Review
Medical cannabis and mental health: A guided systematic review

Zach Walsh,⁎ Raul Gonzalez, Kim Crosby, Michelle S. Thiessen, Chris Carroll, Marcel O. Bonn-Miller

1 University of British Columbia, Department of Psychology, 3333 University Way, Kelowna, BC, Canada
2 Florida International University, Department of Psychology, 11200 SW8th Street, Miami, FL, USA
3 National Center for PTSD & Center for Innovation to Implementation, VA Palo Alto Health Care System, 795 Willow Road, Menlo Park, CA., USA

HIGHLIGHTS

• Mental health conditions are prominent among the reasons for medical cannabis use.
• Cannabis has potential for the treatment of PTSD and substance use disorders.
• Cannabis use may influence cognitive assessment, particularly with regard to memory.
• Cannabis use does not appear to increase risk of harm to self or others.
• More research is needed to characterize the mental health impact of medical cannabis.

ARTICLE INFO

Article history:
Received 16 March 2016
Received in revised form 6 October 2016
Accepted 10 October 2016
Available online 12 October 2016

Keywords:
Medical cannabis
Psychopathology
Assessment
Substance use

ABSTRACT

This review considers the potential influences of the use of cannabis for therapeutic purposes (CTP) on areas of interest to mental health professionals, with foci on adult psychopathology and assessment. We identified 31 articles relating to the use of CTP and mental health, and 29 review articles on cannabis use and mental health that did not focus on use for therapeutic purposes. Results reflect the prominence of mental health conditions among the reasons for CTP use, and the relative dearth of high-quality evidence related to CTP in this context, thereby highlighting the need for further research into the harms and benefits of medical cannabis relative to other therapeutic options. Preliminary evidence suggests that CTP may have potential for the treatment of PTSD, and as a substitute for problematic use of other substances. Extrapolation from reviews of non-therapeutic cannabis use suggests that the use of CTP may be problematic among individuals with psychotic disorders. The clinical implications of CTP use among individuals with mood disorders are unclear. With regard to assessment, evidence suggests that CTP use does not increase risk of harm to self or others. Acute cannabis intoxication and recent CTP use may result in reversible deficits with the potential to influence cognitive assessment, particularly on tests of short-term memory.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1. Background 16
1.1. Cannabis strains and cannabinoids 16
2. Methodology 16
2.1. Search strategy 16
2.2. Quality assessment 17
3. Results 17
3.1. Adult psychopathology 17
3.1.1. Problematic substance use 17
3.1.2. Anxiety 21
3.1.3. Depression 22
3.1.4. Psychosis 23
3.2. Psychological assessment 23

⁎ Corresponding author at: University of British Columbia, ASC 206 - 3187 University Way, Kelowna V1V 1V7, Canada.
E-mail address: zachary.walsh@ubc.ca (Z. Walsh).

http://dx.doi.org/10.1016/j.cpr.2016.10.002
0272-7358/© 2016 Elsevier Ltd. All rights reserved.
1. Background

The first decades of the 21st century have witnessed a dramatic resurgence of interest in the therapeutic potential of cannabis. In response, a growing number of countries and jurisdictions have initiated or expanded programs to allow legal access to cannabis for therapeutic purposes (CTP). Although the majority of CTP programs specifically focus on the use of cannabis for symptoms associated with physical health disorders (e.g. arthritis, cancer, chronic pain; see Belendiuk, Baldini, & Bonn-Miller, 2015 for a review), a substantial portion of CTP use aims to address mental health concerns, and CTP users evince substantial levels of psychiatric comorbidity (Bonn-Miller, Boden, Bucossi, & Babson, 2014; Walsh et al., 2013). As such, mental health practitioners are increasingly likely to encounter CTP use in the course of clinical practice.

Cannabis is among the world’s most widely used psychoactive substances, and the associations between cannabis use, cognition, and mental health have been the subject of substantial research. Nonetheless, the implications of CTP use for mental health remain somewhat unclear as extant research has focused primarily on negative consequences associated with illicit, non-medical use of cannabis (NMC), and although this research can contribute to understanding the potential consequences of CTP use, differences in comorbidity, motivations, and patterns of use complicate generalizing from NMC to CTP. In order to provide a comprehensive review and synthesis of the literature regarding the impact of CTP on issues of concern to mental health practitioners, the current review integrates parallel reviews of the nascent research on CTP and the more developed research on NMC.

1.1. Cannabis strains and cannabinoids

User reports and pharmacological analyses unequivocally point to diversity across types – or strains – of herbal cannabis and understanding the diverse consequences of cannabis use may be furthered by the appreciation of the variety of agents that underlie the psychoactivity of cannabis. Herbal cannabis may contain over 100 distinct cannabinoid compounds that are unique to cannabis, several of which have proven, or potential, psychoactive effects. The most prominent and well-characterized cannabinoids are Δ⁹−THC (THC) and cannabidiol (CBD), with THC being the primary agent responsible for the psychoactivity of cannabis (Scheri et al., 2012). The distinct influences of THC and CBD are particularly salient with regard to psychosis and anxiety where they may exert contradictory influences (Crippa et al., 2009; Zuardi, Crippa, Hallak, Moreira, & Guimarães, 2006). Strains of cannabis vary substantially with regard to concentrations of THC and CBD, and adding complexity to the unique and combined influences of THC and CBD are the still obscure influences of the many other cannabinoids and terpenes that are present to differing degrees across strains. These diverse constituents have been proposed to engage in interactions described as en-tourage effects (Russo, 2011), such that strains of cannabis with distinct profiles of THC, CBD, and other constituents may differ with regard to psychoactive and therapeutic effects (Russo & Guy, 2006; Russo & McPartland, 2003; Schier et al., 2012).

The phenomenological importance of strain-type is reflected in a recent study in which over 80% of CTP users reported variable effectiveness across strains (Walsh et al., 2013). Popular discourse and promotion of CTP also tout salutary features of distinct strains (e.g., Leafly.com), and federal health authorities have allowed for such distinctions to be included – with caveats – on product labelling (e.g. Health Canada). Percentages of THC and CBD content are prominent features of strain distinctions, as is the still-debated botanical distinction between Cannabis sativa and Cannabis indica, with the former reputed to have more stimulating effects and the later putatively more sedative. However, although there are clear pharmacological and morphological differences across strains, evidence germane to this topic is not strong, as few human studies have compared the effects of differing levels of cannabinoids (Ilan, Gevins, Coleman, ElSohly, & de Wit, 2005; Wachtel, ElSohly, Ross, Ambre, & de Wit, 2002), and methodological factors complicate generalizing from the relatively limited range compared in these studies to the diverse strains and products available to many CTP users (Russo & McPartland, 2003). Estimating the relative effectiveness of different cannabis strains for diverse outcomes requires further research; nonetheless, strain-level differences are salient to CTP users and are promising candidates to help explain the apparently divergent effects of cannabis.

2. Methodology

To systematically review research elucidating the influence of CTP use on adult psychopathology and psychological assessment, we comprehensively review studies of CTP and meta-review studies of NMC. Throughout, we adopt an integrative approach that allows for review of diverse methodologies including longitudinal, cross-sectional, and lab-based studies (Whitemore & Knaff, 2005). The review is organized as mini-reviews of areas of interface between CTP and clinical practice, with discussion of implications, quality of evidence, and areas requiring further investigation. Topics reviewed include substance use, anxiety, affective, and psychotic disorders, cognitive functioning, and risk for harm to self and others.

2.1. Search strategy

Our inclusion of research from medical and nonmedical contexts involved a mixed search methodology. To identify research on CTP use we searched electronic databases (Psycinfo, Medline) for all published studies between 1960 and September 2015 on medical OR therapeutic cannabis OR marijuana AND anxiety disorder, posttraumatic stress disorder, social anxiety disorder, substance dependence, substance abuse, substance use disorder, tobacco, cocaine, alcohol, opiates, heroin, amphetamine, depression, bipolar, mania, mood disorder, psychosis, schizophrenia, neuropsychology, neurocognitive, IQ, intelligence, violence, intimate partner violence, suicide, suicide risk. Article titles and abstracts were reviewed and studies were included if they addressed the association of CTP use with these outcomes (Fig. 1). The literature on NMC and mental health is voluminous and diverse, thus we conducted a more guided and exclusive review focusing on meta-analytic and systematic reviews using a strategy parallel to that described above, but omitting the terms medical OR therapeutic, and adding the terms review OR meta-analysis OR meta-analytic (Fig. 2).
2.2. Quality assessment

Studies of CTP were predominantly cross-sectional and we assessed the quality of these studies on a 10-point scale based on a version of the Newcastle-Ottawa Scale (Wells et al., 2000) adapted to evaluate cross-sectional studies (Herzog et al., 2013). Assessment was based on dimensions including measurement of outcome, sample selection, and comparability of groups. Reviews of NMC were assessed using the AMSTAR checklist which evaluates the quality of reviews along 11 face-valid criteria (Shea et al., 2007). For both measures higher scores indicate better quality of evidence.

3. Results

Our CTP search identified 31 studies, with a total of 23,850 participants. Of these studies 87% (27) were cross-sectional and 68% (21) were US samples. Recruitment from medical cannabis dispensaries was the most frequent method of data collection (42% (13)), followed by recruitment from clinics that specialize in disorders for which CPT use is prominent (e.g. pain, M.S.) (19% (6)), and reviews of records from clinics that focus on providing assessments for eligibility to access CTP (19% (6)). Evaluation of the quality of the CTP studies indicated that most were not of methodologically high quality (Table 1); ratings ranged from 3 to 7 of a possible 10 points with a median rating of 4. Preliminary review of our NMC search identified several reviews related to cannabis and psychosis, including recent meta-reviews; therefore, to avoid redundancy we limited our review of psychosis to reviews published after 2010. This search identified 29 reviews germane to the impact of NMC on mental health, of which 38% (11) were meta-analyses, 31% (9) were systematic reviews, and 31% (9) were narrative reviews (Table 2). The quality of these reviews were variable ranging from 1 (narrative reviews) to 8 of a possible 11 points, with a median score of 4. We supplemented areas in which reviews were absent or incomprehensive with studies identified through manual search.

3.1. Adult psychopathology

3.1.1. Problematic substance use

Addiction treatment is a prominent context in which mental health care providers might encounter the use of cannabis. In this context, NMC may be a primary focus of treatment or a potentially complicating factor in the treatment of problematic use of another substance (Roffman & Stephens, 2006). These conceptualizations are qualified by the use of CTP; the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5; American Psychiatric Association, 2013) notes, with regard to the assessment of cannabis use disorder, that “Although medical uses of cannabis remain controversial and equivocal, use for medical circumstances should be considered when a diagnosis is being made.” (pp. 512), and further suggests that medical use should be considered in establishing the clinical significance of tolerance and withdrawal symptoms. In contrast, prior editions of the DSM (e.g.,
<table>
<thead>
<tr>
<th>Study characteristics - cannabis for therapeutic purposes.</th>
<th>N (% female)</th>
<th>Location</th>
<th>Recruitment</th>
<th>Conditions</th>
<th>Design & quality</th>
<th>Key relevant findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggarwal et al., 2012</td>
<td>37 (35)</td>
<td>Washington, US</td>
<td>Medical cannabis dispensary</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (4)</td>
<td>Prominent reasons for using CTP included anxiety (71%), mood (60%), and depression (12%).</td>
</tr>
<tr>
<td>Ashrafioun et al., 2015</td>
<td>433 (31)</td>
<td>Midwestern US</td>
<td>Patients from a specialized clinic</td>
<td>Pain</td>
<td>Cross-sectional (7)</td>
<td>Using of CTP for pain reported by 15% of patients in addictions treatment. Use of CTP for pain was associated with higher levels of past year substance use.</td>
</tr>
<tr>
<td>Babson et al., 2013</td>
<td>162 (22)</td>
<td>California, US</td>
<td>Medical cannabis dispensary</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (6)</td>
<td>Participants with higher level of depressive symptoms reported more problematic cannabis use. This relation was moderated by sleep quality.</td>
</tr>
<tr>
<td>Bedi et al., 2010</td>
<td>7 (0)</td>
<td>New York, US</td>
<td>Self-identified from the community</td>
<td>HIV</td>
<td>Laboratory</td>
<td>Dronabinol enhanced mood among cannabis using participants across the 16 day study period.</td>
</tr>
<tr>
<td>Boden, Babson et al., 2013</td>
<td>153 (22)</td>
<td>California, US</td>
<td>Medical cannabis dispensary</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (4)</td>
<td>The combination of cognitive reappraisal and emotional clarity was associated with problematic cannabis use among CTP users.</td>
</tr>
<tr>
<td>Bohnert et al., 2014</td>
<td>186 (38)</td>
<td>Michigan, US</td>
<td>Medical cannabis dispensary</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (5)</td>
<td>Twenty -three percent of patients seeking CTP for the first time screened positive for PTSD. Those with PTSD had higher rates of substance use relative to CTP seeking patients without PTSD.</td>
</tr>
<tr>
<td>Bonn-Miller et al., 2014a</td>
<td>170 (22)</td>
<td>California, US</td>
<td>Medical cannabis dispensary</td>
<td>PTSD and sleep</td>
<td>Cross-sectional (6)</td>
<td>Greater severity of PTSD was associated with more frequent cannabis use, and with use to help with sleep and to cope with negative affect.</td>
</tr>
<tr>
<td>Bonn-Miller, Boden et al., 2014</td>
<td>217 (27)</td>
<td>California, US</td>
<td>Medical cannabis dispensary</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (4)</td>
<td>Reported benefits of CTP include reductions of stress (24%), anxiety (20%), depression (10%), and PTSD symptoms (4%). CTP was reported to be particularly helpful among participants with greater levels of traumatic intrusions and lower levels of well-being.</td>
</tr>
<tr>
<td>Boyd, Veliz, & McCabe, 2015</td>
<td>4394 (47)</td>
<td>US</td>
<td>National surveillance survey</td>
<td>Other substance use</td>
<td>Cross-sectional (5)</td>
<td>Adolescent medical cannabis users were approximately 2 times more likely to report the nonmedical use of prescription drugs and illicit substances other than cannabis.</td>
</tr>
<tr>
<td>Grella et al., 2014</td>
<td>182 (26)</td>
<td>California, US</td>
<td>Medical cannabis dispensary</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (3)</td>
<td>Primary reasons for CTP use included anxiety (60%), insomnia (56%), chronic pain (42%), depression (33%), and ADHD (17%).</td>
</tr>
<tr>
<td>Greer et al., 2014</td>
<td>80 (20)</td>
<td>New Mexico, US</td>
<td>Medical evaluations of patients seeking CTP</td>
<td>PTSD</td>
<td>Cross-sectional (5)</td>
<td>Patients who used CTP reported reductions of 75% in symptoms of trauma related re-experiencing, avoidance, and hyperarousal.</td>
</tr>
<tr>
<td>Harris et al., 2000</td>
<td>100 (16)</td>
<td>California, US</td>
<td>Medical cannabis dispensary</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (4)</td>
<td>Mental health conditions were cited as the primary reason for CTP use among 15% of respondents. Patients reported that CTP was more effective than other treatments for psychiatric problems.</td>
</tr>
<tr>
<td>Lucas et al., 2015</td>
<td>404 (33)</td>
<td>British Columbia, Canada</td>
<td>Medical cannabis dispensary</td>
<td>Substance use disorders</td>
<td>Cross-sectional (4)</td>
<td>Cannabis use to substitute for medications was reported by 67%, substitution for alcohol reported by 41%, and substitution for illicit drugs reported by 36%.</td>
</tr>
<tr>
<td>Mikuriya, 2004</td>
<td>92 (9)</td>
<td>California, US</td>
<td>Medical evaluations of patients seeking CTP</td>
<td>Alcohol use disorder</td>
<td>Cross-sectional (3)</td>
<td>All participants reported cannabis use as effective for reducing drinking. 28% reported cannabis as effective for depression, and 20% reported cannabis as effective for anxiety.</td>
</tr>
<tr>
<td>Nurnberg et al., 2011</td>
<td>1655 (27)</td>
<td>California, US</td>
<td>Medical evaluations of patients seeking CTP</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (6)</td>
<td>Reported mental health benefits CTP included relief of anxiety (38%), depression (26%), anger (23%), and panic (17%), as well as substitution for alcohol (13%).</td>
</tr>
<tr>
<td>O'Connell & Bou-Matar, 2007</td>
<td>4117 (23)</td>
<td>California, US</td>
<td>Medical evaluations of patients seeking CTP</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (3)</td>
<td>Participants reported high levels of past substance use, and subsequent substitution with cannabis. Male respondents reported high levels of adolescent ADHD, suggesting CTP use to address inattention.</td>
</tr>
<tr>
<td>Ogborne et al., 2000</td>
<td>50 (34)</td>
<td>Ontario, Canada</td>
<td>Self-identified from the community</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (6)</td>
<td>Reported mental health benefits of CTP included relief of depression (24%), anxiety (22%), and heroin craving (4%).</td>
</tr>
<tr>
<td>Page & Verhoef, 2007</td>
<td>14 (57)</td>
<td>Alberta, Canada</td>
<td>Patients from a specialized clinic</td>
<td>Medical cannabis dispensary</td>
<td>Diverse medical conditions</td>
<td>Patients reported that the perceived benefits included general relaxation and decreased stress.</td>
</tr>
<tr>
<td>Reiman, 2007</td>
<td>130 (25)</td>
<td>California, US</td>
<td>Medical cannabis dispensary</td>
<td>Multiple Sclerosis</td>
<td>Cross-sectional (3)</td>
<td>History of treatment for problematic alcohol use was reported by 15%, and slightly fewer than 50% of CTP users reported using cannabis as a substitute for alcohol and illicit drugs.</td>
</tr>
</tbody>
</table>
However, the results of these cross-sectional studies do not directly suggest that CTP use may have been protective against the development of disorders, where medical use explicitly precludes assessment of tolerance and dependence symptoms (APA, 2013).

We identified two cross-sectional studies of CTP users that explicitly examined use of other psychoactive substances (Aşhrafioun, Bohnert, Jammaus, & Ilgen, 2015; O’Connell & Bou-Matar, 2007). Among clients in an abstinence-based addictions treatment program, approximately 15% used CTP to treat pain, and these individuals reported higher rates of past alcohol, cannabis, cocaine, and opiate use than did the non-CTP group (Aşhrafioun et al., 2015). Similarly, a methodologically lower quality study of self-selected CTP program applicants in California identified high levels of lifetime substance use. That study also reported reduced use from adolescence to adulthood, which led the authors to suggest that CTP use may have been protective against the development of problematic use of other substances (O’Connell & Bou-Matar, 2007). However, the results of these cross-sectional studies do not directly speak to the extent to which cannabis is being used as a substitute for other substances or whether prior substance use leads to increased acceptability of and interest in CTP.

Risk for addiction and misuse are prominent concerns among clinicians considering recommending CTP. However, evidence regarding transition from therapeutic to problematic use is scant. The two cross-sectional studies that have examined problematic cannabis use among CTP users identify depression, sleep disturbance, and cognitive style as risk factors for problematic use (Babson, Boden, & Bonn-Miller, 2013; Boden, Gross, Babson, & Bonn-Miller, 2013), which is similar to the patterns of risk evidenced for problematic cannabis use among non-medical users (e.g., Degenhardt, Hall, & Lynskey, 2003). In light of increasing uptake of CTP, the further specification of risk and protective factors for transition to problematic use is a research priority. Longitudinal examinations of the association between therapeutic and problematic cannabis use are required to elucidate this issue and thereby facilitate informed comparison of the risks and benefits of CTP relative to other treatments.

Table 1 (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>N (% female)</th>
<th>Location</th>
<th>Recruitment</th>
<th>Conditions</th>
<th>Design & quality</th>
<th>Key relevant findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reiman, 2009</td>
<td>350 (32)</td>
<td>California, US</td>
<td>Medical cannabis dispensary</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (3)</td>
<td>Using CTP to address mental health concerns was reported by 75% of respondents. Substituting cannabis for alcohol was reported by 40% of respondents, and 26% reported substituting cannabis for illicit drugs. Reported mental health benefits CTP included relief of anxiety (38%), depression (26%), anger (23%), and panic (17%), as well as substitution for alcohol (13%). Relative to nonmedical cannabis users, CTP users engaged in lower levels of high risk use of alcohol and use of other substances, including tobacco.</td>
</tr>
<tr>
<td>Reinarman et al., 2011</td>
<td>1746 (27)</td>
<td>California, US</td>
<td>Medical evaluations of patients seeking CTP</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (3)</td>
<td>Among patients with problematic cannabis use, poor sleep quality is associated with greater severity of PTSD symptoms. Sleep quality is not associated with increased severity of symptoms among those without problematic cannabis use. Reported mental health benefits included relief of sleep disturbance (56%), and general relaxation (75%). Depression or anxiety symptoms were reported to return with cessation of CTP use among 30% of respondents.</td>
</tr>
<tr>
<td>Richmond et al., 2015</td>
<td>7875 (49)</td>
<td>Colorado, US</td>
<td>Patients from a general clinic</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (7)</td>
<td>Use of oral THC was associated with reduced symptom severity, improved sleep quality, reduced frequency of nightmares, and reduced symptoms of hyperarousal.</td>
</tr>
<tr>
<td>Roitman et al., 2014</td>
<td>10 (30)</td>
<td>Jerusalem, Israel</td>
<td>Patients from a specialized clinic</td>
<td>PTSD</td>
<td>Open-label trial</td>
<td>Among patients with problematic cannabis use, poor sleep quality is associated with greater severity of PTSD symptoms. Sleep quality is not associated with increased severity of symptoms among those without problematic cannabis use. Reported mental health benefits included relief of sleep disturbance (56%), and general relaxation (75%). Depression or anxiety symptoms were reported to return with cessation of CTP use among 30% of respondents.</td>
</tr>
<tr>
<td>Short, Babson, Boden, & Bonn-Miller, 2015</td>
<td>151 (23)</td>
<td>California, US</td>
<td>Medical cannabis dispensary</td>
<td>PTSD</td>
<td>Cross-sectional (6)</td>
<td>Among patients with problematic cannabis use, poor sleep quality is associated with greater severity of PTSD symptoms. Sleep quality is not associated with increased severity of symptoms among those without problematic cannabis use. Reported mental health benefits included relief of sleep disturbance (56%), and general relaxation (75%). Depression or anxiety symptoms were reported to return with cessation of CTP use among 30% of respondents.</td>
</tr>
<tr>
<td>Swift et al., 2005</td>
<td>128 (37)</td>
<td>New South Wales, Australia</td>
<td>Self-identified from the community</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (3)</td>
<td>Participants who used CTP demonstrated outcomes for treatment completion and progress at discharge (69%) that were comparable or superior to a comparison groups of non-CTP users in treatment (41%). CTP users did not differ from controls with regard to neurocognitive functioning at one-year follow-up. Participants receiving the highest dose of THC demonstrated improvements in anxiety and depression relative to those receiving cannabis with no THC.</td>
</tr>
<tr>
<td>Swartz, 2010</td>
<td>13 (15)</td>
<td>California, US</td>
<td>Patients from a specialized clinic</td>
<td>Substance use disorder</td>
<td>Cross-sectional (6)</td>
<td>Participants who used CTP demonstrated outcomes for treatment completion and progress at discharge (69%) that were comparable or superior to a comparison groups of non-CTP users in treatment (41%). CTP users did not differ from controls with regard to neurocognitive functioning at one-year follow-up. Participants receiving the highest dose of THC demonstrated improvements in anxiety and depression relative to those receiving cannabis with no THC.</td>
</tr>
<tr>
<td>Ware et al., 2015</td>
<td>431 (57)</td>
<td>Canada</td>
<td>Patients from a specialized clinic</td>
<td>Neurocognition</td>
<td>Prospective cohort study</td>
<td>Participants who used CTP demonstrated outcomes for treatment completion and progress at discharge (69%) that were comparable or superior to a comparison groups of non-CTP users in treatment (41%). CTP users did not differ from controls with regard to neurocognitive functioning at one-year follow-up. Participants receiving the highest dose of THC demonstrated improvements in anxiety and depression relative to those receiving cannabis with no THC.</td>
</tr>
<tr>
<td>Ware et al., 2010</td>
<td>23 (52)</td>
<td>Quebec, Canada</td>
<td>Patients from a specialized clinic</td>
<td>Chronic neuropathic pain</td>
<td>Randomized controlled trial</td>
<td>Participants who used CTP demonstrated outcomes for treatment completion and progress at discharge (69%) that were comparable or superior to a comparison groups of non-CTP users in treatment (41%). CTP users did not differ from controls with regard to neurocognitive functioning at one-year follow-up. Participants receiving the highest dose of THC demonstrated improvements in anxiety and depression relative to those receiving cannabis with no THC.</td>
</tr>
<tr>
<td>Walsh et al., 2013</td>
<td>628 (29)</td>
<td>Canada, National</td>
<td>Self-identified from community, and dispensary</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (3)</td>
<td>Participants who used CTP demonstrated outcomes for treatment completion and progress at discharge (69%) that were comparable or superior to a comparison groups of non-CTP users in treatment (41%). CTP users did not differ from controls with regard to neurocognitive functioning at one-year follow-up. Participants receiving the highest dose of THC demonstrated improvements in anxiety and depression relative to those receiving cannabis with no THC.</td>
</tr>
<tr>
<td>Webb & Webb, 2014</td>
<td>94 (no data)</td>
<td>Hawaii, US</td>
<td>Medical evaluations of patients seeking CTP</td>
<td>Diverse medical conditions</td>
<td>Cross-sectional (3)</td>
<td>Reported mental health benefits of CTP use included relief from anxiety (56%), and depression (67%). Reported mental health benefits of CTP use included relief from anxiety and stress (50%), and relief from depression (7%).</td>
</tr>
<tr>
<td>Woolridge et al., 2005</td>
<td>523 (8)</td>
<td>London, UK</td>
<td>Patients from a general clinic</td>
<td>HIV</td>
<td>Cross-sectional (4)</td>
<td>Reported mental health benefits of CTP use included relief from anxiety (61%), and relief from depression (45%).</td>
</tr>
</tbody>
</table>

Note: Ratings provided for cross-sectional studies (/10).
The association between NMC and elevated levels of concurrent use of other substances is robust, although evidence regarding the direction of the association is equivocal. A systematic review of longitudinal outcomes among youth reported that CU is associated with the self-reported use of other drugs (Macleod et al., 2004). Several studies have suggested that NMC precedes use of other illicit drugs (Lynskey et al., 2012; Swift et al., 2012), leading to proposals that cannabis acts as a “gateway” to the use of other substances (Kandel, 2003). However,
the available evidence does not provide consistent support for this pattern. Results from a large cross-national study suggest that the gateway archetype manifests indirectly through common factors, and that hypothesized patterns of gateway NMC do not generalize across contexts (Degenhardt et al., 2010). Similarly, other studies indicate that apparent gateway effects reflect underlying propensities and environmental factors (Tarter, Vanyukov, Kirisci, Reynolds, & Clark, 2006; Tarter et al., 2012; Morral, McCaffrey, & Paddock, 2002). With regard to tobacco use, a recent review concluded that whereas tobacco use was associated with worse outcomes among cannabis users, NMC did not contribute to negative outcomes among tobacco users (Peters, Budney, & Carroll, 2012).

In contrast to the proposition that cannabis may serve as a gateway is an emerging stream of research which suggests that cannabis may serve as an “exit drug”, with the potential to facilitate reductions in the use of other substances (Lucas et al., 2013; Reiman, 2009). According to this perspective, cannabis serves a harm-reducing role by substituting for potentially more dangerous substances such as alcohol (Mikuriya, 2004) and opiates (Lucas, 2012; Ramesh, Owens, Kinsey, Cravatt, Sim-Selley & Lichtman, 2011). Four quantitative cross-sectional studies of CTP have reported the use of cannabis as a substitute for prescription drugs, alcohol, and other substances (Lucas et al., 2015; Reiman, 2007, 2009; Reinharz, Nunnberg, Lanthier, & Heddeston, 2011), and a study of cannabis using individuals drawn from a lower-SES urban clinic reported that who are authorized to use CTP demonstrated lower rates of risky use of alcohol, tobacco, and other substances (Richmond et al., 2015). Cannabis substitution has also been identified in community samples (Model, 1993), and among opiate users (Scavone, Sterling, Weinstein, & Van Bockstaele, 2013). Users of CTP note fewer side-effects, less withdrawal, and greater effectiveness as reasons for substituting for prescription medications such as opiates (Lucas et al., 2015; Reiman, 2009). Cannabis substitution may underlie reduced opioid overdose and alcohol-related traffic fatalities in districts that have adopted regulations to facilitate use of CTP (Anderson, Hanson, & Rees, 2013; Bachhuber, Saloner, Cunningham, & Barry, 2014). A recent examination of cannabis substitution for alcohol noted that cannabis met nearly all of the criteria required for consideration as a substitute therapy (Subbaraman, 2014). However, the effectiveness of CTP for problematic substance use has not been tested. Clinical trials in this area will be informative, as will the results of naturalistic examinations of the impact of ongoing expansions of CTP legalization on rates of use of other substances. Pending such findings, extant evidence appears sufficient to suggest that the consideration of the impact of CTP on the broader penumbra of addiction should entertain the potential for positive outcomes related to substitution of cannabis for potentially more dangerous substances.

The impact of CTP use on treatment for addictions is of concern to clinicians, as CTP use may continue during treatment for problematic use of other substances. Although some health care providers and organizations have established policies to accommodate CTP use (Coulls, 2014), norms in this area have yet to be established, and CTP may conflict with approaches that maintain a strict prohibition on NMC (e.g., Alcoholics Anonymous; Barcella, 2013). Evidence pertaining to this important issue is not robust. A study of co-use of tobacco and cannabis in adolescents and young adults reported indeterminate associations with quit attempts/relapse (Ramo, Liu, & Prochaska, 2012), and a small, low-quality study of a substance use treatment sample reported that CTP did not interfere with treatment effectiveness, and was associated with completion or satisfactory progress at discharge and generally good outcomes (Swartz, 2010).

Research on the influence of NMC on substance use treatment is complicated by traditional prohibitions on such use during treatment for other substances, and we did not identify any reviews of this subject. The results of the few studies to have undertaken such an examination are equivocal; two clinical trials of opiate maintenance therapy (Epstein & Preston, 2003; Hill et al., 2013) have concluded that NMC was not associated with treatment retention or compliance, whereas other studies have reported a negative association between NMC and maintenance of abstinence from other substances (Mojarrad, Samet, Cheng, Winter, & Saizt, 2014; Wasserman, Weinstein, Havassy, & Hall, 1998). In general, findings regarding the influence of NMC on addictions treatment are equivocal and substantial contextual differences complicate generalizing to CTP.

In sum, diverse cross-sectional studies have identified cannabis as a potential substitute for other psychoactive substances, and preliminary results suggest that CTP may not interfere with substance use treatment. Indeed, substitution effects suggest that, in some circumstances, CTP may be protective for the problematic use of other substances. Ultimately, longitudinal studies and clinical trials are required to specify the impact of CTP on addiction and treatment. Pending such research, clinicians should consider both harms and benefits of CTP so as to not unnecessarily add CTP to the barriers to accessing treatment for problematic substance use.

3.1.2. Anxiety
Relaxation and relief of anxiety are among the most widely reported motives for both CTP and NMC. Evidence from cross-sectional studies is consistent regarding the anxiolytic effects of CTP. Our search identified 8 cross-sectional studies reporting relief of anxiety as a primary or secondary benefit of CTP (Bonn-Miller, Babson and Vandrey, 2014; Grella, Rodriguez, & Kim, 2014; Nunnberg, Klimer, Pacula, & Burgdorf, 2011; Ogborne, Smart, Weber, & Birchmore-Timney, 2000; Swift, Gates, & Dillon, 2005; Walsh et al., 2013; Webb & Webb, 2014; Woolridge et al., 2005). Notably, one cross-sectional study reported retrospective reports that symptoms of anxiety returned upon cessation of use (Swift et al., 2005).

The search identified two reviews of NMC and anxiety. A narrative review highlights the complexity of the association, noting that cannabis is characterized by both anxiogenic and anxiolytic properties (Crippa et al., 2009), and attributes anxiogenic effects to THC given the demonstrated anxiolytic effects of CBD (Crippa et al., 2009; Zuardi et al., 2006). A more recent meta-analysis identified a small positive association between anxiety and NMC (Kedzior & Laeber, 2014). These relations are likely due to underlying associations between anxiety-specific vulnerability factors and NMC (e.g., Johnson, Mullin, Marshall, Bonn-Miller, & Zvolensky, 2010; Zvolensky et al., 2009). Indeed, evidence pertaining to the direction of these associations is equivocal, as some longitudinal studies report that frequent NMC use precedes anxiety disorder (Hayathakshh et al., 2007; Zvolensky et al., 2008), others show precedence of anxiety (Wittchen et al., 2007), and others report no association (McGee, Williams, Poulton, & Moffitt, 2000; Windle & Wiesner, 2004). Anxiety may also manifest as a component of the cannabis withdrawal syndrome, which includes nervousness, restlessness, irritability, and sleep difficulties that typically begin 1–3 days post-cessation, peak in a week, and last up to 28 days (Budney, Moore, Vandrey, & Hughes, 2003; Budney, Hughes, Moore, & Vandrey, 2004). Awareness of the anxiogenic effect of cannabis withdrawal may be important when evaluating or treating anxiety among CTP users, as symptoms may be associated with emergent symptoms of withdrawal association with fluctuations in levels and frequency of use.

The significance of NMC for understanding pathological anxiety appears to vary across disorders, and considerable attention has been directed at Social Anxiety Disorder (SAD) and Posttraumatic Stress Disorder (PTSD). With regard to SAD, socially anxious individuals are more likely than individuals with other anxiety disorders to use cannabis to relieve anxiety symptoms (Buckner et al., 2008). We found no research that specifically examined social anxiety among CTP users. Studies of NMC among nonclinical samples suggest that cannabis use among the socially anxious may be associated with cannabis-related problems (Buckner, Bonn-Miller, Zvolensky, & Schmidt, 2007; Buckner, Heimberg, Matthews, & Silgado, 2012; Buckner, Mallott, Schmidt, & Taylor, 2006; Buckner & Schmidt, 2008; Buckner, Schmidt,
Bobadilla, & Taylor, 2006; Buckner, Zvolensky, & Schmidt, 2012). A large epidemiological study found that SAD typically preceded the development of a cannabis use disorder (CUD) and that the co-occurrence of the disorders resulted in poorer outcomes relative to either SAD or CUD on their own (Buckner, Heimberg et al., 2012). However, a recent study indicated that psychiatric outpatients with comorbid SAD and CUD reported better physical functioning than did those with SAD alone (Tepe, Dalrymple, & Zimmerman, 2012).

Recent research suggests a potential therapeutic application for cannabinoids in SAD (Schier et al., 2012); administration of CBD is associated with decreased subjective anxiety among SAD patients (Crippa, Zuardi, & Hallak, 2010; Crippa et al., 2011), and with decreased cognitive impairment, negative evaluations, and anxiety in a simulated public speaking task (Bergamaschi et al., 2011). In sum, research on cannabis use and SAD reports both benefits and harms, complicating the evaluation of the potential impact of CTP on social anxiety.

Although recent nosology distinguishes PTSD from anxiety disorders (APA, 2013), PTSD has traditionally been conceptualized as an anxious condition (APA, 2000). Increasingly, CTP is being recognized as an approved indication for the treatment of symptoms associated with PTSD. Search identified four studies of CTP in the context of PTSD (Bonn-Miller, Babson et al., 2014; Bohnert et al., 2014; Greer, Grob, & Halberstadt, 2014). These studies suggest that a substantial portion (19%) of CTP users report use to manage PTSD (Bonn-Miller, Boden et al., 2014), and that this use is associated with facilitation of sleep, and coping with negative affect (Bonn-Miller, Babson et al., 2014). Similarly, a study of first-time CTP patients seeking treatment for non-PTSD conditions reported that nearly 25% screened positive for a lifetime diagnosis of PTSD (Bohnert et al., 2014). The relations between cannabis use and PTSD have not been the subject of review; however, epidemiological work indicates positive associations between PTSD and NMC among general (Cougle, Bonn-Miller, Vujanovic, Zvolensky, & Hawkins, 2011; Keworkian et al., 2015) and specialty populations (Bonn-Miller, Harris, & Trafont, 2012). Studies of NMC also indicate that individuals with PTSD symptoms use cannabis to cope with hyperarousal (Bremner, Southwick, Darnell, & Charney, 1996; Bonn-Miller, Vujanovic, & Drescher, 2011) and sleep difficulties (Vandrey, Babson, Herrmann, & Bonn-Miller, 2014). A PET study identified increased cannabinoid receptor availability among individuals with PTSD, suggesting a mechanism for the benefits of CU for some PTSD symptoms (Neumeister et al., 2013).

Research on the efficacy of cannabis for the treatment of PTSD is still in its infancy; however preliminary results are promising. Oral THC and synthetic cannabinoids have demonstrated effectiveness for improving sleep duration and quality, and reducing nightmares and daytime flashbacks among treatment-resistant patients (Fraser, 2009; Roitman, Mechoulam, Cooper-Kazaz, & Shalev, 2014). A recent observational study reported that among a sample of combat veterans, cannabis use was associated with a retrospective self-reported 75% reduction in re-experiencing, avoidance, and arousal symptoms of PTSD (Greer et al., 2014), and a case report and review of treatment called for further research into the therapeutic effectiveness of CTP for PTSD (Passie, Emrich, Karst, Brandt, & Halpern, 2012). Conversely, a recent observational study of PTSD veterans in treatment reported that cannabis use was associated with worse PTSD symptoms following discharge from treatment (Wilkinson, Stefanovics, & Rosenheck, 2015). Notably, there are a number of limitations associated with extant studies, including small samples, retrospective reporting, cross-sectional design, and lack of placebo control. At the time of this writing, researchers in Canada and the US are preparing randomized placebo-controlled clinical trials to evaluate this psychiatric application of CTP (Golgowksi, 2014; Leung, 2014). Importantly, evidence also cautions that individuals with PTSD who develop CUDs may later experience diminished benefit from traditional PTSD treatments (Bonn-Miller, Boden, Vujanovic, & Drescher, 2013), heightened withdrawal during a quit attempt (Boden, Babson, Vujanovic, Short, & Bonn-Miller, 2013), and poor short-term cessation outcomes (Bonn-Miller, Moos, Boden, Kimerling, & Trafont, 2015). Given these potential consequences, individuals with PTSD who are interested in or already using cannabis should be monitored for development of CUDs.

3.1.3. Depression

Relief of negative mood is a prominent motive for cannabis use (Simons, Correia, Carey, & Borsari, 1998), and early European accounts of CTP highlight antidepressant effects (Moreau, 1845). We identified 9 cross-sectional studies of CTP and depressed mood, 7 of which noted mood improvement among the salutary effects of CTP. These effects appear to be consistent across condition and were evident in studies that examined specific patient groups such as pain (Ware et al., 2010), HIV (Bedi et al., 2010), and multiple sclerosis (Page & Verhoef, 2006), and in studies that examined CTP use across diverse conditions (Aggarwal et al., 2012; Bonn-Miller et al., 2013; Harris et al., 2000; Nurnberg et al., 2011; Osborne et al., 2000; Walsh et al., 2013). One study reported a positive association between depression severity and problematic CTP use, and suggested that this association might reflect increased CTP use to address depression-related sleep disturbance (Babson et al., 2013).

We identified 4 reviews of NMC and depression, including a recent methodologically high-quality systematic review and meta-analysis which indicated that cannabis users are at a modestly increased risk of developing depression compared to controls (Lev-Ran et al., 2014). Earlier reviews drew similar conclusions, reporting that NMC was associated with increased risk of depression and depressive symptoms (Degenhardt et al., 2003; Moore et al., 2007). Similarly, a review of depression in adolescents reported a small association between cannabis use and depression severity (Cairns, Yap, Pilkinson, & Jorn, 2014). Cohort studies also suggests that risk is increased for more frequent users, and that NMC is associated with depression after controlling for potential confounding variables (Bovasso, 2001; Degenhardt et al., 2003; Horwood et al., 2012). However, authors note that these findings do not indicate a causal pathway, and do not preclude alternative explanations such as social factors (Degenhardt et al., 2003; Lev-Ran et al., 2014), and adverse psychosocial consequences (e.g., less education, unemployment, criminal activity) that often co-occur with NMC (Marmorston & Iacono, 2011). Although reviews generally indicate a positive relationship between NMC and depression, a few cross-sectional studies report the opposite pattern of association; cannabis users report less negative affect than non-users (Denson & Earleywine, 2006), and frequent use is associated with a decreased likelihood of experiencing a major depressive event among those experiencing social pain (Deckman, DeWall, Way, Gilman, & Richman, 2013).

In addition to research suggestive of depressogenic effects of NMC, the development of a distinct depression-like “amotivational syndrome” characterized by lethargy, apathy, and decreased productivity has long been a proposed consequence of NMC (McGlothlin & West, 1968). However, despite generating considerable research interest, concerted efforts have failed to identify a cannabis-specific motivational syndrome (Campbell, 1976; Kuper, Detre, Koral, & Fajans, 1973), although recent findings of attenuated dopamine synthesis and reactivity suggest a mechanism by which NMC may be associated with behavioral hypoactivity (Bloomfield, Morgan, Kapur, Curran, & Howse, 2014; Volkow et al., 2014).

Anecdotal reports suggest that some individuals use cannabis to effectively treat symptoms of bipolar disorder (BD) (Grinspoon & Bakalar, 1998) and a narrative review suggested therapeutic potential of cannabis and its constituents for managing both manic and depressive symptoms (Ashton, Gallagher, Moore, & Young, 2005). In addition, two studies of individuals with BD, report better neurocognitive functioning in cannabis users relative to non-users (Braga, Burdick, DeRosse & Malhotra, 2012; Ringen et al., 2010). The association between NMC and BD has been subject to three reviews which concluded that NMC may prolong or worsen manic states (Gibbs et al., 2015), is
associated with increased odds of suicide attempts (Carrà, Bartoli, Crocamo, Brady, & Clerici, 2014) and with earlier age of BD onset (Bally, Zulino, & Aubry, 2014). Studies also suggest that CUDs in BD patients are associated with a number of poor treatment outcomes, including psychosis (van Rossum, Boomsma, Tenback, Reed, & van Os, 2009), mixed episodes (Agrawal, Nurnberger, & Lynskey, 2011), and a more severe course of illness (Lev-Ran, Le Foll, McKenzie, George, & Rehm, 2013; van Rossum et al., 2009).

In sum, the literature germane to use of CTP and mood disorders is equivocal. Several cross-sectional surveys suggest that CTP is used to improve mood and well-being among individuals with medical conditions. In contrast, NMC research reports small positive associations between use and depression, with unclear directionality of effects. Research related to BD is scant and similarly inconclusive. However, evidence of associations between non-therapeutic use and negative outcomes in BD suggests that caution may be warranted among CTP users with BD.

3.1.4. Psychosis

Search revealed no systematic examinations of the association between CTP use and psychosis, and one case study in which CTP use appeared to induce psychosis in an individual with chronic pain and PTSD (Pierre, 2010). In contrast to the dearth of literature on CTP, the association between NMC and psychosis is the subject of a robust literature that has been extensively reviewed, including recent meta-reviews; therefore, to avoid redundancy we limited our review of psychosis to articles published after 2010. Meta-analysis suggests that CUDs are common among individuals with schizophrenia, and in particular, in young males experiencing first-episode psychosis (Koskinen, Löhönen, Koppel, Isolainen, & Miettunen, 2010). A synthesis of five previous reviews reported a consistent association between cannabis use and psychotic symptoms (Minozzi et al., 2010). This finding was highlighted in another meta-review of risk factors of schizophrenia, confirming the association between NMC and psychosis (Matheson, Shepherd, Laurens, & Cart, 2011). A recent epidemiological review noted that evidence from case-control, cross-sectional, and cohort studies supports an association between NMC and development of later psychosis and schizophrenia (Gage, Hickman, & Zammit, 2015). Meta-analyses also suggest an earlier onset of psychosis for cannabis users relative to non-users (Large, Sharma, Compton, Slade, & Niessen, 2011). Longitudinal studies of NMC and schizophrenia have demonstrated heightened risk of developing schizophrenia among frequent users (Shapiro & Buckley-Hunter, 2010; Malone, Hill, & Rubino, 2010) and other studies demonstrated that these association were generally consistent after controlling for other substance use and prior psychiatric illness (Kristensen & Cadenhead, 2007; Radhakrishnan, Wilkinson, & D’Souza, 2014). Two systematic reviews reported that cannabis use may alter brain structure in schizophrenia (Malchow et al., 2013; Rapp, Bugra, Riecher-Rossler, Tamagni, & Borgwardt, 2012), although the influence of use on psychotic disorders is strongest among individuals with genetic vulnerability to psychosis (McLaren, Silins, Hutchinson, Mattick, & Hall, 2010; Malone et al., 2010; Proal, Fleming, Galvez-Buccollini, & Delisi, 2014).

Studies that have directly administered THC have provided further evidence of psychotogenic effects. Intravenous administration of THC induces transient psychotic symptoms among healthy individuals (D’Souza et al., 2004), and transiently exacerbates symptoms among individuals with schizophrenia (D’Souza et al., 2005; Morgan & Curran, 2008). However, studies that administer THC in isolation may not accurately mirror the effects of the diverse cannabinoid profiles that characterize the products favored by CTP users. Indeed, whereas THC is psychotomimetic, CBD has demonstrated antipsychotic properties which may counteract or attenuate THC effects (Schubart et al., 2014). Indeed, a recent systematic review of human studies suggested that CBD counteracts symptoms of psychosis and the cognitive impairment associated with THC administration, and notes the potential safety and efficacy of CBD as an antipsychotic compound (Isieger & Bossong, 2015).

Although evidence of an association between cannabis and psychosis is robust, the extent to which cannabis use plays a causal role in the development of psychotic disorders has not been definitively determined (McLaren et al., 2010). Specifically, evidence of a causal relation is obscured by plausible third factors such as polydrug use and socioeconomic status (Cantor-Graae, 2007; Matheson et al., 2011), and by possible reverse causation whereby individuals at risk for developing schizophrenia use cannabis to alleviate prodromal symptoms (Moore et al., 2007). Indeed, the observation over the past several decades that rates of schizophrenia have remained constant despite dramatic increases in cannabis use presents a compelling counter to causal models of cannabis use and schizophrenia (Rajakalpe & Rodrigo, 2009). Nonetheless, the available evidence suggests that CTP users with psychotic disorders, and those at increased genetic risk of developing such disorders, should be cautioned regarding the use of cannabis. At-risk users of CTP who are reluctant to discontinue cannabis use should be counseled regarding the potential increase of risk associated with high THC strains of cannabis, and monitored closely for the development or exacerbation of psychotic symptoms.

3.2. Psychological assessment

3.2.1. Neurocognition

The psychoactive effects of cannabis are primarily attributable to THC binding to cannabinoid receptors concentrated in brain regions important for cognition (e.g., hippocampus, striatum, and cingulate; Herkenham et al., 1990); thus, it is not surprising that alterations in neurocognitive functioning are among the most well-documented side-effects of regular cannabis use (Gonzalez, 2007; Hall, 2015). One high-quality prospective cohort study of CTP for management of non-cancer chronic pain included detailed assessment of neurocognitive performance. That study, which followed over 200 participants using a median of 2.5 g daily, reported no significant differences in neurocognitive functioning between cannabis users and controls at one year post-study (Ware, Wang, Shapiro, & Collet, 2015). Although these results represent the best evidence to date regarding the cognitive effects of CTP, patient populations who already suffer from neurocognitive deficits (e.g., multiple sclerosis, HIV, epilepsy) may experience more pronounced effects. Specifically, several lab-based studies report that administration of THC or a history of cannabis use, are associated with salient neurocognitive deficits among individuals with HIV (Gonzalez, Schuster, Vassileva, & Martin, 2011), multiple sclerosis (Honarmand, Tierney, O’Connor, & Feinstein, 2011), and schizophrenia (D’Souza, Sewell, & Ranganathan, 2009).

With regard to NMC, four reviews have summarized lab-based administration studies of the acute neurocognitive effects of THC and cannabis (reviewed in Crane, Schuster, Fusz-Pol, & Gonzalez, 2013; Crean, Crane, & Mason, 2011; Gonzalez, 2007; Ranganathan & D’Souza, 2006). It is important to consider that studies reviewed often differ with regard to dosing, cannabis strain, route of administration, and whether THC or herbal cannabis was administered. This complicates generalizability, as these factors may influence the degree of neurocognitive deficits experienced during the approximately 4 h of acute intoxication that follow cannabis administration. With that in mind, evidence suggests acute deficits in memory, with more mixed findings for decision-making and inhibitory control, and some individual studies reporting deficits in attention and working memory (Curran, Brignell, Fletcher, Middleton, & Henry, 2002; D’Souza et al., 2004). These findings suggest that regular CTP use may have a measurable impact on everyday neurocognitive functioning. However, there is evidence that frequent cannabis use, which characterizes many CTP users, may result in the development of tolerance to acute effects, and as such experimental findings might overestimate functional impairment (Hart, van Gorp, Haney, Foltin, & Fischman, 2001).

The potential for non-acute, longer-lasting, or permanent changes in neurocognitive functioning resulting from cannabis use are of
considerable concern to CTP users and health care providers. Two meta-analyses of NMC have addressed this issue, the first of which concluded that statistically significant deficits of approximately 1/4 of a standard deviation were evident in episodic memory, but no differences emerged in other neurocognitive ability areas (Grant, Gonzalez, Carey, Natarajan, & Wolfson, 2003). A more recent meta-analysis found poorer performance among cannabis users in terms of abstraction/executive functioning, attention, memory (forgetting, retrieval), learning, verbal abilities, and motor skills, but reported no impact on reaction time, or perceptual-motor abilities (Schreiner & Dunn, 2012). Importantly, when only studies that compared cannabis users to non-users after 25 days or more of supervised abstinence were considered, there were no lasting residual effects on performance. This recovery of neurocognitive functions after abstinence mirrors studies showing reversibility of cannabinoid receptor downregulation from chronic cannabis exposure (Hirvonen et al., 2012).

Although the aforementioned studies suggest no evidence of long-term, persistent neurocognitive deficits after cessation of regular cannabis use among adults, the characterization of neurocognitive consequences of use in adolescence remains an area of active research and debate. For example, recent reports from a longitudinal study that identified global declines in IQ and neurocognitive functioning associated with regular and persistent cannabis use during adolescence (Meier et al., 2012) garnered extensive attention, and a substantial literature suggests that adolescent-onset use may exacerbate NMC-related neurocognitive dysfunction (Ehrenreich et al., 1999; Fontes et al., 2011; Gruber, Sagar, Dahlgren, Racine, & Lukas, 2012; Pope et al., 2003). However, two recent high-quality studies suggest that prior epidemiological studies may have overstated the negative cognitive impact of adolescent NMC use (Gruber, Sagar, Dahlgren, Racine, & Lukas, 2012; Pope et al., 2003). Importantly, when only studies that compared cannabis users to non-users after 25 days or more of supervised abstinence were considered, there were no lasting residual effects on performance. This recovery of neurocognitive functions after abstinence mirrors studies showing reversibility of cannabinoid receptor downregulation from chronic cannabis exposure (Hirvonen et al., 2012).

3.2.2. Risk of harm to self

In addition to the assessment of cognitive functioning mental health clinicians are regularly called on to assess risk of harm to self (i.e. suicide, self-injury) or to others (i.e. interpersonal violence). With regard to risk for self-harm the association between CTP and suicide risk has not been examined. However, preliminary evidence from US states that allow CTP indicates no association between the number of medical cannabis registrants and rates of completed suicide, and tentatively suggests that CTP is associated with a decreased suicide among young adult men (Anderson, Rees, & Sabia, 2014; Rylander, Valdez, & Nussbaum, 2014).

We identified four reviews of NMC and suicide risk. These reviews report conflicting findings, and evidence for a relation between NMC and suicide is inconclusive (Calabria, Degenhardt, Hall, & Lynskey, 2010; Moore et al., 2007; Serafini et al., 2012; Wilcox, Conner, & Caine, 2004). Many studies do not control for confounding variables (Calabria et al., 2010; Moore et al., 2007). The conclusions of studies that consider potential confounds are equivocal; some report that NMC is not associated with risk of suicidal ideation or attempts (Price, Hemmingsson, Lewis, Zammit, & Allebeck, 2009; Rasic, Weershingh, Asbridge, & Langille, 2013), whereas other studies indicate an association between NMC and subsequent suicidal ideation and attempts even after controlling for potential confounds (Beautrais, Joyce, & Mulder, 1999; Chabrol, Chauchard, & Girabet, 2008; Fergusson, Horwood, & Swain-Campbell, 2002; van Ours, Williams, Fergusson, & Horwood, 2013). Accordingly, the most recent of these reviews concluded that further research is required to delineate the distinct contribution of NMC across a complex web of risk factors (Serafini et al., 2012).

3.2.3. Risk of harm to others

With regard to harm to others, cultural lore suggests a positive relation between cannabis and aggression (e.g. Reefer Madness; Hirlin & Gasnier, 1936); however, evidence bearing on this association is inconclusive. Our search identified no studies of CTP and violence, and 3 reviews of NMC and violence (Abel, 1977; Moore & Stuart, 2005; Moore et al., 2008). These reviews highlight discrepancies in the literature; whereas some research has suggested that NMC is positively associated with violence due to alterations in cognitive functioning (Moore & Stuart, 2005), negative consequences of withdrawal (Kouri, Pope, & Lukas, 1999), or associations with deviance and risk-taking behavior (Harrison, Erickson, Adlaf, & Freeman, 2001), other research has concluded that cannabis is not associated with violence because of its sedative and quieting nature, reducing irritability and hostility (Salzman, Van der Kolk, & Shader, 1976), and nonviolent expectancies (Alfonso & Dunn, 2007). Directionality and potential confounds further obscure the nature of the association, as cannabis users report use to attenuate aggression (Arendt et al., 2007), and use was unrelated to violence after controlling for other factors among patients in substance use treatment (Macdonald, Erickson, Wells, Hathaway, & Pakula, 2008).

The results of longitudinal studies of NMC and violence are also inconsistent. A study of consecutive births reported that cannabis dependence was uniquely associated with increased violence (Arseneault, Moffitt, Caspi, Taylor, & Silva, 2000). However, a comparable study reported no association between NMC and violence when controlling for other factors (Pedersen & Skardhamar, 2009). A longitudinal study of inpatient PTSD veterans reported that initiation of cannabis use while in treatment was associated with increased violent behavior following discharge (Wilkinson et al., 2015). A laboratory-based study found that long-term users are more aggressive during a period of abstinence (Kouri et al., 1999) which is consistent with proposals that cannabis withdrawal may underlie the associations with aggression (Hoaken & Stewart, 2003; Moore & Stuart, 2005; Moore et al., 2008). In contrast to evidence of a positive association between NMC and violence, a large longitudinal cohort study of married couples reported that frequent NMC use was associated with less intimate partner violence, with couples exhibiting the lowest rates of violence (Smith et al., 2014). In sum, the association between cannabis use and violence remains obscure, is likely small when present, and may vary according to types of violent behavior. As such, although no research has
examined CTP and violence, it appears unlikely that CTP use represents a notable risk factor for harm to others.

4. Summary

The reemergence of the therapeutic use of cannabis leads to several points of interface with domains related to clinical psychology and other mental health professions. Our review focused on what we feel are the most central areas in which CTP presents an issue of interest to clinical judgment or practice; implications for clinical disorders of adulthood (i.e. DSM-V, Axis I), assessment of cognitive functioning, and of risk of harm to self and others. The literature on CTP and mental health is generally underdeveloped. Research focusing on non-medical use is better developed but remains equivocal with regard to many clinical implications, and extension to CTP is problematic. In sum, further research directed explicitly at the mental health consequences of CTP is required to make more definitive statements. Nonetheless, the extant literature does allow for some informed, if preliminary, observations.

Substance use disorders are the category of psychopathology with the most robust literature relevant to CTP. Users of CTP report that cannabis may serve as a substitute for both pharmaceutical and recreational drugs, and that it may be preferred due to its perceived lack of harm, more acceptable side effect profile, and relative effectiveness. Moreover, population-level analyses suggest that cannabis substitution may have public health benefits. In contrast, research on NMC has largely focused on increased risk for the use of other substances and influences addiction treatment outcomes. However, research on the influence of NMC on the use of other substances is equivocal, as are findings regarding the influence of NMC on treatments taken. Taken as a whole, the literature suggests that evaluating the influence of CTP use on use of other substances should consider potential for harm reduction and thereby extend beyond traditional conceptualization of cannabis use as inherently unhealthy and maladaptive.

Anxiety disorders are another area in which the emergence of CTP requires re-evaluation of cannabis use consequences. Users of CTP report anxiolytic motives, and an emerging literature suggests potential for treating SAD and PTSD. However, research on anxiety disorders is scant and the comparative effectiveness of cannabis relative to other pharmacological treatments for anxiety has yet to be determined. Evidence bearing on the association between CTP use and mood disorders is also underdeveloped. Although CTP users widely report using CTP to improve mood and alleviate negative affect, the effectiveness of CTP in that regard remains obscure. In general, further research is needed to assess the effects of CTP on anxiety and affective disorders, as the relative harms and benefits likely vary across disorders and according to individual differences.

In contrast to areas where research suggests the potential for both attenuation and exacerbation of psychopathology, evidence on cannabis and psychosis largely indicates that use is associated with negative outcomes. This is particularly true with regard to cannabis that contains high concentrations of THC. However, pre-clinical evidence suggests that the cannabinoid CBD may have antipsychotic properties, and future research that focuses more specifically on isolated CBD, or on herbal cannabis strains that are characterized by high levels of CBD and lower THC, may elucidate the medicinal potential of CTP for psychotic disorders. Indeed, the therapeutic implications of variability in cannabinoid content across strains of cannabis may have implication beyond psychosis, and further research in this area is expected in the near future. However, pending such increased specificity, CTP use may represent a risk for patients who exhibit psychotic symptoms or are otherwise vulnerable.

With regard to assessment, evidence does not suggest that CTP is a distinct risk factor for harm to self or others. The influence of CTP use on cognitive assessment, however, is somewhat more complex. Intensity and duration of the acute neurocognitive effects of CTP use vary widely due to factors such as mode of administration, user tolerance, dosage, and cannabinoid content. However, research has generally converged to document acute and non-acute deficits in learning and memory as well as varied deficits in other neurocognitive domains, and as such frequent CTP users may experience these deficits for a considerable proportion of their daily life. However, tolerance may attenuate these deficits, and with regard to longer-term outcomes, research suggests that deficits appear to recover following a period of abstinence.

In sum, the implications of CTP for mental health care appear to vary across conditions with potential for both benefits and harms. In this regard cannabis is similar to other psychoactive medicines. Health care providers should work to maximize positive outcomes by pursuing strategies to increase medication adherence, such as psychoeducation, ongoing assessment of motivations and barriers to adherence, and attention to the therapeutic alliance (Julius, Novitsky, & Dubin, 2009). Maintenance of alliance during CTP-related interactions may be particularly important as poor patient—caregiver communication has been identified as a potential barrier to safe access to CTP (Belle-Isle et al., 2014).

Our confidence in the conclusions of this review is constrained by the limitations of the literature we reviewed. Nearly all studies that directly examined CTP were cross-sectional studies of low to medium methodological quality, and extrapolation from the more developed literature on NMC is problematic. The more robust elucidation of the consequences of CTP for psychopathology will require focused longitudinal cohort studies of CTP users and clinical trials using well-characterized cannabis. Our conclusions are further limited by our decisions to not include examination of the grey literature in our review, and our exclusive reliance on published reports makes our interpretations vulnerable to the influence of publication bias (Shea et al., 2007). Furthermore, the diversity of approaches we surveyed did not facilitate estimates of effect size and thus limited our ability to empirically compare results across studies.

There are also several topics which we do not address but which nonetheless fall within the purview of mental health, and merit the attention of future investigations. Notable among these are the potential impacts of CTP use on disorders of eating and sleep. Given the centrality of the endogenous cannabinoid system in the regulation of appetite and sleep (Babson & Bonn-Miller, 2014; Watkins & Kim, 2015), it is likely that CTP use might have implications for these aspects of mental health. The influence of CTP use in behavioral medicine, particularly with regard to the treatment of chronic pain, also warrants systematic examination (Ilgen et al., 2013). Finally, the influence of CTP use on disorders that frequently emerge in youth, such as ADHD and autism, as well disorders of old age, including dementia, demand further attention. In general, the study of the mental health implications of the medicinal use of cannabis is in its infancy. We expect that increasing interest, accompanied by a more conducive research environment, will soon lead to the elucidation of outstanding issues, and thus facilitate the more informed assessment of the benefits and risks of using cannabis for therapeutic purposes.

Conflict of interest

Zach Walsh is Coordinating Principal Investigator on a clinical trial of cannabis that is sponsored by Tilray, a licensed producer of medical cannabis. Kim Crosby and Michelle Thiessen are paid by Tilray as graduate research assistants to Dr. Walsh in running that trial. Marcel Bonn-Miller has been a paid consultant for CW Botanicals, Tilray, and Aphria within the past 12 months, all of whom are producers of medical cannabis. Within the past 12 months, he has also served as a consultant for Insys Therapeutics and Zynervaba Pharmaceuticals. Dr. Bonn-Miller also serves on the boards of the International Cannabis and Cannabinoids Institute, Institute for Research on Cannabinoids, Realm of Caring Foundation, The Medical Cannabis Institute, and the Thomas Jefferson University Center for Medical
Cannabis Education and Research. All other authors declare that they have no conflicts of interest.

Contributors
Zach Walsh designed and initiated the review, and wrote the first draft. Raoul Gonzalez wrote portions of the first draft and provided several editorial reviews of the manuscript. Kim Crosby and Chris Carroll conducted literature searches, provided summaries of previous research studies and contributed to the writing of the first draft. Michelle Thiessen and Kim Crosby conducted literature searches and rated the studies for quality. Marcel Bonn-Miller provided several editorial reviews of the manuscript and contributed to writing of the first draft. All authors contributed to and have approved the final manuscript.

Acknowledgement
Preparation of this manuscript was supported in part by a grant to Zach Walsh from the Social Sciences and Humanities Research Council of Canada. The expressed views do not necessarily represent those of the Social Sciences and Humanities Research Council of Canada or of the U.S. Department of Veterans Affairs.

References

