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Abstract

The process of gene splicing, which involves the excision of introns from a

pre-mRNA and joining of exons into mature mRNA is one of the essential

steps in protein production. Although this process has been extensively

studied, it is still not clear how the splice sites are accurately identified and

correctly paired across the intron. It is currently believed that identification

is accomplished through base-pairing interactions between the splice sites

and the spliceosomal snRNAs. However, the relatively conserved sequences

at the splice sites are often indistinguishable from similar sequences that

are not involved in splicing. This suggests that not only sequence but other

features of pre-mRNA may play a role in splicing. A number of authors have

studied the effects of pre-mRNA secondary structure on splicing, but these

studies are usually limited to one or a small number of genes, and therefore

the conclusions are usually gene-specific.

This thesis aims to complement previous studies of the role of pre-mRNA

secondary structure in splicing by performing a comprehensive computa-

tional study of structural characteristics of Saccharomyces cerevisiae introns

and their possible role in pre-mRNA splicing. We identify long-range interac-

tions in the secondary structures of all long introns that effectively shorten

the distance between the donor site and the branchpoint sequence. The

shortened distances are distributed similarly to the branchpoint distances

in short yeast introns, which are presumed to be optimal for splicing, and

very different from the corresponding distances in random and exonic se-

quences. We show that in the majority of cases, these stems are conserved

among closely related yeast species.

Furthermore, we formulate a model of structural requirements for effi-

cient splicing of yeast introns that explains previous splicing studies of the
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RP51B intron. We also test our model by laboratory experiments, which

verify our computational predictions.

Finally, we use different computational approaches to identify any struc-

tural context at the boundaries or within yeast introns. Our study reveals

statistically significant biases, which we use to train machine learning clas-

sifiers to distinguish between real and pseudo splice sites.
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Chapter 1

Introduction

The central dogma of molecular biology states that the flow of genetic in-

formation is from DNA to RNA to protein: genes, which are parts of DNA

that store genetic information, are transcribed, i.e., copied, to messenger

RNA (mRNA), which carries this information outside the cell nucleus into

the cytoplasm where it gets translated into proteins (Figure 1.1). In eukary-

otic organisms, protein-coding genes are often interrupted by intervening

sequences, called introns, that must be removed from mRNA before it gets

translated in order to produce functional proteins.

Splicing of precursor mRNA (pre-mRNA), which involves the excision

of introns from a primary RNA transcript and ligation of exons into mature

mRNA, is one of the essential cellular processes in eukaryotic organisms.

Although this process has been extensively studied since the discovery of

splicing almost three decades ago (Chow et al., 1977; Berget et al., 1977),

resulting in a thorough understanding of the splicing pathway and identifi-

cation of the numerous components of the splicing machinery, there are still

unanswered questions. One of them is: how are the splice sites accurately

identified and correctly paired across the intron? It is currently believed that

identification is accomplished, at least partially, through basepairing inter-

action between the conserved sequences at the exon/intron boundaries and

within introns and the small spliceosomal RNAs. However, these conserved

sequences are short and not well defined, and are often hard to distinguish

from the numerous unutilized sequences throughout the genome.

The relative conservation of the splicing signals is used for the compu-

tational identification of exon/intron boundaries, which is an essential part

of gene-finding in eukaryotic genomes. Failure to distinguish between real

splice sites and unused, ‘pseudo’ sites is one of the the major reasons for
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the low accuracy of computational gene prediction in longer genomic DNA

sequences (Pertea et al., 2001; Rogic et al., 2001).

The fact that the known primary sequence determinants are not able

to unambiguously specify splice sites has prompted scientists to speculate

about the role of pre-mRNA secondary structure in splicing. There is a

large body of biological literature, a sample of which is given in Section 2.3,

that describes the different ways in which pre-mRNA secondary structure

can affect splicing. In many cases, the induced structural changes have an

inhibitory effect on splicing, suggesting that certain structural arrangements

or structural elements are important for splicing. The secondary structure

of pre-mRNA is also indicated to have a regulatory effect on alternative

splicing. However, most of these experimental studies have been focused on

the analysis of a single gene or small set of genes and the universal role of

pre-mRNA secondary structure has not been determined.

Elucidating the complex details of the gene-splicing process is of sig-

nificant importance for biology and medicine: it has been estimated that

∼ 15% of human genetic diseases are caused by errors in splicing (Krawczak

et al., 1992). This number is likely to be larger since the study focused only

on point mutations in vicinity of splice sites ignoring mutations in other

cis and trans splicing factors (Faustino and Cooper, 2003). Consequently,

improved understanding of the splicing process and splice site recognition

would lead to better computational models and higher prediction accuracy

of gene-finding programs. This, again, is an important goal of genomics,

where one of the major tasks is accurate annotation of large volumes of ge-

nomic sequences generated by numerous genome sequencing projects, which

is initially accomplished by computational methods.

This highlights the importance of the problem we study in this thesis,

namely, correlation between pre-mRNA secondary structure and splicing.

Even though the splicing mechanism is, in general, universal for all eukary-

otes, there are some minor differences between the organisms that need to

be considered. Therefore, it is beneficial to focus on a single organism when

establishing and testing our initial hypothesis about the above-mentioned

relationship, which can later be extended and/or modified to apply to other
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eukaryotic species.

For the research work in this thesis, we chose Saccharomyces cerevisiae,

the simplest intron-containing eukaryote, which is also a well-established

model organism. We selected S. cerevisiae based on its thorough, experi-

mentally supported annotation, large number of splicing studies and limited

intron sizes. The S. cerevisiae dataset that we use for our study is carefully

assembled using three different intron databases and relies on comparative

genomic studies to confirm annotated splice sites.

We begin our study exploring the hypothesis suggested by Parker and

Patterson (1987) that yeast introns with large distances between the 5’ splice

site and the branchpoint sequence can fold into secondary structures that

would shorten this distance to one that is optimal for spliceosome assem-

bly. This hypothesis was confirmed for a limited number of yeast introns

by comprehensive biological experiments that demonstrated that the exis-

tence of such secondary structure elements is essential for splicing efficiency.

Structural elements that exhibit a similar effect on splicing were also found

in some introns of Drosophila melanogaster and its related species. Further-

more, shortening of long distances between the essential splicing signals was

observed for higher eukaryotes, more specifically mammals, where folding of

long intron sequences is facilitated by protein binding and interactions (see

Section 2.3).

These studies indicate that pre-mRNA secondary structure within in-

trons might be essential for efficient splicing of long introns in all eukaryotic

species, but it is hard to claim universality of the phenomenon based on a

very small sample size. Motivated by this limitation, we perform a more

extensive computational study of all long introns in S. cerevisiae, with the

rationale that combining computational evidence for a large dataset of in-

trons with convincing biological evidence for a few introns will strengthen

the hypothesis. We commence our study by searching long yeast introns

for secondary structure elements that could bring the 5’ splice site and the

branchpoint sequence into closer proximity and then analyze the resulting

shortened distances with respect to distances between splicing signals in

short yeast introns, which are assumed to be optimal for splicing.
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After our initial analysis, we further refine our method to take into ac-

count additional biological evidence, and relax our initial criteria for the

targeted structural elements within the long yeast introns. The compu-

tational analysis in this part is based on previously mentioned biological

studies that examined the relationship between secondary structure forma-

tion within yeast introns and experimentally determined splicing efficiency

levels. We also reconsider the computation of the secondary structure of

introns and shortened distances between the splicing signals to make them

less error sensitive. Encouraged by promising results of the computational

study, we validate our hypothesis using biological laboratory experiments.

In the second part of this thesis, we consider a different role of pre-mRNA

secondary structure in gene splicing: can secondary structure elements serve

as additional identifiers of exon/intron boundaries and introns? We em-

ploy different approaches to identify thermodynamically stable or conserved

structural motifs or specific structural contexts in the vicinity of splice sig-

nals or within introns. We also apply a thermodynamical approach to detect

splicing signals based on knowledge of their interactions with small nuclear

RNAs.

Finally, we use a machine learning approach to investigate the poten-

tial of discovered structural characteristics of yeast introns to improve the

accuracy of computational splice site and intron recognition in S. cerevisiae.

In summary, we perform a comprehensive study of secondary structure

characteristics of yeast introns and their relationship to pre-mRNA splicing,

using a combination of computational, statistical, phylogenetic and experi-

mental approaches. We consider various aspects and functions of RNA sec-

ondary structure. The obtained results support our initial hypothesis that

pre-RNA secondary structure is capable of modifying distances between im-

portant splicing signals in long introns, bringing them into closer proximity,

which is thought to be optimal configuration for splicing. The identified

structural elements are also conserved among Saccharomyces sensu stricto

species, indicating their functional significance. Our model that describes

RNA structural requirements for splicing is able to explain the confusing

results of several previously reported experimental studies. We further val-
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idate it by carefully designed experimental testing.

Our computational and statistical exploration of structural characteris-

tics within introns and around the splice sites identifies a number of struc-

tural features that are specific to yeast introns and not observable in a ran-

dom RNA sequence with the same sequence features. Namely, the 5’ splice

site sequences are found to have a tendency to be relatively free of sec-

ondary structure and to bind more favorably to snRNAs than pseudo sites;

branchpoint sequences tend to have more free bases when folded globally,

as observed in some previous studies (Hall et al., 1988; Stephan and Kirby,

1993; Mougin et al., 1996; Chen and Stephan, 2003) and certain structural

motifs are found to be over-represented in the neighbourhoods of 5’ and 3’

splice sites.

Our machine learning experiments based on these findings give further

support to the validity of our splicing model and demonstrate the ability of

these methods to reduce the number of false positive splice site and intron

predictions.

Organization of the thesis

In Chapter 2, we provide the necessary background for the topics covered in

this thesis, give an overview of the biological literature that motivated our

research and discuss existing work that incorporates secondary structure

information in computational splice site prediction methods. Chapter 3

describes important characteristics of S. cerevisiae introns and splicing, dis-

cusses general features of intron architecture and describes the assembly and

properties of the STRIN dataset of yeast introns and the dataset designed

for phylogenetic analysis. Chapter 4 introduces the notion of a zipper stem,

an RNA structural element that shortens the distance between the 5’ splice

site and the branchpoint sequence, and describes different computational

approaches for its identification. The second part of the chapter investi-

gates the conservation of zipper stems among closely related Saccharomyces

sensu stricto species. In Chapter 5, the initial model that describes RNA

structural requirements for splicing is further refined to take into account
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additional biological evidence and to allow relaxing of the initial criteria for

the zipper stems within long yeast introns. The chapter also discusses the

validation of our model using laboratory experiments done in collaboration

with Ben Montpetit and Phil Hieter from the Department of Medical Ge-

netics at UBC. Further structural analysis of yeast introns, as well as the

structural context at the splice signals, are discussed in Chapter 6. The

machine learning experiments described in Chapter 7 test whether the effi-

ciency of pre-mRNA splicing can be predicted based on secondary structure

characteristics of introns. In the second part of the chapter, the weak struc-

tural signals discussed in Chapter 6 are used to improve the accuracy of

computational splice site and intron prediction by filtering out false positive

predictions based on classification methods from machine learning. Chap-

ter 8 summarizes and discusses the results obtained and outlines directions

for further research.

Supplementary information and data are provided in a number of ap-

pendices: the sequences in the STRIN dataset are listed in Appendix A; the

procedure for experimental testing of our splicing model is described in Ap-

pendix B; printouts from our StructureAnalyze procedure which calculates

structural characteristics important for splicing, are provided in Appendix C;

and the sequences of the RP51B intron mutants that we designed for the

purposes of experimental verification are specified in Appendix D.
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Chapter 2

Background and related work

In this chapter, we first introduce the reader to the general process of pre-

mRNA splicing and identification of splice sites by the spliceosome machin-

ery. Next, we describe computational methods for predicting splice sites

that are based on various sequence-based approaches. The secondary struc-

ture of RNA and its computational prediction, which we heavily base our

thesis on, are also discussed. A sample of the large body of literature on the

effects of pre-mRNA secondary structure on splicing is presented, providing

the motivation for our thesis research. Finally, we describe existing attempts

to integrate pre-mRNA structural information with sequence information to

predict splice sites.

2.1 Pre-mRNA splicing and splice site

recognition

The process of gene splicing, which involves excision of introns from a pri-

mary mRNA transcript and ligation of exons into mature mRNA, is one of

the essential steps in protein production. In cells, this process is usually cat-

alyzed by a large ribonucleo-protein complex, called spliceosome, which is

composed of five small nuclear RNAs (U1, U2, U4, U5 and U6)∗, assembled

into small ribonucleo-protein particles (snRNPs) and numerous non-snRNP

splicing factors. The exceptions are group I and II introns, which are ca-

pable of self-splicing, tRNA introns, where splicing is catalyzed by protein

enzymes, and U12-type introns, which are spliced by a compositionally dis-

tinct spliceosome (Abelson et al., 1998; Staley and Guthrie, 1998; Lopez and

∗The U3 snRNA is not involved in splicing, but participates in the processing of pre-
ribosomal RNA.
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Séraphin, 2000).

Splicing consists of two consecutive trans-esterification reactions. In the

first reaction, the donor splice site at the 5’ exon/intron junction is cleaved

and the intron 5’ end is ligated to the branchpoint, located typically 20 to

40 nt upstream of the 3’ splice site. In the second reaction, cleavage of the

acceptor (3’) splice site releases the intron as a lariat structure and 5’ and

3’ exons are joined together (Figure 2.1).

Splice site recognition and spliceosome assembly occur simultaneously:

the 5’ splice site is initially recognized through complementary base-pairing

interactions with the U1 snRNA (Mount et al., 1983; Zhuang and Weiner,

1986). In higher eukaryotes, this base-pairing stretches over approximately

nine nucleotides (nt), encompassing the last two or three exonic nucleotides

and the first five or six nucleotides of the intron. Subsequently, the branch-

point sequence base-pairs with the U2 snRNA (Black et al., 1985; Parker

et al., 1987; Zhuang and Weiner, 1989; Wu and Manley, 1989). This interac-

tion involves the U2 snRNA sequence GGUG and the branchpoint consensus

signal YYRAY, with the unpaired branchpoint adenosine (A) bulged out of

the RNA duplex (Query et al., 1994). The U4/U5/U6 tri-snRNP is then

added to this pre-mRNA-snRNA complex, the U6 base-pairing with the

5’ splice site intronic sequences (Kandels-Lewis and Séraphin, 1993; Son-

theimer and Steitz, 1993) and U5 forming non-canonical base-pairing inter-

actions with the 5’ and 3’ terminal exonic nucleotides (Newman and Norman,

1992). The complex then undergoes a series of structural rearrangements

transforming into a mature spliceosome that is capable of catalyzing splicing

reactions (Staley and Guthrie, 1998). This summary is a simplified version

of this complex event, since it neglects important functions of the associated

splicing factors.

Splicing of introns has to be performed with single-nucleotide precision

in order to produce functional proteins. This requires that the actual splice

sites be accurately recognized and correctly paired across the intron. The

recognition of splice sites is, at least partially, achieved by formation of

Watson-Crick base-pairs between some spliceosomal snRNAs and short con-

sensus sequences located at the 5’ splice site and the branchpoint (an ex-
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Figure 2.1: Splicing of pre-mRNA.
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Figure 2.2: Consensus sequences involved in intron splicing in humans. R
stands for purines (adenine (A) and guanine (G)) and Y stands for pyrim-
idines (cytosine (C), thymine (T) and uracil (U)). N stands for any nu-
cleotide. The figure was modified from Moore (2000).

ample for human introns is given in Figure 2.2). Conserved sequences are

also found at the 3’ splice site and in the form of a polypyrimidine tract (lo-

cated immediately upstream from the 3’ splice site), which mediate splicing

through their interactions with splicing factors and non-base-pairing inter-

actions with snRNAs and other intronic sequences (Madhani and Guthrie,

1994). However, these consensus sequences are not uniquely associated

with functional splice sites; there are numerous occurrences of these sig-

nals throughout the genome not utilized by the splicing machinery. This is

illustrated in a study by Sun and Chasin (2000), where positional weight

matrices (described in the next section) were trained on 2400 instances of

real human donor and acceptor sites to search for splice sites in the 42-kb

human hprt gene, which contains 8 introns. This approach identified 8 real

donor sites along with over 100 pseudo donor sites that have scores higher

than the lowest scoring real donor site. The results were even more dis-

couraging for acceptor sites, since 683 pseudo sites were predicted. It is

still not fully understood how the precise specificity required to distinguish

correct splice sites from similar ‘pseudo-sites’ is achieved or how the correct

donor/acceptor pairs are brought together.

Computational splice site recognition

Identification of splice sites is an essential component of computational gene-

finding in eukaryotic genomes. Relying on biological knowledge and results,
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researchers in computational biology approach this problem by modeling

consensus sequences around splice sites and within introns. Various meth-

ods are used to model splicing signals, such as the following: the simple

consensus sequence model, which looks for either a specific sequence mo-

tif or allows some alternative nucleotides at certain positions in the motif;

position weight matrices, which represent the frequency of appearance of

the A, C, G, and T nucleotides at each position of the consensus sequence;

and weight arrays, which exploit statistical dependences between adjacent

nucleotides (Fickett, 1996; Burge, 1997; Salzberg, 1997). Weight matrices

and weight arrays are used to score candidate sequence motives. Neural net-

works and decision trees are also used for identification of splicing signals

(Hebsgaard et al., 1996; Kulp et al., 1996; Burge, 1997).

These sequence sensors are usually not used in isolation, but are in-

tegrated with content sensors that use coding statistics to distinguish be-

tween coding and non-coding regions. The integrated approaches can either

be stand-alone splice site predictors or gene-finders that attempt to iden-

tify entire gene structures (splice sites in intron-containing genes and in

the boundaries of coding regions). These methods yield better accuracy for

splice site recognition because they eliminate false positive splice sites that

do not have an expected shift in coding potential (Brunak et al., 1991).

There are a number of methods used to combine signal detection with cod-

ing statistics for stand-alone splice site prediction, including neural networks

(Hebsgaard et al., 1996); Bayesian networks (Arita et al., 2002; Churbanov

et al., 2006); rule-based expert systems (Vignal et al., 1999); and discrimi-

nant analysis (Solovyev et al., 1994).

An example of an integrated approach for predicting splice sites is lin-

ear discriminant analysis (Solovyev et al., 1994), which we use to initially

predict donor and acceptor splice sites as described in Section 7.2.2. Linear

discriminant analysis is a procedure that finds a linear combination of se-

quence measures that provides maximum discrimination between real and

pseudo-sites. The linear discriminant function is of the following form:
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z =
p
∑

i=1

αixi (2.1)

where x1, . . . , xp are the values of p features of sequence x, and α=(α1, . . . , αp)

is a vector of coefficients derived from the training set by maximizing the

ratio of between-class variation to within-class variation of z . The input

sequence x is classified as a real site if z ≥ c and as a pseudo site if z < c,

where c is a threshold constant derived from the training set in the same

way as the coefficient vector α. Sequence features used to detect donor

sites include: agreement with consensus region, average triplet preference

in the potential coding region, coding statistics for the coding and intron

regions (octanucleotide preference), and the G-richness of the region. The

features used for acceptor sites include: agreement with consensus region,

average triplet preference in the branchpoint region, agreement with typical

polypyrimidine region, as well as coding statistics for the coding and intron

regions.

The splice site prediction accuracy of current gene-finding programs is

70-80% when tested on short genomic sequences containing exactly one gene

with a relatively simple exon/intron structure (Rogic et al., 2001). The ac-

curacy level drops significantly for more realistic, longer genomic sequences

containing multiple multi-intronic genes. The reason for this drop in accu-

racy is that consensus sequences used to identify splice sites are short and

not well defined, and the number of false positive signals that are accepted

by signal sensors grows with the length of a DNA input sequence. For the

linear discriminant analysis described above, the reported numbers of false

positive predictions are on average 1.5 false donor sites per true donor site,

and 6 false acceptor sites per true acceptor site (Solovyev et al., 1994). How-

ever, our analysis in Section 7.2.2 shows that on the yeast dataset used in

this thesis the results are much worse: on average there are more than five

false donor sites per true donor site and eight false acceptor sites per true

acceptor site.
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2.2 RNA secondary structure and prediction

Ribonucleic acid (RNA) is a nucleic acid polymer with a backbone of ri-

bose sugar rings linked by phosphate groups. Each sugar has one of the

four bases adenine (A), guanine (G), cytosine (C), and uracil (U) linked to

it as a side group. The phosphate groups link the 5’ carbon of one ribose

to the 3’ carbon of the next, which imposes a directionality of the back-

bone from 5’ to 3’. RNA usually occurs as a single strand and in many

cases forms inter-molecular base-pairing interactions, which constitute the

secondary structure of the molecule. Basepairing is accomplished through

hydrogen bonding between complementary bases: C can pair with G and

U can pair with either A or G. These basepairs are called Watson-Crick or

canonical basepairs (G-U is called a wobble pair).

The secondary structure of RNA is composed of a set of elementary struc-

tures such as stems, hairpin loops, internal loops, bulges and multi-loops.

An example of RNA secondary structure with annotated structural elements

is given in Figure 2.3. Pseudoknots are another type of RNA structural el-

ements that occur frequently in nature and in some cases have important

functions (Pleij and Bosch, 1989). However, they are often considered to be

a part of the RNA tertiary structure.

For many functional RNAs, tertiary structure is a key determinant of

their biological function. However, our understanding of tertiary structure

formation and interactions is limited, as is the available experimental data.

Secondary structure is generally believed to play a crucial role in tertiary

structure formation, since most tertiary interactions are thought to arise

after the formation of a stable secondary structure, when the molecule is

able to bend around the flexible, single-stranded regions (Brion and Westhof,

1997; Tinoco and Bustamante, 1999). The tertiary structure interactions

that arise in the later stages of folding are usually too weak to disrupt

secondary structure that has already formed.
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Figure 2.3: An example of RNA secondary structure where the bullets
represent the nucleotides in the RNA sequence and the black lines between
them represent basepairing interactions. The basic structural elements are
annotated. The figure was taken from Andronescu (2003).
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RNA secondary structure prediction

The most common approaches for RNA secondary structure prediction are

based on the assumption that, at equilibrium, any RNA molecule folds into

its lowest free energy state. Therefore, the aim of structure prediction is to

determine a minimum free energy (MFE) structure. Most MFE secondary

structure algorithms use dynamic programming to perform a complete eval-

uation of all feasible structures given an RNA sequence, and determine one

with minimum free energy.

The calculation of free energies is based on a nearest neighbour ther-

modynamic model, which considers the energy contributions of stacking

interactions between neighbouring basepairs, assuming these energies are

independent and additive. The energy of an RNA molecule is calculated

by adding energy contributions of stacking interactions and various types

of loops. The energy contributions of stacked basepairs and some types of

loops have been experimentally determined, while for the other structural

elements they have been estimated (Xia et al., 1998; Mathews et al., 1999).

These energy contributions are encoded as the parameters of the energy

model. The most widely used energy model is Turner’s energy model (Freier

et al., 1986; Turner et al., 1987; Turner and Sugimoto, 1988; Mathews et al.,

1999).

The most commonly used MFE programs for RNA secondary structure

prediction are mfold (Zuker and Jacobson, 1998) and RNAfold (Hofacker

et al., 1994). Both programs use dynamic programming for the identification

of the MFE structures and base their energy calculations on Turner’s energy

model. The running time for these two algorithms is O(n3).

The MFE folding approach has a number of shortcomings:

• Prediction of MFE secondary structures has limited accuracy, that

is, the predicted structures are not guaranteed to accurately reflect

the physical ground state of respective RNAs. This is partially due

to the imperfect underlying energy model, which contains a number

of approximative and extrapolated parameters. The experimentally

derived parameters are based on very short RNA strands (∼ 20 nt)
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that were used to determine the free energy of different secondary

structure elements. Consequently, applying these thermodynamic pa-

rameters to longer RNA sequences will sometimes result in inaccurate

free energy calculations. In general, the prediction accuracy decreases

with increasing RNA sequence length, and computational prediction

is considered unreliable for sequences longer than several hundred nu-

cleotides (Morgan and Higgs, 1996; Mathews et al., 1999).

Another approximation is the nearest neighbour thermodynamic model

itself, since the independence and additivity of structural elements

constituting RNA structure are assumptions that may not be entirely

accurate.

• Another simplification that most of the prediction algorithms make is

that they can predict only pseudoknot-free secondary structures. This

limitation is a consequence of the dynamic programming approach,

which cannot handle pseudoknots in their most general form. There

are ways to include some classes of pseudoknots in predictions but

this always results in substantially increased computational time. In

fact, if all pseudoknots are included, the secondary structure prediction

problems becomes NP -hard (Lyngsø and Pedersen, 2000).

Some examples of RNA secondary structure prediction programs that

include pseudoknot predictions are pknots by Rivas and Eddy (1999)

(O(n6) time and O(n4) space), pknotsRG by Reeder and Giegerich

(2004) (O(n4) time and O(n2) space), both considering only a re-

stricted class of pseudoknots, and HotKnots by Ren et al. (2005) and

a genetic algorithm by Gultyaev et al. (1995), the latter two of which

are based on heuristic approaches.

• RNA molecules do not fold in isolation, and contact with proteins or

other RNA molecules may play an important role in structure for-

mation. Considering our current biological knowledge and ability to

computationally model the folding and structure of RNA sequences,

we will not be able to take into account the cellular environment and
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RNA-protein molecular interactions in the near future. However, re-

cently some attempts have been made to model the secondary struc-

ture interactions between two or more RNA molecules (Rehmsmeier

et al., 2004; Andronescu et al., 2005; Mückstein et al., 2006).

One way to deal with inaccuracies of RNA secondary structure prediction

is to also compute near-optimal structures. The prediction of suboptimal

structures was first proposed by Wuchty et al. (1999) and later implemented

in the mfold and RNAfold programs. The computation of suboptimal struc-

tures in addition to the optimal structure is important not only because the

native structure can be buried in the near-optimal space due to the inaccu-

racy of the underlying energy model, but also because there is evidence that

some RNA structures can oscillate between different structures or exist in

a population of structures (Christoffersen and Mcswiggen, 1994; Betts and

Spremulli, 1994; Freyhult et al., 2005). It has been shown that, on aver-

age, the accuracy of secondary structure prediction algorithms increases by

more than 20% when 750 suboptimal structures are generated, as opposed

to generating the MFE structure only (Mathews et al., 1999).

Another important advance in MFE structures prediction was made by

McCaskill (1990), who proposed a dynamic programming algorithm for cal-

culating the partition function. The partition function is a quantity from

statistical mechanics that encodes the statistical properties of a system in

thermodynamic equilibrium. The partition function for the ensemble of all

possible secondary structures for a given RNA sequence can be calculated

using the following formula:

Q =
∑

S∈S

e−∆G(S)/RT (2.2)

where S is the set of all structures for the given RNA sequence, ∆G(S) is

the free energy of the structure S, R is the physical gas constant with the

value R = 1.987 cal · K−1 · mol−1, and T is the temperature.

The partition function algorithm allows calculation of basepairing prob-

abilities within the thermodynamic ensemble of structures. It has been
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shown that these basepairing probabilities provide measures of confidence

for MFE structure prediction (Mathews, 2004) and that they are less affected

by uncertainties in energy parameters than is MFE structures (Layton and

Bundschuh, 2005).

There are other approaches to RNA secondary structure prediction that

are not based on MFE computation. One example is Sfold (Ding and

Lawrence, 2003; Ding et al., 2005, 2006), which samples structures accord-

ing to their probabilities derived from Boltzmann statistics. The derived

structures are further clustered according to structural similarity, and a

small number of centroids is returned that can be taken as a representative

ensemble of potentially relevant structures.

The preceding discussion about the computational methods for RNA

secondary structure prediction considered the availability of a single RNA

sequence. When several related RNA sequences from different organisms

are available, it is possible to predict conserved secondary structure using

comparative structure analysis. This approach is discussed further in Sec-

tion 4.4.

2.3 Secondary structure of pre-mRNAs and its

effects on gene splicing

The fact that splice sites are not specified unambiguously by primary se-

quence prompted scientists to speculate about the effects of higher-order

RNA structure on gene splicing. One of the early experiments conducted

by Solnick (1985) showed that when an exon is sequestered (i.e., isolated

from the rest of the pre-mRNA) within a loop of potential RNA structure,

it is omitted from the mature mRNA. Similar experiments indicated that

sequestering of a 5’ splice site can have a negative effect on splicing (Eperon

et al., 1988). Goguel et al. (1993) went slightly further in their experiments,

determining the size of the stem containing the 5’ splice site that is needed

for splice site inhibition to be observed (> 9 nt). They observed a simi-

lar splicing effect if the branchpoint sequence was enclosed in a 15-nt long
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stem. Experiments in vivo showed a weaker effect on splicing. A study in a

plant, Nicotiana plumbaginifolia, revealed that 18-24 nt RNA hairpin loops

strongly inhibit splicing when they sequester the 5’ splice site or are placed

within a short intron (Liu et al., 1995). 3’ splice sites that are sequestered

within such structures are still utilized, and for some introns efficiency of

splicing is improved if hairpins are present. A somewhat contradictory ob-

servation emerged from a study by Lin and Rossi (1996), where artificially

introduced stem/loop structures inserted 5 nt downstream of the 3’ splice

site in the ACT fusion gene abolished splicing in vivo. A potential expla-

nation for this effect is that single-stranded sequences in this region are

required for effective involvement with U5 snRNA (Newman and Norman,

1992).

It was also shown that pre-mRNA has a positive effect on splicing by

shortening the effective distance between the 5’ splice site and the branch-

point to the optimal distance. Experiments on several Saccharomyces cere-

visiae genes identified complementary sequences in the vicinity of 5’ splice

sites and branchpoints whose base-pairing interactions are essential for splic-

ing efficiency (Newman, 1987; Goguel and Rosbash, 1993; Libri et al., 1995;

Charpentier and Rosbash, 1996; Howe and Ares, 1997). Existence of a sim-

ilar intronic intra-molecular structure in the yeast U3A snoRNA precursor

was confirmed by comprehensive structural probing of the molecule (Mou-

gin et al., 1996). This stem/loop structure is also conserved in the second

U3 snoRNA gene in S.cerevisiae, even though the intronic sequences be-

tween the two genes are significantly different (Brulé et al., 1995). Similar

secondary structure interactions were also identified in Drosophila melano-

gaster’s Adh intron 1: mutational analysis showed that either the disruption

of the identified stem or its stabilization resulted in reduced splicing effi-

ciency (Chen and Stephan, 2003). This structure was found to be conserved

in the Drosophila subgenus, and it has been proposed that its role is to force

the branchpoint sequence downstream into an unpaired conformation.

Functional stem regions were also found between the branchpoint se-

quence and the 3’ splice site: these structures have been shown to have an

important shortening effect on unusually long distances between these two



Chapter 2. Background and related work 21

splicing elements (Gattoni et al., 1988; Chebli et al., 1989) and also to enable

utilization of a distant 3’ splice site by sequestering the closer, alternative

one (Deshler et al., 1989).

A recent study by Martinez-Contreras et al. (2006) indicates that in-

tronic secondary structure interactions may be important for efficient splic-

ing of long mammalian introns. The authors observed that the insertion of

two hnRNP A1 protein binding sites at the end of an artificially enlarged

mammalian intron increased splicing four-fold. It was suggested that two

bound hnRNP A1 proteins interact, thus causing the intron to ‘loop-out‘.

Replacing these binding sites with 20-nt inverted repeats had a similar effect

on splicing, indicating that looping-out of introns is important for efficient

splicing. The observed phenomenon is in agreement with the role of sec-

ondary structure interactions observed in yeast, and the author suggests

that yeast secondary structure interactions are substituted by hnRNP pro-

tein interactions in mammals. This is supported by over-representation of

hnRNP-binding-site-like motifs at the ends of mammalian introns.

Changes in pre-mRNA secondary structure can also be the cause of hu-

man genetic diseases: for example, exclusion of exon 7 in human SMN1 and

SMN2 genes, caused by disruption of 24-nt stem/loop structure in intron 7,

is the cause of spinal muscular atrophy (Miyaso et al., 2003). The secondary

structure serves as a splicing enhancer that binds some uncharacterized pro-

tein factors. There is also a competing theory which argues that primary

structure changes, more specifically, loss of a sequence based splicing en-

hancer or gain of a splicing silencer, are responsible for exclusion of exon 7

in SMN2 (Cartegni and Krainer, 2002; Kashima and Manley, 2003).

The secondary structure of pre-mRNA has been shown to play a role in

autoregulation of expression of some proteins: if production of a protein is

in excess, the protein binds to its own pre-mRNA or mRNA and prevents

splicing or translation. One example is the S. cerevisiae protein RPL30

(formerly known as L32). This protein regulates the splicing of its own gene

by binding to a stem/loop structure that is formed between complementary

sequences at the 5’ end of the pre-mRNA transcript and at the 5’ splice site

of its only intron (Eng and Warner, 1991). It was proposed that RPL30
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binding stabilizes the stem and prevents binding of U1 snRNA to the 5’

splice site. An example of a different splicing autoregulatory function was

observed in Yra1p, a small yeast RNA binding protein (Preker and Guthrie,

2006). If in excess, Yra1p is toxic to the organism; steady-state levels of

the protein are essential for viability. This is accomplished through positive

and negative splicing regulation. The YRA1 gene has one large intron (776

nt) and a non-canonical branchpoint sequence (GACUAAC), both of which

are negative regulators of its splicing (shortening the intron or mutating the

branchpoint sequence to the canonical one improves the splicing but has

a negative effect on cell growth). The YRA1 intron contains a stem/loop

structure that brings the 5’ and 3’ splice sites closer together and acts as a

positive regulator of intron splicing. This stem is evolutionarily conserved

in all budding yeast species. The disruption of the stem leads to reduced

splicing levels and improved cell growth.

Pre-mRNA secondary structure is also found to have a regulatory effect

on alternative splicing. For several cases of alternative splicing events it

has been proven that secondary structure elements suppress expression of

some exons in certain tissues, while they are normally expressed in others

(Libri et al., 1991; Clouet d’Orval et al., 1991; Blanchette and Chabot, 1997;

Coleman and Roesser, 1998; Hutton et al., 1998). An interesting example is

the inclusion stem (iStem), a long-range RNA structure element, found in

Drosophila melanogaster’s Dscam gene (Kreahling and Graveley, 2005). The

Dscam gene theoretically encodes 36016 different proteins due to alternative

splicing of 95 of its 115 exons. The alternatively spliced exons are organized

in four clusters and the iStem, which is found in the intron preceding cluster

4, is required for efficient inclusion of all the exons in this cluster. The iStem

is a large stem/loop structure, with a 27-nt long stem and 275 nt in the loop,

which is also conserved in other species of the Drosophila subgenus. The

function of the iStem is not precisely known, but it is suspected that it serves

as a binding site for some protein factors.
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2.4 Using secondary structure information for

splice site prediction

The numerous examples of RNA secondary structure affecting splicing prom-

pted scientists to consider secondary structure elements as additional iden-

tifiers of spliceosomal signals. This hypothesis was tested for acceptor splice

site prediction by Patterson et al. (2002) using a machine learning approach.

They used Martin Reese’s benchmark dataset for the evaluation of gene-

finding algorithms (Reese et al., 1999) to extract 100-nucleotide-long sub-

sequences centred around the acceptor splice sites (positive examples) and

100-nucleotide-long subsequences centred around AG dinucleotides not an-

notated as splice sites (negative examples). The resulting dataset contained

3960 subsequences, with the same number of positive and negative exam-

ples, and was used for training and testing in 10-fold cross-validation experi-

ments. For each subsequence in the dataset, a comprehensive set of foldings

was obtained using the mfold RNA secondary structure prediction algorithm

(Zuker and Jacobson, 1998). The foldings, annotated by their free energy,

were used to calculate three structural metrics: optimal folding energy, max

helix, which is the probability of helix formation in a close neighbourhood,

and neighbour pairing correlation model (NPCM), which was used to form

an aggregate model of the structure by training two Markov models for pos-

itive and negative examples and using them to score sequences in the test

dataset. The metrics were aggregated in feature vectors and used to train

support vector machines (SVMs) and decision trees. SVM and decision tree

classification was used to enhance the accuracy of traditional sequence-based

splice site prediction methods. They achieved a 5-10% reduction in error

rate, compared with strictly sequence-based approaches.

Another, more recent approach used nucleotide base-pairing informa-

tion to predict splice sites in Saccharomyces cerevisiae introns (Marashi

et al., 2006b) using a neural network approach. The authors selected 154

intron-containing yeast genes and predicted their MFE structures using the

mfold algorithm. They considered 20-nt windows around donor and ac-

ceptor splice sites as positive examples and 20-nt windows around non-



Chapter 2. Background and related work 24

splice-site GU and AG nucleotides as negative examples. Instead of us-

ing the traditional 4-letter RNA alphabet ({A,C,G,U}) they used an ex-

tended 8-letter alphabet, which considers if a nucleotide is basepaired or not

({AS , CS , GS , US , AL, CL, GL, UL}, L = loop, S = stem). These 20-nt fea-

ture vectors were used for training and testing of separate three-layer-based

perceptron neural networks for donor and acceptor sites. Half of the splice

site instances were used for training and the other half for testing and cross-

validation. Using this simple structure information improved the prediction

accuracy of splice site prediction: the correlation coefficient for donor site

prediction was 0.98 when structural information was used and 0.89 when

only sequence information was used. For acceptor sites, the respective cor-

relation coefficient values were 0.70 and 0.57.

The results from these studies show that using secondary structure infor-

mation in addition to sequence-based measures leads to improved accuracy

of splice site prediction. It also provides indirect evidence for the role of

pre-mRNA secondary structure in gene splicing.
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Chapter 3

Intron structure and splicing

in Saccharomyces cerevisiae

Good biological datasets are essential for most types of bioinformatics anal-

ysis. If sequence datasets are used, it is very important that the number

of sequencing errors be minimal and that sequence annotation, and the lo-

cations of gene structure elements, upstream and downstream gene regions

and any additional, functionally important sequence motifs, are accurate.

Any errors in data can result in faulty results and conclusions. The avail-

ability of data is also a concern. Even though the influx of biological data is

enormous, sometimes it is hard to find a complete and good quality dataset

for the type of analysis to be performed. Due to these concerns, we decided

to conduct our research on Saccharomyces cerevisiae, the simplest intron-

containing organism.

Saccharomyces cerevisiae, also known as brewer’s or baker’s yeast, was

the first eukaryote to have its genome fully sequenced (Goffeau et al., 1996).

The genome of this unicellular organism contains 12 million bases, divided

among 16 chromosomes. Initial sequence annotation found 5885 potential

protein-encoding genes, but this number is constantly being updated (Vel-

culescu et al., 1997; Kowalczuk et al., 1999; Blandin et al., 2000; Wood

et al., 2001; Kellis et al., 2003). The current number of open reading frames

(ORFs) is 6604, of which 4412 are ‘verified’ ORFs, meaning that there ex-

ists experimental evidence that a gene product is produced in S. cerevisiae

(SGD, July 2006).

Despite the differences in exon/intron structure between yeast and higher

eukaryotes, and considering the universality of splicing among all intron
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containing organisms, S. cerevisiae is often used as a model organism for

splicing studies. This is due to its intrinsic advantages as an experimental

system, given the possibility of a controlled growth environment and the

simplicity of genetic manipulation (Goffeau et al., 1996). We chose to base

our research on yeast for its thorough, experimentally supported annotation,

large number of splicing studies and limited intron sizes.

3.1 S. cerevisiae introns and splicing

Unlike most eukaryotic genomes, the yeast genome has few introns. In Au-

gust 2003, when we collected our data, the number of genes that were anno-

tated to contain spliceosomal introns in the Ares lab Yeast Intron Database

(http://www.cse.ucsc.edu/research/compbio/yeast_introns.html)

(Grate and Ares, 2002) was 239. Although few in number, intron-containing

genes produce the lion’s share of yeast mRNA: more than 10000 of the nearly

38000 mRNA molecules made each hour are derived from genes that have

introns (Ares et al., 1999). S. cerevisiae introns are usually limited to at

most one per gene: 229 intron-containing genes in the Ares Database have

only one intron, 8 contain 2 introns and 2 have several alternatively spliced

intron variants. Yeast introns are shorter on average than introns in higher

eukaryotes, are primarily located near the 5’ end of the gene, and have highly

conserved splice sites and branchpoint sequence (Spingola et al., 1999).

3.1.1 Conservation of splicing signals

The consensus sequence for the donor site is GUAUGU, which is by far the

most commonly used 5’ splice site. There are a few other variants that are

used to a much lesser extent, but the first and fifth position (GUAUGU) are

invariant among all annotated introns (Spingola et al., 1999). The branch-

point sequence, UACUAAC, is highly conserved in yeast, and only small

deviations from the canonical sequence are tolerated (Langford et al., 1984).

This is in contrast with mammalian branchpoint sequences, which are very

poorly conserved (Padgett et al., 1986). Usually, only the first nucleotide
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in the consensus is variable, with few exceptions. The last four positions

are invariant for all annotated introns (Spingola et al., 1999). The vast ma-

jority of 3’ splice sites have the consensus sequence YAG (Y = C or U).

In yeast, the polypyrimidine tract, which is typically highly conserved in

higher eukaryotes (see Figure 2.2), is conserved in ∼ 65% of introns (Kupfer

et al., 2004) and restricted mostly to U residues (Umen and Guthrie, 1995).

We also discuss S. cerevisiae splice site signals and branchpoint sequence in

Section 6.3, focusing on their basepairing interactions with snRNAs.

3.1.2 Pre-mRNA splicing

Splicing of pre-mRNA in Saccharomyces cerevisiae is generally the same as

in other eukaryotic organisms. The splicing process starts with U1 snRNP

recognition of the 5’ splice site and subsequent binding to it, forming what

is called a ‘commitment complex’. Next, U2 snRNA binds to the branch-

point sequence, followed by the assembly of the U4/U5/U6 tri-snRNP with

the pre-spliceosome. The U1 snRNA gets displaced from the 5’ splice site,

and the U6 snRNA establishes basepairing interactions with the donor site.

The basepairing interactions between the U6 and U4 snRNAs are disrupted,

and U6 basepairs with the U2 snRNA to form the mature (active) spliceo-

some. As in other eukaryotes, the splicing event consists of two consecutive

trans-esterification reactions: the first one cleaves the pre-mRNA at the 5’

exon/intron junction and the intron’s 5’ end is ligated to the branchpoint;

the second one cleaves the pre-mRNA at the 3’ splice site, releasing the

intron as a lariat structure, and joins the 5’ and 3’ exons together.

The yeast spliceosome contains more than 75 splicing protein factors,

some of which are directly associated with snRNAs in small ribonucleo-

protein particles (snRNP proteins) and others that are not parts of snRNPs

(non-snRNP proteins). These proteins have essential roles in the splicing

process: examples are the BBP protein that recognizes and binds to the

branchpoint sequence prior to U2 snRNA binding, and the MUD2 protein

that binds to polypyrimidine tract and 3’ splice site (Brow, 2002).

While the five small nuclear RNAs are well conserved in length, sequence,
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and especially structure among mammals, they are quite different in yeast

(Kretzner et al., 1990). The sequence similarity between mammalian and

yeast counterparts is very low (except for U6 snRNA), and three of the

yeast snRNAs are significantly longer than in mammals (U2 snRNA is 6

times longer). However, careful structural analysis of these RNAs has re-

vealed that most structural elements found in higher eukaryotes are also

present in yeast snRNAs (Kretzner et al., 1990). It was shown that yeast-

specific structural domains of snRNA can be deleted with little or no effect

on splicing (Igel and Ares, 1988; Rymond and Rosbash, 1992).

3.2 S. cerevisiae intron dataset

In order to obtain a high quality yeast intron dataset we consulted three

databases: the Ares lab Yeast Intron Database, the Yeast Intron DataBase,

and the Comprehensive Yeast Genome Database. For additional informa-

tion, we used the Saccharomyces Genome Database (SGD), which is an

ultimate collection of genetic and molecular biological information about S.

cerevisiae.

The Ares lab Yeast Intron Database

The Ares lab Yeast Intron Database (AYID) is a searchable database that

contains 239 Saccharomyces cerevisiae spliceosomal introns (Grate and Ares,

2002). For each intron, the following information is given: SGD feature,

SGD synonyms, SGD locus and description. All these entries are linked

to the SGD and MIPS (Munich Information Center for Protein Sequences)

databases. FASTA files with intronic sequences with and without 50-nt

flanking regions are also provided. The format of the AYID database is

illustrated in Table 3.1.

Each gene in yeast has a systematic name and gene name. Systematic

names are of the form YCXDDDS, where ‘Y’ stands for ‘Yeast’; ‘C’ indi-

cates chromosome number (A=1, B=2, etc.); ‘X’ can be either ‘L’ or ‘R’,

indicating the position of the gene relative to the centromere (Left or Right);
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SGD
feature

SGD
synonyms

SGD
locus

Description

SNR17A U3A
snoRNA

[ares] Not in a protein ORF, but in U3A
snoRNA

SNR17B U3B
snoRNA

[ares] Not in a protein ORF, but in U3B
snoRNA

YAL001C FUN24
tsv115
YAL001C

TFC3 RNA polymerase transcription initiation
factor TFIIIC (tau), 138 kDa subunit

YAL003W TEF5
YAL003W

EFB1 Translation elongation factor EF-
1beta, GDP/GTP exchange factor
for Tef1p/Tef2p

YAL030W YAL030W SNC1 Synaptobrevin (v-SNARE) homolog
present on post-Golgi vesicles

Table 3.1: An excerpt from the Ares lab Yeast Intron Database (Grate and
Ares, 2002).

‘DDD’ is a three-digit number assigned to the gene bases on its relative po-

sition from the centromere (ORFs are numbered from the centromere to the

telomere); and ‘S’ stands for ‘W’ or ‘C’, to indicate which strand the ORF

is in (Watson – forward or Crick – reverse). The yeast gene nomenclature

requires that the name consist of three letters (the gene symbol) followed

by an integer (e.g., ACT1).

The Yeast Intron Database

The Yeast Intron DataBase (YIDB) contains information about all introns

encoded in the nuclear and mitochondrial genomes of S. cerevisiae (Lopez

and Séraphin, 2000). It can be accessed at http://www.embl-heidelberg.

de/ExternalInfo/seraphin/yidb.html (last accessed in August 2003). In-

trons are divided into tables according to the mechanism of excision: pre-

mRNA introns, tRNA introns, the HAC1 intron, and group I and II introns.

For 255 pre-mRNA introns, the following information is provided in a tab-

ular format: ORF name, EMBL (European Molecular Biology Laboratory)

database accession number, transcription frequency, partial sequence of the

exon 1 (5’ exon), sequences of 5’ and 3’ splice sites and the branchpoint as

well as intron size. The entries are linked to the MIPS and EMBL databases.
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ORF

name

EMBL

acc

num

Trans

freq

Exon

1

5’

splice

site

Branchpoint 3’ splice site Intron

size

YAL001C L22015 1.1 ggaa gtatgtt tttactaacga taacgacacattgaag 90
YAL003W L22015 52.3 aagg gtatgtt attactaacaa tctccttttaaaatag 366
YAL016W L05146 4.5 ctgc gtatgtc aatactaacgt ataattgagtggtcag 883
YAL030W U12980 2.3 agct gtaagta tatactaactt tcgtgtttatttttag 113
YAL042W U12980 10.4 gcgg gtatgaa agtactaacgg aacttttcacttttag 425

Table 3.2: An excerpt from YIDB (Lopez and Séraphin, 2000).

The format of the YIDB database is illustrated in Table 3.2.

The Comprehensive Yeast Genome Database

The MIPS Comprehensive Yeast Genome Database (CYGB) is a search-

able database that contains a variety of data related to the genome of S.

cerevisiae (Mewes et al., 2002). Its section about Hemiascomycetous yeast

spliceosomal introns can be accessed at http://mips.gsf.de/proj/yeast/

reviews/intron/, with further links to the S.cerevisiae intron table and a

FASTA file with intron sequences (last accessed in February 2006). For

271 S.cerevisiae spliceosomal introns in the database, the following informa-

tion is provided in a tabular format: ORF/gene name, intron name, intron

length, partial sequences of exon 1 (5’ exon) and 2 (3’ exon), sequences of

5’ and 3’ splice sites, branchpoint sequence, distances from the 5’ splice site

to the branchpoint and from the branchpoint to the 3’ splice site, reference,

evidence (experimental or putative) and comments. The entries are linked

to the MIPS and PubMed databases.

3.2.1 Dataset construction

We constructed our dataset by including introns that have consistent an-

notations between at least two of the three databases previously discussed.

Since the vast majority of yeast intron-containing genes contain only one in-

tron and only a few contain two introns per gene, we decided to include only

the former, leaving the latter for later consideration. This was done solely to

make the dataset more uniform. The number of introns found to have a con-

sistent annotation between at least two databases was 227. Eleven of these
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were excluded because they were not supported by the latest comparative

genomic study (Kellis et al., 2003) and were marked as possible misanno-

tations. An additional two introns, belonging to the genes YLR202C and

YOR318C, have been excluded from the dataset because they were labeled

as ‘dubious’ in SGD.

Consequently, our final yeast intron dataset contains 214 pre-mRNA

introns. The consistency of annotation allows us to combine intron informa-

tion from two sources in a classic database join operation, e.g., the intron

sequence from the AYID database, which is not available in YIDB, and the

branchpoint sequence from the YIDB database, which is not available in

AYID. All of these introns are part of protein-coding genes, 95 of which

code for ribosomal proteins, 84 have other, known cellular functions and 35

code for proteins of unknown function. The dataset contains 159 experi-

mentally verified and 55 putative introns. The vast majority of introns are

located in the translated portion of a gene, while 12 introns are located in

the 5’ untranslated region (UTR). This information was collected in January

2006 when the dataset was last updated. We will refer to this dataset as

the STRuctural INtron (STRIN) dataset. Appendix A lists all the introns

in the dataset (names of the genes which contain them) along with some of

their characteristics.

3.2.2 Length distribution and architecture of yeast introns

The length distribution of introns in the STRIN dataset is shown in Figure

3.1. We observe that this distribution is primarily bimodal: the first mode

is located around 100 nt and the other at 400 nt. This is in agreement with

previous observations of length distribution of yeast introns (Spingola et al.,

1999). The shortest intron in the dataset has a length of 58 nt and the

longest one has a length of 1002 nt.

The architecture of yeast introns was first examined by Parker and Pat-

terson (1987), who tried to establish patterns of spatial arrangements be-

tween conserved sequence elements involved in splicing. The motivation for

this work was the assumption that optimal spacing of conserved intron se-
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Figure 3.1: (a) Distribution histogram and (b) cumulative distribution of
intron lengths (L) in the STRIN dataset.
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Figure 3.2: Architecture of a yeast intron: consensus 5’ and 3’ splice sites
and branchpoint sequence are given (Y = C or U). The branchpoint distance
is the distance between the 5’ splice site and the branchpoint sequence. Some
authors extend this distance up to the branchpoint adenine.

quences would promote spliceosome assembly by positioning snRNAs and

other protein factors involved in splicing in proper geometry to interact with

each other. Evidence of non-random spacing would support this assumption.

For their study, Parker and Patterson used a dataset of 43 fungal introns,

including 21 from S. cerevisiae. They distinguished two classes of introns

based on the distance from the 5’ splice site to the branchpoint sequence:

• 5’ short (5’S) introns, for which the distance between two elements

was about 40 nt, and

• 5’ long (5’L) introns, with a significantly larger spacing of 200-450 nt.

Similarly, based on the distance between the branchpoint sequence and

the 3’ splice site, the authors proposed the following classification:

• 3’ short (3’S) introns, for which the distance between two elements

was between 5 and 15 nucleotides, and

• 3’ long (3’L) introns, with a spacing of 22-137 nt.

A schematic of yeast intron architecture is given in Figure 3.2.

In order to see if these spatial classifications still hold for a larger set of

yeast introns, we plotted distributions of distances between the 5’ splice site

and branchpoint sequence (which we call ‘branchpoint distances’) (Figure

3.3) and distances between the branchpoint and the 3’ splice site (Figure

3.4). In AYID, these distances are referred to as ‘lariat length’ and ‘tail
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length’, respectively. The branchpoint distance distribution appears to be

bimodal, which is in agreement with the findings of Parker and Patterson

(1987). Classifying STRIN introns into two groups based on their branch-

point distance yields 104 5’S introns and 110 5’L introns. 5’ short introns

range from 40 to 200 nt, with an average length of 115 nt and an average

branchpoint distance of 71 nt, and 5’ long introns range from 200 to 500

nt (with few longer exceptions), with an average length of 417 nt and an

average branchpoint distance of 372 nt.

Visual comparison of the distributions in Figure 3.1 and Figure 3.3 sug-

gests that the intron length and the branchpoint distance may be correlated

in yeast introns. This is confirmed in the correlation plot given in Figure 3.5,

which shows a tight linear correlation (with a Pearson correlation coefficient

of r = 0.99) between the two intron characteristics. The same correlation

coefficient value was reported in Kupfer et al. (2004), where it was found

that high correlation between intron length and branchpoint distance is a

common characteristic of five diverse fungi species.

The distribution of distances between the branchpoint and the 3’ splice

site in the STRIN dataset is unimodal (Figure 3.4), which is in contrast

with the observations in Parker and Patterson (1987). This may be ex-

plained by the small size of the sample used by Parker and Patterson. The

observed mode is near 35 nt, and the distances range from 10 to 80 nt, with

a few longer exceptions. The correlation plot shown in Figure 3.6 does not

show any evidence of a significant correlation between intron length and the

distance between the branchpoint and the 3’ splice site (r = 0.13). A sim-

ilar correlation coefficient value was reported in Kupfer et al. (2004). The

Pearson correlation coefficient between branchpoint distances and distances

between the branchpoint sequence and the 3’ splice site is r = −0.005.

Our analysis of spatial arrangements in the STRIN dataset supports in

general the findings of Parker and Patterson (1987). The distances between

conserved intron sequences are not random but grouped around one or two

modes. The distance distribution for the branchpoint - 3’ splice site suggests

that a spacing between 10-80 nt is optimal for spliceosomal assembly, and

thus is evolutionarily conserved. This is also supported by findings that the
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Figure 3.3: (a) Distribution histogram and (b) cumulative distribution of 5’
splice site - branchpoint distances in the STRIN dataset.
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Figure 3.4: (a) Distribution histogram and (b) cumulative distribution of
branchpoint - 3’ splice site distances in the STRIN dataset.
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Figure 3.5: Correlation between intron length and branchpoint distance in
the STRIN dataset (r = 0.99).
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distance from the branchpoint nucleotide is a critical parameter for 3’ splice

site activation (Luukkonen and Séraphin, 1997).

The observation of two modes for the branchpoint distribution leads us

to believe that there are two optimal spacings between the 5’ splice site

and the branchpoint sequence. This is contradictory to our knowledge of

spliceosome assembly, which is universal for any intron type. The shorter

distance seems likely to facilitate direct interactions between the U1 and U2

snRNPs. The minimum distance needed for the assembly of the U1 and U2

snRNPs with pre-mRNA is around 40 nucleotides: the region bound to the

U1 snRNP is approximately 15 nt (3 nt upstream of the splice junction and

12 nt downstream) (Mount et al., 1983), and the region bound to the U2

snRNP is about 35 nt (25 nt upstream of the branchpoint adenosine and 10

nt downstream) (Black et al., 1985). It was also shown that yeast pre-mRNA

splicing requires a minimum branchpoint distance of 40 nt – shortening this

distance leads to splicing inhibition (Thompson-Jäger and Domdey, 1987;

Köhrer and Domdey, 1988). These findings are consistent with our data

– the minimum branchpoint distance observed in the STRIN dataset is 42

nucleotides.

If shorter spacing is optimal for spliceosome assembly, how do the U1 and

U2 snRNPs interact in 5’L introns? Parker and Patterson (1987) suggest the

formation of pre-mRNA secondary structure that would bring the 5’ splice

site and the branchpoint into closer proximity. In their yeast dataset, they

observed 12 introns with large branchpoint distances that have a potential

to form helical structures between the 5’ splice site and the branchpoint.

A common feature of these structures is a relatively constant shortened

branchpoint distance (obtained after subtracting nucleotides enclosed in the

stem and loop) of around 45 nt that resembles the spacing in 5’S introns.

3.2.3 Secondary structure in yeast introns

Parker and Patterson’s proposal is not unique. Several other authors have

studied secondary structure elements in yeast introns and their effect on

splicing. Experimental analysis of splicing efficiency of the S. cerevisiae
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CYH2 gene, which involved deletion and rearrangement of intron sequences,

identified two small regions, one downstream of the 5’ splice site, and the

other upstream of the branchpoint sequence, that were found to be essential

for splicing in vitro and in vivo (Newman, 1987). The elements were found to

be complementary in sequence, suggesting possible basepairing interactions.

In 1993, Goguel and Rosbash observed some communication between

non-conserved sequences downstream from the 5’ splice site and upstream

from the branchpoint region of the RP51B S. cerevisiae intron. These in-

teractions were further confirmed by Libri et al. (1995) and by Charpentier

and Rosbash (1996), where comprehensive mutational and structure-probing

analysis determined the exact structure of the stem-loop formed in the wild

type (wt) intron. These studies also demonstrated that this complementary

pairing is essential for efficient splicing in vitro and in vivo. Libri et al.

found that if wild type basepairing interaction was disrupted, splicing could

be restored by alternative basepairing, indicating that the existence, not the

location, of the stem is essential for efficient splicing of the RP51B intron.

The work of Libri et al. and Charpentier and Rosbash is discussed in more

detail in Section 5.1.

A study of exon skipping in the multiply interrupted YL8A S. cerevisiae

gene revealed the important role of complementary intron sequences that

promote exon inclusion in mature RNA (Howe and Ares, 1997). The se-

quences are located downstream of the 5’ splice site and upstream of the

branchpoint, in each of the YL8A two introns. Destroying the complemen-

tarity of the sequences reduced the amount of correctly spliced pre-mRNA

and induced exon skipping. Based on this observation, Howe and Ares sug-

gest that these basepairing interactions serve as intron identifiers, promoting

correct pairing of appropriate splice sites in multi-intron pre-mRNAs.

3.3 Intron dataset for phylogenetic analysis

Biological sequences and structures that have important functions are usu-

ally conserved during evolution. This makes comparative genomics, which

compares genomes of related species, a powerful tool for identifying func-
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S. cerevisiae

S. paradoxus

S. mikatae

S. bayanus

~20mya

~10mya
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Figure 3.7: Phylogenetic tree for Saccharomyces sensu stricto species derived
based on sequence divergence of ribosomal DNA sequences (Kellis, 2003).
The time labels (in mya = million years ago) given at the nodes of the tree
indicate when the species, represented by the branches coming out from a
node, diverged from the most common ancestor.

tional elements without previous knowledge of function. In this thesis, we

use a technique from comparative genomics, known as phylogenetic or com-

parative structure analysis, to look at the conservation of secondary struc-

tures or structural motifs, which we consider important for splicing.

For this purpose, we chose three species closely related to Saccharomyces

cerevisiae: S. paradoxus, S. mikatae, and S. bayanus. These three species

were sequenced and used for comparative studies, along with S. cerevisiae,

by Kellis et al. (2003). The species were sequenced by seven-fold redundant

coverage and assembled into 230-500 kb long scaffolds that cover most of

the genome (∼95%). S. cerevisiae, S. paradoxus, S. mikatae, and S. bayanus

belong to the Saccharomyces sensu stricto group, and their phylogenetic

tree is given in Figure 3.7.

S. cerevisiae has 90% (80%) average nucleotide identity with S. para-

doxus in coding (intergenic) regions, 84% (70%) with S. mikatae, and 80%

(62%) with S. bayanus. The species were found to have enough sequence

similarity to allow reliable alignment of orthologous regions, but sufficient

sequence divergence to allow recognition of functional elements (Kellis et al.,

2003). The genomes of the four species were aligned by pair-wise comparison

of the species’ ORFs.

The comparative genetic analysis performed by Kellis et al. resulted in

major changes in the S. cerevisiae gene catalogue, reducing the total number

of genes by approximately 500 and redefining gene boundaries in more than
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0~120:

Scer.....: ATGCTTTTCTTCTCCTTTTTCAAGACTTTAGTTGACCAAGAAGTGGTCGTAGAGGTATGTTCATAATGATTTACATCGGAATTCCCTTTGATACAAGAAAA-CTAACGGGTATCGTACAT
Spar.....: ATGCTTTTCTTCTCTTTTTTCAAGACTTTAGTTGACCAAGAAGTGGTCGTAGAGGTATGTTTACAATGATTTACACCGGGATTCCCTTTGATACAAGAAAAACTAACGGTTATCGTACAT
Smik.....: ATGCTTTTCTTCTCTTTTTTCAAAACTTTGGTCGATCAAGAAGTGGTGGTAGAGGTATGTTTACAATAATTTACAGACAAACTCTCTTTGATATAAGAAAA-CTAGCAGTTATCGTACAT
Sbay.....: ATGCTCTTCTTCTCCTTTTTCAAGACTCTAGTAGACCAAGAAGTGGTCGTAGAGGTATGTTAATAATGATTTACACCGGGATGCCCTTTGA--CAAGGAAAACCAACGGGTCTCGTACAT
consensus: ***** ******** ******** *** * ** ** *********** ************* * *** *******     *  * ******   *** *** * * * * * ********
Scer_spli:                                                       DDDDDD                                       BBBBBBBB
Spar_spli:                                                       DDDDDD                                        BBBBBBB
Smik_spli:                                                       DDDDDD
Sbay_spli:                                                       DDDDDD
known....:                                                       >=================================================================
120~240:
Scer.....: -CAATTTTTGAAAAAAGTC--AAGTACTAACGTTTGTTTACCCCT-GTTTATTGTGTTTCCACTCAGTTAAAAAACGACATTGAAATAAAAGGTACACTACAATCAGTTGACCAATTTTT
Spar.....: -CAATTTTTAAAAAAAATTTTAAATACTAACGTTTGCTTACTCCT-ATTAATGGTGTCTCCACTCAGTTAAAAAATGACATCGAAATAAAAGGTACCCTACAATCTGTCGACCAATTTTT
Smik.....: -CAATCTTTCAAAACAACG--AAATACTAACGTTCTTCTACTCTTTGTTGGTTGTGCTTCTAATCAGCTAAAAAATGACATCGAAATAAAAGGTACACTACAATCAGTCGACCAGTTTTT
Sbay.....: TCACAGTTTCCTAAAAACTA-AAATACTAACGTTTGCACATCCCT-GTTTACTGTGTTCTAAATTAGTTAAAAAACGACATTGAAATAAAAGGTACACTGCAATCTGTAGACCAGTTCTT
consensus:  **   ***   ** *     ** **********     *  * *  **    ***     * * ** ******* ***** ************** ** ***** ** ***** ** **
Scer_spli:                         BBBBBBB
Spar_spli:                         BBBBBBB
Smik_spli:                         BBBBBBB
Sbay_spli:                         BBBBBBB
known....: =================================================================>=

Figure 3.8: An example of a ClustalW alignment taken from the supplemen-
tary data by Kellis et al. (2003). Nucleotides conserved in all four species are
marked with ‘*’. The intron is indicated by a double dashed line. Potential
donor sites and branchpoint sequences are annotated by strings of Ds and
Bs, respectively.

300 cases. They also identified 17 mis-annotated introns, which we excluded

during construction of the STRIN dataset, and predicted 58 new introns.

We used multiple sequence alignments provided by Kellis et al. (2003) to

extract the orthologous intron sequences. The alignments are provided as

supplementary data and are available at http://www-genome.wi.mit.edu/

annotation/fungi/comp_yeasts/downloads.html (last accessed in June

2006). They were produced by the ClustalW program (Thompson et al.,

1994) and are in the format shown in Figure 3.8.

We searched for the multiple sequence alignments of introns from the

STRIN dataset. There were 174 introns found in Kellis’ data, which we fur-

ther filtered to exclude alignments where only a S. cerevisiae sequence was

present (YGR296W, YHL050C, YHR203C, YIL177C, YJL225C, YLR464W,

YNL339C, YPL283C, YPR202W). We also examined the alignments for

any inconsistencies with respect to donor, acceptor and branchpoint se-

quence alignments. This revealed additional problematic alignments where

either the donor or branchpoint sequence was not properly aligned or the

aligned sequences significantly diverged from the known consensus sequence.

There were 9 intron alignments with these problems: YBR186W, YJR079W,
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YKL002W, YKL157W, YLR093C, YLR211C, YNL012W, YOL047C, and

YPL129W. These introns were excluded from our phylogenetic dataset. An

additional four introns had problematic alignments between the S. cerevisiae

and S. bayanus sequences: YGL137W, YJL177W, YLR078C, YOR182C. We

excluded the S. bayanus sequences from these alignments. Finally, the intron

YMR292W alignment between S. cerevisiae and S. paradoxus sequences was

suspicious (the 7-nt sequence annotated as the branchpoint sequence for S.

paradoxus was very different from the consensus sequence), so we excluded

the S. paradoxus sequence from it.

These filtering steps reduced the number of alignments to 155. Among

these there were 7 containing sequences from two species, 51 containing

sequences from three species and 97 aligning all four species. An intron

sequence from S. cerevisiae was present in each alignment, the S. paradoxus

sequence was present in 146 alignments, the S. mikatae sequence in 120

alignments and the S. bayanus sequence in 134 alignments.

We calculated the average nucleotide identity in intronic regions based

on these alignments: S. cerevisiae has 74% average nucleotide identity with

S. paradoxus, 58% with S. mikatae, and 50% with S. bayanus.

We used these orthologous intron sequences from closely related species

to investigate the conservation of intron architecture. We extracted the

intron sequences from the alignments and computed intron length distribu-

tions for each species. The distribution histograms as well as correlation

plots that compare intron length between S. cerevisiae and other species

are given in Figure 3.9.

These intron length distribution histograms look very much like the dis-

tribution histogram for S. cerevisiae (Figure 3.1): the intron length range

is almost the same and all distributions are bimodal, with the first mode lo-

cated around 100 nt and the other around 400 nt. This observation as well

as high correlation between intron lengths in S. cerevisiae and the other

three species (see correlation plots in Figure 3.9; the corresponding Pearson

correlation coefficients are r = 0.97, r = 0.96, and r = 0.96 for S. paradoxus,

S. mikatae, and S. bayanus, respectively) indicate that intron lengths have

been conserved among sensu stricto species.
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Figure 3.9: Intron length distribution histograms and intron length corre-
lation plots between S. cerevisiae and Saccharomyces sensu stricto species:
(a), (b) S. paradoxus, (c), (d) S. mikatae, (e), (f) S. bayanus.



Chapter 3. Intron structure and splicing in Saccharomyces cerevisiae 44

We also looked at the conservation of branchpoint distances in the sensu

stricto species. The branchpoint distances for the three related sequences

were computed based on the multiple sequence alignments and known branch-

point distances for S. cerevisiae introns. The distribution histograms, as

well as the correlation plots that compare branchpoint distances between

S. cerevisiae and the other sensu stricto species, are shown in Figure 3.10.

The correlation coefficients corresponding to the given correlation plots are

r = 0.999, r = 0.996, and r = 0.994 for S. paradoxus, S. mikatae, and

S. bayanus, respectively. This indicates that the branchpoint distances are

conserved even better than the intron lengths and suggests functional im-

portance of this intron characteristic. If pre-mRNA secondary structure

plays a role in splicing, either to shorten the distance between the 5’ splice

site and the branchpoint sequence or in some other way, it seems reasonable

to assume that these structural features of introns will be conserved among

sensu stricto species. We investigate this hypothesis further in Sections 4.4

and 6.4.
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Figure 3.10: Branchpoint distance distribution histograms and branchpoint
distance correlation plots between S. cerevisiae and Saccharomyces sensu
stricto species: (a), (b) S. paradoxus, (c), (d) S. mikatae, (e), (f) S.
bayanus.
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Chapter 4

Zipper stems in long yeast

introns

Motivated by the discoveries of complementary basepairing in several Sac-

charomyces cerevisiae introns, in this chapter we investigate if the ability

to form a stem structure between the 5’ splice site and the branchpoint is

something common to all introns with long branchpoint distance. We search

the secondary structures of 5’L STRIN introns for stems that bring the 5’

splice site and the branchpoint sequence into closer proximity and analyze

the effect of these stems on the resulting branchpoint distances. We experi-

ment with different stem selection criteria and consider single and multiple

stems. The results obtained generally support the hypothesis that stem

structures in a long yeast intron can shorten the branchpoint distance to

what is believed to be the optimal one.

The second part of the chapter investigates the conservation of zipper

stems among closely related Saccharomyces sensu stricto species, using vi-

sual inspection of the multiple sequence alignments and secondary structures

as well as automatic comparative structure approaches on a selected subset

of introns.

4.1 Definition and initial identification of zipper

stems

We used the Vienna RNA secondary structure package (Hofacker et al.,

1994) to calculate secondary structures of 5’L introns in the STRIN dataset.

Its RNA folding function, RNAfold, is based on a dynamic programming
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algorithm, which calculates pseudoknot-free secondary structure with mini-

mum free energy as well as the equilibrium partition function and basepair-

ing probabilities. Version 1.4 of the package was downloaded from http://

www.tbi.univie.ac.at/~ivo/RNA/ (September 2003) and compiled. The

input to the RNAfold function consists of one or more sequences in FASTA

format. The output of the program is a secondary structure in dot-bracket

notation, which is usually defined as follows:

Definition 1 (RNA secondary structure in dot-bracket notation)

Let R = r1r2...rn be an RNA sequence (rk ∈ {A,C,G,U}). The sec-

ondary structure of sequence R is given by a string S = s1s2...sn, where

sk (1 ≤ k ≤ n) is one of the symbols: ‘.’, ‘(’, and ‘)’. A basepair between

bases ri and rj, where i < j, is represented by si = ‘(’ and sj = ‘)’. Unpaired

bases rk are represented by rk = ‘.’. For each position i in S the number

of open brackets has to be greater than or equal to the number of closed

brackets. The total numbers of opening and closing brackets in S have to be

equal.∗

The RNAfold function was run on a FASTA file with the 110 5’L introns

from the STRIN dataset. For each intron sequence, the program calculated

a structure with the minimum free energy. The structures were further

computationally analyzed to find a stem that would shorten the branch-

point distance. A stem structure in RNA secondary structure prediction is

formally defined in Definition 2, as follows:

Definition 2 (Stem) A stem in an RNA secondary structure is defined

by basepairing between two complementary subsequences of R: riri+1...ri+k

and rj−krj−k+1...rj and represented in secondary structure S as a substring

sisi+1...si+k of opening brackets and a substring sj−ksj−k+1...sj of closing

∗The pseudoknot-free RNA secondary structure in dot-bracket notation can also be
defined by a simple context-free grammar:

S → ε | . S | (S) S (4.1)
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brackets, and where si and sj, si+1 and sj−1, ..., si+k and sj−k are matching

brackets.

Note that a stem as defined in Definition 2 is uninterrupted, i.e., does

not allow for the occurrence of any unpaired bases that would form bulges

or internal loops within the stem.

We designed an algorithm that identifies a stem that brings the 5’ splice

site and the branchpoint into closer proximity. The location of the branch-

point was obtained by taking the branchpoint sequence for a particular

intron from the YIDB table (see Table 3.2) and finding its location in the

intron sequence taken from the AYID database. The algorithm parses a

string of brackets and dots given by the RNAfold program and looks at

the stems that appear between the 5’ splice site and the branchpoint se-

quence. The stem that has the largest distance between the complementary

sequences forming it is selected and returned as the result. We call such a

stem a ‘zipper’ stem, since it ‘zips’ the intron, bringing the 5’ splice site and

the branchpoint sequence closer together. The formal definition of a zipper

stem is given in Definition 3. A zipper stem is always located between the 5’

splice site and the branchpoint, even though these two sequences could be

brought closer together by basepairing interactions between the first com-

plementary sequence located between the 5’ splice site and the branchpoint

and the second complementary sequence located between the branchpoint

and the 3’ splice site. A generalization of the zipper stem definition that

captures such effects will be considered later. An example of an intron struc-

ture, with annotated 5’ splice site, branchpoint sequence and zipper stem,

is given in Figure 4.1.

Definition 3 (Zipper stem) A stem represented by two substrings si...si+k

and sj−k...sj of matching opening and closing brackets, where j < d (d + 1

is the first position of the branchpoint sequence), is called a zipper stem if it

is the stem that brings the 5’ splice site and the branchpoint closest together,

i.e., if j − i is maximal among all possible stems in S for which j < d.

Potential zipper stems were found for all 5’L introns in the dataset.

Since it was previously speculated that the role of these stems would be to
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Figure 4.1: Secondary structure of the YGL030W intron. The dot-bracket
notation for this structure with highlighted zipper stem is shown at the
bottom of the figure.
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shorten the distance between the 5’ splice site and the branchpoint to the

operational distance that is observed for 5’S introns (Parker and Patterson,

1987; Newman, 1987; Goguel and Rosbash, 1993; Libri et al., 1995) we tested

if we could observe this effect in our dataset. Once the locations of the

potential zipper stems were found, we calculated the shortened branchpoint

distance for all the sequences.

Definition 4 (Shortened branchpoint distance) If si...si+k and

sj−k...sj are two substrings of matching opening and closing brackets that

form the identified zipper stem, the shortened branchpoint distance has the

following value:

d̄ = i + (d − j) (4.2)

where d is the original branchpoint distance (the first position of the branch-

point sequence is d + 1); for an illustration see Figure 4.2.

If the algorithm fails to identify a zipper stem for a certain sequence, its

original, linear branchpoint distance will be included in the distribution of

shortened distances.

The distribution of shortened branchpoint distances for 5’L STRIN in-

trons, along with the distribution of branchpoint distance for 5’S introns,

is given in Figure 4.3. The cumulative distribution plot is shown in Figure

4.4. The two distributions do not appear to support the hypothesized effect.

The datasets have almost identical means (72 nt for 5’S introns and and 71

nt for zipped 5’L introns), but many zipped 5’L introns have branchpoint

distances shorter than 40 nt or longer than 200 nt, which is not observed for

the 5’S introns.

To statistically test these differences we performed the Kolmogorov-

Smirnov test (KS test) (Hollander and Wolfe, 1999), which is used to deter-

mine whether the underlying probability distributions of two datasets differ.

The KS test is non-parametric, i.e., it does not require any assumption about

distribution of data (unlike Student’s t-test) and is not dependant on data

binning (unlike chi-square test), which makes it suitable for our analysis.
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Figure 4.2: Illustration of shortened branchpoint distance.

The test calculates the maximum distance between two cumulative distri-

butions (D statistics), and then the p-value associated with this number

can be obtained. For p-values smaller than the selected significance level,

the null hypothesis that the two datasets stem from the same underlying

distribution is rejected. We used a significance level of 0.05 for all statistical

tests performed.

Applying the KS test to the datasets of branchpoint distances for 5’S

introns and branchpoint distances for zipped 5’L introns, we obtained D =

0.3 with a corresponding p-value < 0.0001. Thus, the null hypothesis that

the two datasets are of the same form is rejected.

4.2 Length-bounded zipper stems

Upon closer inspection of the intron structures with very short identified

zipper stems, we usually found longer, more thermodynamically stable stems
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Figure 4.3: Distribution histograms for (a) branchpoint distance for 5’S
introns (d) and (b) branchpoint distance for zipped 5’L introns (d̄).
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Figure 4.4: Cumulative distributions of the 5’ splice site - branchpoint dis-
tance for 5’S introns and 5’L introns folded in secondary structure.

that could zip the intron between the 5’ splice site and the branchpoint.

One example is given in Figure 4.5. In this case the zipper stem found was

only 2 nt long and is actually part of a larger stem formed by basepairing

interactions between the 5’ splice site and the branchpoint sequence. It is

questionable if this basepairing interaction is present in vivo since the U1

and U2 snRNPs have to bind to these sequences in order to initiate splicing.

The other possibility is that there are enzymes that open this structure

previous to splicing (Wagner et al., 1998; Wang et al., 1998). In any case,

even if the 5’ splice site and the branchpoint were not enclosed in this stem,

a 2-nucleotide-long stem does not seem thermodynamically stable enough to

hold two ends of the molecule together, especially if the loop size is larger.

Therefore, we modified our algorithm to find zipper stems whose length is

greater than or equal to a minimum stem length defined in the algorithm. We

ran the algorithm for arbitrary minimum stem lengths of 3, 5 and 7 basepairs

(bp). For a stem length of at least 7 bp, the algorithm failed to find a stem

in many introns from the dataset. The best results, in terms of D statistics

value, were obtained when the minimum length requirement for the zipper
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Figure 4.5: Secondary structure of the YDL079C intron.

stem was 5 bp. The distribution of shortened branchpoint distances is shown

in Figure 4.6, along with the original branchpoint distance distribution for

5’S introns.

Imposing the minimum stem-length requirement did improve results, but

the null hypothesis that the dataset of 5’S branchpoint distances and the

dataset of shortened 5’L branchpoint distances stem from the same underly-

ing distribution was still rejected (p-value = 0.024). Cumulative distribution

plots for the two datasets are given in Figure 4.7. From Figure 4.6(b) and

Figure 4.7 it is evident that the number of zipped introns that have very

short branchpoint distances has been reduced; however, this also resulted

in an increase of the zipped introns with longer (> 200 nt) branchpoint

distances.

4.2.1 Control datasets

Despite the differences between the two distributions, their modes are still

around the same value of about 50 nt. To test the significance of this phe-

nomenon we investigated if a similar effect can be observed for random

and exon sequences. For this purpose, we generated two control datasets:

a dataset of randomly generated RNA sequences and a dataset of exonic
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Figure 4.6: Distribution histograms for (a) branchpoint distance for 5’S
introns and (b) branchpoint distance for zipped 5’L introns with a minimum
zipper stem length of 5 nt.
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Figure 4.7: Cumulative distributions of the 5’ splice site - branchpoint dis-
tance for 5’S introns and 5’L introns folded in secondary structure with a
minimum zipper stem length of 5 nt.

subsequences. The first dataset contains 500 randomly generated DNA se-

quences that on average have the same GC content as the STRIN dataset

(34%) and whose length distribution is identical to the length distribution

of 5’L introns. The second dataset was generated by extracting the windows

of exonic sequences from STRIN exons (exons from genes that have STRIN

introns) by sliding a window of variable length, which is drawn from the 5’L

intron length distribution, over the exon sequences. The resulting dataset

has 449 exonic sequences that have the same length distribution as the 5’L

STRIN introns.

The sequences in these control datasets were folded using RNAfold, and

the obtained MFE secondary structures were processed to find potential zip-

per stems between the beginning of the sequence and the assumed branch-

point location. This location is the same as the branchpoint location of

the intron whose length was used to model a particular random or exonic

sequence. Identified zipper stems had to be at least 5 bp long. The distri-

butions of resulting shortened branchpoint distances are plotted in Figures
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Figure 4.8: Distributions for (a) branchpoint distance for 5’S introns, (b)
branchpoint distance for zipped 5’L introns , (c) branchpoint distance of
zipped exonic sequences, and (d) branchpoint distance of zipped random
sequences. All zipped structures have a minimum zipper stem length of 5
nt.
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branchpoint distance of zipped exonic and random sequences. All zipped
structures have a minimum zipper stem length of 5 nt.

4.8(c) and 4.8(d). The cumulative distributions for the branchpoint dis-

tance in 5’S introns, shortened branchpoint distance in zipped 5’L introns,

and shortened branchpoint distance of zipped exonic and random sequences

are given in Figure 4.9.

Figure 4.8 shows that the distributions for random and exonic sequences,

which are very similar, are quite different from the other two distributions:

the distribution mode at around 50 nt observed for both 5’S and 5’L introns

does not exist for random and exonic sequences, whose distributions appear

to be approximately uniform between 50 and 250 nt. The differences are

also evident in cumulative distribution plots, shown in Figure 4.9, where

the curves for random and exonic sequences overlap, while the curve for

5’L introns is closer to that for 5’S introns. Statistical analysis further

emphasizes the differences between the datasets: the KS test comparing

5’S introns with exonic and random sequences produced D = 0.5227 (p-

value < 10−21) and D = 0.5081 (p-value < 10−20), respectively. Table 4.1
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5’S introns 5’L introns exon seq

5’L introns D = 0.20
p-value = 0.02

exon seq D = 0.52 D = 0.43
p-value = 10−21 p-value = 10−15

random seq D = 0.51 D = 0.41 D = 0.03
p-value = 10−20 p-value = 10−14 p-value = 0.95

Table 4.1: Summary of KS test results for all pair-wise comparisons between
datasets of STRIN 5’S introns, STRIN 5’L introns, exonic sequences and
random sequences. The p-value highlighted in boldface is greater than 0.05,
indicating that the hypothesis that two compared datasets stem from the
same distribution cannot be rejected.

summarizes the results of the KS test for all pair-wise comparisons between

the four datasets.

It is necessary to point out that random and exonic sequences are dif-

ferent by nature, mostly because of the evolutionary pressure imposed on

exon sequences, and that for some other characteristics they would prob-

ably exhibit profound differences (e.g., codon frequencies). The high sim-

ilarity between the distributions for exonic and random sequences further

emphasizes the non-randomness of the distribution mode for the shortened

branchpoint distances observed in 5’L introns. One possible implication of

the mode phenomenon is that the optimal branchpoint distance for splicing

of yeast introns is about 50 nt, which in long introns, as our results suggest,

is achieved by shortening of the original distance as a result of zipper stem

formation.

4.2.2 Multiple zipper stems

Motivated by the considerable number of 5’L shortened branchpoint dis-

tances longer than 150 nt, which is not observed for 5’S branchpoint dis-

tances, we investigated the possibility that more than one zipper stem is

involved in shortening the distance between the 5’ splice site and the branch-

point. For this purpose, we modified our algorithm to look for an ensemble

of zipper stems in the following way: once a zipper stem according to Defi-
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nition 3 is found, the secondary structure S is modified to exclude that stem

(bases in the stem are marked as unpaired), and the search continues for the

next zipper stem that brings the 5’ splice site and the branchpoint sequence

closest together. This process is repeated until no stems can be found that

are larger than or equal to the minimum stem size defined in the algorithm.

The shortened branchpoint distance of an intron zipped with several stems

is calculated similarly as described before by counting the nucleotides be-

tween the 5’ splice site and the branchpoint that are not enclosed in or

between complementary sequences of the found zipper stems. An example

is given in Figure 4.10, which shows four zipper stems identified by the algo-

rithm. The black letters, which are not within the highlighted regions, are

the nucleotides that are included in distance calculation.

The algorithm was run for the arbitrary minimum stem lengths of 3, 5,

and 7 nucleotides and the best results, with respect to D statistics values,

were obtained for the minimum stem length of 5 bp. The shortened branch-

point distribution for 5’L introns, and the branchpoint distribution for 5’S

introns, are shown in Figure 4.11.

Again, the modes of the two distributions are located at around 50 nt,

but the distribution of the data for the lower values in each case is quite

different, with many more sequences having very short branchpoint distances

for the zipped 5’L introns. This observation is also supported by a KS test,

which resulted in rejection of the null hypothesis that the two samples stem

from the same underlying distribution (p-value < 0.001). The analysis was

repeated with the two control datasets, this time resulting in distributions

of shortened branchpoint distances for random and exonic sequences that

were more similar to the original 5’S branchpoint distance distribution than

the 5’L shortened branchpoint distance distribution (D = 0.1971 and D =

0.1864 for the exonic random sequences, respectively, p-value < 0.001 for

both). However, similar to single-stem analysis, the distance distributions

of control datasets appear more uniform, without a prominent mode, unlike

the the distributions for 5’S and 5’L introns. This phenomenon can be

observed in the cumulative distribution plot given in Figure 4.12.
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branchpoint
sequence

5' splice
site

zipper stem 1

zipper
stem 2

zipper
stem 3

zipper stem 4

Figure 4.10: Secondary structure of the YGR214W intron. The four zipper
stems are enumerated in the order by which they were identified by the
algorithm. The shortened distance is calculated by counting nucleotides
between the 5’ splice site and the branchpoint sequence that are not enclosed
in or between complementary sequences of the found zipper stems (black
letters).
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Figure 4.11: Distributions for (a) branchpoint distance for 5’S introns and
(b) branchpoint distance for 5’L introns zipped with one or more stems with
minimum length of 5 nt.
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Figure 4.12: Cumulative distributions of the 5’ splice site - branchpoint
distance for 5’S introns and 5’L introns, random and exonic sequences zipped
with one or more stems with minimum length of 5 nt.

In summary, in this section we analyzed the shortened branchpoint dis-

tances for STRIN 5’L introns that were zipped by one or more zipper stems,

with or without the minimum stem-length requirement. We found that in

the case of zipper stems with the minimum stem-length requirement, consid-

ering a single stem yields better results than when there are no constraints

on zipper stem selection. The obtained shortened branchpoint distances are

reasonably similar to the original branchpoint distances in 5’S introns, with

the most common distance being ∼ 50 nt, but there are a number of dis-

tances that are outside of the optimal range. The corresponding distances

for the two control datasets were found to be more uniformly distributed,

which indicates that zipper stems in long introns have a specific effect on

the branchpoint distances.
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4.3 Thermodynamically stable zipper stems

As explained earlier, the zipper stems identified by our program have to be

uninterrupted (Definition 3) and to satisfy a minimum length requirement.

However, a stem length is just a crude approximation of its thermodynamic

stability. It is possible to directly calculate a stem’s thermodynamic stability,

i.e., its free energy, using Turner’s energy model (Freier et al., 1986; Turner

et al., 1987; Turner and Sugimoto, 1988; Mathews et al., 1999). This model

is described in detail in Section 2.2.

While Turner’s energy model is usually used to calculate the free energy

of an entire RNA molecule as well as for finding the minimum free energy

structure for a given RNA sequence, it can also be used to calculate the

free energy of some parts of an RNA structure. We used this approach to

improve our method for zipper stem identification.

4.3.1 Identification of thermodynamically stable zipper

stems

While our goal of finding the stem that maximally zips the intron (i.e., brings

the donor site and the branchpoint sequences closest to each other) remains

unchanged, we next consider different requirements for the zipper stems. As

RNA stems in nature are often interrupted by internal loops and bulges, we

modified our algorithm to also consider this type of stem. We accomplished

this in the following manner: the algorithm first searches for the basepair

sisj that has the maximal distance between the bases involved, i.e., j − i is

maximal among all possible basepairs found between the donor site and the

branchpoint sequence. Once such a basepair is found, a subroutine is called

to identify the stem containing that basepair (the basepair will be the first

basepair in the stem).

The subroutine has one input parameter, the loop threshold (tl), that

controls the maximum allowable size of internal loops and bulges: an internal

loop or bulge will be included as part of the stem only if its number of

free bases is less or equal to tl. In this way, stems with unrealistically

large loops/bulges that would destabilize them are not allowed. The free
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energy of a loop is roughly proportional to its size, with larger loops having

higher free energy (Zuker and Jacobson, 1998). Thus, using a loop size

threshold has essentially the same effect as using a loop energy threshold.

The subroutine keeps extending the potential zipper stem, starting from the

initial basepair, until it reaches a multi-loop or an internal loop or bulge

whose number of free bases exceeds the loop threshold. The subroutine

returns the last basepair that is considered part of the potential zipper stem

along with the free energy of the stem. Once the free energy of the stem

has been calculated, it is compared to the energy threshold (te), and if it is

lower than this threshold, the stem is predicted as the zipper stem. If the

stem is rejected, the RNA secondary structure is modified to exclude the

found stem and the search is repeated. Once a thermodynamically favorable

stem is found, the shortened branchpoint distance is calculated in the same

manner as before.

Since the optimal free energy of a stem that is supposed to zip the in-

tron is unknown, we performed a small empirical study to determine the

range of possible values. To get some initial idea about the free energies of

stems in naturally occurring RNA molecules, we used the RNA SSTRAND

(RNA Secondary Structure and Statistical Analysis Database) database

(Andronescu et al.) at http://www.rnasoft.ca/sstrand/. When last ac-

cessed (June 2006), this database contained 3356 RNA secondary structures

on which users can perform various types of statistical analyses. Using the

database interface, we obtained the distribution of free energies of stems

over all RNA molecules in the database. Note that only continuous stems

are considered for this analysis (Andronescu, 2006).

The distribution histogram in Figure 4.13 shows that the free energy of

a typical stem without mismatches ranges between −2 and −20 kcal/mol.

The large number of stems with a free energy of 0 kcal/mol corresponds to

isolated basepairs (Andronescu, 2006). Guided by this distribution we have

tried several values for the free energy threshold and analyzed the zipper

stems found along with the corresponding shortened branchpoint distances.

For te > −5, the zipper stems found are usually very short and appeared

inadequate to hold the two ends of the intron together. There is usually a
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Figure 4.13: Distribution histogram (a) and cumulative distribution plot
(b) of free energies of stems in naturally occurring RNA molecules (obtained
from SSTRAND database).
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te\tl 2 3 4 5 6 7 8

−5 0.003 0.003 0.002 0.002 0.002 0.002 0.002

−7 0.019 0.029 0.055 0.055 0.038 0.017 0.017

−10 < 0.001 < 0.001 0.008 0.008 0.013 0.019 0.019

−12 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 0.002

Table 4.2: The p-values from the KS test applied to the dataset of the 5’L
branchpoint distances shortened by thermodynamically stable zipper stems
and the dataset of the 5’S branchpoint distances. The numbers in the first
row are the values for the loop threshold (tl) and the numbers in the first
column are the values for the energy threshold (te). The p-values highlighted
in boldface are greater than 0.05; for these te and tl values the hypothesis
that two compared datasets stem from the same distribution cannot be
rejected at the standard significance level of α = 0.05.

more stable stem close by that would be identified if the energy threshold

were lower. On the other hand, for te < −12 there is a large number of 5’L

introns whose structures do not contain any stems that would satisfy the

free energy criterion. Based on this analysis, we have chosen several values

for te that are within the acceptable range, namely: −5, −7, −10 and −12.

The values for the loop threshold (tl ∈ {2, 3, 4, 5, 6, 7, 8}) were chosen

based on our observation for the secondary structures of the 5’L introns and

on the distributions of the number of free bases in bulges and internal loops

obtained from the SSTRAND database (Figure 4.14).

We ran the modified algorithm for identification of thermodynamically

stable zipper stems for all combinations of te and tl values. For each par-

ticular pair of te and tl values, the algorithm identified a zipper stem that

satisfies the requirements for each of the 5’L introns and calculated a short-

ened branchpoint distance. To statistically test the difference between the

shortened distance distribution for the 5’L introns and the original branch-

point distance distribution for 5’S introns, we used the KS test. The p-values

thus obtained are shown in Table 4.2.

For most of the values for te and tl, the p-values are less than 0.05, in-

dicating statistically significant differences between the datasets of branch-

point distances. However, for te = −7 and for tl ∈ {4, 5}, the p-value was

0.055, indicating that the hypothesis that the two compared datasets stem
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Figure 4.14: Distribution histograms and cumulative distribution plots of
the number of free bases in (a), (b) bulges and (c), (d) internal loops of
naturally occurring RNA molecules (obtained from SSTRAND database).
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te\tl 2 3 4 5 6 7 8

−5 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

−7 0.011 0.007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

−10 0.001 0.001 0.218 0.370 0.575 0.543 0.543

−12 < 0.001 < 0.001 0.002 0.002 0.009 0.032 0.042

Table 4.3: The p-values from the KS test applied to the dataset of the
5’L branchpoint distances shortened by multiple thermodynamically stable
zipper stems and the dataset of the 5’S branchpoint distances. The numbers
in the first row are the values for the loop threshold (tl) and the numbers in
the first column are the values for the energy threshold (te). The p-values
highlighted in boldface are greater than 0.05 and for these te and tl values
the hypothesis that two compared datasets stem from the same distribution
cannot be rejected at the standard significance level of α = 0.05..

from the same distribution cannot be rejected.

In order to test the significance of these results, we also ran the algo-

rithm on the two control datasets, described in Section 4.2.1. Similar to

our analysis with the 5’L introns, we ran the algorithm for all possible pairs

of values for the energy and loop threshold. For both control datasets and

for any pair of te and tl values the KS test rejected the null hypothesis at

the significance level of 0.05 (the p-values are smaller than 0.001 for any

te ∈ {−5,−7,−10,−12} and for any tl ∈ {2, ..., 8}).

4.3.2 Multiple zipper stems

Analogous to our earlier phase of zipper stem analysis, we wanted to ex-

plore the possibility that there can be more than one zipper stem that would

shorten the branchpoint distance. For this purpose, we modified our algo-

rithm for identifying thermodynamically stable zipper stems to find all the

stems that satisfy given thermodynamic criteria and that effectively shorten

the distance between the donor site and the branchpoint sequence. The

algorithm was run for the same values of te and tl as before. The p-values

calculated by the KS test are given in Table 4.3.

As can be seen from this data, for te = −10 and tl ∈ {4, ..., 8}, the algo-

rithm finds zipper stems that shorten the 5’L branchpoint distance in such a
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way that the resulting shortened distances closely resemble the optimal dis-

tances found in 5’S introns. This is illustrated in Figure 4.15, which shows

the distributions of the original branchpoint distances for the 5’S dataset

and shortened branchpoint distances for the 5’L dataset, when te = −10

and tl = 6. The distributions appear very similar, with almost identical

ranges and modes around 50 nt. The similarity is even more apparent in the

cumulative distribution plots (Figure 4.16), where the respective function

curves are nearly identical (KS test: D = 0.105, p-value = 0.575). The

algorithm still finds only one zipper stem in 79 introns and more than one

zipper stem in the remaining 31 introns.

We also identified multiple thermodynamically stable zipper stems for

the random and exonic control datasets and compared their shortened branch-

point distances to the 5’S branchpoint distances using the KS test. The test

rejected the null hypothesis for all combinations of energy and loop thresh-

olds at a significance level of 0.05 (p-value < 0.01).

Overall, the identification of zipper stems based on the thermodynamic

approach yielded better results than the stem-length based approach. This

is encouraging since the former one is based on sound thermodynamic prin-

ciples. We investigated the effects of single or multiple zipper stems on

branchpoint distances in 5’L STRIN introns, and the results indicate that

zipping the introns with multiple, more stable zipper stems, with minimum

free energy ∆G(S) < -10 kcal/mol, yields better results. These results were

compared with two control datasets, for which a similar effect of zipper

stems on the analogue of branchpoint distances was not observed.

4.4 Phylogenetic analysis of zipper stems

In order to investigate if the zipper stems that we found in 5’L introns of

S. cerevisiae are evolutionarily conserved among the sensu stricto species,

we need to determine secondary structures for the corresponding introns in

S. paradoxus, S. mikatae, and S. bayanus, find potential zipper stems and

examine if they are at the same location as the stems in S. cerevisiae.
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Figure 4.15: Distributions of (a) branchpoint distances for 5’S introns and
(b) branchpoint distances for 5’L introns that were shortened by multiple
thermodynamically stable zipper stems (te = −10 and tl = 6).
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Figure 4.16: Cumulative distributions of the 5’ splice site - branchpoint
distance for 5’S introns and 5’L introns zipped with one or more stems
(te = −10 and tl = 6).

Another approach is to use comparative (a.k.a. phylogenetic) analysis of

structures based on covariation analysis and/or structural alignment. Co-

variation analysis of RNA secondary structure is based on the assumption

that a mutation that disrupts the Watson-Crick base-pairing of a function-

ally important RNA stem has a deleterious effect, which may be overcome

by a second, compensatory mutation that restores base-pairing. An exam-

ple of compensatory mutations is given in Figure 4.17. There are several

approaches for identification of conserved RNA secondary structures, which

will be discussed in Section 4.4.2.

Comparative RNA structure analysis is usually crucially dependent on

the multiple sequence alignment algorithm used, and often visual inspection

is needed to recognize errors in the alignment. This is why, for the initial

phylogenetic analysis, we selected a small subset of nine 5’L STRIN introns.

These introns were previously proposed to contain a stem-loop structure be-

tween the 5’ splice site and the branchpoint sequence (Parker and Patterson,

1987). The selected introns are given in Table 4.4.
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Figure 4.17: An example of compensatory mutations. The mutations in the
second sequence are compensatory since they maintain basepairing.

ORF name name in
Parker and
Patterson
(1987)

intron
length

intron
location

branchpoint
sequence

YCR031C rp59 307 8-314 uacuaac

YDR447C rp51B 314 4-317 uacuaac

YFL039C ACT1 308 11-318 uacuaac

YGL030W rp73 230 4-233 uacuaac

YGL103W CYH2 511 50-560 uacuaac

YKL180W rpL17A 306 310-615 uacuaac

YML024W rp51A 398 4-401 uacuaac

YNL301C rp28B 432 113-544 uacuaac

YOL127W rpL25 414 14-427 uacuaac

Table 4.4: Introns used for our comparative RNA structure analysis.
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4.4.1 Comparative analysis by visual inspection

We obtained optimal structures for the nine selected introns from Table 4.4

and for each of the four species using the mfold Web server (Zuker, 2003).

For each structure we marked stem regions that are located relatively close

to the 5’ splice site and the branchpoint, which makes them possible can-

didates for zipper stems (Figures 4.19 and 4.20 show an example of this

approach applied to intron YCR031C). These complementary sequence re-

gions were subsequently labeled in the multiple sequence alignments. Since

the quality of multiple sequence alignments is essential for comparative RNA

structure analysis, we did not want to be solely dependent on the ClustalW

results provided by Kellis et al. (2003). Therefore, we used another popu-

lar alignment Web server, LAGAN (http://lagan.stanford.edu/lagan_

web/index.shtml, last accessed in June 2006), from which we obtained mul-

tiple sequence alignments using the Multi-LAGAN program (Brudno et al.,

2003). An example of a labeled LAGAN multiple sequence alignment for

intron YCR031C is shown in Figure 4.18.

The ClustalW and LAGAN alignments do not differ significantly, never-

theless LAGAN produces slightly better results for our data – zipper stems

were more easily detectable using these alignments and a greater number of

conserved stems was detected by the phylogenetic analysis based on LAGAN

alignments. Thus, we mostly based our findings on the LAGAN alignments.

Inspecting the labeled alignments we looked for sequence regions where

the labels overlap – each column in the alignment is labeled for each of

the species. If they exist and are complementary, these regions form a stem

which is conserved in sensu stricto species (black boxes in Figure 4.18). This

stem is selected as a potential zipper stem.

Conserved zipper stems were found for five introns: YCR031C, YFL039C

(2 stems), YGL030W, YGL103W, and YOL127W. Introns YKL180W and

YML024W have a conserved zipper stem between S. cerevisiae and S. baya-

nus, but slightly different base-pairing for S. paradoxus (YKL180W) and

S. mikatae (YML024W). However, when we checked the suboptimal struc-

ture predictions for two disagreeing species, we were able to find structures
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Figure 4.18: LAGAN multiple sequence alignment for intron YCR031C.
Potential zipper stem regions are highlighted in S. cerevisiae, S. paradoxus,
S. mikatae and S. bayanus sequences. Black boxes indicate the location of
the conserved zipper stem.
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Figure 4.19: Minimum free energy secondary structures for intron YCR031C
in S. cerevisiae and S. paradoxus. The 5’ splice site, branchpoint and poten-
tial stem region are annotated for each structure. Conserved zipper stems
found by comparative analysis are magnified and shown in boxes. Base-pairs
conserved among all four species are highlighted.
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Figure 4.20: Minimum free energy secondary structures for intron YCR031C
in S. mikatae and S. bayanus. The 5’ splice site, branchpoint and poten-
tial stem region are annotated for each structure. Conserved zipper stems
found by comparative analysis are magnified and shown in boxes. Base-pairs
conserved among all four species are highlighted.
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that have stems at the same location as for the other two species. Intron

YDR447C has a conserved zipper stem between S. cerevisiae and S. para-

doxus, but slightly different base-pairing for S. bayanus, which remained

consistent even for the suboptimal structures (we looked only at the sub-

optimal structures within 5% from the MFE). Finally, for intron YNL301C

we could not find a conserved zipper stem; nevertheless, complementary se-

quences close to the 5’ splice site and the branchpoint sequence were found

for each species.

The stems that we identified as conserved do not necessarily have to

have conserved basepairing, although this is mostly the case. Since the zip-

per stem hypothesis states that the role of a zipper stem is to shorten the

branchpoint distance to one that is optimal for splicing, the exact basepair-

ing within the stem or the stem structure itself (internal loop and bulges)

is not essential. Even if the stem’s location is not the same but somewhat

shifted, the stem’s function would be unchanged. Therefore, the fact that

a conserved stem was not found among all four species does not contradict

the zipper stem hypothesis, especially considering that we are dealing with

imperfect multiple sequence alignments and imperfect secondary structure

predictions.

4.4.2 Comparative analysis using programs for comparative

RNA structure prediction

There are a number of programs available for comparative RNA structure

prediction, and they usually implement one of three basic approaches. In

the case of relatively high sequence similarity among related RNA sequences,

when it is possible to compute a good quality multiple sequence alignment,

covariance or compensatory mutation analysis is used to process the align-

ments and predict common structures for aligned sequences. Examples

of the algorithms from this class are Alidot (Hofacker et al., 1998), Pfold

(Knudsen and Hein, 1999), ConStruct (Lück et al., 1999), Pfrali (Hofacker

and Stadler, 1999) and Alifold (Hofacker et al., 2002). In the case when

RNA sequences are more diverged and reliable multiple sequence alignment
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cannot be achieved, the secondary structures of the sequences are predicted

independently and then structurally aligned. An example of a program that

uses this approach is RNA Forester, which uses a tree representation of

predicted RNA structures to align them by applying a generalization of se-

quence alignment techniques (Höchsmann et al., 2003). The third class of

comparative RNA structure prediction tools attempts to align given RNA

sequences while simultaneously predicting their folding and common struc-

ture. This approach is preferred for computing a sequence alignment of RNA

sequences since it uses secondary structure information, unlike ClustalW,

LAGAN or other multiple alignment programs, which are based solely on

primary sequences. It is a well-known biological phenomenon that structure

is better conserved than sequence, especially for functional RNAs, and tak-

ing the structural information into account is essential for accurate alignment

of these sequences. However, computing alignment and secondary structure

simultaneously is very computationally expensive, which limits the number

and length of sequences that can be aligned. Examples of the third class

of programs are Foldalign (Gorodkin et al., 1997), Dynalign (Mathews and

Turner, 2002) and Carnac (Touzet and Perriquet, 2004).

The algorithms for comparative RNA structure analysis can also be dif-

ferentiated depending on whether they compute globally or locally conserved

structure of the input RNA sequences. The majority of the programs men-

tioned attempt to predict a common global secondary structure (Pfold, Con-

Struct, Alifold, RNA Forester, Dynalign), while others predict only locally

conserved structures.

Since in our study we have relatively reliable intron alignments of four

closely related Saccharomyces sensu stricto species, we used the tools that

rely on these multiple sequence alignments. We tested the following pro-

grams on our 9-intron dataset: Pfold and Alifold, which predict a consensus

structure for all sequences in the input sequence alignment, and Alidot and

Pfrali, which detect conserved substructures. Since zipper stems are long-

range structural motifs, we should be able to detect them either in a global

consensus structure of intron sequences or as a conserved stem.

Pfold uses context-free grammars to predict a common structure for
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a given alignment of RNA sequences. It does not look for compensatory

mutations directly, but estimates a phylogenetic tree from the alignment

and uses it for maximum a posteriori approximation. The Web version of

Pfold can be used for a set of maximum 40 RNA sequences, with a length

limitation of 500 nt. The Web server can be accessed at http://www.daimi.

au.dk/~compbio/rnafold/ (last accessed in July 2006).

Alifold is a part of the Vienna package for RNA secondary structure

prediction (Hofacker, 2003). It uses a modified energy model that integrates

thermodynamic and phylogenetic information. It takes ClustalW multiple

sequence alignment as its input and computes a consensus structure of the

sequences. The maximum size of the input file is 10 KB. The Web server

can be accessed at http://rna.tbi.univie.ac.at/cgi-bin/alifold.cgi

(last accessed in July 2006). We also used a local copy of the program from

version 1.5 of the Vienna package.

Alidot is also one of the Vienna package structure prediction tools. It

starts with a ClustalW alignment of sequences and independently computes

the MFE secondary structure of each of them. Using both the sequence

alignment and the MFE structure predictions, Alidot aligns the structures

and produces a set of candidate basepairs. These basepairs are further

filtered to exclude any inconsistencies and to check for compensatory muta-

tions.

Pfrali is yet another of RNA structure prediction tool contained in the

Vienna package. The approach is very similar to Alidot’s with the difference

that Pfrali uses basepairing probabilities obtained from McCaskill’s partition

function algorithm (McCaskill, 1990) instead of MFE structure predictions.

Since the basepairing probabilities contain information about a large number

of plausible structures, this approach is less likely to miss any conserved

structural elements.

Each of the nine introns, with its corresponding LAGAN alignment, was

processed by Pfold, Alifold, Alidot and Pfrali. The first two algorithms

give the common secondary structure for all of the sequences in the input

alignment. The structure is given in dot-bracket notation and for Alifold

also in conventional graphical representation. Examples of results for intron
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YCR031C are shown in Figures 4.21 and 4.22.

Alidot and Pfrali have identical outputs listing all candidate basepairs

and the final secondary structure, containing only the basepairs that pass

all the filtering steps, is given in dot-bracket notation. For each basepair,

the following information is given: location of interacting bases, number of

sequences in the multiple sequence alignment in which the listed basepair

is not one of the six standard RNA basepairs and an indicator that shows

whether the basepair conflicts with a basepair that is predicted with a higher

confidence. Some additional statistics are given but we use none of these

for our analysis. The final structure given in dot-bracket notation is an

ensemble of all basepairs that are not labeled as conflicting, however some

of them may be supported by only one sequence in the alignment. For our

study, we wanted to have better basepair support and thus considered only

basepairs that were inconsistent with at most one sequence. The output of

this post-processing step is a secondary structure in dot-bracket notation

that contains all locally conserved substructures.

For each intron and for each program’s predictions, we manually searched

for a conserved stem that would bring the 5’ splice site and the branchpoint

sequence into closer proximity. Potential stems were annotated and com-

pared to findings of comparative analysis based on visual inspection. A

summary of the results from this analysis is given in Table 4.5. The first

column of the table shows if a conserved zipper stem was found by visual in-

spection; in one case where conservation was found only between two species,

those species are given. For each of the programs, two columns are provided:

the first of these indicates if a program found a stem that satisfies our zipper

stem requirements and also shows the number of these stems in parentheses

if it is greater than one. The second column indicates if a predicted stem is

present in the minimum free energy structure (obtained by mfold) of each

of four species (this is the stem found by visual inspection). The four pro-

grams we used predict only uninterrupted stems, while zipper stems found

by visual inspection can contain internal loops or bulges. This sometimes

results in a zipper stem found by visual inspection matching two or more

stems predicted by the programs. If a predicted stem was found only in
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Figure 4.21: Pfold result for the alignment of the YCR031C intron. The first
line is a common structure for all the sequences. The individual structures
are found by applying the common structure to each sequence and extending
stems, if possible. The last line indicates the reliability of prediction for each
nucleotide in the alignment. The stem that satisfies the requirements for a
zipper stem is enclosed in a box.
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4 sequences; length of alignment 328

GUAUGUUU_AAUCACAUAGUGAAUAUUCCAAAGGAACCGCUAUUUUCCAUUGA_UGUUGUUGGAUGUUUC
CGAUGAUGUGCAAA_UACAUCGAAAACUCUAAAAACAUAAAAACAA____GUGAACGAAGUUAUUACCUC
CAAACAAAUUCAUAUCAAUUAG___AGU_UAUCGUAUCAACGACAGUACAUCACGUCAAC_______UUU
UUUUCAAUGGAAAUGCAGAAUUACUAUAU_AGAAU_______AAAAAAAAAAACCUUUGGAUACUAACAA
AAUUACUUAUUGAUAUCGUCCGAUAUCAAUUUAC_UAUUUCCAUUUAG
...((((...(((..(((((((...((....))...)))))))((((((((((...(((((..(((((((
((((((((.........)))))......))))))))))...)))))........................
............................(((((((....)))))))........................
...))))))))))..............................................)))...)))).
..........(((((((....))))))).................... (-21.74)
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Figure 4.22: Alifold result for the alignment of the YCR031C intron. The
output contains the consensus sequence and the optimal consensus structure
in dot-bracket notation followed by its energy. A graphical representation
of the structure is also given. The stem that satisfies the requirements for a
zipper stem is enclosed in a box.
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some then the species containing it are indicated.

Pfold found one or more potential zipper stems in 8 introns. One of

the introns (YGL103W) was over the Pfold length limit. Alidot also identi-

fied zipper stems in 8 introns, failing to identify any conserved stem region

for intron YNL301C. Alifold and Pfrali found one or more stems for all of

the introns. For introns YCR031C, YGL030W, YGL103W, YKL180W and

YOL127W all of the programs identified the zipper stem that was found by

visual inspection. In three cases (YDR447C, YFL039C, YML024W) two of

four programs did not confirm the stem found by visual inspection. The

reason for this might be either that the stems identified by visual inspection

did not have conserved basepairing but just overlapping locations or that

the programs that missed them did so due to their specific weaknesses (since

the stems were identified by the other two programs).

It is interesting that all programs except Alidot found a relatively long

stem in YNL301C that was not identified by visual inspection. The identified

stem was present only in the MFE prediction for S. mikatae, while the MFE

predictions for the other three species do not contain it. Considering that

the stem seems to be relatively stable, it is very likely that it is contained

in some of the suboptimal predictions for the other species.

The zipper stems identified by our analysis shortened the branchpoint

distances to 46-81 nt. These distances correspond well to the distances

observed for 5’S introns (Figure 4.3(a)).

We believe that the results presented in this section are very encourag-

ing, providing further support for the existence of zipper stems. For seven

5’L introns in our test dataset zipper stems were conserved among all four

species; for one intron (YDR447C), conservation was observed only between

the two closest species, S. cerevisiae and S. paradoxus. The high level of

conservation observed for detected stems suggests functional significance.

Alifold and Pfrali, which are based on compensatory mutations, were able

to find conserved stems satisfying zipper stem requirements for all nine in-

trons.
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intron zipper stem Pfold Alifold Alidot Pfrali
found by vi stem present in stem present in stem present in stem present in

found MFE struct found MFE struct found MFE struct found MFE struct

YCR031C + + + + + + + +(2) +

YDR447C S.cer,S.par + − +(2) + + − + +

YFL039C + + + +(2) − + − + +

YGL030W + + + + + + + + +

YGL103W + too long n/a +(3) + +(3) + +(3) +

YKL180W + + S.par + + + S.par +(3) +

YML024W + + − + − +(2) + +(3) S.cer,S.mik

YNL301C − + S.mik +(3) S.mik − − +(2) S.mik

YOL127W + +(2) + +(3) + +(2) S.cer,S.mik +(3) +

Table 4.5: Results of comparative RNA structure analysis. Details are given in the text (S.cer=S. cerevisiae,
S.par=S. paradoxus, S.mik=S. mikatae, S.bay=S. bayanus).
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4.4.3 Comparative structure analysis on STRIN 5’L introns

Taking into account what we learned on the small, 9-intron test dataset,

we performed an automated phylogenetic analysis on the introns from our

phylogenetic dataset (Section 3.3). Based on Table 4.5, it seems that among

the programs we tested Alifold and Pfrali were best suited for detection of

conserved potential zipper stems. Both programs were able to predict one or

more potential zipper stems in all of the nine introns, and in the majority of

cases these stems overlapped the zipper stems identified by visual inspection

analysis.

Each of these programs has some drawbacks. Alifold’s prediction does

not exclude basepairs that are inconsistent with some of the sequences in the

input alignment, but keeps them as possible cases of sequencing or alignment

errors or non-canonical basepairs (Hofacker et al., 2002). Thus, some of

the zipper stems identified by Alifold might not be conserved in all four

species. Pfrali also includes basepairs that are inconsistent with some of

the sequences in the input alignment, however, this information is part of

its output and we used it to post-process the final prediction to include

only basepairs that are inconsistent with at most one sequence. The post-

processing step introduces more free bases in the final structure prediction

and results in shorter stems with fewer consecutive basepairs.

For the identification of conserved zipper stems using Alifold and Pfrali,

we selected 49 STRIN 5’L introns for which we have all Saccharomyces

sensu stricto sequences aligned (see Section 3.3). The more sequences there

are in the input multiple sequence alignment, the better is the program’s

performance is. (For optimal performance, Hofacker et al. (2004) suggest at

least 5 sequences with pairwise alignment of around 80% ).

We used Lagan to align the sequences since for our data it produced

slightly better alignments than ClustalW. Lagan alignments had to be re-

formated into ClustalW format, since the latter is the only acceptable input

format for the programs we used. The alignments were processed by Ali-

fold and Pfrali, which produced a common secondary structure (global for

Alifold and local for Pfrali) for all of the sequences in the alignment. The
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secondary structure was further processed using the algorithm described

in Section 4.3.1, which identifies a candidate zipper stem as the stem that

maximally zips the intron and calculates the shortened branchpoint distance.

Based on some empirical testing, we chose the algorithm’s input parame-

ters to be te = −4 and tl = 5, which ensures that the minimum number of

consecutive basepairs in a stem is three (often found in Pfrali predictions).

Of the 49 common secondary structures predicted by Alifold, our al-

gorithm found potential zipper stems in 48. Of the 97 Pfrali predictions,

stems were found in only 29 cases, due to the previously mentioned post-

processing step that we applied to eliminate basepairs that were inconsis-

tent with more than one sequence in the alignment (without pre-processing,

stems were found in 45 cases). The distributions of shortened branchpoint

distances for introns where zipper stems were found are shown in Figure

4.23; the cumulative distribution plots are shown in Figure 4.24.

When we compare these distributions with the distribution of branch-

point distances for short STRIN introns (Figure 4.15(a)), we observe that the

majority of computed branchpoint distances fall within the distance range

found for S. cerevisiae 5’S introns. For each program there are several ex-

ceptions where the branchpoint distances are either longer or shorter than

for the 5’S introns. Zipper stems predicted by Pfrali, which are more reli-

able than those predicted by Alifold since they have to be conserved between

at least three species, are better at shortening the branchpoint distance to

the optimal range. This suggests that some of the shortened branchpoint

distance calculated based on Alifold’s predictions that are outside the opti-

mal range might be a result of spurious stems conserved only between two

species.

The results of this larger-scale phylogenetic analysis argue in favor of

evolutionarily conserved zipper stems among Saccharomyces sensu stricto

species. In a majority of cases, the conserved stems that were found by

this fully automated comparative structure approach reduced branchpoint

distances to values thought to be optimal for splicing. There are several

possible explanations why this approach failed to identify conserved zip-

per stems for all of the considered introns (Pfrali) or identified the ones
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Figure 4.23: Distributions of shortened branchpoint distances for 5’L STRIN
introns where the analyzed secondary structure was the consensus structure
for all sensu stricto species. The consensus structures were produced by (a)
Alifold and (b) Pfrali.
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Figure 4.24: Cumulative distributions of shortened branchpoint distances
for 5’L STRIN introns where the analyzed secondary structure was the con-
sensus structure for all sensu stricto species. The consensus structures were
produced by (a) Alifold and (b) Pfrali.
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that might not be the real zipper stems resulting in shortened branchpoint

distances outside the optimal range. First, both programs are heavily de-

pendent on the underlying multiple sequence alignments, which may contain

errors. Second, both programs depend on RNA secondary structure predic-

tion methods that have limited accuracy (Mathews et al., 1999; Gutell et al.,

2002). Errors in either multiple sequence alignment or secondary structure

prediction would result in faulty consensus structure prediction. Another

possible explanation is that in some cases approximate stem locations are

conserved rather than the exact basepairing interactions; Alifold and Pfrali

would fail to identify these stems. As discussed before, the zipper stem hy-

pothesis states that the role of a zipper stem is to shorten the branchpoint

distance to one that is optimal for splicing thus the exact basepairing within

the stem is not essential. Even if the stem’s location is not the same but

somewhat shifted, the stem’s function would be unchanged.

4.5 Conclusions

The analyses in this chapter were motivated by biological studies that iden-

tified long-range basepairing interactions in a number of long introns that

result in shortening of the distance between the 5’ splice site and the branch-

point sequence. It is believed that the relatively short branchpoint distance

is necessary for spliceosomal assembly and efficient splicing of introns. To

complement these biological studies we conducted a computational analy-

sis of yeast introns, which can be classified into two groups based on their

branchpoint distance – short (5’S) and long (5’L). The current hypothesis is

that the branchpoint distances in the 5’S introns are thought to be optimal

for splicing and that 5’L introns achieve this optimal distance by secondary

structure formation.

Our computational analysis focused on detecting stems in secondary

structures of the 5’L introns that would shorten the branchpoint distance

to be within the optimal range. Zipper stems were found in all of the 5’L

introns, which is not surprising considering the strong tendency of RNA

sequences to form basepairing interactions. However, the shortened branch-
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point distances of zipped long introns are distributed similarly to the branch-

point distances of short (5’S) yeast introns and differently than correspond-

ing distances of zipped random and exonic sequences. The distribution

modes for 5’S and 5’L introns are located around 50 nt, while the corre-

sponding distances for zipped random and exonic sequences are uniformly

distributed, without prominent modes. This was the case for all types of

zipper stems that we considered. One possible implication of the mode

phenomenon is that the optimal branchpoint distance for splicing of yeast

introns is about 50 nt, which in long introns, as our results show, is achieved

by shortening of the original distance by formation of zipper stems.

With further refinement of the zipper stem identification process, by

considering only thermodynamically stable stems with limited internal loop

sizes, the distributions of shortened branchpoint distances for 5’L introns

and original branchpoint distances for 5’S introns became almost identical.

In contrast, the distributions for random and exonic sequences were signifi-

cantly different.

We also performed comparative structure analysis to analyze conserva-

tion of zipper stems among closely related yeast species. A careful manual

analysis on a sample intron dataset of 9 introns found zipper stems that were

conserved between four sensu stricto species. This is a significant result con-

sidering that the sequence conservation is not very high within the introns

(50-74%). Similar, more automated analysis on a larger set of STRIN in-

trons identified conserved zipper stems in almost all of them. The resulting

shortened branchpoint distances fall within the optimal range observed in

5’S introns. Evolutionary conservation of zipper stem gives further support

to their functional significance.
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Chapter 5

Splicing efficiency and

branchpoint distance

The zipper stem analysis in Chapter 4 provided evidence that the long

branchpoint distances in STRIN 5’L introns can be shortened to distances

presumed to be optimal for spliceosome assembly by one or more stem struc-

tures. The more or less ubiquitous presence of zipper stems in the secondary

structures of long introns suggest that they might be important for efficient

splicing of these introns. We investigate this hypothesis for the case of the

RP51B intron and a number of its mutants for which the experimentally

measured splicing efficiency results are correlated with the branchpoint dis-

tances shortened by the zipper stems.

As we will show in this chapter, the shortened branchpoint distances

obtained using the approaches discussed in Chapter 4 do not explain the

observed splicing efficiency results. This prompted us to modify our model

of the role of intronic pre-mRNA secondary structure in splicing by con-

sidering not only MFE structure prediction of intron sequences but also

near-optimal predictions and refining our calculation of shortened branch-

point distances. The refined distance calculation takes into account the

entire structure of the intron, eliminating the need to search for a particular

zipper stem. The zipper stem criteria are thus effectively relaxed, allowing

complex stem structures and positioning of the 3’ constituent of the stem

downstream from the branchpoint sequence.

The refined model is shown to be in better agreement with RP51B exper-

imental results, suggesting its potential to identify introns that have optimal

structural conformation for splicing. We test the new approach on STRIN
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long introns and random sequences with similar sequence characteristics as

5’L introns.

Finally, we describe the design of several new RP51B mutants based

on the refined model of the role of intronic pre-mRNA secondary structure

in splicing. We use these mutants to test our computational findings by

biological laboratory experiments.

5.1 Experimental results for the RP51B intron

As briefly mentioned in Section 3.2.3, the pre-mRNA of the S. cerevisiae

ribosomal protein rp51b has been used extensively for the analysis of sec-

ondary structure within introns and of its role in intron splicing. In 1993,

Goguel and Rosbash observed that secondary structure interaction between

two sequence segments located downstream of the 5’ splice site and upstream

of the branchpoint sequence promotes efficient splicing of the RP51B pre-

mRNA. To further test the importance of this secondary structure in splic-

ing, Libri et al. (1995) employed a copper resistance gene (CUP1), whose

expression is dependent on splicing, as a reporter gene. They inserted the

RP51B intron into the coding region of CUP1, which is otherwise intron-

less. Interrupted in this way, the cup1 protein is going to be functional, i.e.,

a yeast cell is going to be viable in the copper-containing medium, only if

excision of the RP51B intron is successful.

In order to test the sensitivity of splicing to alterations in the stem as

proposed by Goguel and Rosbash, Libri et al. introduced mutations in the

interacting regions designated UB1 (upstream box 1) and DB1 (downstream

box 1). They created 9 mutants: 3mUB1 (3 nt mutation), 4mUB1 (4 nt),

5mUB1 (5 nt), 6mUB1 (6 nt) and 8mUB1 (8 nt) where mutations fall in the

UB1 region, 3mDB1 (3 nt) and 5mDB1 (5 nt) where mutations fall in the

DB1 region and are compensatory mutations to the mutations in the 3mUB1

and 5mUB1, respectively, and 3mUB1/3mDB1 and 5mUB1/5mDB1, which

are double mutants. All of the single mutants are expected to disrupt the sec-

ondary structure, while the double mutants are predicted to restore it. The

copper sensitivity assay showed that for all single mutants except 8mUB1,
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splicing was reduced. Surprisingly, 8mUB1 had a similar level of splicing as

the wild type intron. Out of two double mutants, 5mUB1/5mDB1 was able

to partially rescue splicing, while for 3mUB1/3mDB1 splicing was severely

inhibited. These unexpected results were suggested to be the result of some

secondary structure rearrangements; however, the secondary structure of

the mutants 8mUB1 and 3mUB1/3mDB1 was not further explored.

Another interesting observation that emerged from the Libri et al. study

is that UB1 and DB1 are not the only sequence segments in the RP51B in-

tron whose interaction can facilitate pre-mRNA splicing: if the wild type

interaction was disrupted, splicing could be restored by alternative base-

pairing, where the mutated UB1 sequence would pair with another block of

sequence upstream or downstream from the branchpoint sequence. One of

the alternative DB1 blocks was even found downstream from the branch-

point sequence. The stem formed using this DB1 sequence still shortens the

distance between the 5’ splice site and the branchpoint sequence, indicating

that the existence, rather than the exact sequence constituents, of the stem

is essential for efficient splicing of the RP51B intron.

In a follow-up study, Charpentier and Rosbash (1996) attempted to an-

swer some of the important questions regarding secondary structure in the

RP51B intron. Using newly designed mutants of the RP51B intron, they

investigated at which step of splicing the stem has a functional role. They

concluded that this happens at the time of commitment complex formation,

i.e., the recognition of the donor site by the U1 snRNA and its consequent

binding to it. The authors propose that the stable stem contributes to this

complex formation.

Charpentier and Rosbash also performed structural probing of the stem

whose secondary structure had been predicted only computationally. They

confirmed that basepairing interactions between the UB1 and DB1 regions

are indeed formed in vitro and in vivo, and that the structure of the stem

formed is close to the one predicted (see Figure 5.1). The exact nature of

the interaction is still not known since the techniques used for structural

probing are not very precise. Their mutational analysis also confirmed that

the effects on splicing in vivo were parallel to the effect observed in vitro,
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Figure 5.1: Reproduction of Figure 1B from Charpentier and Rosbash
(1996): putative interaction between the UB1 and DB1 regions.

which is an important indication that secondary structure plays an essential

role in splicing of the RP51B intron in nature.

Even though these studies have shown that the stem structure in the

RP51B intron is essential for pre-mRNA splicing, they were unable to ex-

plain its real function. Libri et al. (1995) and Charpentier and Rosbash

(1996) maintained the hypothesis suggested in Parker and Patterson (1987)

that the structure might serve to reduce the distance between the 5’ splice

site and the branchpoint sequence to a distance optimal for spliceosomal

interactions and pre-mRNA splicing.

5.2 Structural and branchpoint distance analysis

of RP51B mutants

As mentioned earlier, splicing efficiency results for some of the RP51B mu-

tants were different than expected. The assumption behind the mutant

design in Libri et al. (1995) and Charpentier and Rosbash (1996) was that

any mutation within the zipper stem, a stem bringing the donor and branch-

point sequence closer together, would disrupt the stem and change the intron

secondary structure in such a way that the resulting branchpoint distance

would be greater than for the wild type intron. However, the resulting
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mutant d̄length=5 d̄te=−10,tl=6 splicing efficiency

wt 10 55 efficient

3mUB1 42 42 slightly reduced

5mUB1 42 42 slightly reduced

8mUB1 42 42 efficient

3mDB1 42 42 inhibited

5mDB1 133 46 inhibited

3mUB1/3mDB1 42 42 inhibited

5mUB1/5mDB1 133 83 slightly reduced

6mUB1 188 64 inhibited

4mUB1 188 86 reduced

Table 5.1: Correlation of the shortened branchpoint distance (d̄) with splic-
ing efficiency for Libri’s mutants. Shortened branchpoint distances were
calculated by two versions of algorithms for zipper stem identification: one
uses the stem length to select stable zipper stems (first column), and the
other uses thermodynamics criteria for stem selection (second column). Lev-
els of splicing efficiency were inferred from Libri et al. (1995)

structures and branchpoint distances were never tested experimentally or

computationally. This prompted us to compute intron secondary structures

and shortened branchpoint distances of these mutants in an attempt to ex-

plain the experimental splicing efficiency results.

We first employed our algorithms for zipper stem identification, which

we described in Chapter 4, to calculate the shortened branchpoint distance

for the wild type RP51B gene and for all of the mutants described in Libri

et al. (1995). We ran both versions of our algorithm, one of which uses

stem length to select stable zipper stems and the other of which uses stem

thermodynamics for the selection. In both cases, we ran the respective

algorithm with the parameters that have been shown to produce the best

results as explained in Chapter 4. For the first version of the algorithm,

only stems longer or equal to 5 bp were considered; for the thermodynamics

version, the energy threshold (te) was set to −10 kcal/mol and the loop

threshold (tl) was set to 6.

Table 5.1 shows the shortened branchpoint distances calculated by our

two algorithms along with the results of the splicing efficiency assay per-
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Figure 5.2: Reproduction of Figure 2 (C) from Libri et al. (1995): copper
growth assay from Libri’s mutants. In the upper left corner of the figure is
a schematic drawing showing the locations of the mutants. CuSO4 concen-
trations (in 10−3 moles/litre) are indicated under each panel.

formed by Libri et al. (1995). The splicing efficiency levels were inferred

from Figure 2 (C) in Libri et al. (1995) (reproduced in Figure 5.2), which

shows the results of the copper growth assay for wild type and the mutants.

Figure 5.2 shows pictures of three plates containing different concentrations

of copper sulfate (CuSO4), where mutant cells have been growing in colonies

(white spots). The size and intensity of the white spots indicate colony size

and the level of copper resistance. Unfortunately, this type of measurement

is not very precise and cannot be accurately quantified, so we approximated

it with four different levels of splicing efficiency: efficient, slightly reduced,

reduced and inhibited.

It is clear from Table 5.1 that the shortened branchpoint distances cal-

culated by our zipper stem prediction algorithms do not explain the splicing

efficiency levels for the Libri mutants. For example, the rows for 5mUB1,

8mUB1 and 3mDB1 have the same shortened distance of 42 for both versions

of the algorithm, but different splicing efficiency levels.

One potential problem with our approach is that we assume that the sec-
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ondary structure of an intron is independent of its flanking exonic or 5’ UTR

sequences (it is often the case that introns in S. cerevisiae are located right

after the first codon). This is most probably an unrealistic assumption, since

an intron is just a part of pre-mRNA, which, as with any RNA molecule,

will tend to fold into its minimum free energy structure. However, pre-

mRNAs are not free molecules but associate with many different proteins,

protein complexes and other RNAs. It has been shown that a large num-

ber of processing factors associate co-transcriptionally with nascent RNA: 5’

end-capping processing factors associate with the emerging transcript when

it is only 20-40 bp long (Neugebauer, 2002), spliceosomal RNAs (U1, U2,

U4, U5 and U6 snRNPs) along with a large number of splicing factors are

co-transcriptionally recruited (Görnemann et al., 2005; Kotovic et al., 2003),

and 3’ end cleavage and polyadenylation factors are also bound throughout

the length of the nascent RNA (Yu et al., 2004; Bentley, 2005). There are

also many proteins and protein complexes responsible for transcription reg-

ulation, RNA editing and quality control, nuclear export, localization in the

cytoplasm, translation regulation and degradation that have been shown

to associate with pre-mRNA either during or after transcription (Neuge-

bauer, 2002; Jensen et al., 2003; Hieronymus and Silver, 2004; Yu et al.,

2004). Since these interactions will have an effect on the structure forma-

tion of a pre-mRNA molecule, predicting the secondary structure of the

entire pre-mRNA, using current computational approaches that do not take

into account such interactions, is unlikely to be successful.

Another reason why we should not consider predicting secondary struc-

ture of the entire pre-mRNA is the existence of co-transcriptional splicing:

it has been shown that splicing often occurs during transcription while RNA

polymerase II is still transcribing the downstream portion of a gene. This

phenomenon has been observed for multicellular eukaryotes (Osheim et al.,

1985; Beyer and Osheim, 1988; Baurén and Wieslander, 1994; Wuarin and

Schibler, 1994; Tennyson et al., 1995; Wetterberg et al., 1996), but also more

recently for S. cerevisiae (Elliott and Rosbash, 1996; Kotovic et al., 2003;

Görnemann et al., 2005). Since the purpose of our computational structure

prediction is to determine which secondary structure elements are essential
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for splicing, we are only interested in the portion of the nascent pre-mRNA

that has been synthesized when splicing occurs. However, the precise part

of the nascent pre-mRNA that serves as the splicing substrate is not known.

Finally, the accuracy of computational RNA secondary structure pre-

diction decreases with increased RNA sequence length and is considered

unreliable for sequences longer than several hundred nucleotides (Morgan

and Higgs, 1996; Mathews et al., 1999). Considering that the average ORF

size in the STRIN dataset is 1065 nt, the average pre-mRNA size for the

STRIN dataset is about 1300 nt (the average combined 5’ UTR and 3’ UTR

length in yeast is about 250 nt (Hurowitz and Brown, 2003)), which means

that predicting accurate secondary structures of STRIN pre-mRNAs would

be difficult.

Based on these arguments, we believe that folding only intronic sequences

is a reasonable approximation of the secondary structure within an intron,

but we also repeated the same analysis where introns were folded with short

flanking sequences on one or both sides. Since the splicing efficiency of the

RP51B intron and its mutants was analyzed using the CUP1 gene as a re-

porter gene, we have considered the RP51B intron and its flanking sequences

in this context. The RP51B intron was inserted into the genomic CUP1

gene after the first codon (Stutz and Rosbash, 1994), thus the 5’ flanking

sequence mainly consists of the 5’ UTR region, which is at most 68 nt long

(Karin et al., 1984; Zhang and Dietrich, 2005). We used RNAfold to fold

the RP51B intron and all of Libri’s mutants, including the first ATG codon

and the 68-nt region upstream of the gene start. The shortened branchpoint

distances were computed as before. The same analysis was performed with

both 5’ upstream and 50 nt downstream regions (beginning of the second

exon). The results are shown in Table 5.2.

Analysis of the shortened branchpoint distances obtained by the two

versions of our algorithm suggests that including flanking sequences in com-

putation of the intronic secondary structure still does not explain the splicing

efficiency results from Libri et al. (1995). In the case where only the 5’ UTR

of the CUP1 gene was included for predicting secondary structure, an overall

trend seems to exist suggesting that mutants that are more efficiently spliced
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mutant
with 5’ flanking seq with both flanking seq

splicing efficiency
d̄length=5 d̄te=−10,tl=6 d̄length=5 d̄te=−10,tl=6

wt 35 84 256 155 efficient

3mUB1 50 163 243 156 slightly reduced

5mUB1 50 112 255 155 slightly reduced

8mUB1 50 143 256 155 efficient

3mDB1 46 46 256 155 inhibited

5mDB1 229 117 256 155 inhibited

3mUB1/3mDB1 202 163 243 156 inhibited

5mUB1/5mDB1 233 105 255 155 slightly reduced

6mUB1 229 102 256 155 inhibited

4mUB1 50 85 256 155 reduced

Table 5.2: Correlating shortened branchpoint distance (d̄) with splicing efficiency for Libri’s mutants where short
flanking regions were folded with intronic sequences. Shortened branchpoint distances were calculated by two
versions of algorithms for zipper stem identification: one which uses the stem length to select stable zipper stems
(d̄length=5) and the other which uses thermodynamics criteria for stem selection (d̄te=−10,tl=6). Levels of splicing
efficiency were inferred from Libri et al. (1995)
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have lower values for d̄length=5. However, there are a few contradictory exam-

ples that do not support this theory: mutants 3mUB1 and 5mDB1, which

both show inhibited splicing, have very different d̄length=5 values (46 and

229 nt, respectively). Also, for the double mutant 5mUB1/5mDB1, which

has slightly reduced splicing, the shortened distance d̄length=5 equals 233 nt,

which is more than for any other mutants, including those with apparently

non-existent splicing. When both flanking sequences are included, the 68-nt-

long 5’ UTR of the CUP1 gene and 50 nt from the beginning of the second

CUP1 exon, the resulting shortened distances, d̄length=5 and d̄te=−10,tl=6, are

roughly equal for all of the mutants, and fail to discriminate between the

mutants that are spliced and those that are not.

Since we are aware that our shortened distance calculation is just an

approximation with respect to the real distance within the folded molecule,

we also wanted to look at the predicted secondary structures of these mu-

tants and see if we can detect any structural differences that would explain

their different splicing results. We computed the structures using the mfold

Web server at http://www.bioinfo.rpi.edu/applications/mfold/old/

rna/form1.cgi (last accessed in April 2006).

Our secondary structure analysis of the intron mutants, which basically

involved visual inspection and determination of structural differences and

similarities, mainly focused on the part of the structure that included the

donor site and the branchpoint sequence, since we are interested in the dis-

tance between these two sites. The observed structural domain was almost

identical for the 3mUB1, 5mUB1, 8mUB1, 3mDB1, 3mUB1/3mDB1 and

5mUB1/5mDB1 mutants, some of which have very different splicing effi-

ciency levels. Moreover, the entire secondary structures of the 3mUB1 and

3mUB1/3mDB1 mutants were almost identical with only three basepairs

difference, while the copper resistance experiments showed that the first one

is spliced with only slightly reduced efficiency and that the second one is not

(Figure 5.3). A similar analysis of secondary structures of Libri’s mutants

folded with their flanking regions showed that with the addition of flank-

ing sequences, the secondary structure of the mutants tends to be even less

susceptible to short mutations; in the majority of cases, there weren’t any
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major differences between the overall secondary structures of the mutants.

Thus, visual comparison of the minimum free energy secondary structures of

Libri’s mutants folded with or without flanking sequences failed to explain

the observed differences in the splicing efficiency.

Assuming that the splicing efficiency results from Libri et al. (1995) are

accurate and that MFE prediction of secondary structure is reliable, we were

not able to detect any correlation between the experimental results and the

distance between the donor site and the branchpoint sequence. There is still

a possibility that the distance between the two sites in the tertiary structure

of the RP51B intron is quite different from our approximations and that this

real distance would determine the efficiency of intron excision. Nevertheless,

we believe that the more likely explanation for our inability to find any

correlation between splicing efficiency and branchpoint distance is that our

analysis was limited only to a single, minimum free energy prediction of the

secondary structure of the mutants.

5.3 Refinement of zipper stem hypothesis

In order to remedy this limitation, we modify our approach by considering

not only MFE structure prediction of intron sequences but also near-optimal

predictions and refining our calculation of shortened branchpoint distances.

5.3.1 Including suboptimal structures in the analysis

According to the ‘thermodynamic hypothesis’, which was initially estab-

lished for protein chains (Anfinsen, 1973), the tertiary structure of a protein

or RNA molecule in its normal physiological environment is the one in which

the Gibbs free energy of the whole system is the lowest. However, in the

case of RNA, there are many alternative structures whose free energy is

very close to the optimal one. It is possible that an RNA molecule can oscil-

late between these different structures or that different RNA molecules with

the same nucleotide sequence can fold into these different, but energetically

similar structures.
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Figure 5.3: Minimum free energy secondary structure of 3mUB1 mutant
predicted by mfold.
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For functional, non-coding RNAs, such as tRNAs and rRNAs, there is

a strong evolutionary pressure to maintain the unique, functional structure;

mRNAs, on the other hand, do not have functional constraints on their

global structure, and it is likely that they exist in a population of structures.

Some evidence for this has been described in Christoffersen and Mcswiggen

(1994), Betts and Spremulli (1994) and Freyhult et al. (2005).

Another reason why it would be beneficial to consider RNA secondary

structures other than the MFE structure, especially when using computa-

tional prediction methods, is the known inaccuracy of the RNA secondary

structure prediction algorithms (see also Section 2.2).

Therefore, it is possible that the native structure is not equivalent to the

predicted MFE structure but to one of the suboptimal ones that still have

free energies very close to the MFE. Some examples of this phenomenon

have been noted in the literature (Wuchty et al., 1999). Considering this

possibility, we have decided to include in our analysis all of the predicted

suboptimal structures whose free energy is within 5% of the minimum free

energy (this is the default value for mfold predictions; other values of sub-

optimality percentage are used in later analysis). Technically, this is easy

to do since the folding programs that we use allow the user to specify this

percentage.

5.3.2 A new way of calculating the branchpoint distance

The calculation of distance is very important for our analysis. The zipper

stem hypothesis that we are testing implies that relatively short branchpoint

distance is required for efficient splicing of an intron. Therefore, we need to

be able to approximate this distance as closely as possible. For a direct cal-

culation of the actual branchpoint distance in three-dimensional space, it is

necessary to have accurate tertiary structure prediction. As currently there

are no reasonably reliable algorithms for predicting RNA tertiary structure,

we have to base our distance calculation on the RNA secondary structure.

Even at this level it is hard to decide how to calculate the branchpoint

distance.
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In Chapter 4 we calculated this distance as follows: once the zipper

stem is predicted, we summed the number of bases from the donor site to

the zipper stem and from the zipper stem to the branchpoint sequence (see

Definition 4). This method assumes that there is no secondary structure

formation from the zipper stem towards the ends of the sequence. While

somewhat consistent with our hypothesis that only the zipper stem is es-

sential for shortening the distance, this assumption is obviously unrealistic.

There is no reason to believe that any part of the intronic sequence will

remain unfolded unless it is previously bound by some other molecule.

We thus decided to refine our model such that the distance between donor

and branchpoint sites is calculated in the context of an entirely folded intron.

The need to identify zipper stems, as defined in Definition 3, is thereby

eliminated, allowing more flexible structure (arbitrary stem free energy and

internal loop/bulge size) and location of a stem that brings the 5’ splice site

and branchpoint into close proximity (second complementary sequence can

be located downstream from the branchpoint sequence, as observed by Libri

et al. (1995)). This refinement also implies that the entire structure will

be important for determining the branchpoint distance, rather than just a

single stem. Even with this assumption, there is no unique way to calculate

branchpoint distance.

To the best of our knowledge, there have been no previous attempts

to compute the distance between a pair of nucleotides in RNA secondary

structure. If we assume that helices are rigid, then calculating the distance

between two nucleotides located in the same helix is relatively straightfor-

ward, assuming that we will use a number of nucleotides or basepairs as an

abstract distance measurement. The task becomes more complicated if two

nucleotides are found in different helices, or in general are separated by any

loop (multi-loop or internal loop), because the mutual position of the two

helices is not known: if the helices are closer to each other, the distance

should be shorter, and if they are farther apart, for example because the

angle between them is larger, the distance should be larger. However, this

mutual positioning of the secondary structure elements can be considered a

part of the tertiary structure of an RNA molecule and presently, we cannot
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approximate distances between them. Instead, we have based the distance

calculation solely on the basepairing information: the distance calculation

within a stem is performed by counting the number of basepairs separating

two sites, while in a loop it is done by counting the number of free bases.

To perform this calculation, we employed Dijkstra’s shortest-path algorithm

(Dijkstra, 1959).

Dijkstra’s algorithm

Dijkstra’s algorithm, named after its creator, Edsger Dijkstra, is an algo-

rithm that solves the single-source shortest path problem for a directed

graph with non-negative edge weight. The input to the algorithm consists

of a directed graph G with associated edge weights, a source vertex s, and a

target vertex t. Each edge of the graph is an ordered pair of vertices (u, v)

representing a connection from vertex u to vertex v. Weights of edges are

given by a weight function w : E → [0,∞), so that w(u, v) is a non-negative

cost of moving from vertex u to vertex v. The weight of an edge can be

thought of as the distance between the two vertices. Then, the distance

between two vertices in a graph, i.e., the cost of the path between the two

edges, is equivalent to the sum of the costs of the edges in the path. For a

given pair of vertices s and t in V , the algorithm finds the path from s to t

with the lowest cost (i.e., shortest distance).

The algorithm works by keeping for each vertex v the cost d(v) of the

shortest path found from the source vertex s to v. Initially, d(s) = 0 and

d(v) = ∞ for all other vertices v ∈ V except s. The basic operation in

Dijkstra’s algorithm is edge relaxation: if there is an edge from u to v, then

the shortest known path from s to u can be extended to a path from s to

v, whose cost is d(u) + w(u, v). If the result is less than the current d(v),

we can replace this value with the new value. Edge relaxation is applied to

edge (u, v) only once, when d(u) has reached its final value.

The algorithm maintains two sets of vertices: S contains only vertices

for which the shortest path is known, and Q contains all the other vertices.

At the beginning, set S is empty, and at each step the vertex with the lowest
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value of d(u) is moved from Q to S. The time complexity of the algorithm

is O(n2), where n is the number of vertices in a graph.

Computing branchpoint distance using Dijkstra’s algorithm

To calculate the branchpoint distance, we consider a predicted secondary

structure of the intronic pre-mRNA as an undirectional graph where nu-

cleotide bases are vertices of the graph and edges are bonds between the

nucleotides. These bonds can be either sugar-phosphate bonds between the

nucleotides in the RNA chain or the hydrogen bonds between paired bases

in a given RNA secondary structure. Figure 5.4 shows the conversion from

an RNA secondary structure to the graph representing it. Since Dijkstra’s

algorithm requires a directed graph, we will represent each non-directed edge

(u, v) as two directed edges, (u, v) and (v, u). All edges in the RNA graph

have a uniform weight w(u, v) = 1.

In our implementation of the algorithm, the inputs to the program are

an RNA structure in dot-bracket notation and the locations of two bases

for which the distance needs to be calculated. These bases are the first

nucleotide of the intron and the bulging A in the branchpoint sequence

(UACUAAC). The output of the program is the shortest distance between

these two bases, which we are going to consider as the branchpoint distance

for the given secondary structure.

5.3.3 Computation of structural characteristics of introns

In order to do the branchpoint distance analysis based on our refined model,

we wrote a program that runs all of the analyses needed to obtain the desired

structure information. Given a file with RNA sequences and a file with

corresponding branchpoint distances, for each sequence in the input file the

program produces the shortened branchpoint distance, the structure’s free

energy and the probability of each suboptimal structure within 5% from the

MFE.

Our program calls two RNA secondary structure prediction programs:

mfold and RNAfold. We use both of these programs because we need fea-
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(a) (b)

Figure 5.4: Conversion from the RNA secondary structure to the graph representing it. (a) Graphical representa-
tion of the secondary structure of an intron (circles represent basepairing interactions, i.e., hydrogen bonds. (b)
Graph representing the RNA structure in (a).
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tures that are not available in a single program: mfold does not have an

option for computing the partition function, and RNAfold does not have an

option for selecting a set of suboptimal structures that are within a certain

percent of suboptimality from the minimum free energy.

The program first runs RNAfold to calculate the equilibrium partition

function Q for each of the sequences in the input file (see also Section 2.2).

RNAfold computes the partition function when run with the option ’-p’, but

its value is not a part of RNAfold’s regular output, so we had to slightly

modify the source code to have it printed out. Once the partition function

is computed for a given RNA sequence we can calculate the probability of

each predicted structure given its free energy.

Since the partition function is computed by RNAfold and is thus based on

the energy model used by the Vienna package, the free energy of a structure

also needs to be computed using the same energy model in order to be

consistent. Although both RNAfold (along with all of the other programs

from the Vienna package) and mfold use Turner’s energy model, they use

different versions of it, which sometimes result in slightly different free energy

values for the same RNA sequence. Thus, we first run mfold to predict the

MFE structure and suboptimal structures within 5% from the MFE and

then run RNAeval, a program which is a part of the Vienna package, to

compute the free energies of the structures predicted by mfold.

The percentage of suboptimality is one of the parameters of mfold. We

also used default values for the other mfold parameters, including the window

parameter. This parameter controls how many structures will be computed

and how different they must be from one another. It takes on positive integer

values; a smaller value results in more computed structures that may be quite

similar to one another, while a larger value results in fewer, more varied

structures. If this parameter is not chosen by the user, a default value is

selected according to the length of the input sequence. After experimenting

with different values for this parameter, we decided to use the default value.

Using the partition function value computed by RNAfold, Q, and the

free energy value of the structure Rij, ∆G(Rij), computed by RNAeval, we

can now calculate the probability of that structure in the ensemble of all
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Procedure StructureAnalyze

input: file with n RNA sequences S1, . . . , Sn, file with corresponding
branchpoint distances d1, . . . , dn

foreach(Si, where i ∈ {1, . . . , n})
run RNAfold to obtain the value for Q
run mfold to predict all structures Rij, j = 1, . . . ,m within 5% from
MFE
foreach(Rij , where j ∈ {1, . . . ,m})

run RNAeval to calculate ∆G(Rij) (free energy of Rij)
calculate P (Rij)
run dijkstra(Rij , di) to calculate branchpoint distance d̄ij

output ∆G(Rij) from mfold, ∆G(Rij) from RNAfold, d̄ij and P (Rij)
end foreach

end foreach

Figure 5.5: Pseudo-code for the procedure StructureAnalyze described in
Section 5.3.3.

possible structures (Ri1, Ri2, . . .) for the given sequence Si:

P (Rij) =
e−∆G(Rij)/RT

Q
(5.1)

Finally, using Dijkstra’s algorithm we calculate the branchpoint distance

for each of the computed suboptimal structures. At this stage we also count

the number of bases of the branchpoint sequence that remained unbound

in the given secondary structure. We will use this value later to test if the

pairing status of branchpoint sequence is important for splicing efficiency.

The output of the program include mfold’s free energy value, RNAeval’s

free energy value, the branchpoint distance and the computed structure

probability for each suboptimal structure predicted by mfold (all of them

being within 5% of the MFE). The top-level pseudo-code for the described

procedure, which we call StructureAnalyze, is given in Figure 5.5.

Considering that the time complexity of RNAfold and mfold is O(l3) and

the time complexity of RNAeval and Dijkstra’s algorithm is O(l2), where l is

the length of the given input sequence, the time complexity of the procedure
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StructureAnalyze is O(n(l3 + m · l2)). The value of m, which is the number

of predicted sub-optimal structures within 5% of the MFE, is typically in

the order of 10 (the maximum value for STRIN dataset is 34). Even when

the percentage of suboptimality is increased to 20% the value for m remains

similar (the maximum value for STRIN dataset is 44), due to mfold’s window

parameter. Since l is greater than m, the overall time complexity for the

procedure is O(n · l3).

Post-processing of the results

The output of the procedure StructureAnalyze is piped into a post-processing

procedure that computes some additional values for each predicted struc-

ture, Rij , of a given sequence, Si, and also calculates summary statistics for

each of the given RNA sequences. P (Rij) is the computed probability of a

structure in the ensemble of all possible structures for a given sequence; since

the number of all possible structures grows exponentially with the length of

the sequence, this probability is usually a very small number. Since we are

considering only the structures that are within 5% from the MFE we also

compute a normalized (or relative) probability in the following way:

Pnorm(Rij) =
P (Rij)

m
∑

j=1
P (Rij)

(5.2)

Another value that is calculated in this post-processing phase is b weightij ,

which is dependent on the number of free bases in the branchpoint sequence.

It is defined in the following way:

b weigthij =

{

Pnorm(Rij) × 5 : # offree bases in branchpoint > 3

Pnorm(Rij) : otherwise

(5.3)

The purpose of b weightij is to take into account the hypothesis that

structural accessibility of the branchpoint sequence (e.g., being located in

a loop) has a positive effect on splicing efficiency. We will discuss this
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topic further in Section 6.2. The structures where four or more branchpoint

nucleotides are in a loop are more heavily weighted than the structures where

the branchpoint is mostly in a stem. The multiplication factor of five was

arbitrarily chosen.

Once all predicted structures for a given sequence Si have been processed,

the program computes several summary statistics:

average distance – this is the average branchpoint distance for all of the

structures predicted by mfold with the percentage of suboptimality

equal to 5. If there are m predicted structures, the average distancei

is computed in the following way:

average distancei =

∑m
j=1 dij

m
(5.4)

If our hypothesis that a relatively short branchpoint distance is re-

quired for efficient splicing were correct, lower values of average dis-

tance would indicate higher splicing efficiency.

r weight – this is a heuristic measure, which is based on the hypothesis

that introns with highly probable sub-optimal structures that have

short branchpoint distance are spliced more efficiently. It is defined in

the following way:

r weighti =
m
∑

j=1

Pnorm(Rij)

dij
(5.5)

The addends in the above sum are computed for each predicted sec-

ondary structure and are directly proportional to the relative (normal-

ized) probability of that structure Pnorm(Rij) (thus ‘r’ in r weight)

and inversely proportional to its branchpoint distance. Higher values

of r weighti should indicate more efficient splicing of the sequence Si.

r b weight – this value is analogous to r weighti but also takes into ac-

count the number of free bases in the branchpoint sequences. It is

defined as follows:
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r b weighti =
m
∑

j=1

b weightij
dij

(5.6)

b weight is defined in Equation 5.3. Higher values of r b weighti should

indicate more efficient splicing.

5.4 Branchpoint-distance analysis of RP51B

mutants using the refined model

We used our updated approach for analyzing intronic secondary structures

and branchpoint distances to analyze the wild type RB51B intron and all of

the mutants described by Libri et al. (1995) and by Charpentier and Rosbash

(1996). The new approach to the structural analysis considers not only the

MFE structure, but also all of the suboptimal structures that are within

5% from the minimum free energy and that are significantly different from

each other according to mfold’s criteria. The branchpoint distance is also

calculated differently than before, using Dijkstra’s shortest path algorithm,

described in Section 5.3.2.

We included all of Libri’s mutants in the analysis: 3mUB1, 5mUB1,

8mUB1, 3mDB1, 5mDB1, 3mUB1/3mDB1, 5mUB1/5mDB1, 6mUB1, and

4mUB1. The mutants were also analyzed using our original structure and

branchpoint-distance analysis described in Section 5.2.

In addition, we analyzed all of the RP51B intron mutants that were de-

scribed by Charpentier and Rosbash (1996). These are mut-UB1i, which

has an inverted UB1 sequence (upstream box 1; 5’ complementary region),

mut-DB1i, which has an inverted DB1 sequence (downstream box 1; 3’ com-

plementary region), mut-UB1iDB1i, which has both UB1 and DB1 sequences

inverted to make them complementary to each other, mut-5, which reduces

the consecutive pairing region to 5 basepairs, mut-12, which improves pair-

ing to 12 consecutive basepairs (eliminating one one-nucleotide bulge), and

mut-18, which extends pairing to 18 consecutive basepairs (eliminating all

three bulges in the pairing region, see Figure 5.1).
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Similar to the approach of Libri et al. (1995), Charpentier and Rosbash

(1996) inserted the mutated introns into the CUP1 gene. The insertion was

made after the first codon (Stutz and Rosbash, 1994), thus the 5’ flanking

sequence consisted mainly of the 5’ UTR region, which is at most 68 nt long

(Karin et al., 1984; Zhang and Dietrich, 2005). The 3’ flanking sequence

is part of the CUP1 coding sequence. Analogous to the analysis done in

Section 5.2, we considered both Libri’s and Charpentier’s mutant introns

in isolation, and also including one (5’) or both flanking sequences. As

previously mentioned, the 5’ flanking sequence consisted of the first CUP1

codon and 68 nt of its 5’ UTR, and the 3’ flanking sequence consisted of 50

nt CUP1 coding sequence downstream from the inserted intron.

The splicing efficiency of the mutants was not directly quantified by

Charpentier and Rosbash (1996), but they can be inferred from some of

the figures in their paper. Unlike the splicing efficiency analysis conducted

by Libri et al. (1995), which was done by copper growth assay, Charpentier

and Rosbash used gel electrophoresis of formed spliceosomal complexes. The

pre-mRNAs, lariat intermediate complex and lariat product complex were

resolved based on size, and the splicing efficiency level was approximated

from the intensity of the bands. Thus, levels of splicing efficiency for the

wild type pre-mRNA and mutant pre-mRNAs can only be approximated

based on the published gel images.

Another complication in assessing splicing efficiency levels for Charpen-

tier’s mutants is that there is not a direct comparison of all of the mutant

results with the wild type results. In some cases, authors used the wild

type intron and the mutated introns with the donor site modified to corre-

spond to the consensus donor sequences. With these modifications, introns

are in general spliced more efficiently than in the original RP51B context.

The splicing efficiency levels can still be approximated relative to one an-

other based on Figures 2 and 3 from the article by Charpentier and Rosbash

(1996). Four different levels can be observed: normal for wt, reduced for

mut-UB1i, mut-DB1i, and mut-5, slightly improved for mut-UB1iDB1i and

improved for mut-12 and mut-18. These levels cannot be compared directly

to splicing efficiency levels for Libri’s mutants.
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All of the described mutants were processed using the program Struc-

tureAnalyze described in Section 5.3.3. The detailed output of the post-

processing procedure is given in Appendix C.

The summary statistics for all of Libri’s mutants are reported in Ta-

ble 5.3. From the table we can see that there is an interesting correlation

between the average branchpoint distance and the splicing efficiency lev-

els: sequences that are more efficiently spliced (wild type, 3mUB1, 5mUB1,

8mUB1, 5mUB1/5mDB1, and 4mUB1) have lower values for the average

distance than those that are poorly spliced. If we assign numerical values

to the descriptive splicing efficiency labels (efficient = 1, slightly reduced =

2, reduced = 3 and inhibited = 4) we can compute the Pearson correlation

coefficient (r = 0.95).

Looking at the detailed output given in Appendix C.1, we can observe

that all of the sequences that are spliced efficiently or with slightly reduced

efficiency have one or more predicted structures (MFE or suboptimal) for

which the branchpoint distance is very short, d̄ij = 5. Analysis of the sec-

ondary structures of these sequences reveals that this distance corresponds

to a structural conformation where the donor site and the branchpoint have

two basepairing interactions between them. The part of the RNA secondary

structure that shows this contact conformation is illustrated in Figure 5.6.

Even more intriguing is the fact that the number of predicted structures

that have this contact conformation between the donor site and the branch-

point seems to be proportional to the level of splicing efficiency. The wild

type intron has 5 of these structures (efficient splicing), 3mUB1 and 5mUB1

mutants have one structure each where d̄ij = 5 (slightly reduced splicing),

the 8mUB1 mutant has 3 of these structures (efficient splicing), and the

5mUB1/5mDB1 mutant has one such structure (slightly reduced splicing).

Mutant 4mUB1, which has reduced but not completely inhibited splicing,

does not have a structure with contact conformation within 5% from the

MFE; however, if the percentage of suboptimality is increased to 10%, one

of the structures predicted has a structure with a branchpoint distance of 5.

The value of r weighti, which is supposed to be higher for the sequences

that are more efficiently spliced, seems to have some predictive power, since
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Figure 5.6: A part of the RP51B wild type intron secondary structure that
shows basepairing between the donor site and the branchpoint sequence.
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mutant avg r weight r b weight splicing efficiency

wt 20 0.1494 0.1494 efficient

3mUB1 28 0.0319 0.0573 slightly reduced

5mUB1 29 0.0302 0.0509 slightly reduced

8mUB1 26 0.0283 0.0283 efficient

3mDB1 41 0.0244 0.0244 inhibited

5mDB1 41 0.0296 0.0631 inhibited

3mUB1/3mDB1 43 0.0243 0.0243 inhibited

5mUB1/5mDB1 34 0.0364 0.1218 slightly reduced

6mUB1 48 0.0208 0.1042 inhibited

4mUB1 38 0.0494 0.2458 reduced

Table 5.3: Summary statistics for Libri’s mutants. Levels of splicing effi-
ciency were determined from Figure 5.2.

there is a good correspondence between the values and the efficiency of splic-

ing (r = −0.52). In general, efficiently spliced sequences have higher values

than those with poor splicing. The other summary statistics, r b weighti,

that takes into account the number of free bases in the branchpoint sequence,

does not correlate well with splicing efficiency (r = −0.14).

For Libri’s mutants with flanking sequences, there seems to be no charac-

teristic structures or branchpoint distances that would distinguish efficiently

spliced sequences from ones that are not. Likewise, none of the summary

statistics correspond well with the observed splicing efficiency levels (see

Appendices C.2 and C.3).

The branchpoint distance results for Charpentier’s mutants are similar to

the results for Libri’s mutants: the average branchpoint distances are lower

for the sequences that are efficiently spliced (wild type, mut-UB1iDB1i, mut-

12, and mut-18). If we assign numerical values to the descriptive splicing

efficiency labels (improved = 1, slightly improved= 2, normal = 3 and re-

duced = 4), we can compute the correlation coefficient (r = 0.92). This,

again, corresponds to the ability of these sequences to fold in such a way

as to bring the donor site and the branchpoint sequences very close to each

other: each of the efficiently spliced sequences has a number of contact-

conformation structures (see Appendix C.4). The mutants that have reduced

splicing do not fold into this type of structure, except for mut-DB1i, which
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mutant avg r weight r b weight splicing efficiency

wt 20 0.1494 0.1494 efficient

mut-UB1i 38 0.0454 0.2240 reduced

mut-DB1i 30 0.0424 0.0978 reduced

mut-UB1iDB1i 13 0.1569 0.1578 slightly improved

mut-5 35 0.0491 0.2455 reduced

mut-12 13 0.1569 0.1578 improved

mut-18 13 0.1569 0.1578 improved

Table 5.4: Summary statistics for Charpentier’s mutants. Levels of splicing
efficiency were inferred from Figures 2 and 3 and Table 1 in the article by
Charpentier and Rosbash (1996).

has one suboptimal structure (of relatively low probability) with d̄ij = 5.

This does not necessarily contradict the general trend, since the splicing

efficiency measurements are very imprecise and it is possible that mut-DB1i

is spliced more efficiently than mut-UB1i and mut-5, which would explain

the presence of the short-branchpoint-distance structure.

The value of the r weight summary statistic also correlate well with

the splicing efficiency levels: r weighti values are significantly higher for ef-

ficiently spliced sequences, indicating good prediction potential (r = −0.89).

This is not the case for r b weight, whose values do not correlate well with

the splicing efficiency levels (r = 0.29).

For Charpentier’s mutants with flanking sequences, there appear to be

no characteristic structures or branchpoint distances that would distinguish

between sequences that are spliced efficiently from ones that are not. Also,

none of the summary statistics correlate well with the splicing efficiency level

(see Appendices C.5 and C.6).

To conclude, structural and branchpoint distance analysis of the RP51B

introns described by Libri et al. (1995) and by Charpentier and Rosbash

(1996) has demonstrated the benefits of our new approach. Considering not

only MFE structure but also a certain subset of suboptimal structures, as

well as improving the calculation of the branchpoint distance, allowed us

to identify some structural characteristics of RP51B intron mutants that

may be responsible for their differential splicing. Namely, for all of the 16
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sequences analyzed, the ability to form highly probable secondary structures

with short branchpoint distance ensures their efficient splicing. In addition,

it seems that the number of these structures and their probability correlates

well with the splicing efficiency levels. This observation is also reflected

in the average branchpoint distance value, which is always lower for the

sequences that are more efficiently spliced. At this point it is not clear if it

is the short distance itself or the specific contact conformation between the

donor site and the branchpoint sequences that is important for splicing.

Our previous branchpoint distance analysis, based on zipper-stem iden-

tification, was not able to detect these differences, since it considered only

the MFE structure of the mutants. Also, the definition of a zipper stem

(Definition 3) excluded stems that contained either the donor site or the

branchpoint sequence and thus would not be able to identify the stem found

in the RP51B intron and its efficiently spliced mutants that bring the donor

and branchpoint sequence into contact conformation.

The new branchpoint distance analysis yielded good results only when

intron sequences without any flanking regions were folded. Adding flank-

ing regions to the introns eliminates any recognizable differences between

efficiently spliced mutants and those that are poorly spliced.

Calculation of the probability of close branchpoint distance

using the partition function

Instead of searching for structures that have short branchpoint distances or,

in the case of the RP51B gene, that have basepairing interactions between

the donor site and the branchpoint, the probability of contact conformation

for a given sequence can be obtained directly. This probability corresponds

to the basepairing probabilities of the paired nucleotides in question, and

is calculated by the RNAfold program using the partition function. Each

basepair probability reflects a sum of all weighted structures in which the

chosen basepair occurs. Thus, these basepairing probabilities also take into

account the structures that were not within 5% from the MFE, eliminating

the necessity to chose an arbitrary suboptimality percentage value.
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mutant G-C probability U-A probability splicing efficiency

wt 0.40 0.40 efficient

3mUB1 0.33 0.33 slightly reduced

5mUB1 0.31 0.31 slightly reduced

8mUB1 0.34 0.34 efficient

3mDB1 0.01 0.01 inhibited

5mDB1 < 0.01 < 0.01 inhibited

3mUB1/3mDB1 0.01 0.01 inhibited

5mUB1/5mDB1 0.11 0.11 slightly reduced

6mUB1 0.05 0.05 inhibited

4mUB1 0.18 0.18 reduced

Table 5.5: Basepairing probabilities of contact conformation (Figure 5.6) for
Libri’s mutants. The probabilities were calculated by the RNAfold program.

Figure 5.6 shows the relevant basepairs formed between the donor site

and the branchpoint sequence when the predicted structure contains what

we call ‘contact conformation’. The first basepair is formed between the first

intron base (G) and the third base of the branchpoint sequence (C), and the

second basepair is between the second base in the intron (U) and the second

base of the branchpoint sequence (A). The probabilities for these particular

basepairs can be obtained when the RNAfold program is run with the ‘-p’

option, which invokes computation of the partition function and basepairing

probabilities.

The basepair probability values for the wild type RP51B intron and all

of Libri’s mutants are given in Table 5.5. It can be observed that all of

the sequences that are efficiently spliced have higher values for the basepair

probabilities than the sequences that are poorly spliced (r = 0.92). The cor-

relation is not strictly linear since, for example, the mutant sequence 8mUB1

has almost the same basepair probability value as 3mUB1 and 5mUB1, al-

though it is more efficiently spliced than these two. Similarly, the mutant

5mUB1/5mDB1 is more efficiently spliced than 4mUB1, but this is not re-

flected in the basepair probability values.

For Charpentier’s mutants, the basepair probabilities are also higher

for the sequences that are more efficiently spliced (Table 5.6): all of the

sequences that are efficiently spliced (wild type, mut-UB1iDB1i, mut-12,

and mut-18) have basepair probabilities of 0.40, while the other sequences
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mutant G-C probability U-A probability splicing efficiency

wt 0.40 0.40 normal

mut-UB1i 0.04 0.04 reduced

mut-DB1i 0.25 0.25 reduced

mut-UB1iDB1i 0.40 0.40 slightly improved

mut-5 0.04 0.04 reduced

mut-12 0.40 0.40 improved

mut-18 0.40 0.40 improved

Table 5.6: Basepairing probabilities of contact conformation for Charpen-
tier’s mutants.

have lower values (r = 0.79). The mutant mut-DB1i has a relatively high

basepair probability value with respect to the other two mutants, possibly

for the same reason as given in the previous section – the splicing efficiency

measurements in Charpentier and Rosbash (1996) lack precision, and it is

possible that mut-DB1i is spliced more efficiently than mut-UB1i and mut-5.

Another reason might be the imprecision of the energy model on which the

basepair probabilities are based.

Overall, based on the results for Libri’s and Charpentier’s mutants it

seems that the basepair probabilities can be good indicators for splicing

efficiency.

5.5 Branchpoint-distance analysis on the STRIN

dataset

According to the preceding analysis of RP51B mutants, it appears that

intron sequences that can significantly shorten their branchpoint distance

by forming secondary structures are spliced more efficiently. The predicted

secondary structures with short branchpoint distances have to be highly

probable structures, i.e., structures with close-to-optimal free energies.

Having this model of splicing in mind, we analyzed all of the long introns

in the STRIN dataset to see if they exhibit structural characteristics sim-

ilar to the wild type RP51B intron. The STRIN dataset contains 110 5’L

introns, where the ‘linear’ distance between the donor site and the branch-

point sequence is greater than 200 nt. However, 12 of these introns are 5’
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UTR introns (i.e., are found in the 5’ untranslated region of genes), which

we decided to exclude from this analysis for two reasons. The first reason

is that in this analysis we also want to consider the flanking regions of in-

trons, and for the 5’ UTR introns information about their exact location is

not available. For the introns found in the coding sequence, the location

of splice sites is calculated from the first coding nucleotide. This cannot

be done for the 5’ UTR introns, thus in the Ares database from which we

extracted intron locations these introns are assigned location 0, and in the

SGD database the 5’ UTR introns are not annotated at all. The second rea-

son for not including the introns located in 5’ UTRs is that, although they

are removed by the same spliceosome machinery, it is possible that their

requirements for splicing efficiency are different. It has been shown that

the cap-binding complex (CBC), which binds to the 5’ end of the nascent

pre-mRNA, plays a role in the recognition of the 5’ splice site of the first

intron by the U1 snRNP during the formation of the spliceosomal commit-

ment complex (Lewis et al., 1996a,b). Another study on the ACT1 intron

found a correlation between intron position and splicing efficiency (Klinz and

Gallwitz, 1985), and showed that splicing efficiency decreases with increased

distance between the RNA cap site and the intron. Thus, it is possible that

the proximity of 5’ UTR introns to the pre-mRNA cap may have an effect

on the splicing efficiency of these introns, which would diminish the role of

the branchpoint-distance-shortening structure formation.

For each of the remaining 98 long introns, we computed all of the sec-

ondary structures within 5% from the MFE (with mfold’s window parameter

set to default value). For each sequence, we computed the minimum and

the average branchpoint distance for all of the structures predicted and the

most probable branchpoint distance, which is the distance calculated for

the structure that has the highest probability, i.e., minimum free energy

structure. We also computed the minimum, average and most probable

branchpoint distance for all of the long introns that were folded with 50 nt

flanking sequence on both ends. As control datasets, we generated two sets

of 98 random sequences (one corresponding to intron sequences only and

one corresponding to introns with flanking sequences) that have the same
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length distribution and the same GC content as the intron datasets. Similar

to the analysis of STRIN introns, we use the procedure StructureAnalyze

to compute the distances corresponding to branchpoint distances in STRIN

introns for each sequence in a control dataset. The distances are computed

between the first nucleotide in the sequence and the nucleotide found at

the same location as the start of the branchpoint sequence in the STRIN

intron with the same length as a control sequence. For brevity, we still call

these distances branchpoint distances. The distribution histograms and the

cumulative distribution plots are shown in Figures 5.7 and 5.8.

From Figure 5.7 it can be observed that yeast long introns tend to fold

into structures that have shorter branchpoint distances than folded random

sequences of the same length and GC content: approximately one-third (33

sequences) of STRIN long introns have a minimum branchpoint distance

of 5, the same as for the RP51B intron, while this is the case for only 6

of the random sequences. This tendency of yeast introns to have shorter

branchpoint distances than random sequences can also be seen in the plots

for average and most probable branchpoint distances. To test the statistical

significance of these differences, we performed a Kolmogorov-Smirnov test,

which determines if two distributions differ significantly (see also Chapter 4).

We computed D statistics and p-values for all three pairs of datasets

plotted in Figure 5.7. For STRIN and random datasets of minimum and

average branchpoint distances, the null hypothesis of no difference was re-

jected (with p-values of 0.008 and 0.012, respectively). This was not the case

for the datasets of most probable branchpoint distances (p-value = 0.13).

Figure 5.8 implies similar conclusions for intronic sequences with flank-

ing regions. Although adding upstream and downstream sequences did not

seem beneficial for the branchpoint distance analysis of the RP51B intron

(Section 5.4), the analysis on all of the STRIN long introns indicate that

even when folded with the flanking sequences, long yeast introns have differ-

ent structural characteristics than random sequences of the same length and

GC content. The KS test rejected the null hypothesis for all three pairs of

datasets (for minimum branchpoint distance p-value = 0.0009, for average

branchpoint distance p-value < 10−4, and for most probable branchpoint
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Figure 5.7: Comparing branchpoint distances for STRIN long introns and
corresponding random sequences: distribution of minimum branchpoint dis-
tances as explained in the text (a – distribution histogram and b – cumu-
lative distribution); c, d: distribution of average branchpoint distances; e,
f: distribution of the most probable branchpoint distances.
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Figure 5.8: Comparing branchpoint distances for STRIN long introns with
flanking regions and corresponding random sequences: distribution of min-
imum branchpoint distances as explained in the text (a – distribution
histogram and b – cumulative distribution); c, d: distribution of average
branchpoint distances; e, f: distribution of the most probable branchpoint
distances.
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distance p-value = 0.0001).

Since the most common branchpoint distance for the STRIN long introns

is 5, we wanted to explore further if this distance always corresponds to the

contact conformation observed for the RB51B intron and the extent of con-

tribution of the branchpoint sequence and the canonical dinucleotide at the

donor site to the formation of the basepairs between these two sites. Ana-

lyzing all of the suboptimal structures of the introns that have a minimum

branchpoint distance of 5, we found that out of 33 introns that have this

distance, only 13 have the same contact conformation as the RP51B intron.

This does not necessarily mean that the rest of the introns cannot form

this contact between the two sites, since for some of them the basepairing

probabilities are relatively high (see next section).

In order to test the contribution of the GU sequences at the donor site

and the branchpoint sequence (UACUAAC), we generated two new datasets

of random sequences with the same characteristics as the previous ones but

which have the canonical GU dinucleotide at the donor site (beginning of the

sequence for the random sequences that have the same length distribution as

STRIN introns and 50 nt from the beginning of the sequence for the random

sequences that correspond to introns with flanking regions), dinucleotide AG

at the acceptor site and canonical branchpoint sequence UACUAAC at the

same location as the intron with the corresponding length. Thus, these

sequences are very much like the real yeast long introns except that the

sequences that are not essential for splicing are randomized. We computed

the minimum, average and the most probable branchpoint distance for each

random sequence in the dataset and compared these distributions to the

corresponding distributions for the STRIN introns.

For introns and random sequences without flanking regions, the dis-

tribution differences are not as prominent as for the first type of random

sequences: the Kolmogorov-Smirnov test failed to reject the null hypothesis

of no difference for all three types of distribution. However, there is still a

significant difference with respect to very short branchpoint distances: while

the STRIN dataset has 33 sequences with a minimum branchpoint distance

of 5, there are only 6 such sequences in the random dataset (5 have contact



Chapter 5. Splicing efficiency and branchpoint distance 127

conformation) and another 12 that have even shorter distances. The results

for the sequences with flanking regions are similar to the results in Figure

5.8. For all three pairs of datasets we can reject the hypothesis that they

stem from the same underlying distributions.

Calculation of the probability of close branchpoint distance

using partition function

Instead of searching for structures that have short branchpoint distances, we

can use basepair probabilities that take into account all possible suboptimal

structures. Basepair probabilities are calculated using the partition function

(running RNAfold with ‘-p’ option), with each probability reflecting a sum

of all weighted structures in which the chosen basepair occurs.

As we previously did for the RP51B mutants, we can calculate the prob-

abilities of contact conformation for all of the STRIN long mutants and

compare them with probabilities for random sequences. For this analysis,

we used the random sequences that have the same length distribution and

GC contents as the STRIN long introns but also have authentic splicing

signal sequences (see previous section). For each of the sequences in these

two datasets (for this analysis we did not consider sequences with flanking

regions), we computed the basepairing probability of interaction between

the donor site and the branchpoint sequence, as shown in the Figure 5.6.

The distributions of obtained values are plotted in Figure 5.9.

From the figure it can be observed that the STRIN dataset, when com-

pared to the random dataset, has fewer sequences that have very low prob-

ability of contact conformation (p < 0.1) and more sequences that have

higher probability. The KS test rejects the null hypothesis that underling

distributions are identical (D = 0.36 and p-value < 10−4).

We can also compute the probability of a short branchpoint distance

using basepair probabilities. Instead of extracting the specific probability of

basepairing between the first and second nucleotides of the donor sequence

with the third and second nucleotides (respectively) of the branchpoint se-

quence, we can choose the highest probability of basepairing between the
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Figure 5.9: Comparing probabilities of the basepairing between the donor
site and the branchpoint sequence for STRIN long introns and corresponding
random sequences. a: distribution histogram of the basepairing probabili-
ties; b: cumulative distribution of the basepairing probabilities.
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donor dinucleotide and any dinucleotide within a certain window from the

branchpoint sequence. This basepairing interaction will determine the max-

imum branchpoint distance for that sequence. We experimented with dif-

ferent window sizes up to 25 nt; for the sizes less than 20 nt, the KS test

yielded p-values below 0.05, indicating that we can reject the null hypothesis

that the two datasets stem from the same underlying distribution.

In summary, the results presented in Section 5.5 imply that yeast long

introns, when compared to randomly generated sequences that resemble real

introns in many respects, are more likely to fold into structures that have

short branchpoint distances. There is a significant class of yeast long intron

(1/3 of them) that can fold into secondary structures that have shortened

branchpoint distance of 5, while this is the case for only a few random

sequences. This observation is also supported by analysis of basepairing

probabilities between the donor site and the branchpoint sequence.

5.6 Validation by biological experiments

Based on our structural and branchpoint distance analysis of Libri’s and

Charpentier’s mutants (Section 5.4), we modified our previously proposed

hypothesis of the role of secondary structure on intron splicing as follows:

The existence of highly probable secondary structures (whose free energy

is within 5% from the minimum free energy) that have short branchpoint

distance (calculated by Dijkstra’s algorithm, see Section 5.3.2) is required

for efficient splicing of a yeast intron. In order to test the validity of this

model of splicing, we needed to test it on introns that have not been used in

the derivation of the model. We decided to design additional RP51B mutants

whose splicing efficiency would be tested by laboratory experiments.

Validation of computational prediction by laboratory experiments is a

very important component of bioinformatics research. It can provide addi-

tional support to computational results and make them more significant to

the biological community, thus contributing to the research in both fields.

We performed our laboratory experiments in collaboration with Dr. Philip
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Hieter’s group at UBC’s Michael Smith Laboratories, whose focus is the

molecular biology of Saccharomyces cerevisiae. The RP51B intron mutants

that we designed were assembled and tested by Dr. Hieter’s doctoral student

Ben Montpetit.

Our experimental approach differs from that used by Libri et al. (1995)

and by Charpentier and Rosbash (1996) in several ways. The mutated in-

tron sequences are inserted back into the RP51B gene, instead of the CUP1

gene, which allows us to analyze the splicing of this intron in its endogenous

environment. Another difference is that we estimated the splicing efficiency

directly from the protein expression levels that we quantified using a state-

of-the-art fluorescence imaging system. This makes our measurements more

precise than those of Libri et al. (1995) and of Charpentier and Rosbash

(1996). Ideally, splicing efficiency should be measured by the relative ratio

of pre-mRNAs and mRNAs in a cell (Pikielny and Rosbash, 1985); how-

ever, our laboratory environment was not suitable for RNA isolation and

quantification.

5.6.1 Verification of the experimental system

To verify that our experimental system works and that we can obtain the

same results as in Libri et al. (1995), we synthesized some of Libri’s mutants

and tested their protein expression levels. The sequences tested were the wild

type RP51B intron, and the 5mUB1, 3mUB1, 8mUB1, 5mDB1, and 3mDB1

mutated introns. The experimental procedure is described in Appendix B.

Figure 5.10 displays the results of our experiments. For each sequence,

between four and six sample protein abundance measurements were ob-

tained that were normalized with respect to the wild type protein levels.

The normalized values were used to generate the plot. The shaded boxes

represent the mean values for all the samples and the error bars represent

+/− 1 standard deviation. The error bar for the wild type intron comes

from comparison of two different wild type samples.

The results in Figure 5.10 are not exactly the same as the splicing effi-

ciency results in Libri et al. (1995), but the difference between the mutants
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Figure 5.10: Protein expression results for the RP51B gene containing some
of Libri’s mutant introns obtained by our experimental approach. Protein
expression level is normalized with respect to wild type expression level.
Shaded boxes represent the mean value for several different samples and
error bars represent +/− 1 standard deviation for these samples. The error
bar for the wild type intron comes from comparison of two different wild
type samples.
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that are more efficiently spliced and the ones that are not is obvious. Mu-

tants 3mUB1 and 5mUB1, which showed slightly reduced levels of splicing

in Libri et al. (1995) are still reduced compared to the wild type expression

levels. The difference is that 8mUB1 mutant now seems to be less efficiently

spliced than 3mUB1 and 5mUB1, which does not agree with the results in

Libri et al. (1995). Expression levels for mutants 3mDB1 and 5mDB1 might

also seem different than in the previous study, since their protein level ap-

pears not to be significantly reduced. However, we cannot assume that there

is a perfect correlation between the rp51b copper resistance and splicing ef-

ficiency levels (see Figure 5.2). Thus, the lack of spots on the copper sulfate

plates for mutants 3mDB1 and 5mDB1 does not necessarily imply that their

splicing is completely inhibited. If we apply the KS test to determine the

statistical significance of the differences between the wild type and mutant

expression levels, we get p-values of 0.07 for 3mUB1, 5mUB1, and 8mUB1,

indicating no significant difference between the samples, and a p-value of

0.005 for 3mDB1 and 5mDB1, which indicates that the hypothesis of no

difference between the samples should be rejected.

In general, it is not realistic to expect identical results from two different

experimental procedures, especially since the changes in expression levels of

two different proteins (cup1 and rp51b) were measured. Overall, we consider

our experimental results to be fairly consistent with Libri’s results, which

gives us confidence to use our experimental system for further analysis.

5.6.2 Mutant design

We designed 10 additional RP51B intron mutants for the purposes of test-

ing our current model of the role of intronic pre-mRNA secondary structure

on splicing. Five of the mutants were designed to have structurally unfa-

vorable characteristics for efficient splicing (‘bad’ mutants) and the other

five mutants have structural characteristics that are supposed to ensure effi-

cient splicing (‘good’ mutants). The most important structural characteris-

tic used for mutant design was branchpoint distance, calculated according to

our model. In general, the main criterion for the design was that ’good’ mu-
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tants have short branchpoint distances and that ‘bad’ mutants have longer

distances. More specifically, the requirement for the ‘good’ mutants was

that they have multiple contact conformations (Figure 5.6), short average

branchpoint distance and higher r weighti values. On the other hand, the

‘bad’ mutants were not supposed to have any structures with contact confor-

mation or otherwise short branchpoint distance. Their average branchpoint

distance should be significantly higher than for the wild type intron and the

‘good’ mutants and r weighti values should be lower. We also looked at the

basepairing probabilities for the contact conformation and the number of

free bases in the branchpoint sequence. The importance of having unstruc-

tured branchpoint sequence was studied and discussed by Hall et al. (1988),

Stephan and Kirby (1993), Mougin et al. (1996), and Chen and Stephan

(2003).

We carried out the design process manually, guided by the MFE struc-

ture of the wild type intron: for ‘bad’ mutants the main goal was to disrupt

any structural elements (stems) that bring the donor site and the branch-

point closer together, and for the ‘good’ mutants these structures were sta-

bilized. All the mutations are single-block mutations up to 20 nt long, where

sequences of contiguous nucleotides were substituted by new sequences de-

signed to change the secondary structure. Four of the five ‘bad’ mutants

were obtained by mutating the original RP51B intron sequence, and the

bad4 mutant was obtained by mutating the sequence of Libri’s 8mUB1 mu-

tant. Similarly, one of the ‘good’ mutants, good4, was obtained by mutating

Libri’s 3mDB1 mutant. Also, to test if contact conformation itself is im-

portant for splicing or just the resulting short branchpoint distance is, we

created one of the ‘good’ mutants (good3) such that it would not have any

structures with contact conformation but would have many structures where

d̄ij = 9. The sequences of the mutated introns are given in Appendix D.

Table 5.7 shows values for various quantities and characteristics used in the

design process.
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mutant # of cc p1 p2 avg r weight BP

wt 5 0.70 0.40 20 0.1494 loop

bad1 0 0.0 0.0 42 0.0243 loop

bad2 0 0.0 0.0 45 0.0227 loop

bad3 0 0.0 0.0 43 0.0226 stem

bad4 0 0.0 0.21 36 0.0494 stem

bad5 0 0.0 0.005 33 0.0303 stem

good1 7 1.0 0.99 5 0.2000 loop

good2 6 0.83 0.40 13 0.1721 loop

good3 0 0.0 0.03 9 0.0968 loop

good4 5 0.61 0.80 17 0.1361 loop

good5 8 0.76 0.70 7 0.1615 loop

Table 5.7: Characteristics of newly designed RP51B mutants: # of cc –
number of structures with the contact conformation within 5% from the
MFE; p1 – sum of normalized probabilities Pnorm(Rij) for all of the struc-
tures Rij that contain contact conformation; p2 – basepairing probability
of interaction between the donor site and the branchpoint sequence based
on the partition function; avg – average branchpoint distance as given in
Equation 5.4 (p. 112); r weight – summary statistics defined in Equation
5.5 (p. 112); BP – structural configuration of branchpoint sequence (loop
or stem).
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5.6.3 Experimental procedure

The selected mutants were first synthesized using designed primers and PCR

reaction and then inserted into the RP51B gene, which has a deleted intron.

The cells were then allowed to grow and produce rp51b protein. The protein

expression levels were measured using Western blotting analysis and then

quantified using a specialized imaging system. The details of the experimen-

tal procedure are given in Appendix B.

As mentioned before, quantifying the level of protein expression is not

an ideal measurement of splicing efficiency: the first assumption that we are

making is that the level of protein abundance is proportional to the mRNA

abundance in the cell. However, there are a number of post-transcriptional

and post-translational events that can affect this proportionality on the

global level. Although it has been shown that the general trend is that

abundant mRNAs encode for abundant proteins and that the average pro-

tein per mRNA ratio is relatively constant through the full range of mRNA

abundances (2500-4800 protein molecules per mRNA molecule), the results

for individual genes can be very different: genes that have similar levels

of mRNA abundance can have 30-fold variation in protein levels and vice

versa (Gygi et al., 1999; Ghaemmaghami et al., 2003; Greenbaum et al.,

2003; Beyer et al., 2004; Moore, 2005).

Since in our experiments we are dealing with only one gene, it is relatively

safe to assume that post-transcriptional and post-translational events will

have the same affect on all of the mutants tested. Consequently, the observed

differences in the protein abundance level should reflect differences in the

mRNA abundance level. However, the opposite may not necessarily be

true: there may be changes in the mRNA level due to splicing deficiency

or enhancement that are not going to be reflected in the protein abundance

level (since post-splicing events can regulate the protein expression level).

The second assumption that we are making is that any change in splic-

ing efficiency will be reflected in the mRNA levels, which is not necessarily

true: Pikielny and Rosbash (1985) observed that for some of the mutants

they tested, the levels of pre-mRNA were significantly increased, while there
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were no changes in the mRNA level. Similar conclusions were drawn from

genome-wide analysis of yeast splicing where authors were using the splice

junction index SJ = mRNA/(pre-mRNA + mRNA) and intron accumula-

tion index IA = pre-mRNA/(pre-mRNA + mRNA) to analyze the effects

of mutations on splicing (Clark et al., 2002). Using only one of these two

indexes or using only the pre-mRNA to mRNA ratio failed to detect all of

the cases in which splicing was modified.

Overall, if the protein abundance levels for different mutants are dif-

ferent, we can conclude that that is a consequence of changes in splicing

efficiency. However, if the protein abundance levels for the wild type intron

and a mutant intron appear to be the same, then we still cannot exclude

the possibility of modified splicing efficiency.

5.6.4 Results and discussion

The results of protein level abundance for the RP51B gene with our new

mutated introns are given in Figure 5.11. For each mutant, between four

and six sample protein abundance measurements were obtained that were

normalized with respect to the wild type protein levels. The shaded boxes

represent the mean normalized values for all the samples and the error bars

represent +/− 1 standard deviation. The results for mutants bad2, bad5,

and good1 are missing because for bad2 and bad5 we were not able to insert

the designed intron mutants into the RP51B gene, and for good1 there was

no observable protein expression. We were not able to resolve the cause of

these problems.

From Figure 5.11, we can see that mutants bad1 and bad3 have re-

duced splicing efficiency (or more precisely, protein expression levels) when

compared to the wt as expected (the KS test applied on the distributions

of protein expression levels rejected the null hypothesis of no digfference;

p-value = 0.005 for both mutants).

Mutant bad4 has somewhat reduced splicing efficiency but not as much

as the other two bad mutants. There are two possible reasons for this:

• The probability of basepairing interaction between the donor site and
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Figure 5.11: Protein expression results for the RP51B gene containing our
new mutant introns. Protein expression level is normalized with respect
to wild type expression level. Shaded boxes represent the mean value for
several different samples and error bars represent +/− 1 standard deviation
for these samples.
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the branchpoint sequence is 0.21, even though there were no struc-

tures within 5% from the MFE that had the contact conformation.

This means that there are probably many less probable structures

that have this conformation. If we analyze all of the suboptimal struc-

tures predicted by mfold (with default window parameter) that are

within 20% from the MFE, we can see that this assumption is true –

there are suboptimal structures in this free energy range with d̄ij = 5

and one of them is only 70 times less probable than the MFE struc-

ture. Thus, these slightly less probable structures may be sufficient to

ensure relatively efficient splicing.

• The minimum free energy structure for this mutant has a branchpoint

distance of 20, which still may be short enough for relatively efficient

splicing.

The distribution of protein expression levels for bad4 is still significantly

different from that for the wild type intron (p-value = 0.002).

Mutants good2, good3, and good4 are all spliced efficiently, as predicted.

Mutant good3 does not have the contact conformation in any of the predicted

structures. However, many of these structures have a short branchpoint

distance of 9, suggesting that a specific structural arrangement between the

donor site and the branchpoint sequence is not required for efficient splicing.

Mutant good5 shows reduced levels of protein abundance, which is in dis-

agreement with our prediction. A possible explanation for this phenomenon

may be the existence of a very stable stem (the free energy of the stem is

∆G = −36.6 kcal/mol) that holds the 5’ splice site and the branchpoint

together (Figure 5.12). This zipper stem may be too stable to be disrupted,

but a disruption would be needed in order to allow the spliceosome to bind

to the splice signals.

Since good1 has an even more stable zipper stem than good5 (∆G =

−46.6 kcal/mol), it is possible that this could cause total inhibition of splic-

ing. Another reason could be the proximity of the mutated block to the

5’ splice site (9 nt apart). However, judging by the other results it seems

unlikely that there would be no detectable amounts of protein in the cell.
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Figure 5.12: Part of the MFE secondary structure prediction for mutant
good5 that shows the donor site and branchpoint sequence basepairing as
well as the very stable zipper stem that stabilizes their interaction.
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Thus, we still suspect that this result is due to a possible experimental error.

Overall, the results on the new RP51B intron mutants are consistent

with our model of the role of intronic secondary structure in gene splicing.

5.7 Conclusions

In this chapter we extended our previous approach for calculating shortened

branchpoint distances in 5’L yeast introns in two ways: (1) by considering

not only the MFE structure but also a subset of suboptimal structures with

free energies close to the MFE; and (2) by improving the calculation of the

shortened branchpoint distance, taking into account the entire structure of

an intron. This new approach allowed us to identify some structural char-

acteristics of the RP51B intron and its mutants that seem to be responsible

for their differential splicing. We observed that the mutants with a very

short branchpoint distance corresponding to specific contact conformation

between the donor site and the branchpoint sequence are spliced more effi-

ciently.

We applied the new model to the STRIN dataset and observed that

yeast long introns, when compared to randomly generated sequences (which

resemble real introns in many respects) are more likely to fold into structures

that have short branchpoint distances. This tendency is especially strong

for very short branchpoint distances (∼ 5), resulting in a relative abundance

of some specific structural conformations between the donor site and the

branchpoint sequence. The contact conformation itself might imply that

the canonical branchpoint sequence is maintained not only because it is

complementary to a sequence in the U2 snRNA that interacts with the

branchpoint sequence, but also because it is important for the secondary

structure of the intron.

Obviously, having a contact conformation or a very short branchpoint

distance is not a requirement for splicing, since there are many STRIN

introns that do not have these characteristics. Still, it seems that there is

a significant class of yeast introns that can fold into secondary structures

with very short branchpoint distances (one-third of STRIN introns have a
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branchpoint distance of 5). Judging by the experimental results on one of

these (Section 5.6), this short distance is important for efficient splicing. For

the remaining STRIN introns, there are four possible explanations:

• Their branchpoint distance is still relatively short and sufficient for

efficient splicing.

• Their predicted branchpoint distance is long due to inaccuracy of the

secondary structure predictions or branchpoint distance calculation.

• Their predicted branchpoint distance is long, but they have some other

mechanism to achieve an optimal conformation for spliceosome assem-

bly, or splicing efficiency is stimulated in another way (e.g., by protein

factors).

• Their predicted branchpoint distance is long resulting in reduced splic-

ing efficiency that is optimal for proper functioning of the gene in

question; one example is the yeast gene YRA1 (Preker and Guthrie,

2006).

Finally, we computationally designed new RP51B intron mutants and

predicted their splicing efficiency levels based on our new model of structural

requirements for efficient splicing. The predictions were verified by labora-

tory experiments: the designed mutants were synthesized and inserted into

the RP51B gene and then the expression level of the rp51b protein was quan-

tified. The obtained measurements, which are thought to be proportional to

splicing efficiency levels, were found to be consistent with our computational

predictions.
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Chapter 6

Structural characteristics of

yeast introns

In the previous two chapters we focused on identification and analysis of a

specific structural formation within yeast introns whose role is to shorten the

large distance between the 5’ splice site and the branchpoint sequence, and

thereby enabling proper spliceosome assembly. However, it is possible that

pre-mRNA secondary structure has other functions related to gene splicing

in yeast.

In this chapter we conduct various analyses on the STRIN dataset, with

the goal of identifying any structural characteristics that might be important

for splicing. First, we investigate if intron sequences are more structurally

stable than random sequences with the same sequence characteristics. We

also analyze the stability of local structures in the vicinity of and at the

splice signals, and investigate the stability of basepairing interactions be-

tween splice sites and snRNAs and its contribution to intron identification.

Finally, we look for any conserved structural motifs in the vicinity of the

splice signals.

6.1 Structural stability of introns vs. random

sequences

There have been several attempts to assess the ‘foldability’ of naturally oc-

curring RNA sequences – their tendency to fold into more stable secondary

structures than expected by chance. In 1999, Seffens and Digby examined

51 mRNA sequences from several different organisms to determine if their
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minimum free energies are more negative than for randomized mRNA se-

quences with the same composition and length (Seffens and Digby, 1999).

They employed six different mRNA randomization procedures, randomizing

either entire mRNAs, coding regions or untranslated regions and preserv-

ing either base composition or codon composition. For each native mRNA

and each randomization procedure, they generated 10 randomized mRNA

sequences, calculated their minimum free energies using the mfold algorithm

and analyzed the differences, using what they call ‘segment score’. Segment

score for an mRNA sequence is number of standard deviations the mean of

the randomized set is away from the native free energy. This value is more

often called Z-score. In general, Z-score of a number x with respect to a set

s1 . . . sN of numbers is defined by:

Z =
x − µ

σ
, (6.1)

where µ = s1+...+sN

N and σ =

√

∑N

i=1
(si−µ)2

N−1 are the mean and standard

deviation, respectively, of the numbers s1, . . . , sN . If we want to compare

the free energies of RNA sequences, x would be the minimum free energy

of the native RNA and s1, . . . , sN would be the minimum free energies for

N randomized RNA sequences. In a recent comparison study of six RNA

folding measures that estimate how well an RNA sequence folds, Z-score was

found to be the most sensitive measure (Freyhult et al., 2005).

The study by Seffens and Digby found that the native mRNAs have

significantly lower free energies than the randomized sequences: the aver-

age Z-score for the whole-randomized set (whole mRNA, base composition

preserved) was −1.23, and for the coding-random set (only coding regions

randomized) it was −0.87. The Z-score values were slightly higher for other

randomization procedures.

This study was later challenged by Workman and Krogh, who re-examined

the same set of mRNAs and concluded that the apparent higher stability

of native mRNAs could be explained by differences in dinucleotide compo-

sitions between native and randomized sequences (Workman and Krogh,

1999). Their rationale was that since most of the algorithms for RNA
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secondary structure prediction (including mfold) use a nearest neighbour

thermodynamic model, which assumes that the stability of a specific base-

pair depends on the neighbouring bases, the RNA folding thermodynamic is

strongly dependent on basepair stacking interactions. Therefore, in order to

have a fair comparison between structural stability of native and randomized

RNA sequences, dinucleotide content needs to be preserved.

Workman and Krogh (1999) used 46 mRNAs from the original set of Sef-

fens and Digby (1999), and generated 10 randomized sequences for each of

them preserving either mononucleotide or dinucleotide composition. When

only mononucleotide content was preserved, they obtained similar Z-scores

as did Seffens and Digby (1999) (Z-score = −1.59). When dinucleotide con-

tent was preserved, the Z-score values were much higher (−0.20 for the first

order Markov random sequences). They concluded that mRNA sequences,

in general, do not form more stable extended structure than random se-

quences. They pointed out that the analysis they performed applies only to

global secondary structure of the molecules, while more local structural in-

teractions, such as hairpin loops, could not be detected using this approach.

Workman and Krogh (1999) also discussed the calculation of p-values

associated with obtained Z-scores, which is important for determining the

statistical significance of the scores. The distribution of Z-scores for random

sequences can be approximated by a normal distribution with mean 0 and

standard deviation 1. Assuming this, the significance of Z-scores can be ap-

proximated using an extreme value distribution that captures the likelihood

that the given Z-score of a biological RNA sequence is larger than the maxi-

mum Z-score from a collection of randomized versions of the same sequence.

In other words, p-values associated with Z-scores can be computed as the

ratio of random sequences with a Z-score lower than that of the native se-

quence. This analysis was further extended by Rivas and Eddy (2000), who

estimated that in the case where 100 random sequences are generated for

each native sequence, the Z-score for a single sequence has to be at least of

the order of −3.8 to be considered significant (at the 0.01 significance level).

For the significance level of 0.05 this value would approximately be −2.

For a set of native sequences we can compute the upper bound for the



Chapter 6. Structural characteristics of yeast introns 145

average Z-score in order for it to be significant at the 0.05 significance level.

Based on the assumption that the distribution of Z-scores for random se-

quences can be approximated by a normal distribution with mean 0 and

standard deviation 1, the Z-score for a single sequence has to be at most

−1.64 in order to be significant at the 0.05 level (this is the point on x-axis

below which the area under the bell curve is 0.05). Since the distribution of

average Z-scores for n sequences can be approximated by a normal distri-

bution with mean 0 and standard deviation 1/
√

n, an average score of less

than −1.64/
√

n would be significant.

Clote et al. (2005) conducted a similar study of secondary structure

stabilities of various types of RNAs, but with an improved randomizing

procedure. While Workman and Krogh used a heuristic to perform a dinu-

cleotide shuffle, Clote et al. implemented the provably correct procedure of

Altschul and Erickson (1985), which guarantees a dinucleotide composition

exactly identical to that of the native sequence. Their results are similar

to those of Workman and Krogh (1999) and they show that for the entire

mRNA, as well as in 5’ UTR, 3’ UTR and the coding region of mRNA,

the folding energy is approximately that of random RNA of the same din-

ucleotide composition (the average Z-scores are: −0.18, −0.11, 0.17, −0.14,

respectively).

All of the described approaches analyze the stability of global structure

of mRNA and/or its main parts. However, local stable secondary structure,

such as hairpin loops, would remain undetected by these approaches. Local

secondary structure interactions are known to play a role in many different

cellular processes, such as transcription, mRNA stability and localization,

RNA processing and translation. Examples include formation of a stem

within S. cerevisiae L32 pre-mRNA that serves as a binding site for the

L32 protein, which in turn regulates the splicing of its own pre-mRNA (Eng

and Warner, 1991); a stem-loop in the coding sequence of the yeast ASH1

gene that can localize ASH1 mRNA to the bud tip (Grover et al., 1999);

secondary structure elements in bacterial 5’ UTRs that reduce the rate of

mRNA degradation through the inhibition of nuclease activity (Diwa et al.,

2000); a stem-loop structure, called an iron response element, that is found
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in the 5’ UTR of ferritin and transferrin receptor mRNAs, and binds a

specific protein that blocks the translation of this mRNA under low iron

conditions (Casey et al., 1988; Hentze et al., 1988).

Stability of local secondary structures in the coding regions of mRNAs

was analyzed by Katz and Burge (2003). They applied a new shuffling pro-

tocol that randomizes mRNAs, preserving dinucleotide composition, amino

acid sequence and codon usage. They analyzed thousands of coding regions

from 28 different organisms, including S. cerevisiae. For each native mRNA

sequence, they generated 20 randomized sequences using their DicodonShuf-

fle algorithm, and then folded native and randomized sequences in sliding

windows of 50 bases (with step size of 10 bases). The folding free energy

over all windows for native and randomized sequences is used to compute

Z-scores. They obtained a Z-score of −0.25 for the coding regions of S. cere-

visiae, for which they claim to indicate significant bias in favor of local RNA

secondary structure. The authors also compared folding potential between

intron-containing and intronless genes in yeast and found that the mean

Z-score was significantly lower (p-value = 0.004) for the former (Z-score =

−0.50 versus −0.24). This result suggests that the secondary structure in

yeast exons might play a role in splicing.

6.1.1 Z-score analysis of global intron structure

Since all of the previously described studies were done with coding mRNA

sequences, we wanted to investigate if there is any bias towards secondary

structures in yeast introns, both on a global and local level. For this pur-

pose, we downloaded the Altschul-Erikson dinucleotide shuffling algorithm

(Altschul and Erickson, 1985; Clote et al., 2005) from http://clavius.

bc.edu/~clotelab (last accessed in April 2006), which is guaranteed to

preserve the dinucleotide content of the native sequence. We analyzed the

following three datasets separately: the entire STRIN intron dataset, long

STRIN introns and short STRIN introns.

For each intron sequence in a dataset, we generated 100 randomized

sequences using the Altschul-Erikson algorithm. We then folded all of the
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native intron sequences and all of the corresponding random sequences using

the RNAfold program from the Vienna RNA secondary structure package

(Hofacker et al., 1994). The computed minimum free energies for the na-

tive sequence and 100 corresponding random sequences with the same din-

ucleotide distribution were used to compute the Z-score for that sequence

(see Equation 6.1). This was done for each sequence in a dataset. For each

dataset, the distribution of Z-scores was plotted and the mean Z-score was

calculated.

The Z-score distributions for all STRIN introns, long STRIN introns and

short STRIN introns are shown in Figures 6.1, 6.2, and 6.3, respectively.

Since Z-scores are expected to be normally distributed with mean 0 and

standard deviation 1, we also superimposed the standard normal distribution

over the histograms. If there was no bias for the global secondary structure

in yeast introns the Z-score histograms would be expected to follow the

plotted bell curve. We can observe that this is almost the case for the

whole STRIN dataset and the short introns, while there is a slight deviation

for the long introns. This result is also in agreement with the mean Z-

scores, which are −0.14, −0.30, and 0.02 for STRIN introns, long STRIN

introns and short STRIN introns, respectively. Based on our discussion in

the previous section, the mean Z-scores for all STRIN introns, long STRIN

introns and short STRIN introns have to be less than −0.11 (−1.64/
√

214),

−0.16 (−1.64/
√

110) and −0.16 (−1.64/
√

2104), respectively, in order to be

significant at the 0.05 level. Thus, STRIN long introns and consequently,

all STRIN introns have a significant bias towards more stable secondary

structures.

We also used quantile-quantile plots (q-q plots) to compare distribu-

tions of Z-scores with respective normal distributions (which have the same

mean and standard deviation as the corresponding Z-score distributions).

If Z-scores are distributed normally, the data points in the plot should fall

approximately along the 45-degree reference line. The q-q plots in Figures

6.1, 6.2, and 6.3 confirm our previous conclusions. For the long introns there

are many data points above the reference line, indicating that Z-score values

are lower than expected if distributed normally. Data points for the short
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Figure 6.1: (a) Distribution of Z-scores for all STRIN introns. Standard
normal distribution (mean = 0 and standard deviation = 1), that is expected
distribution for Z-scores, is shown in dashed line. (b) Quantile-quantile plot
of Z-scores against standard normal distribution.
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Figure 6.2: (a) Distribution of Z-scores for long STRIN introns. Standard
normal distribution is shown in dashed line. (b) Corresponding quantile-
quantile plot.
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Figure 6.3: (a) Distribution of Z-scores for short STRIN introns. Standard
normal distribution is shown in dashed line. (b) Corresponding quantile-
quantile plot.
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name Z-score molecular function

YDR064W −4.60 ribosome component

YGL103W −4.40 ribosome component

YJL191W −7.15 ribosome component

YNL112W −4.41 RNA helicase

YNR053C −3.58 GTPase activity

YOL120C −5.85 ribosome component

YPL081W −5.03 ribosome component

Table 6.1: STRIN long introns that have very low Z-scores.

introns lie very close to the reference line, indicating that the Z-score values

are normally distributed as expected in the case with no structural bias.

The distribution of Z-scores for long STRIN introns has a longer left

tail than the normal distribution, indicating that a number of STRIN long

introns have very low Z-scores. This can also be observed for all STRIN

introns (Figure 6.1), where the same long introns are outside the bell curve.

We extracted all of the introns from the long STRIN intron dataset whose

Z-score is lower than −3.5, which is close to the threshold for the statistically

significant Z-scores (−3.8) calculated by Rivas and Eddy (2000). We looked

at the annotated molecular function for each intron to see if there are any

patterns. The results are shown in Table 6.1.

From the table, we are tempted to conclude that an unusual proportion

of these introns are found in ribosomal proteins (5 out of 7). Since there are

91 ribosomal-protein introns in the STRIN long intron dataset, however, this

is not unexpected. We also looked to see if there are any small nuclear RNAs

encoded within these introns and found only one snoRNA (snR191) within

the YNR053C intron. Small nucleolar RNAs are the class of small non-

coding RNA molecules that guide chemical modifications of ribosomal RNAs

and are frequently encoded in the introns of ribosomal proteins (which,

interestingly, YNR053C is not). It is also interesting to observe that the

YNR053C intron has the highest Z-score among the seven tabulated introns.

Thus, the presence of a snoRNA does not seem to contribute significant

structural stability to the YNR053C intron.

In summary, we can conclude that STRIN long introns show statistically

significant bias towards more stable secondary structures and this is mostly
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due to the presence of several introns with very stable secondary structures.

This is also reflected in the mean Z-score for the entire STRIN dataset.

STRIN short introns do not differ from random sequences in this respect.

These finding are consistent with our hypothesis that secondary structure

within long yeast introns is functionally important.

6.1.2 Z-score analysis of local structure

We also analyzed the stability of local structures for yeast introns, but our

approach differs from Katz and Burge (2003) in that we do not scan the

entire length of an intron but rather the 100-nt windows positioned at the

5’ splice site, 3’ splice site and the branchpoint sequence. The motivation

behind this approach is that since it is known that the splice signals interact

with snRNAs, we would expect to see a preference for structure-free regions

around these sites. On the other hand, it is possible that local structural

elements exist in the vicinity of the splice signals that serve as additional

identifiers of intron location.

For each STRIN long intron, we isolated three 100-nt windows centered

around the 5’ splice site, 3’ splice site and the branchpoint sequence. In

each of these windows we slid a 50-nt window, with a step size of 10 nt, and

for each of the sliding window positions we generated 100 random sequences

using the Altschul-Erikson dinucleotide shuffling algorithm (Altschul and

Erickson, 1985; Clote et al., 2005). Thus, for each sliding window position we

extracted 98 sequence windows from the real long introns and 9800 random

sequences (as in Section 5.5, we had to exclude 5’ UTR introns from this

analysis due to the problems with their annotated location). Next, we folded

all of these 50-nt windows using the RNAfold algorithm, and used their

predicted minimum free energies to calculate average Z-score for the entire

100-nt region, average Z-score for each sliding window position, and average

values of free energies for all native and random sequences in the 100-nt

region. The results are shown in Table 6.2.

The p-values in the table are calculated for the difference between the

native and random average free energies using the Wilcoxon rank-sum test,
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region average average average p-value
Z-score ∆Gnative ∆Grandom

5’ ss 0.31 −4.6 −5.24 6.38 · 10−9

3’ ss 0.12 −4.85 −5.13 0.12

branchpoint −0.09 −3.76 −3.64 0.15

Table 6.2: Average values for Z-score and free energies for native and random
sequences in the vicinity of splice sites. The values are calculated for sliding
windows of size 50 nt and then averaged over all sliding window positions.
The p-values are calculated using the Wilcoxon rank-sum test.

which assesses whether the difference in medians between two observed dis-

tributions is statistically significant. Our results indicate that there is a

slight, but statistically significant bias against stable local secondary struc-

tures in the region of +/− 50 nt around the 5’ splice sites. A similar bias

is not evident for the 3’ splice sites and the branchpoint sequences. We also

calculated mean Z-scores for each sliding window position and plotted them

in Figure 6.4.

We can observe that certain sliding window positions have relatively low

or high scores compared to other values. The examples are the first four

window positions for the 5’ splice site, especially the second one (from −40

to +10 nt w.r.t. the 5’ splice site), first and fourth window positions for the

3’ splice site (from −50 to 0 nt and from −20 to +30 nt w.r.t. the 3’ splice

site, respectively) and the last window position for the branchpoint sequence

(from 0 to +50 nt w.r.t. the branchpoint sequence). The null hypothesis

that the datasets of the average MFEs for native and random sequences stem

from the same underlying distribution is rejected by KS test for all of these

window positions (p-values are 0.005, 0.0002, 0.002, and 0.002, respectively).

We also plotted the distributions of minimum free energies for these window

locations (Figures 6.5 and 6.6). It should be noted that the two windows

centered at 25 nt upstream from the 3’ splice site and at 25 nt downstream

from the branchpoint sequence overlap for the majority of introns in the

STRIN dataset since the distance between the branchpoint sequence and

the 3’ splice sites is usually shorter than 100 nt, and is often about 50 nt

(see Figure 3.4). This explains, at least partially, why the average Z-score
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Figure 6.4: Average Z-scores for each sliding window position around the
splice signals for 5’L STRIN introns. The size of the sliding window is 50 nt
and the step size is 10 nt. The Z-values are plotted for the middle position
of each sliding window (6 sliding window positions in total).
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values for these two window locations are almost identical.

The plots in Figures 6.5 and 6.6 indicate slight biases of native sequences

towards lower or higher minimum free energies when compared to random

sequences. However, these biases are weak and could not be used in isolation

as signals for computational identification of yeast introns. The reason for

this is that in each case the distribution for native sequences almost entirely

overlaps the distribution for the random sequence, and there is no threshold

value which could differentiate the real from pseudo sites.

We repeated the same analysis for a smaller sliding window size of 20

nt and with the same step size of 10 nt. None of the statistical values

calculated for this window size is statistically significant, indicating that

true splice signals in long STRIN introns do not exhibit any strong bias

towards or against very short local structures when compared to the random

sequences.

Finally, we did the same analysis for all of the STRIN introns, including

both long and short introns. The results are somewhat similar to the results

for the long introns: the sequences in the vicinity of authentic 5’ splice sites

show statistically significant bias towards less local structure formation: the

average minimum free energy of the native sequences is ∆Gnative = −5.02,

while ∆Grandom = −5.42 (p-value = 1.4 · 10−9). We also calculated mean

Z-scores for each sliding window position and plotted them in Figure 6.7.

This plot is very similar to that for the 5’L STRIN introns (Figure 6.4). The

window positions that have the highest absolute values of average Z-scores

are the second and fourth window positions for the 5’ splice site (from −40 to

+10 nt and from −20 nt to +30 nt w.r.t. the 5’ splice site), the first window

position for the 3’ splice site (from −50 to 0 nt w.r.t. the 3’ splice site) and

the last window position from the branchpoint sequence (from 0 to +50 nt

w.r.t. the branchpoint). The null hypothesis that the datasets of average

MFEs for native and random sequences stem from the same distribution is

rejected by the KS test for the two window positions around the 5’ splice

site (p-values are 0.01, 0.0001, 0.2, and 0.09, respectively).

These results are in agreement with the molecular biology of the splicing

reaction: recognition of the 5’ splice site is the essential first step of the



Chapter 6. Structural characteristics of yeast introns 156

−25 −20 −15 −10 −5 0
0

0.05

0.1

0.15

0.2

0.25

MFE

fr
ac

tio
n 

of
 s

eq
ue

nc
es

Distribution of MFE for native and rand seq around 5’ ss

random
native

(a)

−15 −10 −5 0
−15

−10

−5

0

native mfe

ra
nd

om
 m

fe
(b)

−25 −20 −15 −10 −5 0
0

0.05

0.1

0.15

0.2

0.25

MFE

fr
ac

tio
n 

of
 s

eq
ue

nc
es

Distribution of MFE for native and rand seq around 3’ ss

random
native

(c)

−12 −10 −8 −6 −4 −2 0
−12

−10

−8

−6

−4

−2

0

native mfe

ra
nd

om
 m

fe

(d)

Figure 6.5: Distributions of average MFE for 50-nt-sliding window from
native long STRIN introns and generated random sequences: (a) from −40
to +10 nt with respect to the 5’ splice site (p-value = 0.005) (b) q-q plot
comparing distributions of native and random sequences (c) from −50 to 0
w.r.t. the 3’ splice site (p-value 1.9 · 10−4) (d) corresponding q-q plot.
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Figure 6.6: Distributions of average MFE for 50-nt-sliding window from
native long STRIN introns and generated random sequences: (a) from −20
to +30 w.r.t. the 3’ splice site (p-value = 0.002) (b) q-q plot comparing
distributions of native and random sequences (c) from 0 to +50 w.r.t. the
beginning of branchpoint sequence(p-value = 0.002) (d) corresponding q-q
plot.
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Figure 6.7: Average Z-scores for each sliding window position around the
splice signals for all STRIN introns. The size of the sliding window is 50 nt
and the step size is 10 nt. The Z-values are plotted for the middle position
of each sliding window (6 sliding window positions in total).
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process during which the 5’ splice site is recognized multiple times: by U1,

U6 and U5 snRNAs, as well as by a number of spliceosomal proteins that

bind to RNA sequences in the close vicinity of the splice site. Thus, having

the region around the donor site relatively free of secondary structure will

allow these interactions to happen more easily.

6.2 Free bases at splicing signals

The structural analysis of the RP51B intron in Chapter 5 revealed that the

branchpoint sequence was usually located in a loop for the mutants that were

efficiently spliced (Figure 5.6). This loop structure was also observed for a

number of STRIN long introns (see Section 5.5). Some of the earlier studies

of pre-mRNA secondary structure also identified the branchpoint sequence

to be located in single-stranded regions and showed that this structural

configuration tends to be maintained in orthologous introns (Hall et al.,

1988; Stephan and Kirby, 1993; Mougin et al., 1996; Chen and Stephan,

2003). Motivated by this observation, we used the branchpoint structural

conformation as another indicator of efficient splicing when designing the

mutants in Section 5.6.2.

In this section, we investigate whether the hypothesis that the branch-

point sequences tend to reside in loop regions has any statistical support. For

this purpose, we considered the secondary structures of all STRIN introns.

The introns were folded globally as for the branchpoint distance analysis in

Chapter 5. We looked at two classes of subsequences: 7-nt real branchpoint

sequences and all of the other 7-nt intronic sequences that do not overlap

with the real sequences (non-branch sequences). The sequences themselves

were extracted from the secondary structure predictions in dot-bracket no-

tation (see Definition 1). For each sequence we counted the number of

unpaired (free) bases specified by the ‘.’ symbol. The distribution of free

bases for real branchpoint sequences and non-branch sequences of the same

length are plotted in Figure 6.8.

Although the two distributions completely overlap, the tendency of real

branchpoint sequences to have more free bases is easily observable. If we
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Figure 6.8: Distributions of the number of unpaired nucleotides in branch-
point and non-branch sequences when folded in global intronic secondary
structures. The non-branch sequences are intronic sequence windows of
length 7 nt that do not overlap with real branchpoint sites.
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compare the two distributions using the Kolmogorov-Smirnov test, we ob-

tain D = 0.24, with corresponding p-value = 5.34 · 10−11, rejecting the

null hypothesis that the two sets of data stem from the same underlying

distribution.

This finding is not in disagreement with the results from Section 6.1.2,

where it was found that extended branchpoint sequences (+/− 100 nt flank-

ing regions) resemble random sequences with respect to stability of local

folding. In this section, we compute the global folding of introns but focus

on structural conformations of intron subsequences. When the stability of

50-nt windows located at specific distance from the branchpoint sequences

was considered, the closest ones (at location −30 to +20 w.r.t. the start of

the branchpoint sequence) exhibited a very slight preference for less stable

structures when compared to random sequences (Figure 6.4).

From the biological standpoint, it makes perfect sense not to have branch-

point sequences enclosed in very stable structures, which could hinder bind-

ing of the U2 snRNA. Currently, there are no experimental results sup-

porting this conjecture, but it would be interesting to see if by enclosing a

branchpoint sequence in a stable stem without changing any other struc-

tural characteristics of an intron we would observe decreased efficiency of

splicing.

The same line of reasoning is applicable to the other two splicing signals –

donor and acceptor sites. To check if there is the same statistical support as

for the branchpoint sequence, we repeated the computational experiment but

this time folded STRIN introns with 50 nt flanking regions so that the splice

sites are found in a larger sequence context. For real donor sites, we used

the first 6 nucleotides from the beginning of an intron (consensus sequence

GUAUGU). Non-donor sites were all 6-nt intronic sequence windows that

do not overlap with the real sites. Similarly, for acceptor sites we chose

the last 10 intronic nucleotides to be the real sites (this includes a part of

the polypyrimidine tract and conserved AG dinucleotide at the intron/exon

boundary) and all 10-nt intronic sequence windows to be non-acceptor sites.

The distributions of free bases are plotted in Figure 6.9.

The distribution for donor sites indicates a slight preference of real donor
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Figure 6.9: Distributions of free bases for donor (a) and acceptor (b) sites.
The length of real and pseudo donor sites is 6 nt, while the length of real
and pseudo acceptor sites is 10 nt.
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sequences to have less free bases than other intronic sequences of the same

length. This difference between distributions is statistically significant when

measured using the KS test at 0.05 confidence level (D = 0.17, p-value

= 1.28 · 10−5). The histograms for acceptor and non-acceptor sites look

almost identical, indicating no significant difference between the real and

pseudo sequences (D = 0.09, p-value = 0.07).

Therefore, it seems that real donor sequences are enclosed in more stable

secondary structures when folded globally with intron sequences, including

50-nt flanking regions. This might be due to the presence of some struc-

tural motifs that are recognized by spliceosomal proteins, or may be just a

consequence of an unrealistic folding window.

6.3 MFE of basepairing between splicing signals

and snRNAs

As discussed earlier, the recognition of splice sites by the spliceosome is

intriguing: it is done with great specificity, even though the known splicing

signals, the 5’ and 3’ splice sites and the branchpoint sequence are relatively

weak. This is especially true for higher organisms, where these signals are

highly variable (Sun and Chasin, 2000). Even in S. cerevisiae, where the

splicing signals are relatively well conserved, there are still numerous pseudo

sites that resemble the real ones but are not functional (the pictograms in

Figure 6.10 show the conservation of splicing signals in yeast). It is for

this reason that current computational methods for splice site prediction

and gene-finding have to use statistical properties of coding and non-coding

sequences to improve the accuracy of intron detection (see Section 2.1).

However, the number of false positive predictions still remains significant,

especially when the search is performed on larger genomic regions.

The question remains: how do cells achieve remarkable accuracy in rec-

ognizing real splice site without calculating the statistical properties of the

adjacent regions? In cells, the conserved splicing signals are recognized by

snRNAs, which bind to them, and these basepairing interactions between
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(a)

(b)

(c)

Figure 6.10: Pictograms of donor (a), branchpoint (b) and acceptor (c)
sites in S. cerevisiae. The pictograms were generated using the Web tool
Pictogram available at http://genes.mit.edu/ pictogram.html (accessed in
May 2006). The height of the letters in the pictogram is proportional to their
relative frequencies at each position in the input sequences, considering the
background distribution of bases (A=31%, C=19%, G=19%, and T=31%
for all yeast ORFs with 1000-nt flanking regions). The input data used is
generated from the STRIN dataset.
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two RNA molecules follow the laws of thermodynamics, as do basepairing

interactions within one RNA molecule. Therefore, it is plausible that the

stability of these binding interactions is another indicator of splice site fi-

delity. This idea was explored in Roca et al. (2005), who examined the

correlation between the splicing efficency of the human β-globin gene and

wild type and mutated sequences of the first intron’s 5’ splice site. The au-

thors showed that the metric that best explains the correlation is the MFE of

pairing between the 5’ splice site and the U1 snRNA. This result motivated

us to analyze the structural stability of snRNA binding to splice signals in

yeast.

6.3.1 snRNA-pre-mRNA interactions during splicing

The recognition of the 5’ splice site is the first and essential step in gene

splicing. The fidelity of the recognition is assured by the sequential binding

of three snRNAs as well as by interactions with a number of spliceosomal

proteins. First, a U1 snRNA binds immediately downstream of the 5’ splice

site. This basepairing typically involves the first six intron nucleotides, which

are highly conserved in yeast but less so in humans (Brow, 2002). In yeast,

the large majority of introns contain the sequence GUAUGU at the 5’ bor-

der. This sequence is only partially complementary to the 5’ region of the

U1 snRNA, which interacts with the 5’ splice site (Figure 6.11; the figure

shows the secondary structure of human U1 snRNA, but the 5’ end that

interact with the 5’ splice site is the same in both species). The mismatch

between the fourth nucleotide in the GUAUGU sequence and U in the 5’

end of the U1 snRNA, which is not present in higher eukaryotes where the

fourth intron nucleotide is typically A (Figure 6.12), was shown to stabi-

lize the interaction between the two RNA molecules, probably by allowing

protein factors to bind to the distorted helix (Libri et al., 2002).

The 5’ splice site is then recognized by U6 snRNA, which enters the

spliceosome as a complex U4/U6.U5 tri-snRNP, but then after extensive

RNA-RNA rearrangements it forms two helices with a U2 snRNA. The U6

snRNA basepairs with intron sequences at positions +4 to +6 (sequence
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Figure 6.11: Structure of U1 snRNA (human) and its basepairing interaction
with the first 6 intronic nucleotides (yeast). The pre-mRNA sequences are
shaded, with the 5’ exon shown as a shaded box.
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Figure 6.12: U1 and U2 snRNA interactions with a pre-mRNA molecule.
The 5’ splice sequence is typical for higher eukaryotes where the bind-
ing between U1 snRNA and the 5’ splice site is more extensive than
in yeast. The branchpoint sequence shown is typical for S. cerevisiae
(http://www.library.csi.cuny.edu, May 2006).

UGU). The U6-U2 snRNA interaction as well as the basepairing between

the 5’ splice site and the U6 snRNA in yeast are shown in Figure 6.13.

There has also been some indication that the basepairing between the U6

snRNA and the 5’ splice site may be more extensive (Sawa and Abelson,

1992; Johnson and Abelson, 2001).

The U5 snRNA, as a part of the U4/U6.U5 tri-snRNP, also interacts

with the sequences in the vicinity of the 5’ splice site. Phylogenetic anal-

ysis of the U5 snRNA has revealed that it has an invariant 9-nt sequence

within an 11 nucleotide loop (loop I in Figure 6.14). This loop interacts with

both, the 5’ and 3’ splice site sequences, aligning them for the second step of

splicing (Newman and Norman, 1992). These interactions are not precisely

characterized but it has been suggested that the U5 snRNA forms base-

pairing interactions with the exon sequences immediately upstream of the

5’ splice site before the first step of splicing (Newman and Norman, 1992),

and later also forms non-specific interactions with the sequences around the

5’ splice site (Alvi et al., 2001; McConnell and Steitz, 2001). The proposed

interactions between the U5 snRNA and the 5’ and 3’ splice sites is shown

in Figure 6.13.
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Figure 6.13: Secondary structure interactions within the tri-snRNP complex
U4/U6.U5 and with a pre-mRNA in S. cerevisiae. The pre-mRNA sequences
are shaded (GUAUGU sequence at the donor site, UACUAAC sequence at
the branchpoint, YAG sequence at the acceptor site), with exons shown as
shaded boxes. The arrow depicts the ‘nucleophile attack’ by branchpoint
A, a chemical reaction that initiates the the cleavage at the 5’ exon/intron
junction.
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Figure 6.14: Structure of the human U5 snRNA. Two conserved stem/loops
are labeled I and II. 11-nt loop I is the one that interacts with the 5’ and 3’
splice sites.
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Similar to the 5’ splice site, the branchpoint sequence is recognized

through the basepairing interaction with another snRNA – the U2 snRNA.

The branchpoint sequence is highly conserved in S. cerevisiae, with a consen-

sus sequence UACUAAC. In other organisms, such as humans, the branch-

point sequence is less conserved. The branchpoint sequence basepairs with

the sequences in the U2 snRNA, leaving the branchpoint adenosine (under-

lined A) unpaired and bulged out (Query et al., 1994), thus enabling the

first transesterification reaction. The interaction of U2 snRNA with the

branchpoint sequence is illustrated in Figures 6.12 and 6.13.

6.3.2 PairFold experiments using arbitrary pseudo sites

To test if the minimum free energy of folding between the U1 snRNA and

the 5’ splice site can serve as an additional statistical signal to aid in splice

site identification, we first analyzed the average MFE of U1-snRNA binding

in the +/− 100 nt region around the 5’ splice site. For all intron sequences

in the STRIN dataset, excluding the 5’ UTR introns (because of the previ-

ously mentioned problems with annotation), we extracted donor sequences

with their 100-nt flanking regions on both sides. For the U1 snRNA, we

selected only the region that is known to interact with the 5’ splice site:

AUACUUACCUU. The underlined nucleotides are known to basepair with

the first 6 intron nucleotides (Figure 6.11; the figure shows human U1 sn-

RNA, whose 5’ end has slightly different sequence – AUACUUACCUG).

The selected U1 snRNA subsequence is larger than six nucleotides since it

might be possible that there are additional interactions between the two

RNA molecules that are important for binding stability but are not always

present and thus are not observed in the donor consensus sequence (Figure

6.10 (a)). The 11-nt U1 snRNA subsequence is its 5’ end, and it does not

interact with the rest of the U1 molecule (see Figure 6.11).

For folding of two RNA sequences, we used the program PairFold (An-

dronescu et al., 2005), which predicts the minimum free energy pseudoknot-

free secondary structure of two nucleic acid molecules. The selected U1-

snRNA window was folded with a sliding window from the extended donor
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Figure 6.15: The average MFE of folding between U1 snRNA and sliding
sequence window from the +/− 100 nt region around the donor site. For
each sliding window position (window size = 11 nt, step size = 1 nt) the
MFE of folding is averaged over all STRIN sequences.

sequence. The sliding window is the same size as the U1 snRNA window (11

nt) and the step size is 1 nt. For each sliding window position we calculated

the average MFE of folding over all STRIN sequences and plotted the results

in Figure 6.15.

The prominent downward spike, representing the global minimum of

average minimum free energies in the extended donor region, is located

at position 98, corresponding to the pre-mRNA sequence window NNN|
GUAUGUNN, where GUAUGU is the 6-nt consensus sequence at the 5’

splice site (the vertical line indicates the exon-intron boundary). Thus, it

appears that the most stable binding of U1 snRNA in the extended donor

region is precisely at the 5’ splice site. If we look at the minimum free energy

distributions of U1-snRNA folding with donor (only sliding window position

98 considered) and non-donor (all the sliding windows that do not overlap

with the 11-nt window centered around the conserved GUAUGU) sequences,

we can observe that the real donor sequences have significantly more negative
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MFEs than do pseudo donor sequences (see Figure 6.16; the KS test yielded

D = 0.68, with corresponding p-value = 1.23 · 10−81). However, there is no

clear separation between the range of the two distributions.

It is interesting to note that the 6-nt consensus sequence at the 5’ splice

site is not the ideal basepairing partner for the 11-nt segment of the U1

snRNA. When we calculated the MFE of folding between the U1 snRNA

and all possible hexamers using the PairFold program, there were exactly

600 hexamers that had lower binding energy than the GUAUGU sequence

(the MFE for GUAUGU was ∆G = −1.9; the lowest observed MFE was

∆G = −7.4 for GGUGAG). Therefore, it seems that the conserved sequence

at the 5’ splice site has not been evolutionarily optimized for U1-snRNA

binding, but this is not surprising since the U1 snRNA is not its only base-

pairing partner. It has been shown that extending the basepairing between

the U1 snRNA and the 5’ splice site decreases the efficiency of U1 snRNA

displacement and inhibits splicing at low temperature (Staley and Guthrie,

1999). It is possible that more stable interaction will prevent normal dis-

placement of U1 snRNA and consequent binding of other snRNAs. The

stability of the U1-snRNA-pre-mRNA duplex at the 5’ splice site is proba-

bly insured by binding of some spliceosomal proteins (Libri et al., 2002).

Considering our results, the stability of interaction between the U1 sn-

RNA and candidate 5’ splice site would not be sufficient to discriminate

between real and false sites, but might be used to filter some of the pseudo

sites. This is in agreement with the findings in Roca et al. (2005), where

only the ‘strong’ 5’ splice sites (ones that give rise to more efficient splicing)

had a strong correlation with the MFE of donor-U1 binding, while for the

weaker sites other 5’ splice site features were also important.

The global minimum present in Figure 6.15 is a result of fairly good

binding between the U1 snRNA segment and the 11-nt donor sequence, as

well as sequence conservation at that position. We repeated the experiment

with 202 random sequences that have the same dinucleotide composition as

the STRIN extended donor sequences and are centered around an arbitrarily

chosen consensus sequence AAGTTC (the relative frequencies of bases are

identical to those for STRIN donor sites (Figure 6.10 (a)) but the letters
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Figure 6.16: Distribution histograms of folding MFE between (a) U1 snRNA
and donor/non-donor sequence windows (window size = 11 nt) and (b)
cumulative distributions of the same data.
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Figure 6.17: The average MFE of folding between U1 snRNA and sliding
sequence window from a random sequence. For each sliding window position
(window size = 11 nt, step size = 1 nt) the MFE value is averaged over all
random sequences.

themselves are different) and obtained a similar downward peak as in Figure

6.15 (Figure 6.17).

We also repeated the same analysis with U6-snRNA-donor-site folding,

U5-snRNA-donor-site folding and U2-snRNA-branchpoint-sequence folding

and obtained similar results (least convincing for U5-snRNA-donor-site fold-

ing, which is expected from the nature of that interaction, which is not well

characterized).

6.3.3 PairFold experiments using more specific pseudo sites

To further investigate the potential of the folding-energy signal to discrim-

inate between real and pseudo splice sites, we used a slightly different ap-

proach, where the pseudo splice site sequences were selected more carefully

to resemble the real splice signals. That approach is similar to the study done

by Garland and Aalberts (2004), who used a modified version of mfold to

calculate minimum free folding energies of U1-snRNA and 5’ splice site inter-
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action for real and pseudo sites from the Kulp/Reese human dataset (http:

//www.fruitfly.org/sequence/human-datasets.html). Since mfold pre-

dicts the MFE structure of a single RNA molecule, Garland and Aalberts

concatenated 11-nt U1 snRNA (the same sequence we used in our previous

analysis except that the 11th nucleotide in higher eukaryotes is G instead of

U) and 10-nt sequence from the 5’ splice site. The pseudo donor sequences

were all GU dinucleotide extracted with a 10-nt surrounding window (as for

real sites). In order to allow interaction between any two bases of the U1

snRNA and 5’ splice site sequences, they also added 5-nt ‘linker’ sequences

between the U1 snRNA and 5’ splice site sequences. This linker sequence

is not allowed to basepair, thus it forms a loop of a hairpin structure. To

calculate the free energy of a two-sequence interaction, the authors modified

mfold’s energy parameters to exclude loop penalties.

Garland and Aalberts (2004) showed that there is an apparent difference

between the free energies of real and pseudo sites, which is further empha-

sized if a simple filter is applied to the pseudo folding results (accepting only

those sites that have the correct pairing between the GU at the potential

donor site and the corresponding AC in the U1 snRNA sequence).

For a similar study on the STRIN dataset, we extracted real and pseudo

donor sites using all STRIN non-5’UTR-containing genes with their 500-nt

flanking regions. The sequence window that we used was different than

in Garland and Aalberts (2004), and was chosen based on the results of

our analysis in Section 6.3.2, where the global minimum of the average

U1-snRNA-donor folding MFE was achieved for the sequence window

NNN|GUAUGUNN. Thus, the dataset of real donor sequences contained

all 202 sequences of the form NNN|GUAUGUNN (the GUAUGU sequence

inside the window can vary since not all real donor sites have this consensus

GUAUGA sequence – see Figure 6.10 (a)). Pseudo donor sites were con-

structed by taking every GU dinucleotide that appears in the dataset and

extracting its surrounding window NNN|GUNNNNNN. The real donor se-

quences were excluded from the dataset of pseudo donor sites. There were

21712 pseudo donor sequences found. Pseudo donor sites selected this way

resemble real donor sites more than do random sequence windows drawn
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from the extended donor sequences, as in our analysis in the previous sec-

tion. It is possible to be even more specific by using weight matrices as

screening tools, which we did for the branchpoint sequences. For the anal-

ysis of donor sites, however, we chose to require only the presence of the

canonical GU dinucleotide, allowing us to compare our results with findings

in Garland and Aalberts (2004).

The real and pseudo donor sites were then folded with the 11-nt se-

quence from U1 snRNA (AUACUUACCUU) using the PairFold program.

The minimum free energies of folding are plotted in Figure 6.18. The KS

test for the real and pseudo donor site datasets yielded D = 0.46, with a

corresponding p-value of 2.09 ·10−37. This result suggests that even though

the real sites still have significantly lower MFE of folding interaction with

U1 snRNA than with the pseudo sites, this difference is smaller than in our

analysis with random pseudo sites (Section 6.3.2). This is expected, since for

the newly selected pseudo donor sites the presence of the GU dinucleotide

increases the probability of pairing with the dinucleotide AC from the U1

snRNA sequence (AUACUUACCUU), resulting in a lower free energy of the

interaction.

One way to use this thermodynamic approach for 5’ splice site iden-

tification is to select a minimum free energy threshold for discriminating

between the real and pseudo sites. To assess the accuracy of this approach

for various MFE threshold values, we calculated the true positive and false

positive rates. Let TP be the number of real sites that were predicted as

real and FP be the number of pseudo sites predicted as real. If Rcount and

Pcount are total numbers of real and pseudo sites, respectively, then we can

define true positive (also known as sensitivity) and false positive rate in the

following way:

true positive rate =
TP

Rcount
(6.2)

false positive rate =
FP

Pcount
(6.3)

The typical way of displaying true positive and false positive rates for var-
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Figure 6.18: (a) Distribution histograms of folding MFE between U1 sn-
RNA and donor/non-donor sequence windows, where pseudo donor sites are
required to have the consensus GU dinucleotide and (b) cumulative distri-
butions of the same data.
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Figure 6.19: The Receiver Operating Characteristics (ROC) curves for the
thermodynamic donor-identification approach. Different plots correspond to
different selection of real and donor sites: all real donor sites and all pseudo
sites containing a GU dinucleotide (STRIN); real and pseudo sites selected
using the weak constraint (STRINwc); real and pseudo sites selected using
the strong constraint (STRINsc); results for human data from Garland and
Aalberts (2004). The dashed straight line at a 45-degree angle is known as
the ‘no-discrimination’ line and it indicates no predictive ability.

ious threshold values is to use the Receiver Operating Characteristics (ROC)

curve (Deleo, 1993). The ROC curve for our results is shown in Figure 6.19.

We also repeated Garland and Aalberts’ analysis on the Kulp/Reese human

dataset and included the results, consistent with the ones in their study, for

comparison.

To investigate if further filtering of candidate donor sites can improve

the predictive power of the thermodynamic method, we used additional con-

straints. First, similar to the approach in Garland and Aalberts (2004), we

rejected all candidate sites that did not have the expected pairing between

the donor dinucleotide GU and the U1 dinucleotide AC. We call this the

‘weak constraint’. We also used a more stringent constraint (the ‘strong con-

straint’), rejecting all candidate sites that do not have the complete known
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pairing between the donor sequence and the 5’ end sequence of the U1 sn-

RNA, as shown in Figure 6.11. We applied these filters on both real and

pseudo donor sites, since if used for prediction, the method would not be

able to differentiate between them a priori. This was not done by Garland

and Aalberts (2004), and by applying their filter only on pseudo sites there

were able to obtain better prediction accuracy (none of the real sites were

excluded). Our results are shown in Figure 6.19. Comparing the results

on human and STRIN data without any constraints, it is obvious that the

thermodynamic approach in yeast is not as successful as in humans. One

reason for this is certainly the nature of the secondary structure interac-

tion between the U1 snRNA and the 5’ splice site, which is more stable in

humans due to the conserved A at the fourth intron position (GUAAGU)

which forms one additional basepair with the U1 snRNA sequence (see Fig-

ure 6.12). In addition, higher eukaryotes have a slightly different sequence

at the 5’ end of the U1 snRNA (G instead of U – AUACUUACCUG) that

can allow for basepairing with the exonic portion of the 5’ splice site (Figure

6.12). It is also possible that the extended donor site consensus in humans

is more optimal for U1-donor interactions than in yeast.

The reason why the ROC curves for filtered data are lower than for un-

filtered data is that many real donor sequences are not predicted to form

the required basepairs. From the plot, it can be seen that the true positive

rate for the weak constraint goes only up to about 0.65 and for the strong

constraint up to about 0.55. There are 122 real donor sites that satisfy the

weak constraint and 114 that satisfy the strong constraint. One possibil-

ity, which we observed when inspecting our data more closely, is that the

predicted structure has the same MFE as the required one and thus, even

though the particular donor site has the required structure as its optimal, it

would not be considered to satisfy the structural constraint. We found that

49 real donor sites belong to this category when the weak constraint is ap-

plied. Another possibility is that even though the basepairing between the

5’ splice site and the U1 snRNA is not the most optimal one, there are some

protein factors that stabilize it. Finally, as discussed earlier, the accuracy of

computational secondary structure prediction is limited, and the structures
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that we are predicting using PairFold might not be those present in nature.

We repeated the same analysis for U6-snRNA-donor-site interaction and

U2-snRNA-branchpoint-sequence interaction. For the former, the format of

the donor sequence was chosen to be NNNN|GUAUGUNN, based on the

position of the global minimum of the average U6-snRNA-donor folding

MFE (same study as for the U1 snRNA and the 5’ splice site interaction

in Section 6.3.2, data not shown). There were 21697 pseudo donor sites

selected. The U6 snRNA segment used for folding was AACAAUACAGAG.

For branchpoint sequence analysis we extracted all real branchpoint sites of

the form NNNUACUAACNNN. To extract the pseudo sequences, we used

a positional weight matrix derived from real branchpoint sequences and

extracted all 13-nt windows whose middle 7-nt, branchpoint-like sequence

has a weight matrix score above the threshold. The threshold was selected

as the minimum weight matrix score for all real branchpoint sequences. Due

to the stringency of this approach, there were only 837 pseudo branchpoint

sequences selected, not including the real sites. The U2 snRNA segment used

for folding was AGUGUAGUAUCU. As for the U1-donor stability analysis,

we used PairFold to fold extracted real and pseudo sites with their respective

snRNAs. The results are shown in Figures 6.20 and 6.21.

Applying the KS test, D statistic values of 0.42 and 0.43 and p-values of

5.46 ·10−32 and 3.87 ·10−27 were obtained for U6-donor and U2-branchpoint

stability, respectively. This indicates a statistically significant difference be-

tween the real and pseudo sites with respect to the MFE of folding with

their corresponding snRNAs, but overlaps between the distributions are sig-

nificant and it is impossible to achieve good separation using any threshold

value. This is confirmed by the ROC curves (Figure 6.22), which are close

to the no-discrimination line (dashed line).

To summarize, the results of this section show that the real 5’ splice sites

and branchpoint sequences have lower minimum free energy of folding with

snRNAs than do the pseudo sequences. However, these differences are not

discriminative enough to use the thermodynamics splice-signal-identification

approach in isolation. If combined with other identification methods, how-
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Figure 6.20: (a) Distribution histograms of folding MFE between U6 sn-
RNA and donor/non-donor sequence windows where pseudo donor sites are
required to contain the consensus GU and (b) cumulative distributions of
the same data.
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Figure 6.21: (a) Distribution histograms of folding MFE between U2 snRNA
and branch/non-branch sequence windows where pseudo branchpoint sites
were found using positional weight matrix and (b) cumulative distributions
of the same data.
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Figure 6.22: ROC curves for the thermodynamic donor- and branchpoint-
identification approach.

ever, these weak statistical signals could potentially improve the accuracy

of prediction.

6.4 Phylogenetic analysis of sequences around

splice signals

In Section 6.1.2, we investigated whether there are any stable local structures

in the vicinity of splice signals. The approach considered only the minimum

free energy of observed structures and was dependent on their exact location

with respect to the splicing signals. In Section 6.2, we conducted a simplified

analysis of structural configurations of splice signals, considering only the

number of unbound bases at the signals.

These studies, although providing insights into general ‘foldability’ of

extended donor, acceptor and branchpoint sequences, did not attempt to

identify any specific structural signals that might be present in the con-

sidered sequences. As discussed in Chapter 2, the spliceosome is a large
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ribonucleo-protein complex that contains a large number of protein-splicing

factors. Many of these proteins bind to pre-mRNA during the process of

splicing. The protein binding to the RNA molecule can be either sequence

specific, structure specific or a combination of both. There are several differ-

ent classes of RNA-binding proteins that recognize specific structural motifs.

Proteins containing an arginine-rich motif can recognize stem-loops, internal

loops and bulges; the structure of these RNA motifs, rather than sequence,

is the major binding determinant (Burd and Dreyfuss, 1994). There are

also double-stranded RNA-binding proteins that, as their name indicates,

recognize double-stranded RNA regions but this binding is also sequence

dependent. Another class of RNA-binding proteins are those that contain

RNA-recognition motifs. An example is the A protein from the U1 snRNP

(which is therefore directly involved in splicing) that is known to recognize

a specific stem-loop in the U1 snRNA (Zamore et al., 1990). Proteins with

RNA-recognition motifs can recognize wide varieties of RNA structures.

We are not aware of any studies that discuss the binding of protein

splicing factors to structural RNA motifs in the vicinity of splice signals.

However, given the facts that a large number of proteins interact with the

pre-mRNA molecule during splicing, and the ability of certain classes of

proteins to recognize binding sites based on their structural conformation,

we believe that there is a reasonable chance that these kinds of RNA-protein

interactions occur during the splicing process. If this is the case, we would

expect to find specific structural motifs in these regions.

In order to investigate this hypothesis, we employed two different ap-

proaches: the first attempts to identify conserved structural motifs in the

Saccharomyces sensu stricto species, and the second searches for common

motifs in the neighbourhood of splice signals of all STRIN introns.

6.4.1 Phylogenetic analysis of sensu stricto species

We use comparative structure analysis to search for the conserved structural

motifs in the four sensu stricto species, discussed in Section 3.3. We focused

on the regions around splice site signals that are binding targets for the
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splicing protein factors. Based on the finding that splicing enhancers are

usually found within 100 nt from the splice sites (Hertel et al., 1997), we

chose to extract 200-nt windows centered at the splice signals.

The phylogenetic dataset described in Section 3.3 contains only align-

ments of intronic sequences, thus we needed to obtain the 100-nt regions

upstream of the donor site and downstream of the acceptor site. To do

so we downloaded aligned sensu stricto genes (ORFs) with the flanking

regions. The alignments were found at http://www.broad.mit.edu/ftp/

pub/annotation/fungi/comp_yeast/ (June 2006). These alignments are

different from those used in Section 3.3: availability of an intron alignment

for a certain gene does not guarantee the availability of the alignment for

that gene and vice versa. We searched for genes that have intron align-

ments for all four species (explained in Section 3.3). Alignments for two

of these genes (YBR090C and YAL030W) were not found, which left 95

alignments of extended gene regions. Next, we extracted the 200-nt long

alignments centered at donor, acceptor and branchpoint sequences. There

were 43 alignments where the S. cerevisiae sequence was different than in

the SGD database, and we therefore could not identify the correct position

of the splice signals. These sequences were excluded from the analysis (52

alignments remained in the dataset). The last filtering step was to exclude

the alignments that did not have all four sensu stricto sequences aligned.

The final dataset consisted of 4-specie multiple sequence alignments of ex-

tended donor, acceptor and branchpoint sequence for 29 introns.

Based on the results of our analysis in Section 4.4, we chose the program

Pfrali (Hofacker and Stadler, 1999) to search for conserved local structures.

Like in Section 4.4.2, we post-processed Pfrali’s output to keep only base-

pairs that were inconsistent with at most one sequence. The output of this

post-processing step is a secondary structure in dot-bracket notation that

contains all locally conserved substructures.

We analyzed Pfrali’s results in two ways: we looked at the structural

context of the splice signals and we also enumerated all found structural

motifs. When inspecting the structural context of the donor, acceptor and

branchpoint sequences, we mostly focused on the presence of hairpin loops
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at or adjacent to the splice signals. For 29 Pfrali predictions of conserved

sequences in the neighbourhood of donor sites, we identified 15 cases where

the 6-nt donor sequence (consensus sequence GUAUGU) was either adjacent

to or in a stem region. This included three cases where the donor sequence

was in a hairpin loop. For acceptor sequences, we identified 11 cases where

the 3’ splice site was either adjacent to or in a stem region. In 14 other

cases, there were no structural elements present in the vicinity of the 3’

splice site. Finally, for the Pfrali predictions of conserved structures in

the neighbourhood of branchpoint sequences, in 26 cases the branchpoint

sequence had one or fewer paired bases, and in two cases it had two. There

is only one case where the sequence was enclosed in a stem region.

Overall, this analysis failed to offer any conclusive evidence for a specific

conserved structural conformation at the donor or acceptor site. However,

we find the results for the branchpoint sequences interesting and supportive

of the analysis in Section 6.2 where we found evidence that the real branch-

point sequences tend to have more free bases than do random sequences.

Next, we catalogued all stem-loop motifs in Pfrali’s predictions. We

looked for stem-loop structures that have at least two adjacent basepairs in

the stem (to avoid isolated basepairs) and have sequence length ≤ 20 nt.

For each type of stem-loop structure, we counted the number of occurrences

in 29 Pfrali predictions.

In Pfrali’s predictions for aligned extended donor sequences, we found 24

stem-loop motifs that satisfy the requirements. The most common motifs

were:

((......)) 4

((.......)) 4

(((......))) 4

The number to the right indicates the number of donor sequences con-

taining these conserved motifs. For aligned extended acceptor site sequences,

the following motifs were the most frequent:

(((......))) 8
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((......)) 6

((.....)) 5

The most common motifs for aligned branchpoint sequences were as

follows:

(((......))) 7

((......)) 5

(((.......))) 4

Clearly, the number of instances of each of the motifs is not significant,

which leads us to conclude that there are no conserved secondary structure

elements in the vicinity of splice signals among sensu stricto species. How-

ever, we need to be aware that this approach is limited: it assumes that not

only the secondary structure but also the approximate location (including

the alignment gaps) is conserved. This does not have to be the case – many

functional structural and sequence motifs can be found at variable positions

and still perform their functions. Therefore, it might be preferable to look

for motifs that have similar structure and sequence characteristics but can

be located anywhere in a given set of related sequences. One way to do this

is using covariance models for motif description, which we explore in the

next section.

6.4.2 Searching for common motifs in STRIN introns

In the following study, we decided to look beyond conservation among closely

related species and to search for common structural motifs found in the

neighbourhoods of splice signals of STRIN introns. The rationale is that if

certain protein factors bind to specific structural signals, those signals should

be present in the majority of introns with their flanking regions. We perform

this analysis using covariance models, which do not require high sequence

similarity of input sequences, but instead automatically build probabilistic

models that flexibly describe the secondary structure and primary sequence

consensus motifs in unaligned input RNA sequences.
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For our analysis, we used the program CMfinder developed by Yao et al.

(2006). CMfinder uses expectation maximization to search for high-scoring

motifs that are described using covariance models. It employs a Bayesian

framework for integration of information-based and folding-energy-based ap-

proaches to predicting structure. CMfinder can be applied to unaligned in-

put of unrelated sequences with low sequence similarity, which is suitable

for the dataset that we have. It is also capable of identifying motifs that are

present only in a subset of input sequences.

We downloaded the CMfinder software package, version 0.2, from http:

//bio.cs.washington.edu/yzizhen/CMfinder/ (April 2006). This pro-

gram has a number of input parameters, the following being of consequence

for our analysis:

• Number of stem-loops in a motif, for which we used the default value

of 1.

• Number of motifs to be outputted, for which we used the default value

of 3. The authors claim that this number is sufficient when looking

for single stem-loop motifs.

• Minimum length of a motif, which has to be in the range of 15-250 nt.

We chose the lower bound, since we are looking for simple stem-loop

motifs.

• Maximum length of a motif, for which we chose 30. The actual output

motifs can be slightly outside the specified range.

• Fraction of sequences containing the motif, for which we selected a

relatively low value of 0.3. This parameter does not specify how many

sequences actually contain the motif instances in the final output, but

simply serves as a preliminary guess.

For each intron in the STRIN dataset, excluding 5’ UTR introns (see

discussion in Section 5.5), we extracted 200-nt windows centered at the

donor, acceptor and branchpoint sequences. The extended donor (acceptor,

branchpoint) sequences were considered as one input dataset for CMfinder.
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The program was run on each of three datasets. The output of the

program consists of motifs in Stockholm format, a system for marking

up features in a multiple alignment (http://www.cgb.ki.se/cgb/groups/

sonnhammer/Stockholm.html), as well as a covariance model for each motif.

For each motif instance found, the following information is given: the name

of the sequence where it is found, start and end location in the sequence, a

motif weight that is proportional to a candidate’s probability to be a motif

instance, and the alignment score (alignment between a covariance model

and a sequence).

For each of the donor, acceptor and branchpoint datasets CMfinder out-

putted three motifs. For each motif found, it is possible to obtain a sum-

mary of features using the subroutine summarize from the CMfinder soft-

ware package. Output values from the procedure include the number of

sequences in the dataset that contain motif instances, the sum of weights

for all of the instances found, the weighted average of alignment scores and

the average folding energies of motif instances. The predicted motifs and

motif features for extended donor, acceptor and branchpoint sequences are

shown in Table 6.3.

The given consensus structure and sequence describe all instances of

the motifs found in the STRIN sequences. A matching pair of ‘<’ and ‘>’

represents a basepair, ‘-’ represents a conserved base in a loop and ‘.’ are

insertions relative to the consensus. All of the motifs found are hairpin

loops and the majority of motif instances have uninterrupted stems with

contiguous basepairs. Only a smaller portion of motif instances have internal

bulges and loops.

The results shown in the table indicate that each motif was found in

almost all input sequences. The values for the sum of weights over all mo-

tif instances are quite variable, while there is no larger variation for the

weighted averages of alignment scores. The average folding energies are

relatively high, mainly due to the small size of the motifs found.

It is hard to say if these results are significant or not, since we have no

reference values for either weights or alignment scores. Yao et al. did not

provide any guidelines on how to interpret motif scores and weights when
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motif name structure & sequence consensus # of sum of avg. avg. avg.
motif weights align. folding cmsearch

instances weights score energy score

donor motif1
<<.<.<.<<..-..-.-..-....>..>.>.>.>>

196 1.57 7.89 −1.60 4.11
cg.c.c.cc..c..G.u..A....g..g.g.g.cg

donor motif2
.<<.<<..-...-.-.-.-..-..>>>>.

200 0.39 8.12 −0.87 3.65
ugg.Gc..A...A.u.U.A..a..gCccu

donor motif3
..<<<.<<----->>.>>>..

181 28.48 14.02 −0.34 5.55
uuccU.cGCcgGCCg.GggCU

acceptor motif1
..<<<<---->>>>..

196 50.98 18.70 −2.96 6.63
ggaCaauuUUuuGuuU

acceptor motif2
.<<<<<<-........----....->>..>>>>.

165 10.54 18.71 −2.96 3.85
UuaGuGaG........AUUu....CuC..aCuaA

acceptor motif3
.<<<<..----..->>>>.

200 58.51 10.43 0.49 7.09
ucguC..CAAA..AGacgc

branch motif1
.<<<..<<..-..---...>>>.>>.

201 11.32 10.94 −3.14 5.43
gCgc..cc..A..AGU...ggg.cGu

branch motif2
.<<<..<<..<<...---...-...>>>.>...>..>>.

182 5.72 18.59 −6.38 4.26
ucgG..cg..aG...AUu...u...Cuu.g...C..cga

branch motif3
.<<<<<...---..--..>>>>>.

196 15.63 14.89 −1.67 5.29
GGgGaC...AGc..CA..GuCgCg

Table 6.3: Motifs predicted for extended donor, acceptor and branchpoint sequences and their features: number of
sequences from STRIN dataset in which motif instances are found, sum of weights for all instances found, average
weighted alignment score (alignment between covariance model and sequence), and average folding energy of the
motif. The last column of the table is the average score from the program cmsearch (see text).
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searching for unknown motifs. In order to access the significance of our

findings, we once again resorted to using random sequences.

Similar to the analysis in Section 6.1.1, we used the Altschul-Erikson din-

ucleotide shuffling algorithm (Altschul and Erickson, 1985; Clote et al., 2005)

from http://clavius.bc.edu/~clotelab, which is guaranteed to preserve

the dinucleotide content of a native sequence. For each extended donor

(acceptor, branchpoint) sequence, we generated 10 randomized sequences

using the Altschul-Erikson algorithm. We used these shuffled sequences to

assemble 10 datasets of random sequences, each having the same number of

sequences as the original extended donor dataset. The first sequence in each

of the random datasets was a shuffled first donor sequence, and so on.

Next, we searched for occurrences of the donor motif i (i = {1, 2, 3}) in

the datasets of random sequences. As mentioned before, CMfinder outputs

a file that describes the learned covariance model for each motif found. This

model can be used to search other sequences and databases for instances

of the model. The CMfinder software package provides a tool to perform

this kind of search – cmsearch. This program was originally developed by

Sean Eddy’s lab and is part of the Infernal package (http://www.genetics.

wustl.edu/eddy/infernal/) (Eddy, 2002).

The cmsearch program takes as an input a file with a covariance model

and a FASTA file of sequences. It searches both strands of each sequence in

the sequence database, and returns alignments for high-scoring hits. Cm-

search calculates the alignment scores in the same way as CMfinder, thus

the scores are comparable.

We ran cmsearch for each of the three covariance models (for the three

motifs found) on 10 shuffled donor (acceptor,branchpoint) datasets. For

each sequence we selected only the highest scoring hit on the forward strand

and calculated the average scores for each of the 10 random datasets. We

ran cmsearch on the real donor (acceptor, branchpoint) sequences in order

to be consistent (also, the weighted average scores given by CMfinder’s sum-

marize procedure use weights calculated by CMfinder, and cmsearch does

not calculate these). The average cmsearch alignment scores for each found

motif and each dataset of real splice signals are given in the last column of
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Figure 6.23: Average alignment scores between motif covariance model and
the instances of the motifs in real extended donor sequences from the STRIN
dataset and 10 datasets of shuffled donor sequences. Data points correspond
to the average score values for each dataset. The motif numbers as they have
been identified by CMfinder are shown on the x-axis. They correspond to
the motif names in Table 6.3.

Table 6.3. These scores along with the scores for random sequence datasets

are plotted in Figures 6.23, 6.24 and 6.25.

If the identified structural motifs are conserved in the vicinity of real

splice signals, we would expect that their scores would be higher than if they

are found by chance, which is the case in random sequences. The figures

for the average alignment scores show that this is the case for some of the

identified motifs: motif 3 found in extended donor sequences, all of the motifs

found in extended acceptor sequences and motifs 1 and 3 found in extended

branchpoint sequences have a higher average score for real sequences than

for random ones.

These results suggest that instances of motif 3 found in extended donor

sequences, all three motifs found in acceptor sequences and motifs 1 and 3

found in extended branchpoint sequences have a degree of conservation that

is not expected for random occurrences of the motifs. In order to analyze if
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Figure 6.24: Average alignment scores between motif covariance model and
the instances of the motifs in real extended acceptor sequences from the
STRIN dataset and 10 datasets of shuffled acceptor sequences.
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Figure 6.25: Average alignment scores between motif covariance model and
the instances of the motifs in real extended branchpoint sequences from the
STRIN dataset and 10 datasets of shuffled branchpoint sequences.
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these motifs have biological significance, further tests need to be carried out.

One approach would be to search for the occurrences of these motifs in the

splice site neighbourhoods of a related yeast species. Ideally, the selected

species should not have high sequence similarity in these regions, since this

could bias the results. Finding the same structural motifs in spite of low

sequence conservation would provide strong evidence that these motifs are

associated with splice sites and that their structure is probably functionally

important. Another way to test the hypothesis that the found structural

motifs are functional and important for splicing would be to perform a series

of mutational analyses in the laboratory and to seek for protein factors that

bind to these motifs.

6.5 Conclusions

In this chapter we conducted a series of analyses on the STRIN dataset, with

the goal of identifying any specific structural characteristics that might be

important for pre-mRNA splicing. Our comparison of the global secondary

structure stability of yeast introns versus random sequences hinted at weak

biases in favor of native sequences. This is mainly due to several 5’L introns,

which have minimum free energies significantly lower than random sequences

with the same dinucleotide composition.

We found that donor sites exhibit a statistically significant bias against

stable secondary structures when folded locally, which is in agreement with

the molecular biology of the splicing reaction: a donor site is recognized mul-

tiple times during the splicing process and thus having the region around

the donor site relatively free of secondary structure will allow these inter-

actions to happen more easily. Similarly, we found that the branchpoint

sequences tend to be unbound in global intron folds, which would allow for

easier recognition by the U2 snRNA.

We also studied the stability of binding interactions between splice sig-

nals and small nuclear RNAs that bind to them. These interactions are the

main reason for sequence conservation of the splice sites, but it is possible

that the thermodynamic aspect of interactions plays an important role in
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splice site identification. We found that both donor sites and branchpoint

sequences have lower minimum free energy of folding with snRNAs than do

pseudo sequences.

Finally, we identified short structural motifs in the vicinity of donor, ac-

ceptor and branchpoint sequences that have a degree of conservation among

STRIN introns that is not expected for random occurrences of the motifs.
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Chapter 7

Using structural information

for intron identification

In Chapter 5, we proposed a model of the role of pre-mRNA secondary

structure in the splicing of long (5’L) introns in S. cerevisiae. The existence

of highly probable secondary structures (whose free energy is within 5% from

the minimum free energy) that have short branchpoint distance (calculated

by our implementation of Dijkstra’s algorithm, Section 5.3.2) appears to be

required for efficient splicing of a yeast intron. We tested our splicing model

experimentally, and the results were mostly consistent with our splicing

efficiency predictions based on the model.

In Chapter 6, we analyzed the stability of global intron folding, the

stability of local structures in the vicinity of splice signals, the structural

accessibility of splice sites in global intron folds, the stability of snRNA-

splice-signal binding interactions and the existence of conserved structural

motifs in the vicinity of splice signals. In most cases, we showed that splic-

ing signals have slightly different structural characteristics than do random

sequences. None of these signals, however, seems strong enough to discrim-

inate between real and pseudo sites.

In this chapter, we test if the structural characteristics of long introns

can be used to computationally predict splicing efficiency. Using machine

learning techniques, we test the predictive power of shortened branchpoint

distances and secondary structure probabilities obtained by the procedure

StructureAnalyze (Section 5.3.3), and of summary statistics obtained by

post-processing of these metrics (same section). Finally, we investigate

whether the weak structural context signals identified in Chapter 6 can be
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used to improve the accuracy of splice site and intron recognition in yeast.

7.1 Machine learning and classification

In machine learning, the task of supervised learning is to create a rule or

a function from training data. The training data consist of pairs of in-

put objects, typically vectors, and output values. If x = (x1, x2, . . . , xn)

is an input vector, its features or attributes, xi, can be real-valued num-

bers, discrete-valued numbers, or categorical values. The output value, y,

can be categorical, in which case the process of learning from training ex-

amples is called classification, or it can be a real value, in which case the

process is called regression. An important special case of categorical output

is Boolean output, where training examples that have value 1 are called

positive instances and training examples with value 0 are called negative

instances. Once the supervised learner is created, its task is to predict a

value of the function for any valid input object.

Formally, the classification problem can be stated as follows: Let X =

{x1, . . . ,xn} be a set of input vectors and Y = {y1, . . . , yn} the correspond-

ing set of output values. Given training data {(x1, y1), . . . , (xn, yn)} produce

a classifier h : X → Y that maps an object xi ∈ X to its classification label

yi ∈ Y .

There are a number of methods for supervised learning, but for our pur-

poses we will focus on neural networks and support vector machines. These

algorithms provide state-of-the-art performance in a variety of application

domains and have been widely used in Bioinformatics for various pattern

recognition and classification problems.

7.1.1 Neural networks

An artificial neural network, also commonly called a neural network, is an

information-processing paradigm that is inspired by the way biological ner-

vous systems, such as the brain, process information. It is composed of a

number of computational units, connected together such that the output of
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Figure 7.1: An example of a feed-forward three-layer neural network archi-
tecture.

a unit is a function of its inputs and some adjustable parameters (see, e.g.,

Poole et al. (1998)). Learning is accomplished by adjusting the parameters

to fit the training data.

Network layers

The most common type of neural network consists of three groups, or layers,

of units: input units, hidden units and output units. An example of such a

network architecture is shown in Figure 7.1.

The input units receive the raw information (feature vectors xi) that is

fed into the network. The activity of each hidden unit is determined by the

activities of the input units and the weights on the connections between the

input and the hidden units. The behaviour of the output units depends on

the activity of the hidden units and the weights between the hidden and

output units. This type of neural network, where the information flows in

one direction only (no cycles), is called a feed-forward neural network, and

is the most commonly used.
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Activation functions

The behaviour of a neural network depends on both the weights and the

input-output function, also called the transfer or activation function, that

is specified for the units. This function typically falls into one of three

categories: linear, threshold or sigmoid. For linear units, the output activity

is proportional to the total weighted input. For threshold units, the output

is set at one of two levels, depending on whether the total weighted input is

greater than or less than some threshold value. For sigmoid units, the output

varies continuously but not linearly as the input changes. The sigmoid

function, a special case of the logistic function, is applied to the weighted

input to obtain the output value:

f(x) =
1

1 + e−x
(7.1)

Computing the outputs

The analytic function corresponding to a three-layer, feed-forward neural

network can be derived as follows (Bishop, 1996). Let us assume that there

are n input units, l hidden units and m output units. The output of the j-th

hidden unit is obtained by first computing a weighted sum of the n input

values and adding a bias:

aj =
n
∑

i=1

w
(1)
ji xi + w

(1)
j0 (7.2)

Here w
(1)
ji denotes a weight from the first layer of weights, going from

input unit i to hidden unit j, and w
(1)
j0 is the bias for hidden unit j. The

activation of hidden unit j is then obtained by transforming the sum in

Equation 7.2 using an activation function g:

zj = g(aj) (7.3)

Next, the outputs of the network are obtained by using the weighted

sum of inputs zj , where j = 1, . . . , l and zj are outputs of hidden units. For
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each output unit k, we first compute a weighted sum of the l hidden unit

values and add a bias:

ak =
l
∑

i=1

w
(2)
kj zj + w

(2)
k0 (7.4)

The activation of the k-th output unit is obtained by transforming the

linear sum in Equation 7.4 using an activation function:

yk = g̃(ak) (7.5)

As can be seen from the above formulae, the activation functions for the

hidden and output layers do not have to be the same.

We can absorb the bias terms into Equations 7.2 and 7.4 by including

an extra input feature x0 whose value is permanently clamped to x0 = 1. If

we combine Equations 7.2, 7.3, 7.4, and 7.5, we get an explicit expression of

the function representing the described neural network:

yk = g̃

(

l
∑

i=0

w
(2)
kj g

(

n
∑

i=0

w
(1)
ji xi

))

(7.6)

Network training and testing

The aim of neural network training is, given a set of training examples, to

find parameter settings that minimize the error between the desired output

and the actual output. If the network has M parameters in total, finding

the optimal parameter setting involves searching through an M -dimensional

Euclidean parameter space. One method that is commonly used for this

purpose is back-propagation, which is a gradient descent search through

the parameter space to minimize the error function (usually sum-of-squares

error function).

The evaluation of a neural network’s performance can be done using

a test set that does not overlap with the dataset used for the training of

the network. Another approach is to perform both training and testing of

the network on one dataset using the cross-validation technique. In cross-
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validation, a portion of the data is set aside as training data leaving the

remainder as testing data. There are several types of cross-validation, the

most common being the K-fold cross-validation, where the original dataset

is partitioned into K subsets. K − 1 of these subsets are used together for

training, and the last subset is used for testing. This process is repeated K

times, and the average error across all K trials is computed.

7.1.2 Support vector machines

Support vector machines (SVMs) are a set of supervised learning methods

used for classification and regression. Their common characteristic is that

they use a technique known as ‘kernel trick’ to apply linear classification

techniques to non-linear classification problems.

Suppose we are given l training examples, each one consisting of an

input vector xi ∈ Rn and the output yi ∈ {−1,+1}. The learning task is

to estimate a decision function f : X → {−1,+1} that predicts the label of

any x ∈ Rn, i.e. the function separates the input space X in two classes, −1

and +1. Support vector machines construct such a decision function in the

form of a linear separating hyperplane:

f(x) = sign(w · x + b) (7.7)

The goal of SVM training is to find the optimal hyperplane, defined by

the weights w ∈ Rn and the bias b ∈ R (w · x + b = 0), such that the

margin of separation between the two classes is maximized. The hyper-

plane with this property can be uniquely constructed solving a constrained

quadratic optimization problem whose solution has the following expansion

(Cristianini and Shawe-Taylor, 2000):

w =
l
∑

i=1

αiyixi (7.8)

The training examples that lie on the margin are called ‘support vectors’,

and they carry all the relevant information about the classification problem.

The decision function can be rewritten in dual coordinates using Equation
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Input space Feature space

F

Figure 7.2: Non-linear mapping Φ of the input space into the feature space:
training data that was not linearly separable in the input space becomes so
in the feature space.

7.8:

f(x) = sign

(

l
∑

i=1

αiyi(xi · x) + b

)

(7.9)

The described approach constructs a separating hyperplane with max-

imum margin in the input space. However, this linear classification might

not be sufficient for more complex problems where linear separation is not

possible. This is where the main idea of SVMs comes into play: to trans-

form the training data non-linearly into a feature space using the mapping

Φ : Rn → F , and to construct a separating hyperplane with maximum mar-

gin in F (see Figure 7.2). This yields a non-linear decision boundary in the

input space.

After mapping the input vectors into a feature space and using the dual

representation of the decision function (Equation 7.9), we obtain (Cristianini

and Shawe-Taylor, 2000):

f(x) = sign

(

l
∑

i=1

αiyi (Φ(xi) ·Φ(x)) + b

)

(7.10)

This means that the decision function can be expressed as a linear com-

bination of the training points, so that the decision rule can be evaluated



Chapter 7. Using structural information for intron identification 203

using the dot product between the test point and the training points. By

using a function K (kernel function), such that for all x, z ∈ Rn

K(x, z) = (Φ(x) ·Φ(z)) (7.11)

Φ(x) is never explicitly computed; results are computed directly in the input

space. The decision function becomes:

f(x) = sign

(

l
∑

i=1

αiyiK(xi,x) + b

)

(7.12)

This is the essence of the previously mentioned kernel trick. What re-

mains is to find a kernel function that can be evaluated efficiently. Some

examples of commonly used kernel functions are:

1. The linear kernel

K(x, z) = (x · z) =
n−1
∑

i=0

xizi (7.13)

2. The polynomial kernel

K(x, z) = (x · z)d =

(

n−1
∑

i=0

xizi

)d

(7.14)

3. The Gaussian radial basis function (RBF) kernel

K(x, z) = e
−

(

‖x−z‖2

σ2

)

(7.15)

7.2 Learning the splicing efficiency function

For all of our machine learning experiments, we used the software pack-

age WEKA, which is a comprehensive toolbench for machine learning and

data mining (Witten and Frank, 2005). It contains Java implementations of

many machine learning algorithms and data transformation tools for data
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preprocessing. We downloaded the WEKA software from http://www.cs.

waikato.ac.nz/ml/weka/ (September 2005).

Data used for either training or testing of machine learning algorithms

in WEKA needs to be in a specific ARFF format, where attributes and

output value are defined as real-valued, discrete-valued or categorical. Once

the training data is uploaded into the system, the user can choose which

machine learning classifier to train. For each classifier there are a number

of options and parameters that can be modified. The user can also choose

what data to use to test the classifier once the training phase is complete.

There is an option of using a separate test set or performing cross-validation

experiments.

In the following section, we describe machine learning experiments that

are based on the findings in Chapter 5, where we analyzed how the splicing

efficiency of introns is related to their ability to shorten the branchpoint

distance by folding into favorable secondary structure.

7.2.1 Training on shortened branchpoint distance and

structure probability data

For the first phase of our computational experiments, we tested to see if ma-

chine learners can learn the ‘splicing efficiency function’ based on raw data

only – shortened branchpoint distances and probabilities for each predicted

secondary structure within a certain percentage from the minimum free en-

ergy. These values were computed using the procedure StructureAnalyze,

described in Section 5.3.3.

For training data, we chose the wild type intron and 15 intron mutants

of the gene RP51B, described by Libri et al. (1995) and by Charpentier and

Rosbash (1996) and used for our analysis in Chapter 5: 3mUB1, 5mUB1,

8mUB1, 3mDB1, 5mDB1, 3mUB1/3mDB1, 5mUB1/5mDB1, 6mUB1, UB1i,

DB1i, UB1iDB1i, mut5, mut12, and mut18. Mutant 4mUB1 was excluded

as a borderline case based on the copper resistance results shown in Figure

5.2. The splicing efficiency of some of the mutants from the work of Libri

et al. (1995) was also confirmed by our own laboratory experiments (see
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Section 5.6). The dataset for testing the performance of the machine learn-

ers trained on the previously described training dataset contained the newly

designed RP51B intron mutants, for which we experimentally tested splic-

ing efficiency levels (Section 5.6.2). We only considered the mutants that

were successfully inserted into the genome and expressed at the detectable

levels, with the exception of mutant bad4, which was a borderline case with

respect to its protein expression level and mutant good5, for which splicing

efficiency was decreased, probably due to a very stable stem (our model does

not capture this kind of structural information).

We used the procedure StructureAnalyze to compute shortened branch-

point distances and probabilities of all suboptimal structures within a certain

percentage from the MFE. We ran the procedure for 5, 10 and 20 percent

of suboptimality (parameter P in mfold). Since the feature vectors of all

data instances in training and test sets have to be of the same length, we

also had to specify the number of suboptimal structures computed by mfold

(parameter M). In some cases, some of the mutants had less than the re-

quired number of suboptimal structure predictions and were excluded from

the respective dataset.

A dataset of instances whose feature vectors are computed based on the

five most probable suboptimal structures within 5% from MFE (P = 5 and

M = 5) would have 10 attributes, d̄1, p1, d̄2, p2, . . . , d̄5, p5, where d̄i are the

shortened branchpoint distances for the five computed suboptimal struc-

tures and pi are the relative probabilities of those structures (the relative

probabilities of the structures are computed based on all suboptimal struc-

tures within 5% from the MFE – see Equation 5.2 on p. 111). The output

value is defined as a Boolean value, where 1 represents efficient splicing and

0 represents decreased or inhibited splicing. The output values are extracted

from Tables 5.1 and 5.4, assigning value 1 to all the mutants that are spliced

at the normal, slightly reduced, slightly improved or improved levels, and

value 0 to all the mutants with reduced or inhibited splicing.

We also considered the mutant sequences with their 50-nt flanking re-

gions, even though in the analysis in Chapter 5 they did not have as good

results as did the intron-only sequences. For these extended sequences, we
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dataset
P=5 M=5 P=10 M=10 P=10 M=5
NN SVM NN SVM NN SVM

intron only 1.0 1.0 1.0 1.0 1.0 1.0

intron +/- 50 nt 0.8 1.0 0.8 1.0 1.0 1.0

Table 7.1: Fraction of correctly classified instances for various mfold param-
eter settings and for two types of sequences: intron-only and introns with
50-nt flanking regions.

computed the branchpoint distances and structure probabilities for the pre-

viously mentioned values of the P and M parameters.

Finally, for each pair of parameter values P = 5, M = 5 and P = 10,

M = 10 and P = 10, M = 5, and for a training set computed on intron-only

sequences and intron sequences with 50-nt flanking regions, we trained a

neural network (NN) and a support vector machine (SVM) algorithm us-

ing the WEKA software package. We then tested their performance on

the appropriate version of the test set. In WEKA, the neural network

classifier is called a ‘multi-layer perceptron’ (MultilayerPerceptron) and the

SVM classifier is called ‘SMO’, based on the implementation of the sequen-

tial minimal optimization algorithm used for SVM training. For NN, the

following WEKA default parameter settings were used: one hidden layer

with (attributes+classes)/2 hidden units, learning rate L = 0.3, momentum

M = 0.2, and number of training epochs N = 500. For SVM classification

we used a linear kernel. The results are shown in Table 7.1.

When intron-only sequences are considered, both NN and SVM correctly

predict the splicing efficiency level of all the mutants in the test dataset,

regardless of the P and M parameter values used. For the datasets derived

from the extended intron sequences, the accuracy results are slightly weaker.

We also performed the same experiment with P = 20 and M = 20; however,

the results are significantly weaker (data not shown).

It is important to note that the results of the StructureAnalyze procedure

for P = 5, M = 5 and P = 10, M = 5 can be similar but are not necessarily

identical because the computed relative probabilities can be different, and

some of the mutants that did not have 5 structures predicted for P = 5 did
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dataset
P=5 M=5 P=10 M=10 P=10 M=5
NN SVM NN SVM NN SVM

intron only 1.0 1.0 1.0 1.0 1.0 1.0

intron +/- 50 nt 0.8 1.0 0.8 1.0 0.8 1.0

Table 7.2: Fraction of correctly classified instances for various mfold param-
eter settings and for two types of sequences: intron-only and introns with
50-nt flanking regions. The branchpoint distance attributes, d̄i, are sorted
in ascending order.

for P = 10.

The order of the attribute values is not random, but it is based on mfold

output, which outputs suboptimal structures in descending order with re-

spect to their predicted free energies. These free energies are proportional to

the relative probabilities of the structures, therefore the values of attributes

pi in our feature vectors are in descending order from i = 1, . . . , 5. The

values of the attributes d̄i are not in any particular order, but are always

paired with the relative probability of the structure from which they are

derived. Considering this, the first attribute in a feature vector, d̄1, will

always be the shortened branchpoint distance of the minimum free energy

(optimal) structure, the second attribute p1 will be its probability, and so

on. This order will put an emphasis on the probabilities of the structures,

which we believe are not very reliable and are not essential for our splicing

model. If there is a structure that has a short branchpoint distance, this

value can be any of the d̄i attributes, depending on the probability of the

structure, and thus the importance of its presence cannot be captured by a

classifier. We can change this if we sort d̄i attributes in either ascending or

descending order. This ordering of attributes is better suited to our splicing

model. The results for this approach are shown in Table 7.2 and are almost

identical to the results in Table 7.1, indicating that for the test set that we

are using the ordering does not make much difference. According to the

results from Tables 7.1 and 7.2, it seems that the NN and SVM classifiers

are able to learn the ‘splicing efficiency’ function based only on structural

branchpoint distances and the probability of structures.
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sorting
P=5 M=5 P=10 M=10 P=10 M=5
NN SVM NN SVM NN SVM

p1 > p2 > . . . > p5 0.55 0.57 0.48 0.47 0.65 0.59

d̄1 > d̄2 > . . . > d̄5 0.56 0.58 0.43 0.48 0.71 0.68

Table 7.3: Fraction of correctly classified instances, which in this case is
equal to the true positive rate (sensitivity), for various mfold parameters
and for two different sortings of attributes.

We also tested the performance of the trained classifiers on more chal-

lenging test datasets, where feature vectors were computed using STRIN

5’L introns (98 sequences). However, it is necessary to point out that we

do not have the splicing efficiency data for these introns, which is what the

classifiers are trying to predict. We cannot assume that all yeast introns

are spliced out with the same efficiency. For some genes, low splicing effi-

ciency might be desired, such as in the case of the S. cerevisiae gene Yra1p,

whose increased splicing efficiency results in reduced cell growth (Preker and

Guthrie, 2006). Hence, it is very likely that if real splicing efficiency results

were available for the STRIN 5’L introns there would be both positive and

negative instances with respect to splicing efficiency. However, we would

still expect to see more positive instances than negative ones. Therefore,

for the purposes of this test, we assume that all STRIN 5’L introns are ef-

ficiently spliced (output value = 1). The results for p1 > p2 > . . . > p5 and

for d̄1 > d̄2 > . . . > d̄5 cases are shown in Table 7.3.

The prediction accuracy values in this table are much lower than for the

initial test set. It seems that the d̄i ordering yields better results since the

highest percentage of correctly classified instances is 0.71 (for NN predic-

tion and P = 10, M = 5), corresponding to 70 true positives and 28 false

negatives, compared to 0.65 (for NN prediction and P = 10, M = 5) for the

pi ordering.

Upon closer inspection of these NN predictions, we observed that 60 of

the 68 instances that have a minimum shortened branchpoint distance of

less than 25 were predicted correctly with label 1 (efficient splicing). These

results are in agreement with our splicing model and the training data that



Chapter 7. Using structural information for intron identification 209

we have available (none of the efficiently spliced mutants in the training set

has a minimum shortened branchpoint distance greater than 20).

7.2.2 Training on structural summary statistics

In this section, we use the structural summary statistics described in Sec-

tion 5.3.3 to distinguish between efficiently and poorly spliced introns. The

training and test datasets are the same as described in the previous sec-

tion. We used the procedure StructureAnalyze to compute certain structural

properties (see Appendix C) for each predicted suboptimal structure that

is within a certain percentage from the MFE. These values are then used

to compute summary statistics for each sequence in the given dataset. The

following values are used as attributes for machine learning classification:

• the minimum shortened branchpoint distance among all suboptimal

predictions within 5% from the MFE (MIN)

• the average shortened branchpoint distances for all suboptimal predic-

tions within 5% from the MFE (AVG)

• the r weight summary statistics calculated as defined in Equation 5.5

(p. 112) (R WEIGHT)

• secondary structure of the branchpoint sequence (is it in a stem or a

loop?) (BP STRUCT={stem, loop})

• probability of small distance: sum of relative probabilities of all sub-

optimal structures that have branchpoint distance shorter than some

threshold (PROB) (we tried threshold values of 10, 20, 25 and 30)

We also calculated the base-pairing probability of the contact confor-

mation from the dotplot matrix (BP PROB) (see Section 5.4). As in the

previous section, we used the WEKA software package to train and evaluate

neural network and support vector machine classifiers using various combi-

nations of previously described attributes (see Table 7.4) and two different

percent suboptimality values (P = 5 and P = 10). The results are shown
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% subopt Attributes NN SVM

5 %
MIN, AVG, BP STRUCT, BP PROB 1.0 1.0

MIN, AVG, R WEIGHT, BP STRUCT, BP PROB 1.0 1.0
MIN, AVG, BP STRUCT, PROB (th=10,20,25) 1.0 1.0

MIN, AVG, BP STRUCT, PROB (th=30) 1.0 1.0

10 %
MIN, AVG, BP STRUCT, BP PROB 0.8 0.8

MIN, AVG, R WEIGHT, BP STRUCT, BP PROB 1.0 0.8
MIN, AVG, BP STRUCT, PROB (th=10,20,25,30) 1.0 1.0

Table 7.4: The accuracy results for machine learning classification of 5
RP51B mutants (bad1, bad3, good2, good3, good4). The attributes of fea-
ture vectors for both the training and test sets are listed in the column
Attributes; the percent of suboptimality used to calculate the attribute
values is given in the column % subopt. The accuracy of the prediction,
given separately for NN and SVM, is the fraction of correctly classified
instances (both positive and negative) achieved by the respective classifier.

in Table 7.4. As in the previous section, the accuracy results are very good:

both NN and SVM correctly predicted the splicing efficiency level of all of

the mutants in the test dataset when P = 5. For P = 10, the results are

slightly weaker.

The accuracy results of the machine learning classifiers trained on the

same training set and tested on the STRIN 5’L introns are given in Table

7.5. It is apparent that the classification accuracy for the STRIN dataset

is much poorer than for the five designed mutants. The best prediction

accuracy, 0.64, is achieved by the SVM classifier for P = 10 using attributes

MIN, AVG, BP STRUCT and PROB (th=20). This value is also the true

positive rate (see Equation 6.2, p. 176) corresponding to 63 true positive

predictions and 35 false negative predictions.

In summary, the machine learning approach yielded very good results

when applied on the datasets that have experimentally determined splicing

efficiency levels, indicating that the classifiers were able to learn splicing

efficiency as a function of the provided attributes. On the other hand, the

classification accuracy results on the STRIN 5’L introns were much lower,

usually around 50%, with some exceptions. As explained in the previous

section, this is not an entirely adequate test, since we do not have experi-
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% subopt Attributes NN SVM

5 %
MIN, AVG, BP STRUCT, BP PROB 0.51 0.32

MIN, AVG, R WEIGHT, BP STRUCT, BP PROB 0.51 0.31
MIN, AVG, BP STRUCT, PROB (th=10) 0.53 0.56
MIN, AVG, BP STRUCT, PROB (th=20) 0.47 0.56
MIN, AVG, BP STRUCT, PROB (th=25) 0.46 0.55
MIN, AVG, BP STRUCT, PROB (th=30) 0.52 0.56

10 %
MIN, AVG, BP STRUCT, BP PROB 0.12 0.11

MIN, AVG, R WEIGHT, BP STRUCT, BP PROB 0.54 0.11
MIN, AVG, BP STRUCT, PROB (th=10) 0.50 0.24
MIN, AVG, BP STRUCT, PROB (th=20) 0.62 0.64
MIN, AVG, BP STRUCT, PROB (th=25) 0.56 0.56
MIN, AVG, BP STRUCT, PROB (th=30) 0.52 0.60

Table 7.5: The accuracy results for machine learning classification of STRIN
5’L introns. The attributes of feature vectors for the both training and test-
ing sets are listed in the column Attributes; the percent of suboptimality
used to calculate the attribute values is given in the column % subopt.
The accuracy of the prediction, given separately for NN and SVM, is the
fraction of correctly classified instances (in this case also the true positive
rate) achieved by the respective classifier.

mentally measured splicing efficiency levels, but assume that all yeast long

introns are efficiently spliced, which is probably not the case.

7.3 Using weak structural signals to improve

accuracy of computational splice site and

intron prediction

To explore the capability of secondary structure information to aid splice site

or intron prediction, we used the weak structural signals identified in Chap-

ter 6 to filter out false positive predictions given by a splice-site prediction

tool.

Since we based our study on yeast sequences, we attempted to find a

prediction tool that is trained on yeast sequences. Unfortunately, because S.

cerevisiae was sequenced in 1996 and has been thoroughly annotated since

then, it seems that annotation tools are no longer needed, and there are

very few that can be found. The only gene-finding program that we found
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that is intended to work on yeast sequences is GeneMark.hmm (Lukashin

and Borodovsky, 1998). The Web-based version of the program for yeast,

or low eukaryotes, can be found at http://opal.biology.gatech.edu/

GeneMark/gmhmm2_loweuk.cgi (last accessed in May 2006). However, after

some testing and correspondence with the authors, we learned that this

version is is a modification of the prokaryotic version of GeneMark.hmm

and that it does not model exon/intron structure.

The only other prediction tool that we found is SPL, which is software for

predicting splice sites in the following organisms: H. sapience, D. melano-

gaster, C. elegans, A. thaliana and S. cerevisiae. The tool is a commercial

product distributed by the SoftBerry company (http://softberry.com),

but they also offer limited on-line access (last accessed in July 2006). The

SPL algorithm is based on linear discriminant analysis (see Section 2.1).

The Web-based tool takes a genomic sequence as an input and outputs

a list of predicted donor and acceptor splice sites. The donor and acceptor

splice sites are not coupled to indicate intron locations. A short description

on the SoftBerry Web site offers some of the program’s prediction accuracy

statistics: the accuracy of donor site recognition is 97% and for acceptor

splice sites it is 96% (in humans). The false positive rate is high – about

one false positive per true site, for 97% accuracy of true sites prediction. It

is important to note that the terminology used on this Web site is different

from the one used here and in most other studies: the accuracy they are

referring to is sensitivity of the prediction (i.e., the true positive rate, as

given in Equation 6.2, p. 176). Also, the meaning of false positive rate

on the SoftBerry Web site is different from the one in Equation 6.3. Their

estimate of false positive rate would correspond to 1−PPV , where PPV is

positive predictive value, defined as:

PPV =
TP

TP + FP
(7.16)

Thus, they claim that the PPV of SPL’s splice site prediction is 0.5 (one

true positive per one true negative prediction).

For this analysis, we used 98 yeast genes that contain STRIN long introns
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(not including 5’ UTR introns), 104 genes that contain STRIN short introns

and 100 genes that do not contain any introns (302 genes in total). For

each gene, we also included 200-nt flanking regions on both sides. This is

needed because some of the sequence content information measures used in

the linear discriminant function are evaluated on a larger sequence window

around a candidate splice site (up to +/− 100 nt) and many yeast introns

are located just downstream from the gene start site.

We carefully examined all of the genes in the dataset for any overlap with

other genes in order to avoid any unaccounted splice sites, on a chromosome-

by-chromosome basis. We selected the intron-less genes based on the fol-

lowing criteria:

• A gene does not overlap with any other gene and does not contain 5’

UTR introns.

• A gene has to be ‘verified’ according to the Saccharomyces Genome

Database, which indicates that experimental evidence exists that a

gene product is produced in S. cerevisiae.

From 3181 candidate genes that satisfy these criteria, we randomly se-

lected 100. We then stitched these 302 extended gene sequences together

into longer sequences whose length is less than 10000 nt (assumed length

limit for SPL Web tool) and submitted them to the SPL Web server, one

by one, for prediction of splice sites. Outputs were gathered from the Web

site and formated for further analysis.

There were 383 donor sites and 519 acceptor sites predicted for the gene

sequences containing long introns (95 of these are real donor sites and 79 are

real acceptor sites), 407 donor and 507 acceptor sites predicted for the gene

sequences containing short introns (103 of these are real donor sites and 56

are real acceptor sites), and 422 donor and 738 acceptor sites predicted for

the intron-less gene sequences. Altogether, 1212 donor splice sites (198 real

ones and 1014 pseudo sites) and 1764 acceptor splice sites (135 real ones and

1629 pseudo sites) were predicted for our dataset. According to these results,

the positive predictive values are 0.16 and 0.08 for donor and acceptor sites,
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respectively. This indicates that the rate of false positive prediction (or

1−PPV ) indicated on the SoftBerry Web site is grossly underestimated, at

least for our dataset. The sensitivity of donor site prediction is 0.98, which

corresponds well to SoftBerry’s claim, however, the sensitivity of acceptor

site prediction, 0.67, is much lower than claimed.

7.3.1 Improving the accuracy of splice site prediction

Trying to improve upon these results, we first explored if the weak structural

signals discussed in Chapter 6 can be used to train machine learning classi-

fiers to distinguish between real and pseudo splice sites. We used structural

measures that were shown to be significantly different between real splice

sites from the STRIN dataset and pseudo splice sites found in randomly

generated sequences. For donor sites, these measures are:

• (ATTD1) MFE of folding of the 50-nt window located from position

−40 to +10 w.r.t the candidate donor site (see Section 6.1.2)

• (ATTD2) MFE of folding of 50-nt window located from position −20

to +30 w.r.t the candidate donor site (same section)

• (ATTD3) MFE of folding between the U1 snRNA and 11-nt candi-

date donor sequence (3 nt from the 5’ exon and first 8 intronic nt –

NNN|GUAUGUNN) (see Section 6.3.2 and Figure 6.18)

• (ATTD4) MFE of folding between the U6 snRNA and 12-nt candi-

date donor sequence (4 nt from the 5’ exon and first 8 intronic nt –

NNNN|GUAUGUNN) (see Section 6.3.2 and Figure 6.20)

• (ATTD5) the highest instance score of structural motif 3 found in a

200-nt window centered at the donor splice site (see Section 6.4.2 and

Figure 6.23)

The dataset of donor sequences contained 1212 sequences each of length

200-nt and centered at the donor sequences predicted by SPL. For each of

these sequences, we calculated the above five measures and used them as
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attribute values to assemble feature vectors for machine learning purposes.

Real donor sites had a class label 1 (positive instances) and pseudo donors

had a class label 0 (negative instances). We used this dataset to both train

and test the neural network and SVM classifiers, using 10-fold cross vali-

dation experiments, as follows. The data was randomly partitioned in 10

equal subsets and a classifier was trained on 9/10 of the data and tested on

1/10 of the data. This was repeated 10 times, each time using a different

subset for testing, and the final accuracy results were obtained by averaging

the results of the 10 cycles.

We trained the classifiers on several different combinations of attributes.

The attributes were grouped in three groups – the first of these relating

to the MFE of folding of the 50-nt window (ATTD1 and ATTD2), the

second group relating to the stability of interaction between snRNAs and

donor sequences (ATTD3 and ATTD4) and the third group containing only

ATTD5. We then combined these three groups of attributes in all possible

ways.

The accuracy results of machine learning experiments on the donor

dataset are given in Table 7.6. The SVM classifier was not able to learn

a function that would differentiate between positive and negative instances

for any combination of attributes and predicted all instances as negative.

Therefore, only the accuracy results for neural network classification are

given. The percentage of correctly classified instances (Accuracy) is fairly

high for all the experiments, but this is due to the fact that a majority of the

candidate donor sites are predicted as negative instances. Although this is

what we wanted to accomplish for pseudo donor sites, most real donor sites

are also predicted to be negative instances. There are two exceptions: using

all five attributes (TP = 55), and using all the attributes except ATTD5.

The latter scenario has the highest values for accuracy (0.85) and sensitivity

(0.30) and the highest number of true positive predictions (60). Although

the sensitivity is significantly lower than SPL’s sensitivity, PPV has im-

proved considerably (0.55) compared to the original SPL prediction on our

dataset.



C
h
a
p
ter

7
.

U
sin

g
stru

ctu
ra

l
in

fo
rm

a
tio

n
fo

r
in

tro
n

id
en

tifi
ca

tio
n

216

Attributes
Neural Network

Accuracy Sn PPV TN FP TP FN

ATTD1, ATTD2 0.84 0 — 1014 0 0 198

ATTD3, ATTD4 0.83 0 0 1011 3 0 198

ATTD1, ATTD2, ATTD3, ATTD4 0.85 0.30 0.55 965 49 60 138

ATTD1, ATTD2, ATTD5 0.84 0.04 0.54 1008 6 7 191

ATTD3, ATTD4, ATTD5 0.84 0.01 1.00 1014 0 1 197

ATTD1, ATTD2, ATTD3, ATTD4, ATTD5 0.84 0.28 0.53 966 48 55 143

Table 7.6: The accuracy results for neural network classification of 1212 candidate donor sites. The attributes of
feature vectors for both training and testing set are listed in the column Attributes. Accuracy is a fraction of
correctly classified instances (both positive and negative) given by the classifier; Sn is the sensitivity of prediction
defined as TP

TP+FN ; PPV is the positive predictive value; TN – number of correctly predicted negative instances,
FP – number of negative instances predicted as positives, TP – number of correctly predicted positive instances,
FN – number of positive instances predicted as negatives.
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Based on these results we can infer the following: The fact that there are

still 138 real donor sites that are misclassified indicates that the structural

signals used are not strong enough in all real introns. However, they seem

to be present in a much higher proportion of real sequences than in pseudo

sequences (30% of real donor sites are predicted as positives, while this is

the case for only 5% of pseudo sites). It is also encouraging to see that when

more attributes are used the prediction accuracy improves, indicating that

the individual signals have very little predictive power but that they can still

contribute when combined with other structural measures. Thus, identify-

ing additional structural signals may further improve donor site prediction

accuracy.

The analysis of acceptor site prediction accuracy based on structural

signals is, in essence, the same as for the donor sites. The difference is that

very few structural features were shown to be significantly different between

real and pseudo acceptor sites sites. For acceptor sites, we used the following

measures:

• (ATTA1) the highest instance score of motif 1 found in the 200-

nt window centered at the acceptor splice site (see Section 6.4.2 and

Figure 6.24)

• (ATTA2) the highest instance score of motif 2 found in the 200-nt

window centered at the acceptor splice site

• (ATTA3) the highest instance score of motif 3 found in the 200-nt

window centered at the acceptor splice site

The dataset of candidate acceptor sequences contained 1764 sequences

each of length 200-nt and centered at the acceptor sites predicted by SPL.

For each of these sequences, we calculated the three measures and assembled

them in feature vectors. We then used the data to train and test neural

network and SVM classifiers using 10-fold cross-validation. As was the case

for our machine learning experiments for donor sites, the SVM classifier

predicted all instances in the dataset as negative. The results of neural

network classification were: accuracy = 0.93, Sn = 0.04, TN = 1627,
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FP = 2, TP = 6 and FN = 129. Again, the high percentage of correctly

classified instances is the result of classifying the majority of pseudo, as well

as real sites, as negative instances.

It may be noted that our results from this section cannot be directly com-

pared to the results of Patterson et al. (2002) and Marashi et al. (2006a,b),

who also used some structural information to improve the accuracy of splice

site prediction. A significant difference between our approaches precludes

comparing them: these authors used a combination of structure- and sequence-

based measurements for prediction of splice sites, while we used only struc-

tural signals for post-processing of SPL’s splice site predictions.

7.3.2 Improving the accuracy of intron prediction

Based on the findings in the previous section that indicate that combining

more structural signals yields better classification accuracy, in this section,

we focus on computational prediction of introns and the capability of sec-

ondary structure information to reduce the number of false positives based

on basic architectural characteristics of yeast introns and structural signals

for donor, acceptor and branchpoint sites.

We used the SoftBerry program for splice site prediction, SPL, to predict

donor and acceptor sites obtained from our dataset of 98 yeast 5’L introns,

104 5’S introns and 100 randomly chosen yeast genes that do not contain

any introns. The details about the dataset and SPL’s prediction are given

the Section 7.3.1.

The candidate introns were assembled using the predicted splice sites.

With no restrictions, except that the identified introns fall within the bound-

aries of one gene, it is possible to assemble 8625 introns. Since only 133 of

these are real introns (Sn = 0.66), the positive predictive value (Equation

7.16) of SPL’s intron prediction is PPV = 0.02, which is extremely low.

However, we need to emphasize that the SPL program was not designed

for intron prediction, which is typically performed by gene-finding programs

using additional sequence content measures (see Section 2.1). As explained

in the previous section we were not able to obtain a gene-finding program
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trained on yeast sequences, thus we were constrained to use SPL for intron

prediction.

We applied several filtering steps based on the basic knowledge of yeast

intron architecture to filter out implausible intron candidates.

Step 1 We selected introns such that they fall entirely within one gene

(they cannot be located in two different genes) and their length is within

the range of STRIN introns (55-1005 nt). This filtering step resulted in 2652

candidate introns. The PPV after this step is 0.05.

Step 2 Using a positional weight matrix (PWM) derived from 214 STRIN

branchpoint sequences (length of the sequences 7 nt), we scanned for all can-

didate branchpoint sequences that exceed a threshold value. The threshold

is usually chosen to be the minimum value scored by the sequences from

which the profile has been derived. In the case of STRIN branchpoint se-

quences, the minimum weight matrix score is 0.96; however, this is relatively

low compared to other scores, and choosing it for the threshold value results

in many false positive predictions. Instead, we set the threshold value to

4.47 (the second lowest PWM score for STRIN branchpoint sequences).

The candidate intron sequences from the previous step are further filtered

by excluding those that do not contain a branchpoint candidate sequence

with a PWM score above the threshold. There are 1274 intron candidates

after this step. If there is more than one branchpoint candidate sequence

found in an intron, the intron is passed to the next step together with

the locations of all candidate branchpoint sequences (1274 is the number

of candidate introns, including all possible branchpoint locations; there are

1126 unique intron locations, including 131 real introns). The PPV value

after this step is 0.12 (considering only unique intron locations) and the

sensitivity is 0.65.

Step 3 In this step, we check to see if the candidate branchpoint sequence

is positioned correctly within a candidate intron (the 5’ splice site - branch-

point distance is usually much longer than the 3’ splice site - branchpoint
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distance in introns). We first verify if the 3’ splice site - branchpoint distance

is within the range 16-161 nt, as for the real STRIN introns. Unlike the 3’

splice site - branchpoint distance, the 5’ splice site - branchpoint distance is

highly variable and depends on the total length of the intron (see Figure 3.5),

therefore we calculate the ratio of these two distances dist ratio = 3′−bp dist
5′−bp dist

and compare it with the ratio for real introns (0.035 < dist ratio < 2).

There are three introns that have dist ratio > 2, but trying to include them

would also retain many false positive introns. There are 531 intron candi-

dates (542 if we consider all possible branchpoint locations) that satisfy these

requirements, 129 of these being real introns (Sn = 0.64, PPV = 0.24).

Using donor and acceptor site locations that define intron boundaries, we

assembled intron sequences including 100-nt flanking regions.

In the last phase of our analysis, we attempted to discriminate between

the real and pseudo introns by applying machine learning techniques. We

used the same attributes as in the previous section, but also included struc-

tural signals relating to branchpoint sequences. The attributes are:

• (ATTD1) MFE of folding of the 50-nt window located from position

−40 to +10 w.r.t the candidate donor site

• (ATTD2) MFE of folding of the 50-nt window located from position

−20 to +30 w.r.t the candidate donor site

• (ATTB1) number of unpaired bases of the branchpoint sequences in

a candidate intron secondary structure

• (ATTD3) MFE of folding between U1 snRNA and 11-nt candidate

donor sequence (3 nt from the 5’ exon and first 8 intronic nt –

NNN|GUAUGUNN)

• (ATTD4) MFE of folding between U6 snRNA and 12-nt candidate

donor sequence (4 nt from the 5’ exon and first 8 intronic nt –

NNNN|GUAUGUNN)

• (ATTB2) MFE of folding between U2 snRNA and 13-nt candidate

branchpoint sequence (three flanking nucleotides on both sides of the
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branchpoint sequence – NNNUACUAACNNN) (see Section 6.3.2 and

Figure 6.21)

• (ATTD5) the highest instance score of motif 3 found in the 200-nt

window centered at the donor splice site (see Section 6.4.2 and Figure

6.23)

• (ATTA1) the highest instance score of motif 1 found in the 200-nt

window centered at the acceptor splice site

• (ATTA2) the highest instance score of motif 2 found in the 200-nt

window centered at the acceptor splice site

• (ATTA3) the highest instance score of motif 3 found in the 200-nt

window centered at the acceptor splice site

• (ATTB3) the highest instance score of motif 1 found in the 200-nt

window centered at the branchpoint sequence (see Section 6.4.2 and

Figure 6.25)

• (ATTB4) the highest instance score of motif 3 found in the 200-nt

window centered at the branchpoint sequence

As in the previous sections, we grouped the attributes by the type of

structural signal they measure (group 1 – ATTD1 and ATTD2; group 2 –

ATTB1; group 3 – ATTD3, ATTD4 and ATTB2; group 4 – ATTD5, ATTA1,

ATTA2, ATTA3, ATTB3 and ATTB4) and used different combinations of

these groups for machine learning experiments. The results are given in

Table 7.7 and correspond to the average accuracy values from 10-fold cross-

validation experiments.

The results in the table are for neural network classification only, since

the SVM classifier was predicting all candidate introns as negative instances.

Keeping in mind that the goal of this analysis was to reduce the number of

false positive predictions, while ensuring that the number of true positives

remains as high as possible, we can conclude from the table that the best
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Attributes
Neural Network

Accuracy Sn PPV TN FP TP FN

group 1 0.76 0.00 — 410 0 0 129

group 1,2 0.76 0.00 — 410 0 0 129

group 3 0.74 0.12 0.34 381 29 15 114

group 2,3 0.74 0.19 0.39 371 39 25 104

group 1,2,3 0.74 0.42 0.45 344 66 54 75

group 4 0.74 0.09 0.36 389 21 12 117

group 1,4 0.69 0.19 0.28 347 63 25 104

group 1,2,4 0.70 0.20 0.31 351 59 26 103

group 3,4 0.76 0.40 0.49 355 55 52 77

group 1,2,3,4 0.72 0.38 0.40 337 73 49 80

Table 7.7: Accuracy results for neural network classification of 542 can-
didate introns. The attributes of feature vectors for both the training and
testing sets are listed in the column Attributes. Accuracy is the fraction
of correctly classified instances (both positive and negative) given by the
classifier; Sn is the sensitivity of prediction; PPV is the positive predictive
value; TN – number of correctly predicted negative instances, FP – num-
ber of negative instances predicted as positives, TP – number of correctly
predicted positive instances, FN – number of positive instances predicted
as negatives.

result occurs when the ATT1, ATT2, ATT3, ATT4, ATT5, and ATT6 at-

tributes are used. The percentage of correctly classified instances (0.74) is

not the highest one in the table, but the sensitivity (0.42) and the number

of true positives (54) are. The positive predictive value is 0.45. Compared

to the results in Step 3, the sensitivity value decreased from 0.64 to 0.42

and the PPV increased from 0.24 to 0.45. There is an obvious trade-off be-

tween Sn and PPV , but considering the significant increase in PPV value

we can conclude that structural signals found in intronic sequences have the

potential to filter out false positive predictions, at the expense of missing

some true introns.

To summarize, we started with 2652 intron candidates assembled from

the SPL-predicted splice sites (with the length constraint), and using the

presence and location of a branchpoint sequence as an additional constraint

filtered a significant proportion of false introns (namely, 2121). For the

remaining 531 intron candidates, we computed feature vectors containing
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values for 12 attributes that were selected based on the results from Chap-

ter 6. This classification step filtered an additional 344 false introns at the

expense of misclassifying 75 true introns, leading to a final classification

performance characterized by a sensitivity of 0.42 and PPV of 0.45.

7.4 Conclusions

In this chapter, we used machine learning techniques to test the predictive

power of structural characteristics of the yeast introns discussed in the pre-

vious two chapters. First, we tested if the splicing efficency levels can be

computed as a function of shortened branchpoint distances and secondary

structure probabilities of long introns, obtained by the procedure Struc-

tureAnalyze (Figure 5.5, p. 110). Our results show that the classification

accuracy is excellent on the small dataset for which we have experimentally

determined splicing efficiency levels. When tested on the entire dataset

of 5’L STRIN introns, we obtained much lower accuracy results, which is,

at least partially, due to the unavailability of splicing efficiency measures

for STRIN introns. Similar results are obtained for machine learning ex-

periments using structural summary statistics, such as the minimum and

average branchpoint distances and base-pairing probability of contact con-

formation.

The analyses discussed in Chapter 6 identified certain structural biases

in STRIN introns that are statistically significant, but in isolation are not

strong enough to unambiguously discriminate between real and pseudo splic-

ing signals. Therefore, in the second part of this chapter, we used combi-

nations of structural signals, with the goal of achieving improved predictive

power. The neural network classifier trained to distinguish between real and

pseudo donor sites based on four structural features reduced the number of

false positive predictions by 95%, improving the initial positive predictive

value (PPV) from 0.16 (prediction by SPL, a splice prediction program) to

0.55. However, this approach also misclassified 70% of real donors. Similarly,

the neural network classification of the dataset of candidate introns predicted

by SPL based on 12 structural features of donor, acceptor and branchpoint
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regions reduced the number of false positive predictions by 84%, improving

the PPV from 0.24 to 0.42. The PPV for the initial SPL prediction was

0.02, which we improved to 0.24 by using known yeast intron architecture

characteristics to filter out unacceptable candidates. The neural network

classification misclassified 58% of real introns.

The misclassification of so many real introns is probably due to the fact

that our classification approach relies solely upon structural signals, which,

as discussed before, are not strong enough to clearly differentiate between

real and pseudo sites. This also indicates that sequence-based signals are

irreplaceable when it comes to splice site prediction. However, our analysis

still shows that the structural characteristics of yeast long introns can be

used to significantly reduce the number of false positive predictions, since the

identified structural signals seem to be present in a much higher proportion

of real than pseudo sequences (30% vs 5%). A better way to use these

structural signals would be in combination with sequence-based signals for

initial splice site prediction.
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Chapter 8

Conclusions and future work

Pre-mRNA splicing is one of the essential cellular processes in the pathway

leading from DNA to protein. Even though the process has been thor-

oughly studied since its discovery three decades ago (Chow et al., 1977;

Berget et al., 1977), there are still unanswered questions. One question,

which we addressed in this thesis, is: how are the splice sites accurately

identified and correctly paired across the intron? Part of the answer to this

question has been known for quite some time, since the discovery of base-

pairing interactions between spliceosomal snRNAs and conserved sequences

at the boundaries of and within introns (Mount et al., 1983; Black et al.,

1985; Zhuang and Weiner, 1986; Parker and Patterson, 1987). Subsequent

studies of a number of spliceosomal protein factors and their complex inter-

actions with pre-mRNA helped elucidate the phenomenon further. But the

full answer to the previously posed question is still not clear: scientist are

still unable to unambiguously identify functional splice sites among the vast

number of pseudo sites that are not used for splicing.

One hypothesis, proposed by many authors, is that not only primary but

also secondary structure of pre-mRNA plays a role in splicing. There is a sig-

nificant body of biological literature that discusses various examples of how

secondary structure at intron boundaries or within introns affects splicing.

There are also a few computational studies showing that including some

structural information improves splice site prediction accuracy (Patterson

et al., 2002; Marashi et al., 2006a,b). However, the biological studies are

usually limited to one or a small number of genes; thus, the conclusions are

gene-specific and do not have broad implications. On the other hand, the

computational studies are primarily applications of sophisticated machine

learning techniques and only superficially consider the existing biological
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evidence.

In this thesis, we attempted to remedy the weaknesses of previous ap-

proaches by performing a comprehensive computational study of the struc-

tural characteristics of Saccharomyces cerevisiae’s introns and their possi-

ble roles in pre-mRNA splicing. We carefully considered available biological

evidence and formulated our hypothesis to be consistent with the current

model of splicing in S. cerevisiae. We also performed a number of compu-

tational and statistical analyses that were previously used for other RNA

species to study structural characteristics of real versus artificial, randomly

designed, RNAs. Finally, similar to previous work in splice site prediction,

we used machine learning classifiers to distinguish between real and pseudo

sites based on structural features found to be statistically different between

yeast introns and random sequences.

Since a high-quality dataset is essential for any bioinformatics study, as

discussed at the beginning of Chapter 3, we constructed the STRIN dataset,

which contains all Saccharomyces cerevisiae introns whose annotation is

consistent with at least two of three public yeast databases considered. The

dataset was further filtered to exclude introns that were not supported by

the latest comparative genomic study on yeast (Kellis et al., 2003). The

availability of reliable datasets allowed us to reexamine basic features of yeast

intron architecture that were reported before but on less credible datasets

(Parker and Patterson, 1987; Spingola et al., 1999). We confirmed that

both intron length and branchpoint distance distributions are bimodal, and

that these two intron characteristics are strongly correlated (with a Pearson

correlation coefficient r of 0.99). We also used orthologous introns from three

yeast species closely related to S. cerevisiae to examine the conservation

of these architectural intron characteristics. The results from this novel

analysis indicate that both intron length and branchpoint distance are very

well conserved among these Saccharomyces sensu stricto species, despite

relatively low conservation of intronic sequences (50-74%). Conservation of

these intron features suggests their functional importance.

A number of biological studies conducted in several different eukary-

otic species identified long-range basepairing interactions that bring the 5’
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and 3’ ends of long introns closer together (see Section 2.3). It was hy-

pothesized in these studies that these secondary structure interactions are

important for efficient splicing of these introns and that their role is to

facilitate spliceosomal assembly. To complement these biological studies,

we conducted a computational analysis of yeast introns, searching for stems

that would shorten the distance between the splice sites and branchpoint se-

quences in long (5’L) STRIN introns. Zipper stems, as we named them, were

found in all of the 5’L introns in the STRIN dataset, which is not surpris-

ing considering the strong tendency of RNA sequences to form basepairing

interactions. However, the shortened branchpoint distances of zipped long

introns are distributed similarly to the branchpoint distances of short (5’S)

yeast introns (which are believed to have optimal branchpoint distances)

and very differently from the corresponding distances of zipped random and

exonic sequences. This finding suggests that the occurrence of zipper stems

in introns is not random but calibrated to modify branchpoint distances in

long introns in such a way that the resulting shortened distances resemble

5’S branchpoint distances not only by range but by distribution shape as

well.

The results of our comparative structure analysis further support the im-

portance of zipper stems: careful manual analysis on a sample intron dataset

of 9 introns found zipper stems conserved between the four considered sensu

stricto species in all of the introns. This is a significant result, considering

that sequence conservation is not very high within the introns (50-74%).

Similarly, more automated analysis on a larger set of STRIN introns iden-

tified conserved zipper stems in almost all of them. Most of the resulting

shortened branchpoint distances fall within the optimal range observed in

5’S introns. The possible reasons why conserved stems were not identified

in all of the introns include limited accuracy of the current multiple align-

ment and RNA secondary structure algorithms, which are essential for the

comparative structure analysis approach that we used. Another possibility

is that in some cases zipper stems are found at approximately the same lo-

cations in all four considered species but the exact base-pairing interactions

are not conserved (our automated approach would not identify these stems).
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These stems could still perform the same intron-zipping function.

In Chapter 5, we analyzed more specifically the effect of the zipper stems

on splicing efficiency of yeast introns. Since splicing efficiency results are not

available for all yeast introns but only for a few that have been more ex-

tensively studied (Newman, 1987; Goguel and Rosbash, 1993; Libri et al.,

1995; Charpentier and Rosbash, 1996; Howe and Ares, 1997), we focused

on the existing studies of the RP51B introns, with the intention of formu-

lating a model of structural requirements for efficient splicing. Our initial

zipper stem approach was not able to explain the differences in the splicing

efficiency levels observed between various RP51B intron mutants, thus we

refined our model to be more consistent with the nature of mRNA molecules.

We did so by extending our initial zipper stem model to incorporate subopti-

mal structure predictions and modified calculation of shortened branchpoint

distances. The refined model exhibited very good agreement with the re-

sults of splicing efficiency studies of RP51B intron mutants with modified

secondary structures.

Using this new approach to analyze structural characteristics of all STRIN

5’L introns, we identified an important subgroup of yeast long introns (∼ 1/3

of 5’L STRIN introns) that have the same value of shortened branchpoint

distance as the RP51B gene (namely, 5). This distance was achieved in very

few random sequences with the same sequence characteristics as 5’L introns.

Since we are not aware of any systematic splicing efficiency study of yeast

introns, we were not able to correlate our findings with splicing efficiency

measurements, which would test the significance of our finding.

An important part of our research is validation of our model of struc-

tural requirements for splicing by laboratory experiments. The results of

our experiments were consistent with our predictions based on the proposed

model, and prompted the formulation of further hypotheses regarding the

effect of secondary structure on yeast pre-mRNA splicing. Based on the

RP51B intron mutants discussed by Libri et al. (1995) and by Charpentier

and Rosbash (1996), it seemed that the existence of basepairing interactions

between the donor site and the branchpoint sequence in one of the subopti-

mal secondary structure predictions is a requirement for efficient splicing of
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the RP51B intron. Our laboratory experiments confirmed that introns with

shorter branchpoint distances (< 10) are more efficiently spliced than those

with longer distances, but suggest that contact conformation between the

donor site and the branchpoint sequence is not a requirement for efficient

splicing. Another interesting result of our experimental testing is that the

thermodynamic stability of a zipper stem can also have a significant effect

on splicing efficiency.

Based on our computational and experimental results, we propose that

there are few structural requirements for efficient splicing of yeast long in-

trons. The most important of these is a high probability of a relatively short

branchpoint distance (less than 10, but the exact threshold is unknown and

should be further investigated) in the intron’s secondary structure. This

means that there is either one highly probable secondary structure that has

a short branchpoint distance or there are many suboptimal structures close

to the MFE that have short branchpoint distance. The latter case results in

lower average branchpoint distance, which we found to correlate well with

observed splicing efficiency levels. Another structural requirement for ef-

ficient splicing seems to be limited thermodynamic stability of the zipper

stem, since our experiments showed that very stable stems can inhibit splic-

ing. It is possible that very stable zipper stems may be difficult to disrupt,

which would hinder binding of spliceosome components to the splice signals.

Finally, since the branchpoint sequence is found to be unpaired in secondary

structures of all efficiently spliced RP51B mutants, we believe that the struc-

tural context of the branchpoint sequence, i.e., its basepairing status in the

secondary structure of an intron, also has an effect on splicing efficiency.

However, this possibility needs to be further investigated.

In the second part of the thesis we considered a different role for pre-

mRNA secondary structure in splicing: can a secondary structure context

at the boundaries or within introns or secondary structure interactions with

the components of the spliceosome be additional identifiers of intron loca-

tions? We used different approaches to look for any structural context that

is specific for real yeast introns. We found that donor sites exhibit a statisti-

cally significant bias against stable secondary structures when folded locally
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and that branchpoint sequences tend to be unbound in global intron folds.

We also found that both, donor sites and branchpoint sequences have lower

minimum free energy of folding with snRNAs than do pseudo sequences.

Finally, we identified structural motifs in the vicinity of donor, acceptor and

branchpoint sequences that have a degree of conservation among STRIN

introns that is not expected for random occurrences of the motifs.

Even though the structural biases are statistically significant, the cor-

responding structural signals in isolation are not strong enough to unam-

biguously discriminate between real and pseudo splicing signals. Therefore,

we used different combinations of structural signals to reduce the rate of

false positive predictions produced by a sequence-based splice-site predic-

tion program (SPL). The neural network classifier trained to distinguish

between real and pseudo donor sites based on four structural features re-

duced the number of false positive predictions by 95%, improving the initial

positive predictive value (PPV) from 0.16 (prediction by SPL) to 0.55. How-

ever, this approach also misclassified 70% of real donors (SPL missed only

4 out of 202). Similarly, the neural network classification of the dataset

of candidate introns predicted by SPL based on 12 structural features of

donor, acceptor and branchpoint regions reduced false positive predictions

by 84%, improving the PPV from 0.24 to 0.42. The PPV for the initial SPL

prediction was 0.02 which was improved (to 0.24) by using known yeast in-

tron architectural characteristics to filter out unacceptable candidates. The

neural network classification misclassified 58% of real introns.

Misclassification of this many real donor sites and introns is probably

due to the fact that our prediction approach does not use any sequence sig-

nals that have higher information content than the structural signals and

are the basis of any splice site prediction tool. The differences in approaches

also preclude us from comparing our results with those from previous related

machine learning studies (Patterson et al., 2002; Marashi et al., 2006a,b).

However, our analysis still shows that the structural characteristics of yeast

long introns can be used to significantly reduce the number of false pos-

itive predictions since the identified structural signals seem to be present

in a much higher proportion of real than pseudo sequences (30% vs 5%).
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We believe that combining the structural signals discussed in this thesis

with sequence-based signals, would yield better accuracy than the current

sequence-based splice site prediction approaches.

Some other contributions of this thesis include:

• An algorithm for identification of one or more stems in a given RNA

secondary structure with specific thermodynamic and structural char-

acteristics.

• An algorithm for calculation of distances between the 5’ splice site and

the branchpoint sequence in a secondary structure of RNA that can

also be applied to any pair of nucleotides in an RNA sequence.

• An algorithm for the computation of shortened branchpoint distances

and some other structural metrics of an intron secondary structure

considering not only the MFE but also suboptimal structure predic-

tions.

In summary, we performed a comprehensive computational study of the

secondary structure characteristics of yeast introns and their relationship

with pre-mRNA splicing. The computational approach is intended to com-

plement current biological evidence, which suggests an important role for

secondary structure elements in splicing of various eukaryotic species, by

testing the universality of presumably splicing-related structural features in

introns of Saccharomyces cerevisiae. Although the computational approach

allows us to test hypotheses on a large number of introns, which is infeasible

in laboratory experiments, there are a number of uncertainties embedded

in the computational analysis that can influence the credibility of results.

Some issues that we cannot be certain of include the following: the window

of pre-mRNA sequence available for folding at the time of spliceosome as-

sembly, the MFE secondary structure predicted by the currently available

RNA prediction programs, which are known to have limited prediction ac-

curacy, and the branchpoint distance, which had to be approximated from

the secondary structure prediction. Although one needs to be aware of these

limitations, we believe that our computational study offers further insights
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into the existence of specific secondary structure features in yeast introns

and their role in pre-mRNA splicing.

Future work

Our work could be extended in several directions. An obvious and straight-

forward extension would be to obtain splicing efficiency levels for S.cerevisiae

genes by laboratory experiments and to correlate them with the results of our

structural studies; more specifically, the analysis performed in Section 5.5.

Further experimental work would also be beneficial. Additional labo-

ratory experiments that would test the validity of our model of structural

requirements for efficient splicing on some other yeast genes are needed to

show that our new model is not gene-specific. Another approach would be

to design an artificial intron that would contain essential splicing signals,

while the intronic sequence itself would be designed as a random sequence.

Experiments with the branchpoint distance and secondary structure of this

artificial intron would test our model and its universality in yeast.

Laboratory experiments could also be performed to test some of the other

hypotheses discussed and computationally analyzed in this thesis, such as

the minimum shortened branchpoint distance that is needed for efficient

splicing, the effect of branchpoint-sequence structural context on splicing

efficiency and acceptable thermodynamic stability of zipper stems.

Another extension of our work would be to test the significance of the

conserved structural motifs found in the vicinity of splice signals (Section 6.4.2).

This could be done by searching for occurrences of these motifs in the splice

site neighbourhoods of a related yeast species that do not have a very high

sequence similarity in these regions. Finding the same structural motifs in

spite of low sequence conservation would provide strong evidence that these

motifs are associated with splice sites and that their structure is probably

functionally important. Another way to test the hypothesis that the struc-

tural motifs found are functional and important for splicing would be to

perform a series of mutational analyses in the laboratory and to search for

protein factors that bind to these motifs.
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Another important research direction based on the results of this thesis

would be to test our findings in other eukaryotic organisms. Since several

biological studies indicate that the shortening of the branchpoint distance,

either by formation of zipper stems or protein interactions, is important for

efficient splicing in Drosophila melanogaster and some mammalian species

(Chen and Stephan, 2003; Martinez-Contreras et al., 2006), it is plausi-

ble that this mechanism is universal for all eukaryotes. The roundworm,

Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster, would

be suitable organisms for these further studies, considering that both have

been extensively studied as biological model organisms and have been fully

sequenced and carefully annotated. The structural signals found in yeast

introns (Chapter 6) are another phenomenon that would gain significance if

found in other eukaryotic species.

Our machine learning experiments showed that the weak structural sig-

nals described in Chapter 6 can serve to filter out a certain portion of false

positive splice site predictions. However, we used these signals only in the

post-processing phase, where they were not strong enough tho clearly sepa-

rate real and pseudo sites. Thus, an important extension of this thesis would

be to integrate these weak structural signals with sequence-based signals for

initial prediction of splice sites, and to test their contribution to prediction

accuracy.
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Appendix A

The STRIN dataset

The list of introns in the STRIN dataset is given below. The following

information is given: the SGD name of a gene that contains the intron,

intron length, the 7-nt branchpoint sequence and the branchpoint distance

(distance from the 5’ splice site to the branchpoint sequence). Introns with

branchpoint distances less than 200 nt are 5’S introns and the rest are 5’L

introns (see discussion in Section 3.2.2).
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gene name intron length
branchpoint branchpoint

sequence distance

1 YAL001C 90 UACUAAC 71
2 YAL003W 366 UACUAAC 326
3 YAL030W 113 UACUAAC 45
4 YBL018C 75 UACUAAC 50
5 YBL026W 128 UACUAAC 86
6 YBL027W 384 UACUAAC 337
7 YBL040C 97 UACUAAC 57
8 YBL050W 116 UACUAAC 71
9 YBL059C-A 85 UACUAAC 51
10 YBL059W 69 UACUAAC 45
11 YBL072C 308 UACUAAC 275
12 YBL087C 504 UACUAAC 454
13 YBL092W 333 UACUAAC 289
14 YBR048W 511 UACUAAC 486
15 YBR078W 330 UACUAAC 300
16 YBR082C 95 UACUAAC 64
17 YBR084C-A 506 AACUAAC 486
18 YBR090C 357 UACUAAC 338
19 YBR119W 89 UACUAAC 44
20 YBR181C 352 UACUAAC 324
21 YBR186W 113 CACUAAC 71
22 YBR189W 413 GACUAAC 376
23 YBR191W 388 UACUAAC 334
24 YBR230C 97 GACUAAC 56
25 YCR028C-A 83 UACUAAC 52
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gene name intron length
branchpoint branchpoint

sequence distance

26 YCR031C 307 UACUAAC 252
27 YDL029W 123 UACUAAC 103
28 YDL061C 409 UACUAAC 365
29 YDL064W 110 UACUAAC 66
30 YDL075W 421 UACUAAC 386
31 YDL079C 292 UACUAAC 275
32 YDL082W 365 UACUAAC 320
33 YDL083C 432 UACUAAC 385
34 YDL108W 81 UACUAAC 49
35 YDL125C 111 UACUAAC 83
36 YDL130W 301 UACUAAC 237
37 YDL136W 405 UACUAAC 362
38 YDL191W 491 UACUAAC 437
39 YDL219W 71 UACUAAC 45
40 YDR005C 80 UACUAAC 42
41 YDR025W 339 UACUAAC 310
42 YDR059C 90 UACUAAC 52
43 YDR064W 539 UACUAAC 480
44 YDR092W 268 UACUAAC 107
45 YDR129C 111 UACUAAC 86
46 YDR139C 73 UACUAAC 55
47 YDR305C 89 UACUAAC 47
48 YDR367W 101 UACUAAC 65
49 YDR381C-A 194 AACUAAC 43
50 YDR381W 766 GACUAAC 740
51 YDR397C 92 UACUAAC 59
52 YDR447C 314 UACUAAC 271
53 YDR450W 435 UACUAAC 384
54 YDR471W 384 UACUAAC 357
55 YDR500C 389 UACUAAC 349
56 YEL012W 123 CACUAAC 71
57 YER003C 93 AACUAAC 68
58 YER007C-A 103 UACUAAC 82
59 YER044C-A 88 UACUAAC 38
60 YER056C-A 397 UACUAAC 338
61 YER074W 466 UACUAAC 418
62 YER093C-A 75 UACUAAC 50
63 YER102W 360 UACUAAC 331
64 YER117W 471 UACUAAC 413
65 YER131W 361 UACUAAC 322
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gene name intron length
branchpoint branchpoint

sequence distance

66 YER133W 525 UACUAAC 489
67 YER179W 92 UACUAAC 58
68 YFL034C-A 321 UACUAAC 299
69 YFL034C-B 114 UACUAAC 52
70 YFL039C 308 UACUAAC 259
71 YFR024C-A 118 UACUAAC 65
72 YFR031C-A 147 UACUAAC 106
73 YFR032C-A 331 UACUAAC 276
74 YGL030W 230 UACUAAC 184
75 YGL031C 456 UACUAAC 406
76 YGL087C 85 UACUAAC 37
77 YGL103W 511 UACUAAC 462
78 YGL137W 200 UACUAAC 123
79 YGL178W 640 UACUAAC 610
80 YGL187C 342 UACUAAC 294
81 YGL189C 368 UACUAAC 307
82 YGL226C-A 149 UACUAAC 97
83 YGL232W 58 UACUAAC 36
84 YGR027C 312 UACUAAC 274
85 YGR029W 83 UAUUAAC 60
86 YGR118W 320 UACUAAC 292
87 YGR183C 213 UACUAAC 186
88 YGR214W 455 UACUAAC 423
89 YGR225W 93 UACUAAC 71
90 YGR296W 148 UACUAAC 118
91 YHL001W 398 UACUAAC 345
92 YHL050C 772 UACUAAC 736
93 YHR001W-A 63 UACUAAC 43
94 YHR010W 561 UACUAAC 525
95 YHR012W 119 UACUAAC 83
96 YHR016C 168 UACUAAC 122
97 YHR021C 550 UACUAAC 489
98 YHR039C-A 162 UACUAAC 51
99 YHR041C 101 UGCUAAC 60
100 YHR077C 113 UACUAAC 58
101 YHR097C 124 UACUAAC 64
102 YHR101C 87 UACUAAC 46
103 YHR123W 91 UACUAAC 53
104 YHR141C 441 UACUAAC 389
105 YHR203C 269 UACUAAC 222
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gene name intron length
branchpoint branchpoint

sequence distance

106 YIL004C 131 UACUAAC 106
107 YIL018W 400 UACUAAC 361
108 YIL052C 472 UACUAAC 431
109 YIL069C 409 UACUAAC 346
110 YIL106W 85 UAUUAAC 47
111 YIL133C 290 UACUAAC 227
112 YIL148W 434 UACUAAC 393
113 YIL177C 388 UACUAAC 264
114 YJL001W 116 UACUAAC 76
115 YJL024C 77 UACUAAC 47
116 YJL041W 118 UACUAAC 69
117 YJL136C 460 UACUAAC 428
118 YJL177W 317 UACUAAC 277
119 YJL189W 386 UACUAAC 325
120 YJL191W 408 UACUAAC 377
121 YJL205C-A 143 UACUAAC 55
122 YJL225C 388 UACUAAC 264
123 YJR021C 80 UACUAAC 60
124 YJR079W 704 UACUAAC 657
125 YJR094W-A 275 UACUAAC 236
126 YJR145C 256 UACUAAC 168
127 YKL002W 68 UACUAAC 40
128 YKL006C-A 141 UACUAAC 71
129 YKL006W 398 UACUAAC 344
130 YKL081W 326 UACUAAC 271
131 YKL156W 350 UACUAAC 311
132 YKL157W 383 UACUAAC 322
133 YKL180W 306 UACUAAC 277
134 YKL190W 76 UACUAAC 52
135 YKR057W 322 AACUAAC 295
136 YKR094C 368 UACUAAC 283
137 YLL050C 179 UACUAAC 41
138 YLR048W 359 UACUAAC 324
139 YLR061W 389 UACUAAC 328
140 YLR078C 89 UACUAAC 54
141 YLR093C 141 GACUAAC 100
142 YLR128W 94 UACUAAC 44
143 YLR185W 359 UACUAAC 307
144 YLR211C 59 GACUAAC 43
145 YLR275W 90 UACUAAC 54
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gene name intron length
branchpoint branchpoint

sequence distance

146 YLR287C-A 430 UACUAAC 385
147 YLR306W 134 UACUAAC 58
148 YLR333C 423 CACUAAC 387
149 YLR344W 447 UACUAAC 421
150 YLR388W 488 UACUAAC 461
151 YLR406C 349 UACUAAC 313
152 YLR426W 71 UACUAAC 47
153 YLR448W 384 UACUAAC 340
154 YLR464W 279 UACUAAC 184
155 YML024W 398 UACUAAC 334
156 YML025C 99 UACUAAC 69
157 YML026C 401 UACUAAC 355
158 YML056C 408 UACUAAC 289
159 YML067C 93 CACUAAC 65
160 YML073C 415 UACUAAC 375
161 YML085C 116 UACUAAC 69
162 YML094W 83 UACUAAC 47
163 YML124C 298 UACUAAC 153
164 YMR033W 86 UACUAAC 64
165 YMR079W 156 UACUAAC 111
166 YMR116C 273 UACUAAC 247
167 YMR125W 322 UACUAAC 274
168 YMR133W 116 UACUAAC 74
169 YMR142C 402 UACUAAC 375
170 YMR194W 463 UACUAAC 428
171 YMR201C 84 UACUAAC 50
172 YMR225C 147 UACUAAC 108
173 YMR230W 410 UACUAAC 365
174 YMR292W 82 UACUAAC 58
175 YNL012W 84 AACUAAC 40
176 YNL044W 79 UACUAAC 43
177 YNL050C 91 UACUAAC 46
178 YNL069C 449 UACUAAC 418
179 YNL096C 345 UACUAAC 304
180 YNL112W 1002 UACUAAC 953
181 YNL147W 120 UACUAAC 56
182 YNL162W 512 UACUAAC 470
183 YNL246W 95 UACUAAC 55
184 YNL265C 105 UACUAAC 59
185 YNL301C 432 UACUAAC 386
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gene name intron length
branchpoint branchpoint

sequence distance

186 YNL302C 551 UACUAAC 511
187 YNL312W 108 UACUAAC 79
188 YNL339C 148 UACUAAC 118
189 YNR053C 531 UACUAAC 487
190 YOL047C 63 UACUAAC 45
191 YOL120C 447 UACUAAC 417
192 YOL121C 390 UACUAAC 349
193 YOL127W 414 UACUAAC 367
194 YOR096W 401 UACUAAC 363
195 YOR122C 209 UACUAAC 131
196 YOR182C 411 UACUAAC 365
197 YOR234C 527 UACUAAC 472
198 YOR293W 437 UACUAAC 362
199 YPL031C 102 UACUAAC 55
200 YPL079W 421 UACUAAC 353
201 YPL081W 501 CACUAAC 467
202 YPL090C 394 UACUAAC 351
203 YPL129W 105 UACUAAC 63
204 YPL143W 525 UACUAAC 481
205 YPL218W 139 UACUAAC 115
206 YPL241C 80 AAUUAAC 39
207 YPL249C-A 238 UACUAAC 204
208 YPL283C 148 UACUAAC 118
209 YPR028W 133 UACUAAC 82
210 YPR043W 403 UACUAAC 364
211 YPR063C 86 UACUAAC 52
212 YPR132W 365 UACUAAC 299
213 YPR187W 76 UACUAAC 50
214 YPR202W 148 UACUAAC 118



262

Appendix B

Experimental procedure for

testing the effects of intron

mutations on splicing in

RP51B and RPS6B genes

In order to test our hypothesis that secondary structure within the introns of

S. cerevisiae genes can affect splicing and consequently the mRNA expres-

sion levels, we have conducted a series of laboratory experiments. The basic

idea behind the experiments is to check for the difference in gene expres-

sion level between the wild type gene and the mutants carrying mutations

within introns that, according to our hypothesis, would cause the intronic

pre-mRNA to fold unfavorably for splicing. Since direct RNA manipula-

tion is difficult since RNA molecules are very susceptible to degradation, we

have decided to test the expression levels of corresponding proteins instead

of mRNA expression levels.

Unlike the experiments described in Libri et al. (1995) and Charpentier

and Rosbash (1996), where the RP51B intron was inserted into the CUP1

reporter gene, we performed all of our experiment within endogenous genes.

This technique allows us to be more certain that the secondary structure

formed within introns is equivalent to that formed in nature, and is not

modified by interactions with flanking reporter gene sequences.

The yeast strain used for our experiments is a trp1 auxotrophic mutant,

which means that it has the TRP1 gene deleted, making the cells incapable

of producing tryptophan, an essential amino acid. These yeast cells will
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grow only in the presence ofa tryptophan-enriched medium. This will allow

us to use TRP1 as a selectable marker for protein tagging. Protein tagging

involves inserting an epitope tag, which is usually a peptide sequence that

can be targeted by antibodies, at the 3’ of our gene of interest (C-terminal

fusion). In this way, the tagged protein will be recognized by labeled an-

tibodies that attach themselves to the epitope tag, enabling its detection

and measurement of expression level. The epitope tag is inserted into the

genome along with a functional TRP1 gene, thus allowing for selection of

cells carrying the construct using the tryptophan-depleted medium.

The gene we tested, RP51B, was tagged at its genomic locus with the

13Myc epitope to generate C-terminal fusion. Myc refers to the peptide

sequence AEEQKLISEEDLL and can be targeted by the MYC antibody

(commercially available from Covance Research Products). The epitope is

called 13Myc because the tag is designed with 13 repeats of the mentioned

peptide sequence, enabling easier detection by antibody molecules. The

insertion of the 13Myc::TRP1 construct is accomplished using a transfor-

mation process, where the target yeast cells are specially treated to be able

to take up foreign DNA. Heat shock or electroporation are then applied so

that the exogenous DNA is absorbed by the cells, where it gets incorporated

into the genome by recombination events.

Successful transformants are selected in the tryptophan-depleted medium

(only the cells that have taken up the construct will have a functional TRP1)

and further prepared for Western blotting. Western blot analysis enables

detection of a specific protein and determination of its size and relative

amount. The first step in the procedure is separation of cell proteins by size

on a polyacrylamide gel using electrophoresis, which are then transfered to a

nitrocellulose membrane that will be imprinted with the same protein bands

as the gel. An antibody is then added to the membrane that is able to bind

to its specific protein. The antibody has an enzyme or a dye attached to it

that is used for visualization of the target protein.

The performed Western blot analysis confirmed the expression of the

correct-size-protein product for the wild type RP51B gene. This result

shows that tagging of the rp51b protein did not inhibit its expression. The
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observed protein level will be compared with the levels of protein after intron

mutations.

The next phase of the experimental study was to generate designed in-

tron mutants and test the effect of these mutations on intron splicing as

reflected in the final protein expression levels. Starting with the trp1 and

ura3 auxotrophic mutant strain where the gene of interest was tagged with

the 13Myc::TRP1 construct, we first deleted the intron through homologous

recombination with the URA3 selectable marker. (The construct carrying

the URA3 gene also has 40bp flanking sequences that are homologous to the

5’ and 3’ ends of sequence we wish to delete, which allows for recombination

of the URA3 construct and genomic DNA.) Next, primers containing specific

mutated intron sequences were stitched together with sequence segments ho-

mologous to the 5’ and 3’ ends of URA3 insertion using PCR. Transforma-

tion of these construct into the appropriate intron deletion strain resulted

in recombination, leading to removal of the URA3 gene and insertion of the

mutant intron sequence.

The URA3 gene product leads to cell death when placed on 5-floroorotic

acid (5-FOA) due to the conversion of 5-FOA to fluorodeoxyuridine, which is

toxic to cells. After transformation, cells that have taken up mutated intron

inserts and thus have lost the URA3 gene can be selected on 5-FOA. Cells

where transformation was not successful and that still contain the URA3

gene will die.

The selected cells were further subjected to PCR analysis to determine if

5-FOA resistance is a result of insertion of the mutated intron in place of the

URA3 gene. URA3 is longer than the intron, therefore when PCR is done on

the strain using primers that flank the intron/URA3 region of the DNA, the

size of the PCR product will tell us which insertion is present. The larger

product size indicates that the URA3 gene is still in, but the strain is 5-FOA

resistant for another reason (e.g., mutation inside the URA3 coding region).

If the PCR product is smaller, this is an indication that the strain contains

the desired insertion. Correct size does not guarantee correct sequence, so to

be sure that we need the desired mutations we have to sequence the intron

sequence.
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Strains containing the correct intron mutations were assayed for the ef-

fect these mutations have on pre-mRNA splicing through measuring ex-

pression levels of the resulting proteins. Western blotting was performed to

quantitate the amount of rp51b-13MYC protein using a MYC antibody. The

resulting Western blot signals, which were developed with ECL Plus Western

Blotting Detection Reagent (Amersham Bioscience), were quantified using

the Storm Imaging System (Amersham Bioscience). This imaging system

employs fluorescence imaging technology to capture quantitative data from

chemifluorescent blots and is characterized by accurate signal quantitation

(10-100 times more sensitive than film) and significantly shorter exposure

time (many times faster than film).

A flow chart of our experimental procedure is shown in Figure B.1.
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Figure B.1: Flow chart of the experimental procedure.
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Appendix C

Outputs from

StructureAnalyze for RP51B

mutants

The post-processed output from the StructureAnalyze procedure is given

in the form of a table where each row corresponds to one predicted struc-

ture and columns are different measures computed for this structure. The

first column is shortened branchpoint distance (d̄ij), the second column is

normalized (relative) probability (Pnorm(Rij)), the third column is is the

number of free bases in the branchpoint structure and the fourth column

is b weightij as defined in Equation 5.3 (p. 111). The output is divided in

sections that correspond to individual input sequences. Each section starts

with the name of the sequence and ends with the summary statistics.

C.1 Output for the Libri’s mutants (introns only)

wt

5 0.63 4 0.63

27 0.20 5 0.20

5 0.07 4 0.07

41 0.06 5 0.06

42 0.04 5 0.04

5 0.00 4 0.00

5 0.00 4 0.00

43 0.00 1 0.00

5 0.00 4 0.00

---------------------------------------------------------------
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Average distance: 19.78 r_weight: 0.1494 r_b_weight: 0.1494

---------------------------------------------------------------

3mUB1

41 0.85 5 0.85

20 0.12 1 0.58

5 0.02 4 0.02

35 0.00 1 0.00

35 0.00 1 0.00

20 0.01 1 0.05

42 0.00 1 0.00

---------------------------------------------------------------

Average distance: 28.29 r_weight: 0.0319 r_b_weight: 0.0573

---------------------------------------------------------------

5mUB1

41 0.88 5 0.88

20 0.10 1 0.51

20 0.00 1 0.01

5 0.02 4 0.02

48 0.00 1 0.00

41 0.00 5 0.00

---------------------------------------------------------------

Average distance: 29.17 r_weight: 0.0302 r_b_weight: 0.0509

---------------------------------------------------------------

8mUB1

41 0.52 5 0.52

41 0.44 5 0.44

5 0.01 4 0.01

41 0.01 5 0.01

5 0.01 4 0.01

44 0.01 5 0.01

5 0.00 4 0.00

---------------------------------------------------------------

Average distance: 26.00 r_weight: 0.0283 r_b_weight: 0.0283

---------------------------------------------------------------

3mDB1

41 1.00 5 1.00

41 0.00 5 0.00

---------------------------------------------------------------

Average distance: 41.00 r_weight: 0.0244 r_b_weight: 0.0244

---------------------------------------------------------------
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5mDB1

43 0.02 1 0.12

38 0.80 5 0.80

43 0.02 1 0.10

20 0.15 1 0.73

48 0.00 1 0.01

48 0.00 1 0.00

48 0.01 5 0.01

---------------------------------------------------------------

Average distance: 41.14 r_weight: 0.0296 r_b_weight: 0.0631

---------------------------------------------------------------

3mUB1/3mDB1

41 0.99 5 0.99

48 0.01 5 0.01

41 0.00 5 0.00

---------------------------------------------------------------

Average distance: 43.33 r_weight: 0.0243 r_b_weight: 0.0243

---------------------------------------------------------------

5mUB1/5mDB1

38 0.52 5 0.52

20 0.42 1 2.09

44 0.03 5 0.03

44 0.03 5 0.03

20 0.01 1 0.03

48 0.00 1 0.01

5 0.00 4 0.00

34 0.00 1 0.00

35 0.00 1 0.00

20 0.00 1 0.02

48 0.00 1 0.00

38 0.00 5 0.00

47 0.00 5 0.00

---------------------------------------------------------------

Average distance: 33.92 r_weight: 0.0364 r_b_weight: 0.1218

---------------------------------------------------------------

6mUB1

48 1.00 1 5.00

---------------------------------------------------------------

Average distance: 48.00 r_weight: 0.0208 r_b_weight: 0.1042

---------------------------------------------------------------
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4mUB1

20 0.89 1 4.43

46 0.01 1 0.05

20 0.09 1 0.46

43 0.00 1 0.00

48 0.00 1 0.00

46 0.00 1 0.00

41 0.01 5 0.01

---------------------------------------------------------------

Average distance: 37.71 r_weight: 0.0494 r_b_weight: 0.2458

---------------------------------------------------------------

C.2 Output for the Libri’s mutants (introns and

5’ flanking region)

wt

49 0.29 5 0.29

49 0.29 5 0.29

41 0.17 6 0.17

40 0.11 5 0.11

50 0.10 1 0.48

34 0.00 1 0.00

58 0.02 1 0.11

62 0.02 1 0.08

49 0.00 5 0.00

61 0.01 5 0.01

49 0.00 5 0.00

49 0.00 5 0.00

49 0.00 5 0.00

49 0.00 5 0.00

---------------------------------------------------------------

Average distance: 49.21 r_weight: 0.0214 r_b_weight: 0.0317

---------------------------------------------------------------

3mUB1

50 0.45 1 2.27

41 0.20 1 1.01



Appendix C. Outputs from StructureAnalyze for RP51B mutants 271

56 0.12 1 0.62

58 0.11 1 0.53

61 0.09 5 0.09

50 0.02 1 0.10

46 0.00 1 0.00

39 0.00 1 0.00

33 0.00 1 0.00

65 0.00 1 0.00

---------------------------------------------------------------

Average distance: 49.90 r_weight: 0.0200 r_b_weight: 0.0939

---------------------------------------------------------------

5mUB1

41 0.59 1 2.96

61 0.20 5 0.20

56 0.11 1 0.54

54 0.08 1 0.42

46 0.02 1 0.08

85 0.00 5 0.00

85 0.00 5 0.00

33 0.00 1 0.00

85 0.00 1 0.00

---------------------------------------------------------------

Average distance: 60.67 r_weight: 0.0216 r_b_weight: 0.0949

---------------------------------------------------------------

8mUB1

61 0.33 5 0.33

61 0.28 5 0.28

107 0.01 5 0.01

50 0.25 1 1.25

28 0.00 6 0.00

61 0.06 5 0.06

58 0.06 1 0.29

61 0.00 5 0.00

---------------------------------------------------------------

Average distance: 60.88 r_weight: 0.0173 r_b_weight: 0.0414

---------------------------------------------------------------

3mDB1

50 0.41 1 2.05

41 0.18 1 0.91

34 0.00 1 0.02
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83 0.14 5 0.14

34 0.00 1 0.02

90 0.10 5 0.10

58 0.10 1 0.48

61 0.04 5 0.04

108 0.00 5 0.00

50 0.02 1 0.09

101 0.00 5 0.00

61 0.01 5 0.01

106 0.00 5 0.00

44 0.00 1 0.00

84 0.00 5 0.00

80 0.00 1 0.00

---------------------------------------------------------------

Average distance: 67.81 r_weight: 0.0184 r_b_weight: 0.0781

---------------------------------------------------------------

5mDB1

50 0.52 1 2.59

41 0.23 1 1.15

34 0.01 1 0.03

34 0.00 1 0.02

58 0.12 1 0.60

62 0.09 1 0.44

50 0.02 1 0.12

44 0.00 1 0.00

83 0.01 5 0.01

52 0.00 1 0.00

56 0.00 1 0.01

108 0.00 5 0.00

80 0.00 1 0.00

61 0.00 5 0.00

---------------------------------------------------------------

Average distance: 58.07 r_weight: 0.0204 r_b_weight: 0.1014

---------------------------------------------------------------

3mUB1/3mDB1

50 0.47 1 2.36

41 0.21 1 1.05

84 0.18 5 0.18

58 0.11 1 0.55

50 0.02 1 0.11
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58 0.00 5 0.00

46 0.00 1 0.00

37 0.00 1 0.00

108 0.00 5 0.00

33 0.00 1 0.00

65 0.00 1 0.00

84 0.00 5 0.00

---------------------------------------------------------------

Average distance: 59.50 r_weight: 0.0191 r_b_weight: 0.0868

---------------------------------------------------------------

5mUB1/5mDB1

41 0.72 1 3.58

85 0.01 5 0.01

85 0.01 5 0.01

56 0.13 1 0.65

54 0.10 1 0.51

46 0.02 1 0.10

33 0.00 1 0.00

85 0.00 1 0.00

84 0.01 5 0.01

69 0.00 1 0.00

---------------------------------------------------------------

Average distance: 63.80 r_weight: 0.0225 r_b_weight: 0.1112

---------------------------------------------------------------

6mUB1

50 0.68 1 3.40

58 0.16 1 0.79

41 0.11 1 0.57

50 0.03 1 0.16

37 0.00 1 0.00

61 0.01 1 0.05

49 0.00 1 0.00

69 0.00 1 0.02

42 0.00 1 0.00

78 0.00 5 0.00

---------------------------------------------------------------

Average distance: 53.50 r_weight: 0.0200 r_b_weight: 0.0998

---------------------------------------------------------------

4mUB1

69 0.40 1 1.98



Appendix C. Outputs from StructureAnalyze for RP51B mutants 274

50 0.34 1 1.68

78 0.11 5 0.11

58 0.08 1 0.39

55 0.00 1 0.01

41 0.06 1 0.28

50 0.02 1 0.08

55 0.00 1 0.00

56 0.00 1 0.01

33 0.00 1 0.00

65 0.00 1 0.00

---------------------------------------------------------------

Average distance: 55.45 r_weight: 0.0170 r_b_weight: 0.0795

---------------------------------------------------------------

C.3 Output for the Libri’s mutants (introns and

both flanking regions)

wt

79 0.05 1 0.23

79 0.86 1 4.30

84 0.01 1 0.03

83 0.00 1 0.01

79 0.00 1 0.01

97 0.08 1 0.38

81 0.00 1 0.00

85 0.01 1 0.03

---------------------------------------------------------------

Average distance: 83.38 r_weight: 0.0125 r_b_weight: 0.0623

---------------------------------------------------------------

3mUB1

85 0.03 1 0.15

85 0.54 1 2.72

99 0.39 1 1.96

83 0.00 1 0.01

85 0.00 1 0.01

87 0.03 1 0.15
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---------------------------------------------------------------

Average distance: 87.33 r_weight: 0.0111 r_b_weight: 0.0555

---------------------------------------------------------------

5mUB1

84 0.04 1 0.19

84 0.71 1 3.54

98 0.23 1 1.14

75 0.01 1 0.03

84 0.00 1 0.01

86 0.02 1 0.09

60 0.00 2 0.00

41 0.00 1 0.01

---------------------------------------------------------------

Average distance: 76.50 r_weight: 0.0115 r_b_weight: 0.0577

---------------------------------------------------------------

8mUB1

84 0.04 1 0.21

84 0.77 1 3.83

61 0.02 5 0.02

61 0.01 5 0.01

84 0.01 1 0.05

98 0.12 1 0.58

107 0.00 5 0.00

84 0.00 1 0.01

60 0.00 2 0.00

82 0.00 4 0.00

61 0.03 1 0.14

28 0.00 6 0.00

61 0.00 5 0.00

---------------------------------------------------------------

Average distance: 73.46 r_weight: 0.0120 r_b_weight: 0.0576

---------------------------------------------------------------

3mDB1

79 0.04 1 0.22

79 0.81 1 4.05

84 0.01 1 0.03

83 0.00 1 0.01

97 0.07 1 0.36

79 0.00 1 0.01

110 0.03 5 0.03



Appendix C. Outputs from StructureAnalyze for RP51B mutants 276

78 0.02 5 0.02

81 0.00 1 0.00

85 0.01 1 0.03

79 0.00 5 0.00

90 0.00 5 0.00

79 0.00 5 0.00

---------------------------------------------------------------

Average distance: 84.85 r_weight: 0.0124 r_b_weight: 0.0593

---------------------------------------------------------------

5mDB1

79 0.05 1 0.23

79 0.86 1 4.30

84 0.01 1 0.03

83 0.00 1 0.01

79 0.00 1 0.01

97 0.08 1 0.38

81 0.00 1 0.00

85 0.01 1 0.03

110 0.00 5 0.00

79 0.00 5 0.00

---------------------------------------------------------------

Average distance: 85.60 r_weight: 0.0125 r_b_weight: 0.0623

---------------------------------------------------------------

3mUB1/3mDB1

85 0.02 1 0.12

85 0.46 1 2.29

99 0.33 1 1.66

112 0.15 5 0.15

83 0.00 1 0.01

85 0.00 1 0.01

87 0.03 1 0.13

90 0.00 5 0.00

84 0.00 5 0.00

85 0.00 5 0.00

62 0.00 5 0.00

---------------------------------------------------------------

Average distance: 87.00 r_weight: 0.0108 r_b_weight: 0.0483

---------------------------------------------------------------

5mUB1/5mDB1

84 0.04 1 0.19



Appendix C. Outputs from StructureAnalyze for RP51B mutants 277

84 0.70 1 3.52

98 0.23 1 1.13

75 0.01 1 0.03

84 0.00 1 0.01

86 0.02 1 0.09

111 0.00 5 0.00

60 0.00 2 0.00

111 0.00 5 0.00

41 0.00 1 0.01

86 0.00 5 0.00

84 0.00 5 0.00

---------------------------------------------------------------

Average distance: 83.67 r_weight: 0.0115 r_b_weight: 0.0574

---------------------------------------------------------------

6mUB1

74 0.04 1 0.21

74 0.79 1 3.96

60 0.00 2 0.01

61 0.08 1 0.42

74 0.00 1 0.01

50 0.04 1 0.18

58 0.04 1 0.18

74 0.00 1 0.00

84 0.00 1 0.00

88 0.00 1 0.01

87 0.00 1 0.00

49 0.00 1 0.00

74 0.00 1 0.00

---------------------------------------------------------------

Average distance: 69.77 r_weight: 0.0141 r_b_weight: 0.0707

---------------------------------------------------------------

4mUB1

82 0.05 1 0.26

82 0.94 1 4.71

82 0.00 1 0.01

82 0.00 1 0.00

84 0.00 1 0.00

60 0.00 2 0.00

61 0.00 1 0.01

78 0.00 1 0.01
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---------------------------------------------------------------

Average distance: 76.38 r_weight: 0.0122 r_b_weight: 0.0610

---------------------------------------------------------------

C.4 Output for the Charpentier’s mutants

(introns only)

UB1i

43 0.13 1 0.63

20 0.83 1 4.14

41 0.02 5 0.02

48 0.01 1 0.06

41 0.01 5 0.01

33 0.00 1 0.02

---------------------------------------------------------------

Average distance: 37.67 r_weight: 0.0454 r_b_weight: 0.2240

---------------------------------------------------------------

DB1i

39 0.01 5 0.01

39 0.01 5 0.01

20 0.23 1 1.14

42 0.00 1 0.02

25 0.56 5 0.56

42 0.09 5 0.09

5 0.01 4 0.01

37 0.01 5 0.01

17 0.01 1 0.05

20 0.04 1 0.18

48 0.01 7 0.01

20 0.00 1 0.00

39 0.00 5 0.00

---------------------------------------------------------------

Average distance: 30.23 r_weight: 0.0424 r_b_weight: 0.0978

---------------------------------------------------------------

UB1iDB1i

5 0.67 4 0.67

27 0.22 5 0.22
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5 0.07 4 0.07

44 0.04 5 0.04

5 0.00 4 0.00

17 0.00 1 0.02

5 0.00 4 0.00

5 0.00 4 0.00

5 0.00 4 0.00

---------------------------------------------------------------

Average distance: 13.11 r_weight: 0.1569 r_b_weight: 0.1578

---------------------------------------------------------------

mut5

20 0.96 1 4.82

42 0.02 1 0.09

43 0.02 1 0.08

20 0.00 1 0.01

48 0.00 1 0.00

---------------------------------------------------------------

Average distance: 34.60 r_weight: 0.0491 r_b_weight: 0.2455

---------------------------------------------------------------

mut12

5 0.67 4 0.67

27 0.21 5 0.21

5 0.07 4 0.07

42 0.04 5 0.04

5 0.00 4 0.00

5 0.00 4 0.00

5 0.00 4 0.00

17 0.00 1 0.02

5 0.00 4 0.00

---------------------------------------------------------------

Average distance: 12.89 r_weight: 0.1569 r_b_weight: 0.1578

---------------------------------------------------------------

mut18

5 0.67 4 0.67

27 0.22 5 0.22

5 0.07 4 0.07

44 0.04 5 0.04

5 0.00 4 0.00

17 0.00 1 0.02

5 0.00 4 0.00
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5 0.00 4 0.00

5 0.00 4 0.00

---------------------------------------------------------------

Average distance: 13.11 r_weight: 0.1569 r_b_weight: 0.1578

---------------------------------------------------------------

C.5 Output for the Charpentier’s mutants

(introns and 5’ flanking region)

UB1i

56 0.55 1 2.75

50 0.21 1 1.04

74 0.16 5 0.16

58 0.05 1 0.24

46 0.00 1 0.01

41 0.03 1 0.13

50 0.01 1 0.05

46 0.00 1 0.00

50 0.00 1 0.01

---------------------------------------------------------------

Average distance: 52.33 r_weight: 0.0178 r_b_weight: 0.0805

---------------------------------------------------------------

DB1i

41 0.61 6 0.61

41 0.09 6 0.09

50 0.08 1 0.42

47 0.06 6 0.06

41 0.04 1 0.19

57 0.11 5 0.11

61 0.00 5 0.00

61 0.00 5 0.00

70 0.00 5 0.00

80 0.00 7 0.00

64 0.00 6 0.00

82 0.00 5 0.00

57 0.00 7 0.00
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28 0.00 6 0.00

50 0.00 1 0.00

65 0.00 7 0.00

109 0.00 5 0.00

43 0.00 6 0.00

61 0.00 5 0.00

---------------------------------------------------------------

Average distance: 58.32 r_weight: 0.0230 r_b_weight: 0.0334

---------------------------------------------------------------

UB1iDB1i

49 0.33 5 0.33

49 0.33 5 0.33

41 0.19 6 0.19

40 0.12 5 0.12

37 0.02 5 0.02

49 0.00 5 0.00

49 0.00 5 0.00

49 0.00 5 0.00

49 0.00 5 0.00

4 0.00 1 0.00

49 0.00 5 0.00

---------------------------------------------------------------

Average distance: 42.27 r_weight: 0.0220 r_b_weight: 0.0222

---------------------------------------------------------------

mut5

50 0.41 1 2.07

62 0.30 1 1.50

41 0.18 1 0.92

58 0.10 1 0.48

46 0.00 1 0.01

46 0.00 1 0.00

52 0.00 1 0.00

80 0.00 1 0.00

84 0.00 1 0.00

65 0.00 1 0.00

56 0.00 1 0.01

63 0.00 1 0.00

52 0.00 1 0.00

---------------------------------------------------------------

Average distance: 58.08 r_weight: 0.0194 r_b_weight: 0.0969
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---------------------------------------------------------------

mut12

49 0.32 5 0.32

49 0.32 5 0.32

41 0.19 6 0.19

40 0.12 5 0.12

49 0.03 5 0.03

37 0.02 5 0.02

49 0.00 5 0.00

49 0.00 5 0.00

49 0.00 5 0.00

49 0.00 5 0.00

49 0.00 5 0.00

---------------------------------------------------------------

Average distance: 46.36 r_weight: 0.0218 r_b_weight: 0.0218

---------------------------------------------------------------

mut18

49 0.33 5 0.33

49 0.33 5 0.33

41 0.19 6 0.19

40 0.12 5 0.12

37 0.02 5 0.02

49 0.00 5 0.00

49 0.00 5 0.00

49 0.00 5 0.00

49 0.00 5 0.00

4 0.00 1 0.00

49 0.00 5 0.00

---------------------------------------------------------------

Average distance: 42.27 r_weight: 0.0220 r_b_weight: 0.0222

---------------------------------------------------------------

C.6 Output for the Charpentier’s mutants

(introns and both flanking regions)

UB1i

75 0.05 1 0.25
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83 0.03 1 0.13

75 0.91 1 4.55

75 0.00 1 0.01

56 0.00 1 0.02

60 0.00 2 0.00

61 0.00 1 0.02

89 0.00 1 0.01

74 0.00 5 0.00

---------------------------------------------------------------

Average distance: 72.00 r_weight: 0.0133 r_b_weight: 0.0666

---------------------------------------------------------------

DB1i

79 0.19 7 0.19

79 0.69 4 0.69

79 0.10 4 0.10

79 0.00 1 0.01

83 0.01 7 0.01

79 0.00 1 0.00

97 0.00 1 0.01

79 0.00 5 0.00

79 0.00 7 0.00

85 0.00 1 0.00

---------------------------------------------------------------

Average distance: 81.80 r_weight: 0.0126 r_b_weight: 0.0128

---------------------------------------------------------------

UB1iDB1i

49 0.60 5 0.60

50 0.37 4 0.37

49 0.00 5 0.00

49 0.03 5 0.03

41 0.01 6 0.01

49 0.00 5 0.00

49 0.00 5 0.00

4 0.00 1 0.00

---------------------------------------------------------------

Average distance: 42.50 r_weight: 0.0204 r_b_weight: 0.0207

---------------------------------------------------------------

mut5

79 0.05 1 0.23

79 0.87 1 4.33



Appendix C. Outputs from StructureAnalyze for RP51B mutants 284

83 0.00 1 0.01

79 0.00 1 0.01

97 0.08 1 0.38

85 0.01 1 0.03

79 0.00 1 0.00

---------------------------------------------------------------

Average distance: 83.00 r_weight: 0.0125 r_b_weight: 0.0624

---------------------------------------------------------------

mut12

49 0.42 5 0.42

83 0.01 1 0.04

50 0.26 3 1.29

83 0.16 1 0.81

97 0.12 1 0.58

49 0.00 5 0.00

49 0.02 5 0.02

83 0.00 1 0.00

49 0.00 5 0.00

85 0.01 1 0.05

41 0.01 6 0.01

60 0.00 2 0.00

---------------------------------------------------------------

Average distance: 64.83 r_weight: 0.0176 r_b_weight: 0.0518

---------------------------------------------------------------

mut18

49 0.60 5 0.60

50 0.37 4 0.37

49 0.00 5 0.00

49 0.03 5 0.03

41 0.01 6 0.01

49 0.00 5 0.00

49 0.00 5 0.00

4 0.00 1 0.00

---------------------------------------------------------------

Average distance: 42.50 r_weight: 0.0204 r_b_weight: 0.0207

---------------------------------------------------------------
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Appendix D

Sequences of new RP51B

mutants

The following is the FASTA format of the mutated RP51B intron sequences

that we designed in order to test the accuracy of the hypothesis that short

branchpoint distances are required for efficient splicing of yeast intron. The

mutated sequences are represented by lower case letters.

>bad1

GUACGUACCACGAGAUGUUGAUGAAGCCGGAUAUGAUGGACUGGGCGCUGAACACAUGAA

AUGAGGGCAAGGUUUGCAGAGAGAUUGAAAGCGUUAUGGGAACGAGGGGACCAGCAGGGC

AUUCUUAUUUAUGAGCAGAUUAGAAAACUCCAUUACUGAUUAGUUUAGAAGAGCGCUCAA

UGAAGUAGUAGAUAUUUAAAAGAUCACCAAAUAACCAAUUGCUUUCGAAUGGCACAUUCU

AUCUUAUCCAAUGGUCUaugagacaacuAUUUACUAACUUAAGUUGUCUCAUUUGAUUAU

UGCUAUUUUUAUAG

>bad2

GUACGUACCACGAGAUGUUGAUGAAGCCGGAUAUGAUGGACUGGGCGCUGAACACAUGAA

AUGAGGGCAAGGUUUGCAGAGAGAUUGAAAGCGUUAUGGGAACGAGGGGACCAGCAGGGC

AUUCUUAUUUAUGAGCAGAUUAGAAAACUCCAUUACUGAUUAGUUUAGAAGAGCGCUCAA

UGAAGUAGUAGAUAUUUAAAAGAUCACCAAAUAACCAAUuaaucaaugagacaacuuaaU

AUCUUAUCCAAUGGUCUUGAAGAGAGGUAUUUACUAACUUAAGUUGUCUCAUUUGAUUAU

UGCUAUUUUUAUAG

>bad3

GUACGUACCACGAGAUGUUGAUGAAGCCGGAUAUGAUGGACUGGGCGCUGAACACAUGAA

AUGAGGGCAAGGUUUGCAGAGAGAUUGAAAGCGUUAUGGGAACGAGGGGACCAGCAGGGC

AUUCUUAUUUAUGAGCAcuuaaguuaguaaauaccucGAUUAGUUUAGAAGAGCGCUCAA
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UGAAGUAGUAGAUAUUUAAAAGAUCACCAAAUAACCAAUUGCUUUCGAAUGGCACAUUCU

AUCUUAUCCAAUGGUCUUGAAGAGAGGUAUUUACUAACUUAAGUUGUCUCAUUUGAUUAU

UGCUAUUUUUAUAG

>bad4

GUACGUACCACGAGAUGUUGAuuaAGCCGcuacuacuUGGACUGucgGCUGAACACAUGA

AAUGAGGGCAAGGUUUGCAGAGAGAUUGAAAGCGUUAUGGGAACGAGGGGACCAGCAGGG

CAUUCUUAUUUAUGAGCAGAUUAGAAAACUCCAUUACUGAUUAGUUUAGAAGAGCGCUCA

AUGAAGUAGUAGAUAUUUAAAAGAUCACCAAAUAACCAAUUGCUUUCGAAUGGCACAUUC

UAUCUUAUCCAAUGGUCUUGAAGAGAGGUAUUUACUAACUUAAGUUGUCUCAUUUGAUUA

UUGCUAUUUUUAUAG

>bad5

GUACGUACCACGAGAUGUUGAUGAAGCCGGAUAUGAUGGACUGGGCGCUGAACACAUGAA

AUGAGGGCAAGGUUUGCAGAGAGAUUGAAAGCGUUAUGGGAACGAGGGGACCAGCAGGGC

AUUCUUAUUUAUGAGCAGAUUAGaacaucucgugguaGAUUAGUUUAGAAGAGCGCUCAA

UGAAGUAGUAGAUAUUUAAAAGAUCACCAAAUAACCAAUUGCUUUCGAAUGGCACAUUCU

AUCUUAUCCAAUGGUCUUGAAGAGAGGUAUUUACUAACUUAAGUUGUCUCAUUUGAUUAU

UGCUAUUUUUAUAG

>good1

GUACGUACCucucuucaagGAUGAAGCCGGAUAUGAUGGACUGGGCGCUGAACACAUGAA

AUGAGGGCAAGGUUUGCAGAGAGAUUGAAAGCGUUAUGGGAACGAGGGGACCAGCAGGGC

AUUCUUAUUUAUGAGCAGAUUAGAAAACUCCAUUACUGAUUAGUUUAGAAGAGCGCUCAA

UGAAGUAGUAGAUAUUUAAAAGAUCACCAAAUAACCAAUUGCUUUCGAAUGGCACAUUCU

AUCUUAUCCAAUGGUCUUGAAGAGAGGUAUUUACUAACUUAAGUUGUCUCAUUUGAUUAU

UGCUAUUUUUAUAG

>good2

GUACGUACCACGAGAUGUUGAUGAAGCCGGAUAUGAUGGACUGGGCGCUGAACACAUGAA

AUGAGGGCAAGGUUUGCAGAGAGAUUGAAAGCGUUAUGGGAACGAGGGGACCAGCAGGGC

AUUCUUAUUUAUGAGCAGAUUAGAAAACUCCAUUACUGAUUAGUUUAGAAGAGCGCUCAA

UGAAGUAGUAGAUAUUUAAAAGAUCACCAAAUAACCuuucauguguucagcGCACAUUCU

AUCUUAUCCAAUGGUCUUGAAGAGAGGUAUUUACUAACUUAAGUUGUCUCAUUUGAUUAU

UGCUAUUUUUAUAG

>good3

GUACGUACCACGAGAUGUUGAUGAAGCCGGAUAUGAUGGACUGGGCGCUGAACACAUGAA
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AUGAGGGCAAGGUUUGCAGAGAGAUUGAAAGCGUUAUGGGAACGAGGGGACCAGCAGGGC

AUUCUUAUUUAUGAGCAGAUUAGAAAACUCCAUUACUGAUUAGUUUAGAAGAGCGCUCAA

UGAAGUAGUAGAUAUUUAAAAGAUCACCAAAUAACCAAUUGCUUUCGAAUGGCACAUUCU

AUCUUAUCCAAUGGUCUUGAAGAGAGGUAUUUACUAACUuacguacUCUCAUUUGAUUAU

UGCUAUUUUUAUAG

>good4

GUACGUACCACGAGAUGUUGAUGAAGCCGGAUAUGAUGGACUGGGCGCUGAACACAUGAA

AUGAGGGCAAGGUUUGCAGAGAGAUUGAAAGCGUUAUGGGAACGAGGGGACCAGCAGGGC

AUUCUUAUUUAUGAGCAGAUUAGAAAACUCCAUUACUGAUUAGUUUAGAAGAGCGCUCAA

UGAAGUAGUAGAUAUUUAAAAGAUCACCAAAUAACCAAUUGCUUUCGAAUGGCACAUUCU

AUCUUuagCggcuGUCUUGAAGAGAGGUAUUUACUAACUUAAGUUGUCUCAUUUGAUUAU

UGCUAUUUUUAUAG

>good5

GUACGUACCACGAGAUGUUGAUGAAGCCGGAUAUGAUGGACUGGGCGCUGAACACAUGAA

AUGAGGGCAAGGUUUGCAGAGAGAUUGAAAGCGUUAUGGGAACGAGGGGACCAGCAGGGC

AUUCUUAUUUAUGAGCAGAUUAGAAAACUCCAUUACUGAUUAGUUUAGAAGAGCGCUCAA

UGAAGUAGUAGAUAUUUAAAAGAUCACCAAAUAACCAAUUGCUUUCGAAUGGCACAUUCU

AUCcuucaucaacGUCUUGAAGAGAGGUAUUUACUAACUUAAGUUGUCUCAUUUGAUUAU

UGCUAUUUUUAUAG


