152 Homo sapiens P450 25-hydroxyvitamin D-1 alpha hydroxylase  

U55058 Human uroguanylin gene  

AF068624 Homo sapiens 5-aminolevulinate synthase 2 (ALAS2) gene 

AF053069 Homo sapiens NADH:ubiquinone dehydrogenase 51 kDa subunit (NDUFV1)  

AF032437 Homo sapiens mitogen activated protein kinase activated protein  

AF007876 Homo sapiens Na,K-ATPase beta 2 subunit gene  

AF051160 Homo sapiens tyrosine phosphatase (PRL-1) gene  

AF022382 Homo sapiens UDP-galactose 4' epimerase (GALE) gene  

AF045999 Homo sapiens rod cGMP phosphodiesterase delta subunit (PDEd) gene  

U53447 Homo sapiens PAPS synthase gene  

AF009356 Homo sapiens regulator of G-protein signaling-16 (RGS16) gene 

AF019409 Homo sapiens uncoupling protein 2 (UCP2) gene  

AF015224 Homo sapiens mammaglobin gene  

AF042782 Homo sapiens galanin receptor type 2 (GALR2) gene  

AF037207 Homo sapiens persyn gene  
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AB016243 Homo sapiens gene for regulatory factor 2 of sodium/hydrogen  

AF049259 Homo sapiens keratin 13 gene  

AB012668 Homo sapiens hFuc-T VII gene for selectin-ligand synthase 

AF052572 Homo sapiens chemokine receptor CXCR4 gene 

AF042001 Homo sapiens zinc finger protein slug (SLUG) gene  

AF055475 Homo sapiens GAGE-8 gene  

AF055903 Homo sapiens cathepsin W gene  

AF053630 Homo sapiens monocyte/neutrophil elastase inhibitor gene 

AF027148 Homo sapiens myogenic determining factor 3 (MYOD1) gene 

AB007828 Homo sapiens gene for necdin  

AF044311 Homo sapiens gamma-synuclein gene  

AF061327 Homo sapiens cyclin-dependent kinase 4 inhibitor D p19 gene 

AF059650 Homo sapiens histone deacetylase 3 (HDAC3) gene  

AB010874 Homo sapiens gene for ribosomal protein L41  

AF071552 Homo sapiens N-acetyltransferase-1 (NAT1) gene, NAT1*26A allele 

AF059734 Homo sapiens homeodomain transcription factor (HESX1) gene 

AF009962 Homo sapiens CC-chemokine receptor (CCR-5) gene, delta-32 allele 

AB013139 Homo sapiens gene for NBS1  

AF013711 Homo sapiens 22 kDa actin-binding protein (SM22) gene 

AF065396 Homo sapiens retinoic X receptor B gene  

AF058762 Homo sapiens galanin receptor subtype 2 (GALNR2) gene 

AF043105 Homo sapiens glutathione S-transferase mu 3 (GSTM3) gene 

AF065988 Homo sapiens keratocan gene  

AF026564 Homo sapiens RNA binding protein II (RBMII) gene  

AF037438 Homo sapiens short chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD)  

AF028233 Homo sapiens distal-less homeobox protein (DLX3) gene  

AB007546 Homo sapiens gene for LECT2  

AF058293 Homo sapiens D-dopachrome tautomerase gene  

AF055080 Homo sapiens winged-helix transcription factor forkhead 5 gene 

AF037062 Homo sapiens retinol dehydrogenase gene  
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AB009589 Homo sapiens gene for Osteomodulin  

AF047383 Homo sapiens uroporphyrinogen decarboxylase (UROD) gene 

U31468 Homo sapiens homeobox protein (GBX2) gene  

AF036329 Homo sapiens gonadotropin-releasing hormone precursor  

AF042084 Homo sapiens heparan glucosaminyl  

AF040714 Homo sapiens homeobox protein A10 (HOXA10) gene  

AF039307 Homo sapiens homeobox A11 (HOXA11) gene  

AF031237 Homo sapiens CC chemokine receptor 5 (CCR5) gene  

AF005058 Homo sapiens chemokine receptor (CXCR-4) gene  

AF037372 Homo sapiens cytochrome oxidase subunit VIIa-H precursor (COX7AH)  

D89060 Homo sapiens DNA for oligosaccharyltransferase  

AF032455 Homo sapiens aldose reductase gene  

AB003730 Homo sapiens gene for polyubiquitin  

AB006987 Homo sapiens gene for 25-hydroxyvitamin D3 1-alpha-hydroxylase  

AF015812 Homo sapiens RNA helicase p68 (HUMP68) gene  

AF015954 Homo sapiens lymphopain gene 

D67013 Homo sapiens DNA for alpha2-HS glycoprotein (AHSG)  

D38752 Homo sapiens gene for fibroblast growth factor-8  

D83956 Homo sapiens HLA-B gene (HLA-B*0801 allele)  

AF016052 Homo sapiens zinc finger protein ZNF191 (ZNF191) gene  

AB002059 Homo sapiens DNA for Human P2XM  

AJ223321 Homo sapiens RP58 gene 

U76254 Human neuropeptide Y receptor type 2 gene  

AF017115 Homo sapiens cytochrome c oxidase subunit IV precursor (COX4) gene 

AF016190 Mus musculus connexin-36 (Cx36) gene  

U40494 Mus musculus augmenter of liver regeneration (Alr) gene 

AF057156 Mus musculus small proline-rich protein 1A (Sprr1a) gene 

AF006668 Mus musculus uroguanylin gene  

AF002719 Mus musculus secretory leukoprotease inhibitor gene  

AF019045 Mus musculus vesicular acetylcholine transporter gene 

 51



  

AF074912 Mus musculus chemokine receptor CX3CR1 gene  

U83462 Mus musculus serotonin N-acetyltransferase (AANAT) gene 

AF077860 Mus musculus helix-loop-helix protein Id2 gene  

AF043289 Mus musculus muscle-specific serine kinase 1 gene  

AF037313 Mus musculus potassium inward rectifier 6.2 (Kir6.2) gene 

AF035672 Mus musculus MHC class I related protein 1 (MR1) gene 

AF001797 Mus musculus glucosidase I gene  

U44436 Mus musculus bradykinin B1 receptor gene  

U50355 Rattus norvegicus neutrophil defensin 4 (RatNP-4) gene 

U50353 Rattus norvegicus defensin 3a (RatNP-3a) gene  

AB017361 Mus musculus Kip/Cip gene  

AF059211 Mus musculus cholesterol 25-hydroxylase gene  

AF069778 Mus musculus A3 adenosine receptor gene  

AF035684 Mus musculus beta chemokine TCA4 gene  

AF024513 Mus musculus menin (Men1) gene  

AB015637 Rattus norvegicus gene for alpha(1,2) fucosyltransferase 

AF045662 Mus musculus cell cycle checkpoint control protein Mrad9 gene 

U96809 Mus musculus chromatin structural protein homolog (Supt4h) gene 

AF093853 Mus musculus 1-Cys peroxiredoxin protein 2 gene  

AF092536 Mus musculus heat shock protein hsp40-3 gene  

AF074856 Mus musculus C1q/MBL/SPA receptor C1qRp (C1qrp) gene  

AF039602 Mus musculus extracellular superoxide dismutase (SOD3) gene 

AF057301 Mus musculus keratocan (Ktcn) gene  

AF029791 Mus musculus UDP-Gal:betaGlcNAc beta 1,3-galactosyltranferase-II  

AF026469 Mus musculus ubiquitin-specific protease (Unp) gene  

AF031426 Mus musculus small unique nuclear receptor co-repressor (SUN-CoR)  

U84903 Mus musculus L23 mitochondrial-related protein (L23mrp) gene 

AF016697 Mus musculus chemokine receptor gene  

AF022651 Mus musculus macrosialin gene  

AF031826 Mus musculus leukocystatin gene  

 52



  

AF053757 Mus musculus complement C3a anaphylatoxin receptor (C3ar) gene 

AF015881 Mus musculus nuclear factor erythroid-related factor 1 (Nrf1) gene 

AF029875 Rattus norvegicus muscle carnitine palmitoyltransferase I (CPTI)  

AF046000 Mus musculus rod cGMP phosphodiesterase delta subunit (Pde6d) gene 

AF024524 Mus musculus LIM domain binding protein 1 (Ldb1) gene 

U96626 Mus musculus chondroadherin gene  

AF042784 Mus musculus galanin receptor type 2 (GalR2) gene  

AF042783 Mus musculus galanin receptor type 3 (GalR3) gene  

AF078705 Mus musculus vascular adhesion protein-1 gene  

AF034569 Mus musculus anticoagulant protein C gene  

AF064081 Mus musculus alpha-sarcoglycan gene  

AB012159 Mus musculus gene for uncoupling protein-2  

AF068199 Mus musculus D-dopachrome tautomerase gene  

AF079877 Mus musculus cyclin G2 (Ccng2) gene  

AF030522 Mus musculus stannin gene  

AF079528 Mus musculus IER5 (Ier5) gene  

AF003255 Mus musculus alpha-N-acetylglucosaminidase gene  

AF029240 Rattus norvegicus MHC class Ib RT1.S3 (RT1.S3) gene  

AF033620 Mus musculus platelet endothelial tetraspan antigen-3 (Peta3) gene 

AB015652 Mus musculus gene for DJ-1  

U82792 Mus musculus allograft inflammatory factor-1 gene  

AF009614 Mus musculus homeobox containing nuclear transcriptional factor  

AB007139 Mus musculus Psme3 gene for PA28 gamma subunit  

AB010149 Mus musculus gene for PACAP ligand precursor  

AB009967 Mus musculus gene for HES2  

AF060229 Mus musculus homeobox protein MSX3 (Msx3) gene  

AF006203 Rattus norvegicus insulin-like growth factor binding protein  

AF052695 Rattus norvegicus cell cycle protein p55CDC gene  

AF010405 Mus musculus fork head transcription factor (Hfh-1L) gene 

AB011595 Mus musculus gene for eIF4A  
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AF027181 Rattus norvegicus neurabin II gene  

AF007558 Mus musculus hemochromatosis (HFE) gene  

AB003306 Mus musculus DNA for PSMB5  

U77350 Rattus norvegicus chemokine receptor CCR5 gene  

U77349 Rattus norvegicus chemokine receptor CCR2 gene  

U29186 Mus musculus short incubation prion protein Prnpa gene 

U93050 Mus musculus poly(A) binding protein II (mPABII) gene 

U47815 Mus musculus stanniocalcin gene  

AF024570 Mus musculus DNA polymerase delta catalytic subunit (pold1) gene 

AF030199 Mus musculus type 1 sigma receptor gene  

AB001735 Mus musculus DNA for ADAMTS-1  

AB010281 Mus musculus gene for neuromedin B receptor  

U70368 Mus musculus hematopoietic-specific IL-2 deubiquitinating enzyme  

AB009694 Mus musculus gene for mafF  

AB009693 Mus musculus gene for mafG  

AF025818 Mus musculus A/J fibrinogen-like protein (fgl2) gene  

AF035680 Mus musculus cathelicidin (Cramp) gene  

AF019074 Mus musculus erythroid Kruppel-like factor (EKLF) gene 

AF013262 Mus musculus lumican (Ldc) gene  

AF022948 Mus musculus neuropeptide Y Y5 receptor gene  

AF007900 Mus musculus fetuin (Ahsg) gene  

D85562 Mus musculus DNA for proteasome subunit MECL1  

AF012244 Mus musculus cerberus-like (Cer-l) gene  

AF017128 Mus musculus fos-related antigen 1 (fra-1) gene  

D89572 Mus musculus gene for ryudocan core protein  

U89486 Mus musculus agouti-related protein (Agrp) gene  
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Appendix C 
 

Sample Genscan and HMMgene output files 
 
Genscan output file 
 
GENSCAN 1.0 Date run: 13-Jan-100    Time: 11:48:03 
 
Sequence AF096303 : 5744 bp : 60.03% C+G : Isochore 4 (57 - 100 C+G%) 
 
Parameter matrix: H 
 
Predicted genes/exons: 
 
Gn.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr.. 
----- ---- - ------ ------ ---- -- -- ---- ---- ----- ----- ------ 
 
 1.01 Term +    534    794  261  2  0  113   48   560 0.992  51.03 
 1.02 PlyA +    894    899    6                               1.05 
 
 2.00 Prom +   1043   1082   40                              -5.95 
 2.01 Init +   1703   2069  367  1  1   86    3   446 0.147  31.33 
 2.02 Intr +   2423   2617  195  0  0   39   94   137 0.146  10.00 
 2.03 Intr +   2694   2797  104  1  2   77   71   168 0.999  15.06 
 2.04 Intr +   3938   4057  120  1  0  100   78   160 0.623  18.06 
 2.05 Intr +   4137   4305  169  2  1  112   61   232 0.999  23.62 
 2.06 Intr +   4538   4618   81  0  0   75   93    85 0.997   8.46 
 2.07 Intr +   4700   4822  123  0  0  113  101     6 0.974   6.13 
 2.08 Term +   5118   5278  161  1  2   92   55   366 0.999  32.76 
 2.09 PlyA +   5563   5568    6                               1.05 
 
Suboptimal exons with probability > 0.100 
 
Exnum Type S .Begin ...End .Len Fr Ph B/Ac Do/T CodRg P.... Tscr.. 
----- ---- - ------ ------ ---- -- -- ---- ---- ----- ----- ------ 
 
S.001 Sngl +   1703   2077  375  1  0   86   50   452 0.819  35.26 
S.002 Init +   2467   2617  151  0  1   35   94   227 0.813  16.34 
S.003 Intr +   3938   4078  141  1  0  100   59   173 0.376  17.33 
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HMMgene output file 
 
## gff-version 1 
## date: Thu Jan 13 12:33:27 2000 
## HMMgene1.1d (human model sim10gc.D.bsmod) 
 
# SEQ: AF096303 5744 (+) A:1072 C:1656 G:1792 T:1224 
AF096303  HMMgene1.1d   exon_1   534   762   0.33   +   1   bestparse:cds_1 
AF096303  HMMgene1.1d   exon_2   1719  2069  0.694  +   1   bestparse:cds_1 
AF096303  HMMgene1.1d   exon_3   2423  2617  0.955  +   1   bestparse:cds_1 
AF096303  HMMgene1.1d   exon_4   2694  2797  0.996  +   0   bestparse:cds_1 
AF096303  HMMgene1.1d   exon_5   3938  4057  0.849  +   0   bestparse:cds_1 
AF096303  HMMgene1.1d   exon_6   4137  4305  0.933  +   1   bestparse:cds_1 
AF096303  HMMgene1.1d   exon_7   4700  4822  0.977  +   1   bestparse:cds_1 
AF096303  HMMgene1.1d   lastex   5118  5278  1.001  +   0   bestparse:cds_1 
AF096303  HMMgene1.1d   CDS      1     5278  0.264  +   .   bestparse:cds_1 
# SEQ: AF096303 5744 (-) A:1224 C:1792 G:1656 T:1072 
AF096303  HMMgene1.1d   firstex  3996  4204  0.359  -   2   bestparse:cds_1 
AF096303  HMMgene1.1d   lastex   2470  2602  0.490  -   0   bestparse:cds_1 
AF096303  HMMgene1.1d   CDS      2470  4204  0.221  -   .   bestparse:cds_1 
 
 

 The columns in the Genscan’s output, from left to right, are: the gene and exon 

number of each predicted exon, the type of exon or signal, the DNA strand of the predicted 

feature, the beginning and ending position of the predicted feature, the length of the predicted 

feature, the “absolute reading frame” of the predicted exon” (a codon ending at position x in 

the reading sequence has reading frame x mod 3), the “net phase” of the predicted exon (exon 

length modulo three), the acceptor and donor site scores, the coding score, the exon 

probability and the exon score. 

 The columns in the HMMgene’s output, from left to right, are: sequence identifier, 

the version of the program used for prediction, the type of exon or signal, the beginning and 

ending position of the predicted feature, probabilistic exon score, the DNA strand of the 

predicted feature, the reading frame (for exons it is the position of the donor in the frame), 

group (gene) to which prediction belong.  
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Appendix D 
 

Glossary 
 

 

aa (amino acid) - organic compounds that generally contain an amino and a carboxyl group. 

Twenty amino acids are the subunits, which are polymerised to form proteins.  

acceptor site -  a site in pre-mRNA that corresponds to the 3'-end of the intron and the 5'-end 

of the next exon 

ACR (ancient conserved regions) - regions of protein sequences showing highly significant 

similarity across phyla 

alternative splicing - the process by which different mRNAs are produced from the same 

primary transcript, through variations in the splicing pattern of the transcript 

bp (base pair) - in a nucleic acid double helix, a purine and a pyrimidine on different strands 

that interact by hydrogen bonding, most commonly a GC or AT pair. 

cDNA - synthetic DNA transcribed from a specific RNA trough the reaction of a specific 

enzyme 

donor site - the site on pre-mRNA that corresponds to the 3'-end of an exon and the 5'-end of 

an intron 

enhancer - a regulatory sequence that can elevate levels of transcription from adjacent 

promoter 

EST (expression sequence tag) - a partial coding sequence isolated at random from a cDNA 

library; used for identification and mapping of coding sequences, for discovery of new genes 

and (by reference to sequence data banks) for discovery of identities with other genes 
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eukaryotes - one of the three domains of the living organisms that are characterized with 

cells containing nucleus and cellular membranes. The other two domains are eubacteria and 

archaea. 

exon - from expressed region, i.e. a region of a eukaryotic gene that encodes a sequence of 

amino acids 

frame-shift mutation - the insertion or deletion of nucleotide pair or pairs, causing a 

disruption of the translational reading frame 

genome - the entire complement of genetic material in a chromosome set 

homology - the similarity in base sequences of genes or amino acid sequences of proteins 

that denotes a common evolutionary origin; also the similarity of structure or function of 

proteins that is due to a common evolutionary origin 

isochores - genomic regions whose base composition is locally homogenuous, but varies 

significantly between disjoint regions 

intron - from intervening sequence region; defined as a non-coding polynucleotide sequence 

that interrupts the coding sequences, the exons, of a gene. This segment is initially 

transcribed, but the transcript is not found in the functional mRNA. 

kb (kilo bases) - 1,000 base pairs 

mRNA (messenger RNA) - an RNA molecule transcribed from DNA of a gene, and from 

which a protein is translated by the action of ribosomes 

ORF (open reading frame) - a section of a sequenced piece of DNA that begins with a start 

codon and ends with a stop codon 

phylum  [plural = phyla] - a subdivision of a kingdom encompassing all forms of life with 

the same distinctive body plan 

polyA site - a site where polyadenine sequence is attached during mRNA processing 

promoter - a regulatory region a short distance from the 5’ end of a gene that acts as a 

binding site for transcription protein 

pseudogene - a DNA sequence that is homologous to a structural gene, but cannot be 

expressed because it has no continuous open reading frame 

ribosomal binding site - a nucleotide sequence proximal to the translation initiation codon 

(ATG). It is thought to be involved in initiation of translation by helping the mRNA 
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bind to the ribosome. 

transcription - a synthesis of RNA using DNA template 

transcription start site (TSS) - the position in a gene where the mRNA synthesis start. The 

first nucleotide transcribed is denoted +1. 

translation - the synthesis of a protein directed by mRNA 

silencer - a DNA sequence which acts in the opposite direction of an enhancer to inhibit the 

transcription of a gene 

splice site - acceptor or donor splice site 

untranslated region (UTR) - a genomic DNA sequence that is not translated into an RNA 

sequence 

vertebrates - animals with a backbone 
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