
SDCTune: A Model for Predicting the SDC Proneness
of an Application for Configurable Protection

Qining Lu Karthik Pattabiraman
Department of Electrical and Computer Engineering,

UBC
{qining, karthikp}@ece.ubc.ca

Meeta S. Gupta Jude A. Rivers
Reliability- and Power-Aware Microarchitectures, IBM

T.J. Watson Research Center ⇤

{meetasgupta,juderivers}@gmail.com

Abstract
Silent Data Corruption (SDC) is a serious reliability issue in

many domains, including embedded systems. However, current
protection techniques are brittle, and do not allow programmers to
trade off performance for SDC coverage. Further, many of them
require tens of thousands of fault injection experiments, which are
highly time-intensive. In this paper, we propose an empirical model
to predict the SDC proneness of a program’s data called SDCTune.
SDCTune is based on static and dynamic features of the program
alone, and does not require fault injections to be performed. We
then develop an algorithm using SDCTune to selectively protect
the most SDC-prone data in the program subject to a given per-
formance overhead bound. Our results show that our technique is
highly accurate at predicting the relative SDC rate of an applica-
tion, and outperforms full duplication by a factor of 0.83 to 1.87x
in efficiency of detection (i.e., ratio of SDC coverage provided to
performance overhead).
Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Fault tolerance, Reliability, availability, and serviceability
Keywords Reliability, Compiler, Modeling

1. Introduction
Hardware errors are increasing due to shrinking feature sizes [3,

5]. Conventional hardware-only solutions such as guard banding
and hardware redundancy are no longer feasible due to power con-
straints. As a result, researchers have explored software duplica-
tion techniques to tolerate hardware faults [19]. However, generic
software solutions such as full duplication incur high power and
performance overhead, and hence there is a compelling need for
configurable, application-specific solutions for tolerating hardware
faults. This is especially so for embedded systems, which have to
operate under strict performance and/or power constraints, in order
to meet system-wide timing and energy targets.

Hardware faults can affect the running software in three ways:
(1) they may not have any effect on the application (benign/-

⇤ Meeta S. Gupta is currently on leave-of-absence from IBM Research,
USA, working on a temporary full-time supplemental research position at
IBM India Research Laboratory in Bangalore, India.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESWEEK’14, October 12 - 17 2014, New Delhi, India.
Copyright © 2014 ACM 978-1-4503-3050-3/14/10. . . $15.00.
http://dx.doi.org/10.1145/2656106.2656127

masked), (2) they may crash or hang the program, or (3) they
may lead to incorrect outputs, also called Silent Data Corruption
(SDCs). While crashes and hangs are important from an availabil-
ity perspective, SDCs are important from a reliability perspective
because they cause programs to fail without any indication of the
failure. Prior work [17, 24] has broadly focused on crashes and
hangs; therefore we focus on configurable techniques to reduce or
eliminate the number of SDCs in programs

Studies have shown that SDCs are caused by errors in a rel-
atively small proportion of programs’ data variables [9, 11, 23],
and by selectively protecting these SDC-prone variables, one can
achieve high coverage against SDCs. However, most prior work has
identified SDC-prone variables using fault injection experiments,
which are expensive for large applications [9, 11]. Other work [23]
focuses on Egregious Data Corruptions (EDC), which are a sub-
set of SDCs that cause unacceptable deviations in soft-computing
applications, i.e., applications with relaxed correctness properties.
For example, a single pixel being corrupted in a frame of a video
processing application would be an SDC but not an EDC, while
the entire frame being corrupted would be an EDC as it can cause
an unacceptable deviation. While their approach is useful for soft-
computing applications, it does not apply to general-purpose ap-
plications. Further, most of the prior approaches do not allow the
user to trade-off performance for reliability by selectively protect-
ing only a fraction of the SDC-prone variables to satisfy strict per-
formance constraints, especially for embedded systems. The only
exception that we are aware of is the work by Shafique et al. [21],
but their technique does not distinguish between SDC causing er-
rors and other failure causing errors.

In this paper, we propose SDCTune, a model to quantify the
SDC proneness of program variables, and develop a model-based
technique to selectively protect highly SDC-prone variables in the
program. An SDC prone variable is one in which a fault is highly
likely to result in an SDC, and hence needs to be protected. SD-
CTune uses only static and dynamic analysis to identify the SDC-
prone variables in a program, without requiring any fault injections
to be performed. Further, it allows users to configure the amount of
protection depending on the amount of performance overhead they
are willing to tolerate 1.

The main novelty of our approach is in the identification of
heuristics or features that correlate with highly SDC-prone program
variables. We extract these heuristics using fault injection experi-
ments on a small set of benchmark programs that we use for train-
ing purposes. We integrate the heuristics in SDCTune to quantify
the relative SDC proneness of a variable. While the initial identi-
fication of the heuristics used in SDCTune requires fault injection,
we do not need fault injection to apply SDCTune to new programs.

1 We call our model, SDCTune, as it allows tuneable protection.



In this paper, we target transient errors, and hence we focus on
error detection rather than recovery (as the program can be restarted
from a checkpoint to recover from a transient error). We use SDC-
Tune to identify SDC-prone variables in the program, and to derive
error detectors for the variables, subject to a given performance
overhead. Our detectors recompute the value of the chosen vari-
able(s) by duplicating their backward slice(s), and compare the re-
computed value with the original one. Any deviation between the
two values is treated as a successful error detection.

We make the following contributions in this paper:
• We develop heuristics to identify SDC-prone variables based on

an initial fault-injection study (Section 2). These heuristics are
based on static analysis and profile information (Section 3).

• We develop a model called SDCTune, based on the heuristics
developed to identify the relatively SDC-prone variables in a
program. We then propose an algorithm based on SDCTune to
derive error detectors that check the values of the SDC-prone
variables at runtime, subject to a performance overhead con-
straint specified by the programmer (Section 4).

• We evaluate SDCTune by using it to predict the overall SDC
proneness of a program relative to other programs. The results
show that SDCTune is highly accurate at predicting the overall
SDC proneness of a program relative to other programs. The
rank correlation coefficient between the predicted and observed
values ranges from 0.83 to 0.97 (Section 6).

• We evaluate the detectors inserted by our algorithm by perform-
ing fault-injection experiments on six different programs from
those used in our model extraction, for performance overhead
bounds ranging from 10% to 30%. The results show that our
detectors can achieve high detection coverage for SDC-causing
errors, for the given performance overhead, and achieves 0.83
to 1.87x higher efficiencies than both full duplication and hot-
path duplication (Section 6).

2. Initial Fault Injection Study
Because SDC failures are caused by faults that propagate to the

program’s output, the SDC proneness of an instruction depends on
how it propagates a fault, which in turn is determined by its data de-
pendencies. In this section, we empirically study how SDC prone-
ness of instructions is influenced by the data dependency chains.
We first define some terms we will use in the paper and formalize
the protection problem. We then present our fault model in Sec-
tion 2.2 and describe our fault injection experiment in Section 2.3.
The results of the experiment is discussed in Section 2.4, and will
be used in Section 3 to develop heuristics for estimating the SDC
proneness of program variables.
2.1 Terminology and Protection Model

We first define the following terms in this paper:
Overall SDC rate: This is the overall probability that a fault

leads to an SDC in the program. We denote this by P (SDC).
SDC coverage of an instruction: We define the SDC coverage

of an instruction I to be the probability that an SDC failure is
caused by a fault in instruction I’s result and thus can be detected
by protecting instruction I with a detector. This is denoted as
P (I|SDC).

SDC proneness per instruction: This is the probability that
a fault in instruction I leads to an SDC. This is denoted as
P (SDC|I).

Dynamic count ratio: This is the ratio of the number of dy-
namic instances of instruction I executed to the total number of
dynamic instructions in the program. This is denoted as P (I).

Our overall goal is to selectively protect instructions with de-
tectors, to maximize the SDC detection coverage for a given per-
formance cost budget. The SDC detection coverage of an instruc-

tion, P (I|SDC), represents the "fraction of SDCs" that can be de-
tected by protecting instruction I , and thus directly represents the
importance of the instruction I . Therefore, our goal is to maximize
the

P
I2inst set

P (I|SDC) subject to a certain
P

I2inst set

P (I)
specified by the user.

P
I2inst set

P (I|SDC) is the coverage of
SDC causing faults by protecting the instructions in set: inst set
while

P
I2inst set

P (I) is the number of dynamic instances of pro-
tected instructions and is proportional to the protection overhead.

As mentioned above, it is important to understand how P (I|SDC)
varies for each instruction in the program. One way to do this is
to perform random fault injection into the program and measure
P (I|SDC) for each instruction. However, it is difficult to directly
measure this probability for each instruction by random fault injec-
tion as each instruction may not be injected sufficient number of
times to obtain statistically significant estimates. Instead, we per-
form a fixed number of fault injections into individual instructions
to measure their SDC proneness, P (SDC|I). We then use Bayes’
formula to obtain P (I|SDC):

P (I|SDC) =
P (SDC|I)P (I)

P (SDC)
(1)

where,

P (SDC) =
X

I2prog

P (SDC|I)P (I) (2)

2.2 Fault Model
We consider transient hardware faults that occur in processors

and corrupt program data. Such faults are usually caused by elec-
trical noise, cosmic rays or temperature variation. These faults are
exacerbated by decreases in feature sizes and supply voltages. More
specifically, we focus on the faults that occur in processors’ func-
tional units and registers, (i.e., the ALUs, LSUs, GPRs, etc.) which
generally result in a corruption of the program data. However, we
do not consider the faults in caches or control logic. Architectural
solutions [14] such as ECC or parity can protect the chip from the
faults in the caches, while faults in the control logic usually trigger
hardware exceptions [27]. We do not consider faults in the pro-
gram’s code or program counter, as such faults can be detected by
control-flow checking techniques.

As in other work [8, 9, 23], we assume that at most one fault
occurs during a program’s execution. This is because transient
faults are rare relative to the execution times of typical programs.
2.3 Fault Injection Experiment

The goal of our fault injection experiment is to understand the
reasons for SDCs when faults are injected into the program. In other
words, we want to study the SDC proneness of instructions in the
program, and understand how it varies by instruction.

The fault injection experiment is conducted using LLFI, a pro-
gram level fault injection tool, which has been shown to be ac-
curate for measuring SDCs in programs [25]. LLFI works at the
intermediate representative (IR) level of LLVM compiler infras-
tructure [13], and enables the user to inject faults into the LLVM
IR instructions. Using LLFI, we inject into the result of a random
dynamic instruction to emulate the effect of a computational error
in the program. Specifically, we corrupt the instruction’s destina-
tion register by flipping a single bit in it (similar to what prior work
has done [8, 9, 23]). The main advantage of using LLFI is that it
allows us to map the faults back to the program’s IR and trace its
propagation in the program. This necessary for our analysis.

We use four benchmarks in this experiment, namely Bzip2,
IS, LU and Water-spatial. They are from SPEC[10], NAS[1] and
SPLASH-2[26] benchmark suites respectively. Note that these
benchmarks are only used for the initial fault-injection study - we
later derive and validate the model with a larger set of programs.



We choose a limited set of benchmarks in this study to balance
representativeness with time efficiency for fault injections.

We classify the outcome into four categories: (1) Crash, mean-
ing that the program threw an exception, (2) SDC, which means the
program’s output deviated from the fault-free outcome, (3) Hang,
which means the program took significantly longer to execute than
a fault-free run, and (4) benign, which means the program com-
pleted successfully and its output matched the fault-free outcome.
The above outcomes are mutually exclusive and exhaustive.

2.4 Injection Results
The results of our fault injection experiments show that the top

10% most executed instructions, or those on the hot paths of the
program, are responsible for 85% SDC failures on average. This
result is similar to that of prior work, which has also observed that a
small fraction of static instructions cause most SDCs [9]. However,
this does not mean that all the hot-path instructions should be
protected, as they incur high performance overhead when protected
(as shown in Section 6.2). Further, there is considerable variation
in SDC rates even among the top 10% most executed instructions
as the example below shows.

Table 1 shows an excerpt from the Bzip2 program on its hot
path. The principle described here is observed across all four
benchmarks we studied, but we focus on this (single) basic block
for simplicity. The excerpt contains instructions from the LLVM
IR, into which we inject faults. Although the original code is in the
LLVM IR form, we use C source-like semantics for simplicity. For
each instruction in the table, we report its SDC proneness measured
by fault injection. It can be observed from the table that some of the
instructions have low SDC proneness, even in this highly executed
block, e.g., instruction 4-6. This means even if a fault occurs in the
result of these instructions, it is unlikely to result into an SDC, and
hence protecting such instructions is unlikely to improve coverage
by much. Therefore, we need to find factors other than execution
time that influence the SDC proneness of an instruction.

After investigating further, we found that SDC proneness is
highly influenced by data dependencies among the instructions. For
example, in Table 1, instruction 4-8 constitute a data dependency
chain whose final result is stored in instruction 10. Instruction 8 is
the end of this data dependency chain and has an SDC proneness
= 71%. The result of instruction 7 is used in instruction 8 so
a fault may propagate from instruction 7 to instruction 8. But,
the execution of instruction 8: or can mask the faulty bit from
instruction 7 if the corresponding bit of the result of instruction 2 is
1. This explains why the SDC proneness for instruction 7 is slightly
lower than that of instruction 8. The operation of instruction 7: shift
left can mask the fault in high bit positions of the second source
operand due to architectural wrapping implementation of these
shifting operations. The consequence of this masking effect is the
low SDC proneness of instruction 4-6. In addition to the arithmetic
operations, our results show that address calculation operations
such as instructions 1, 3 and 9 ("getelementptr" instructions in
LLVM) have low SDC proneness. This is because the results of
such instructions are usually used for pointer dereferences and are
likely to cause segmentation faults which crash the application.

Thus, we see that to calculate the SDC proneness of an instruc-
tion and determine whether it should be protected, one needs to
take into account the fault propagation and SDC proneness of the
end point of its data dependency chain. We will examine this in
more detail in Section 3 by devising heuristics for finding highly
SDC-prone instructions.

3. Heuristics
In this section, we formulate various heuristics for modelling er-

ror propagation in a program, and for estimating the SDC proneness

Table 1: Example from Bzip2 to illustrate the variation of SDC proneness
of highly executed instructions. Results obtained from fault injection.
Source code:

1 s�>bsBuff |= (v << (32 � s�>bsLive� n));

Basic
block ID Instruction SDC

proneness

bsW()-bb2

1 t1 = &s + OFFSET(bsBuff) 21%
2 t2 = load t1 47%
3 t3 = &s + OFFSET(bsLive) 21%
4 t4 = load t3 13%
5 t5 = 32 - t4 12%
6 t6 = t5 - n 12%
7 t7 = v « t6 58%
8 t8 = t2 | t7 71%
9 t9 = &s + OFFSET(bsBuff) 26%
10 store t8, t9 -

Table 2: Effects on SDC proneness of some operations
Operation Description Effect

getelementptr address calculation Crash
trunc truncate data size Mask due to truncation
lshr logical shift right Mask due to Wrapping
ashr arithmetic shift right Mask due to Wrapping
shl shift left Mask due to Wrapping

of an instruction. These heuristics will be used in the next section
to build our model: SDCTune.

In the previous section, we found that the SDC proneness of
a variable depends on (1) the fault propagation in its data depen-
dency chain, and (2) the SDC proneness of the end point of that
chain. An end point can be a branch instruction, a store instruc-
tion or a function call instruction (in LLVM, function calls are rep-
resented by instructions). This is because stores and branches do
not have destination registers, and function call instructions create
a new stack frame, thereby terminating their dependency chains.
However, function calls are not considered in our work, as LLVM
aggressively inlines functions, and hence there are few instances of
such instructions. Further, because branch instructions depend on
the results from comparison instructions to determine the direction
of the branch, we consider the results of comparison instructions as
the end points of their dependency chains. Therefore, we consider
only comparison and store instructions for the SDC proneness of
end points of dependency chains.
3.1 Heuristics for Fault Propagation

In this subsection, we study how faults propagate along depen-
dency chains, and how to estimate the SDC proneness of an in-
struction based on the SDC proneness of the store or comparison
instructions that the instruction depends on, directly or indirectly.
HP1: The SDC proneness of an instruction will decrease if its
result is used in either fault masking or crash prone instructions.

Fault propagation can be stopped by an instruction either mask-
ing the fault, or by crashing the program. Both masking and crash-
ing decrease the probability of an SDC resulting from the instruc-
tion that propagates its data to the other crashing/masking instruc-
tion, as a result of which its SDC proneness is lowered. For exam-
ple, in Table 1, the fault masking effect of instruction 7 results in
instruction 6 having a low SDC proneness.

Table 2 shows instructions that have high probability of mask-
ing/crashing the program, thus lowering the SDC proneness. We
derived this table from the initial fault injection study in Section 2,
based on general trends across the applications. Note that these are
conservative, as other instructions may also mask fault propagation
in specific circumstances depending on the values of their operands.

To estimate SDC proneness of all instructions, we apply back-
propagation starting from the store and comparison instructions
through the data dependency chains of the program. The SDC



Table 3: SDC decreasing rates of masking/crashing prone operations
Operation Involved source operands Decrease by

getelementptr all operands 75%
trunc variable needs truncation 50%
lshr shift bit variable 85%
ashr shift bit variable 85%
shl shift bit variable 85%

Table 4: Four major categories of stored values

Category Description
Major
related
features

Average
SDC

proneness
Addr

NoCmp
The stored value is used in

calculating memory addresses
but not comparison results

Data width 22.82%

Addr
Cmp

The stored value is used in
calculating both memory
addresses and comparison

results

Data width
and control

flow
deviation

48.17%

Cmp
NoAddr

The stored value is used in
calculating comparison results

but not memory addresses

Resilient or
Unresilient
comparison

67.25%

NoCmp
NoAddr

The stored value is neither used
in memory address calculation

nor comparison results

Used in
output or not 56.41%

proneness of the result of an instruction will propagate to its source
operands unless it is one of the operations listed in Table 2, in which
case, the SDC proneness of the source operands will decrease by a
certain extent, as listed in Table 3 to model the effect of masking.
The values in Table 3 are based on our fault injection experiments.

Then, the question left is how to estimate the SDC proneness of
store and comparison instructions. This is addressed in the follow-
ing two subsections.
3.2 Heuristics for Store Operations

In this subsection, we examine the SDC proneness of store
instructions, as this is one of the two categories of instructions
used to estimate the SDC proneness of every instruction in the
program. Through our fault injection study in Section 2, we found
the SDC proneness of store instructions depends on how the stored
value is used in the program. Therefore, we categorized the stores
into four types according to their usage in memory addresses and
comparisons, as shown in Table 4. For each of the categories, we
found that the SDC proneness is dependent on a specific feature
of that category, which is also shown in Table 4. For example,
in the Cmp NoAddr category, the SDC proneness of the store is
determined by whether the value results in the comparison result
being flipped, thus causing the wrong fork of the branch to be taken.
Figure 1a shows the average SDC proneness of the four categories,
and the associated feature for each of the categories.

We now examine each of the four categories in detail.
HS1: Addr NoCmp stored values have low SDC proneness in
general, as shown in Table 4.

This is because faults in such values are highly likely to prop-
agate to addresses of other loads and stores, which would likely
result in the application crashing due to a segmentation fault, espe-
cially for those values that are wider than 32 bits (see Figure 1a).

Figure 2a shows an example of this category, where a fault in
the destination register of i-3 in (line 3) results in a system crash
upon pointer dereference.
HS2: Addr Cmp stored values usually have higher SDC prone-
ness than Addr NoCmp.

As shown in Figure 1a, by propagating the fault to the compari-
son instruction, Addr Cmp values may change the control flow and
elide the pointer dereference, which would have crashed the appli-
cation otherwise. This decreases the probability of a crash, thereby

(a) Effects of major related features for each of the four major categories
of stored values.

(b) Effect of data width for address
computation related stored values

(c) Effect of nest loop depths for loop
terminating comparisons

Figure 1: Average SDC proneness observed across all studied programs

increasing the SDC proneness compared to the Addr NoCmp cate-
gory. As an example of this category from Bzip2 is shown in Fig-
ure 2b.
HS3: The SDC proneness of Addr NoCmp and Addr Cmp
stored values increase as their Data width decrease.

Data width is the number of bits in values, and is a major feature
affecting the SDC proneness of stored values used in address com-
putation (i.e., Addr NoCmp and Addr Cmp). Figure 1b shows the
average SDC proneness of the stored values used in address com-
putations, for different data width values. For values used in address
computation, a wider data width means more bits are crash-prone,
and hence the value as a whole has lower SDC proneness.
HS4: The SDC proneness of Cmp NoAddr stored values depends
on the resilience of the comparison operation to which the value
propagates i.e., how likely it is to change the result of the com-
parison given a faulty data operand.

We illustrate the above heuristic with an example from the Bzip2
application. Figure 2c shows an example of a resilient comparison
operation in line 6. In this case, the equality is not satisfied in the
majority of executions (obtained through profiling the program),
and hence the branch is highly biased toward the not-equal fork.
Therefore, a fault in the variable total_in_lo32(line 5) which feeds
into the comparison operation is unlikely to result in the equality
being true, and hence the control flow of the program does not
change from a fault-free execution. We call such comparisons as
resilient. On the other hand, the code in the right of Figure 2d,
illustrates a case where a fault in the comparison operator, selec-
torMtf[i]=j(line 3) will affect the number of loop iterations, thus
making it highly SDC prone. We call such comparisons as un-
resilient. A key factor in deciding the SDC proneness of Cmp
NoAddr stored values is whether the comparison using the stored
value is resilient (Figure 1a).
HS5: The SDC proneness of NoCmp NoAddr stored values
depend on the probability of a fault in them propagating to the
program’s output, and whether the output is important to the
program.

NoCmp NoAddr stored values are used neither in computing
memory addresses nor in comparison instructions, and do not af-



1 static void mainSort(...){
2 for (;i>=3;i�=4)
3 {... ptr[j]=i-3;} // corrupted
4 }
5 static void mainSimpleSort(...){
6 while(mainGtU(ptr[j-h]+d ,...) )
7 {...}
8 }
9 static Bool mainGtU(UInt32* i1,

...){
10 c1=block[i1 ];... i1++; c1=

block[i1];//load
operation

11 }

(a) Example of Addr NoCmp from
Bzip2.

1 static void mainSort(...){
2 Int32 lo =

ftab[sb]&CLEARMASK;
// corrupted

3 if (hi > lo){ // control flow
changed

4 mainQsort3(lo ,...) ;
5 }
6 }
7 void mainQSort3(Int32 loSt,...){
8 mpush(loSt ,...) ;... mpop(lo ,...) ;
9 med=(Int32) mmed3(block[ptr[

lo]+d],...); // load avoided
10 }

(b) Example of Addr Cmp from
Bzip2. The fault occurs at line 2 may
not propagate to the load at line 10 be-
cause of the control flow deviation at
line 3

1 Bool copy_input_until_stop(
Estate* s){

2 ...
3 while(True){
4 ...
5 s�>strm�>total_in_lo32++;
6 if (s->strm->total_in_lo32==0)
7 s�>strm�>

total_in_hi32++;
8 }
9 }

(c) Example of Cmp NoAddr from
Bzip2. A resilient comparison opera-
tions(line 6) that masks the fault that
occurs at line 5.

1 static void sendMTFValues(
Estate* s){

2 for (i=0,i<nSelectors;i++){
3 s->selectorMtf[i]=j ;
4 }...
5 for (i=0;i<nselectors;i++){
6 for (j=0;j<s->selectorMtf[i];j

++)
7 bsW(s ,1,1) ;
8 }
9 }

(d) Example of Cmp NoAddr from
Bzip2. An unresilient comparison
usage of the stored value at s-
>selectorMtf[i]=j(line 3).

1 void main (...) {
2 ...
3 (start) = (unsigned long) (

FullTime.tv_usec +
FullTime.tv_sec *
1000000);

4 ...
5 Global�>starttime = start;
6 printf (..., Global�>

starttime);
7 }
8
9

(e) Example of NoCmp NoAddr
from IS with zero SDC proneness.

1 void InitA(double* rhs){
2 for (j=0;j<n;j++){
3 for (i=0;i<n;i++){
4 rhs[i]+=a[ii][jj] ;
5 }
6 }
7 }
8 void CheckResult(..., double* rhs){
9 for (j=0;j<n;j++){y[j]=rhs[j] ;}...

10 for (j=0;j<n;j++){diff=y[j]-1.0 ;...}
11 max_diff=diff
12 printf (..., max_diff) ;
13 }

(f) Example of NoCmp NoAddr from
LU with high SDC proneness.

Figure 2: Examples of stored values. The fault propagation is highlighted in
red.

fect pointers or branches. Figure 2e and Figure 2f show two ex-
cerpts from IS and LU respectively. The faulty stored value in IS
only affects the time statistics while the one in LU may affect the
output of the application. This explains the difference of their SDC
proneness. Also in Figure 1a, we can see the average SDC prone-
ness for the stored values that do not propagate to program output
is much lower than the SDC proneness of those values that do.
3.3 Heuristics for Comparison Operations

Comparison instructions are the other category of instructions
whose SDC proneness determines the SDC proneness of every
instruction in the program. We find that the SDC proneness of
comparison instructions depends on three features, as follows:
HC1: Nested loop depths affect the SDC proneness of loops’
comparison operations, as the SDC proneness of comparison op-
erations in inner loops are generally lower than the comparison
operations in outer loops, as shown in Figure 1c.

Figure 3a shows an example from Bzip2. Both nHeap>1 and
weight[tmp]<weight[heap[zz»1]] are used in determining the loop
exit conditions for the outer and inner loops respectively.

1 void BZ2_hbMakeCodeLengths
(...){

2 while(nHeap>1){ // outer loop
3 ...
4 while(weight[tmp]<weight[

heap[zz>>1]]){
5 // inner loop
6 Heap[zz]=heap[zz>>1];
7 zz>>1;
8 }
9 }

10 }

(a) An excerpt from Bzip2. The com-
parison result for the outer loop has a
higher SDC proneness than the com-
parison result for the inner loop

1 mainSort(...){
2 for (j=bbSize�1; j>=0; j��){
3 ...
4 if (a2update

<BZ_NOVERSHOOT)
5 quadrant[a2update+

nblock]=qVal; //Not
used in future

6 ...
7 }
8 ...
9 }

(b) An example from Bzip2
that the comparison result:
a2update<BZ_NOVERSHOOT
(line 4) has a low SDC proneness. It
only affects a silent store instruction

1 daxpy(double* a, double* b ,...) {
2 long l;
3 for (i=0;i<n;i++){ // terminates the loop too early
4 a[i]+=alpha*b[i]; //skipped due to loop termination
5 }
6 }
7 bmodd(double* a, double* c ,...) {...
8 daxpy(&a[k+1+j*stride_c],&a[k+1+j*stride_a],dimi�k�1,alpha);...
9 // the content of a [] is corrupted

10 }
11 lu() {...
12 A=&a[K+j*nblocks] ; // fault propagates to a [] through the call of

bmodd()
13 bmodd(D,A,strK,strJ,strK,strK) ;... // content of A[] is corrupted
14 }
15 CheckResult(...,double* a ,...) {... // called by main()
16 printf (..., max_diff ,...) ;... // corrupted because of corrupted a []
17 }

(c) An example from LU that a faulty comparison result: i<n(line 3) will
change the control flow to elide the store operation a[i]+=alpha*b[i](line
4). The value is used in the calculation of the output in function lu() and
finally in CheckResult(). The fault propagation trace is highlighted in red.

Figure 3: Examples of comparison results. Fault propagation is highlighted
in red.

Since the outer loop covers more program data than the inner
loop, an extra or missing iteration of the outer loop caused by a
faulty comparison result has a higher chance to cause the program
to deviate from its correct execution. Prior work has made a similar
observation in the context of soft-computing applications [23].
HC2: Comparison operations that only affect silent stores have
low SDC proneness.

A silent store is a store whose stored value is not subsequently
used by the program. Therefore, the comparison operation has
a low likelihood of affecting the program’s output. An exam-
ple from Bzip2 is shown in Figure 3b. A flip in the comparison
a2update<BZ_NOVERSHOOT(line 5) can cause the store opera-
tion quadrant[a2update+nblock]=qVal(line 6) to be elided. How-
ever, this is a silent store, and hence does not result in an SDC.
HC3: Comparisons that affect output-related store values
have high SDC proneness.

A fault in these comparisons has a high probability of result-
ing in a corrupted program output. Figure 3c shows an example
from the LU benchmark. A faulty comparison result at i<n(line
3) may terminate the loop too early and elide the store operation
a[i]+=alpha*b[i](line 4) whose stored value is used in calculating
the output. This results in a high SDC proneness of i<n(line 3).
3.4 Heuristics of Other Factors

In addition to the specific features for branch and store oper-
ations, the following factors also affect the SDC proneness of an
instruction.
HO1: Memory allocation functions related stored values and
comparison operations have low SDC proneness.



Memory allocation functions related stored values or comparison
operations can directly affect memory allocation functions such as
malloc(), valloc(), palloc(), and hence faults in the instructions are
very likely to trigger memory exceptions. This results in having
low SDC proneness. We observe that the average SDC proneness
for memory allocation related store or comparison operations is
12.42%, which is considerably lower than the average of other
store and comparison operations, which is 42.58%.

Other Features: In addition to the above features, we consider
other program features considered in prior work, such as global
variable [8], the loop depth [23], accumulative computation [4],
and fan-out of variable [17]. We do not explain them due to space
constraints, however.

4. Approach
In the previous section, we examined various heuristics for

identifying SDC-prone variables in a program. In this section, we
first quantify the estimation of SDC proneness using the SDC-
Tune model obtained from empirical data (Section 4.1). We then
present our approach for choosing the SDC-prone locations subject
to a maximum performance overhead using SDCTune(Section 4.2).
Finally, we describe the nature of the detectors we inserted to pro-
tect the program (Section 4.3).

4.1 Model Building
Our model, SDCTune, for predicting the SDC proneness of a

variable is built from fault injections over a set of training pro-
grams, and incorporates the heuristics defined in the previous sec-
tion. We start by modelling the SDC proneness of store and branch
instructions in the program. The SDC proneness of these instruc-
tions depends on discrete features such as resilient comparisons
and on continuous features such as data width (Section 3.2 and
Section 3.3). We use classification to model the discrete features,
and linear regression to model the continuous ones. Once we de-
termine the SDC proneness of the store and branch instructions, we
use the back propagation procedure outlined in Section 3.1 for es-
timating the SDC proneness of other instructions. We explain the
classification and regression methods below.

Classification The goal of classification is to use the discrete
features that we observed before to categorize the stored values
or comparison results into different groups so that we can apply
the continuous features (or arithmetic means) to quantify the SDC
proneness of each group. As shown in Sections 3.2 and 3.3, differ-
ent categories of stored values and comparison results have differ-
ent discrete features for determining their SDC proneness (e.g. re-
silient comparison or not for Cmp NoAddr stored values and used
in output or not for NoCmp NoAddr ones). Therefore, we apply
tree-structured classification so that different features can be used
in different categories. The features are arranged hierarchically in
the form of a tree, starting from a root node, and partitioning the
nodes based on different features recursively until all the data in a
leaf node belongs to a single category.

For example, consider the Cmp NoAddr stored values category
we introduced in Section 3.2. This constitutes one of the four
partitions from the root node of all stored values, and we then
split this group into two groups, namely ResCmp NoAddr and
UnresCmp NoAddr based on heuristics HS4 (Section 3.2). As the
tree grows, ResCmp NoAddr will then be divided again based
on whether the value is a global variable (Section 3.4), while
UnresCmp NoAddr will be split based on whether it is accumulative
computation (Section 3.4). The other types of stored values: Addr
NoCmp, Addr Cmp and NoCmp NoAddr will also be partitioned
in a similar way but with different features. Finally, we generate
a tree that partitions all stored values into its leaf nodes. The tree
generated for this example is shown in Figure 4.

Figure 4: The example of the classification tree for stored values.

Regression is applied upon the leaf nodes of the classification
tree to factor in the effects of continuous features such as data
width. For example, consider a leaf node of stored values: Addr
NoCmp->Not Used in Masking Operations. We find that the SDC
proneness of stored values in this node satisfy the following equa-
tion: P̂ (SDC|I) = �0.012⇤data width+0.878. This expression
was derived using linear regression based on the results from fault
injection over a set of training programs in Section 5.1. The reason
for the negative correlation in this equation is that the higher bit
positions of stored values in leaf Addr NoCmp->Not Used in Mask-
ing Operations are very likely to cause application crash if they are
corrupted. Since values with larger data width have a higher proba-
bility of being corrupted in higher bit positions, faults that occur in
those values are less likely to cause SDCs as they are more likely to
cause the program to crash. For the leaf nodes that do not exhibit a
correlation with continuous features, we take the arithmetic means
as the estimation of their SDC proneness.
4.2 Choosing the Instructions

As shown in Section 2, we can calculate the SDC coverage of
protecting an instruction if we know the SDC proneness of that
instruction using Equation 1 in Section 2.1. We apply SDCTune to
estimate the SDC proneness of each instruction in the program
that we want to protect. We also obtain the dynamic count of
each instruction in the program by profiling it with representative
inputs. We then attempt to choose instructions to maximize the
SDC coverage subject to a given performance overhead (Section 2),
using a standard dynamic programming algorithm [9].
4.3 Detector Design

Once we identify a set of instruction to protect, the next step is
to insert error detectors for instructions. Our detectors are based on
duplicating the backward slices of the instructions to protect, sim-
ilar to prior work [8]. We insert a check immediately after the in-
structions to be protected, which compares the original value com-
puted by the instruction with the value computed by the duplicated
instructions. Any difference in these values is deemed to be an error
detection and the program is stopped. Figure 5b shows a concep-
tual example of our detector for a given set of instructions to be
protected in Figure 5a.

Note that we assume that there is a single transient fault in the
program (Section 2.2), and hence it is not possible for both the
detector and the chosen instruction to be erroneous. Therefore, any
error in the computation performed by the chosen instruction will
be detected by the corresponding error detector.

A naive implementation of our detectors can result in pro-
hibitive performance overhead. Therefore, we develop two opti-
mizations to lower the detector overhead. First, we concatenate ad-
jacent duplicated pieces of code by adding the instructions between
them to the protection set so that we can combine their detectors.
Figure 5c shows how this optimization works. This optimization
provides benefits when the cost of the saved detector is higher than
the cost due to the added instructions. Second, we perform lazy
checking, in which detectors for cumulative computations in loops
are moved out of the loop bodies, as the example in Figure 6 illus-
trates. This optimization is effective for long running loops.



(a) Data dependency of
detector-free code

(b) Basic detector in-
strumented

(c) concatenate dupli-
cated instructions

Figure 5: The shaded portion of (a) shows the instructions need protection.
(b) shows the duplicated instructions (the shaded nodes) and the detector
inserted at the end of the two dependency chains. (c) shows one added
instruction to protect(node e’) that concatenates the two dependency chains
and save one checker

1 for (i=0;; i++){
2 // loop body
3 flag = i<n?1:0;
4 if (flag == 1)
5 break;
6 // decompose exit

predication
to

simulate
instruction
�level
behaviour .

7 }
8

(a) Detector-free code

1 i=0;
2 // duplication of i
3 dup_i=0;
4 for (;;) {
5 // loop body
6 flag = i<n?1:0;
7 dup_flag = dup_i

<n?1:0;
8 if(flag != dup_flag)
9 Assert();

10 // inconsistent
11 if (flag == 1)
12 break;
13 }

(b) Basic detector in-
strumented

1 i=0;
2 // duplication of i
3 dup_i=0;
4 for (;;) {
5 // loop body
6 flag = i<n?1:0;
7 dup_flag = dup_i

<n?1:0;
8 if (flag == 1)
9 break;

10 }
11 if(flag != dup_flag)
12 Assert();
13 // inconsistent

(c) Lazy checking ap-
plied

Figure 6: (b) shows how the loop index i in original code (a) is protected
with bold code as check. (c) shows how we move the check out of the loop
body

5. Experimental Setup
In this section, we empirically evaluate SDCTune for config-

urable SDC protection through fault injection experiments. All the
experiments and evaluations are conducted on a Intel i7 4-core
machine with 8GB memory running Debian Linux. Section 5.1
presents the details of benchmarks and Section 5.2 presents our
evaluation metrics. Section 5.3 presents our methodology and
workflow for performing the experiments.
5.1 Benchmarks

We choose a total of 12 applications from a wide variety of
domains for training and testing SDCTune. The applications are
drawn from the SPEC [10], SPLASH2 [26], NAS parallel [1], PAR-
SEC [2] and Parboil [22] benchmark suites. We randomly divide
the 12 applications into two groups of 6 applications each, one
group for training and the other for testing. The four benchmarks
used in Section 2.3 to derive the heuristics are drawn from the train-
ing group. The details of these training and testing benchmarks are
shown in Table 5 and Table 6 respectively. All the applications are
compiled and linked into native executables with -O2 optimization
flags and run in a single threaded mode, as our current implemen-
tation of SDCTune works only with single-threaded programs.
5.2 Evaluation Method

To gauge the accuracy of SDCTune, we use it for estimating the
overall SDC rate of an application, as well as the SDC coverage(s)
for different performance overhead bounds. The former is used for

Table 5: Training programs: These are used for training SDCTune

Program Description Benchmark
suite Input Stores Compa-

risons
IS Integer sorting NAS default 21 20
LU Linear algebra SPLASH2 test 41 110

Bzip2 Compression SPEC test 681 646

Swaptions Price portfolio
of swaptions PARSEC Sim-

large 36 101

Water Molecular
dynamics SPLASH2 test 187 224

CG Conjugate
gradient NAS default 32 97

Table 6: Testing programs: These are used for evaluating SDCTune

Program Description Benchmark
suite Input Stores Compa-

risons
Lbm Fluid

dynamics Parboil short 71 34

Gzip Compression SPEC test 251 399

Ocean
Large-scale

ocean
movements

SPLASH2 test 322 813

Bfs Breadth-First
search Parboil 1M 36 57

Mcf Combinatorial
optimization SPEC test 87 158

Libquantum Quantum
computing SPEC test 39 136

comparing the SDC rates of different applications, while the latter
is used to insert detectors for configurable protection. We use the
same experimental setup for fault injection as that described in
Section 2.3.

Estimation of overall SDC rates: We perform a random fault in-
jection experiment to determine the overall SDC rate of the appli-
cation. We then compare the SDC rate estimated by SDCTune with
that obtained from the fault injection experiment. We also compare
the relative SDC rate of an application with respect to other ap-
plications (i.e., its rank) estimated by SDCTune with that obtained
from fault injection.

SDC coverages for different performance overhead bounds:

The SDC coverage is defined as the fraction of SDC causing errors
detected by our detectors. We use SDCTune to predict the SDC cov-
erage for different instructions to satisfy the performance overhead
bounds provided by the user. Our selection algorithm(Section 4.2)
starts with the instructions providing the highest coverage, and
iteratively expands the set of instructions until the performance
overhead bounds are met. We then perform fault injection exper-
iments on the program instrumented with our detectors for these
instructions, and measure the percentage(s) of SDCs detected. We
then compare our results with those of full duplication, i.e., when
every instruction is duplicated in the program, and that of hot-path
duplication, i.e., when the top 10% most executed instructions are
duplicated in the program.

To ensure a fair comparison among these techniques, we use a
metric called the SDC detection efficiency, which is similar to the
efficiency defined in prior work [21]. We define the SDC detection
efficiency as the ratio between SDC coverage and performance
overhead for a detection technique. We calculate the SDC detection
efficiency of each benchmark under a given performance overhead
bound, and compare it with the corresponding efficiencies of full
duplication and hot-path duplication. The SDC coverage of full
duplication is assumed to be a hundred percent [19].



Figure 7: The workflow of applying SDCTune for two usage cases: (1)
estimate the overall SDC failure rate and (2) selectively protect the SDC-
prone variables subject to a performance overhead.

5.3 Work Flow and Implementation
Figure 7 shows the workflow for estimating the overall SDC

rates and providing configurable protection using SDCTune. The
workflow requires the following inputs from the user: (1) source
code for the program, (2) a set of representative input(s) for ex-
ecuting the application, and (3) output function calls that generate
the output data that we care about in terms of SDC failures (as men-
tioned before, not all output data in an application is important from
the perspective of SDCs, for example, statistical or timing informa-
tion in the output). In addition, it requires the user to specify the
maximum allowable performance overhead that may be incurred
by the detectors inserted by our technique.

We first compile the application using LLVM into its IR form.
We then extract the features that our model needs to estimate the
SDC proneness of stored values and comparison results. This is
done using an automated compiler pass we wrote in LLVM, and
the LAMPView tool [16] for analyzing load/store dependencies.
Third, we run the parameters through SDCTune built in Section 4.1,
to generate a estimated SDC proneness for each instruction. Fourth,
we use the results from SDCTune to estimate the overall SDC rate
of the application, and for inserting detectors into the program
for protecting the most SDC-prone instructions within the given
overhead bound. The detectors are inserted by another LLVM pass
we wrote. We use the representative inputs provided by the user
to execute the program for obtaining its execution time with the
detectors. The above process of choosing instructions to protect
is repeated iteratively until the designated performance overhead
bound is fulfilled. If we exceed the performance overhead bound,
we backtrack and remove the most recently inserted detectors.
Finally, we use the program fortified with the detectors to measure
its performance overhead and fault coverage.

6. Results
This section presents the results of our experiments to use SD-

CTune for (1) estimating the overall SDC rate of an application
and (2) for configurable protection to maximize detection coverage
under different performance overhead bound. In our experiments,
SDCTune requires five to fifty minutes (average of 24 minutes) de-
pending on the application, to estimate the overall SDC rate and to
generate a fortified executable protected with detectors for a given
performance overhead. On the contrary, fault injection alone re-
quires anywhere from a few hours to a few days to generate the
SDC rates for each application. Further, estimating the SDC-prone
locations in a program using fault injection requires even more fault
injections and significant effort to map the results of the fault injec-
tion back to the program’s code, which is necessary for placing
detectors.
6.1 Estimation of Overall SDC Rates

We estimate the overall SDC rate of the application using SDC-
Tune, and compare it with the SDC rate obtained through 3000 ran-
dom fault injections per benchmark. Table 7 shows the overall SDC

Table 7: The SDC rates and ranks from fault injections and SDCTune
Group Benchmark P (SDC) (rank)

from injections
P̂ (SDC) (rank)
from SDCTune

Training

IS 43.46% (1) 33.75% (1)
LU 31.9% (2) 25.43% (2)

Bzip2 24.47% (3) 17.88% (3)
Water 5.9% (4) 9.75% (5)

Swaptions 4.1% (5) 11.46% (4)
CG 1.89% (6) 3.54% (6)

Testing

Lbm 52.53% (1) 48.11% (1)
Gzip 33.67% (2) 32.46% (2)

Ocean 20.6% (3) 14.75% (4)
Bfs 17.37% (4) 14.27% (5)
Mcf 15.76% (5) 17.84% (3)

Libquantum 10.5% (6) 10.9% (6)

Figure 8: The rank correlation for both training and testing programs. The
x-axis is the rank of overall SDC rates from 3000 random fault injections,
the y-axis is the rank of estimated overall SDC rates using SDCTune. The
rank correlaion coefficients are 0.9714(training) and 0.8286(testing).

rates (P (SDC)) from the fault injections and the estimated overall
SDC rates (P̂ (SDC)) for both training programs and testing pro-
grams. The SDC rates are statistically significant with an error bar
ranging from 1.78%(Lbm) to 0.49%(CG), at the 95% confidence
intervals.

From Table 7, it can be observed that the absolute values of
the estimated SDC rates do not match with the observed ones.
However, the ranks of the SDC rates estimated by the model closely
match those observed in reality. Figure 8 plots the estimated SDC
ranks versus the observed ranks for both the training and testing
programs. The Spearman’s rank correlation coefficient is 0.9714
for training programs (p-value=0.00694), and 0.8286 for testing
programs (p-value = 0.0125), showing a strong positive correlation
for both sets of programs.

Thus, SDCTune is highly accurate in predicting SDC ranks
of applications relative to other applications. However, it is not
accurate at predicting the absolute rates of SDCs. There are two
reasons for this inaccuracy. First, our estimation of SDC rates using
back-propagation is conservative, and sometimes may overestimate
the SDC proneness of variables in the presence of application-
specific masking. Second, our load-store dependence analysis is
performed using the LAMPView tool, which does not handle some
library functions such as memcpy. This inaccuracy in absolute SDC
rate prediction may lead to inadequate protection, and additional
overhead. However, our results show that despite the inaccuracy,
SDCTune can guide detector placement to obtain high coverage at
low performance overheads.
6.2 SDC Coverage and Detection Efficiency

We use SDCTune for inserting error detectors into the applica-
tions to maximize SDC coverage under a given performance over-
head. Figure 9a shows the SDC coverage obtained by our technique
for each benchmark under three different performance overhead
bounds: 10%, 20% and 30%. For the training programs, the geo-
metric means of the SDC coverage for the 10%, 20% and 30% over-
head bounds are 44.8%, 78.6% and 86.8%, respectively. For the
testing programs, the corresponding geometric means are 39.0%,



63.7% and 74.9% respectively, which are somewhat lower than the
training programs’ averages, as expected. We also measured the
SDC coverage obtained with hot-path duplication, and found it to
be 79.5% and 87.6% on average for training and testing programs
respectively.

Figure 9b shows the performance overhead of full duplication
and hot-path duplication. The overhead of full duplication is 53.7%
on average for the training programs, while it is 73.6% on average
for the testing programs. Hot-path duplication has an overhead
of 43.5% for the training programs, and 57.6% for the testing
programs. Note that both of these are considerably higher than the
30% overhead bound we considered with our detectors.

We also calculate the detection efficiency of the detectors we
inserted, and for hot-path duplication based on their overhead and
SDC coverages (Section 5.2). Figure 9c shows the SDC detection
efficiency for our detectors with the three overhead bounds, and for
hot-path duplication. The efficiencies are normalized to that of full
duplication, which has a baseline efficiency of 1. A value close to
1 means that no improvement is achieved over full duplication.

For our detectors, we observe SDC detection efficiencies of
2.38x, 2.09x and 1.54x for the training programs, and 2.87x, 2.34x
and 1.84x for the testing programs, at the 10%, 20% and 30% per-
formance overhead bounds respectively. The reason that the effi-
ciencies decrease as overhead increase is that some of the instruc-
tions protected at higher overhead are not as SDC prone. As the
performance overhead of the detectors approaches that of full du-
plication, the detection efficiencies will drop to 1. We also observe
no gain in efficiency with hot-path duplication compared to full du-
plication in spite of its high coverage, as it incurs correspondingly
higher overhead (as mentioned in Section 2).

We find that there is considerable variation in detector efficiency
among benchmarks. There are two reasons for this variation. First,
for our technique to be efficient, it needs to protect instructions with
high SDC proneness, but with low dynamic execution count. We
observed that applications which have such instructions experience
moderate SDC rates, which are neither too high nor too low. From
Table 7, programs such as Gzip, Libquantum and Ocean fall into
this category. These programs benefit the most from our technique
(Figure 9c). On the other hand, if the benchmark has highly SDC
prone instructions that are also highly executed, our technique does
not do as well since the overhead limit prevents our technique from
selecting those SDC prone instructions. Examples of these pro-
grams are Lbm and IS. An exception to this is the CG benchmark,
which has only a few SDC-prone instructions that are highly exe-
cuted. Therefore, protecting these instructions is sufficient to obtain
high coverage, and this can be done with relatively low overhead
(compared to full duplication). Second, if all instructions of a pro-
gram are low in SDC proneness (e.g., water), our technique does
not do as well, since no instruction provides higher benefit when
protected than others.

The second reason for the variation in efficiency among bench-
marks relative to full duplication, is that the overhead of full du-
plication is not uniform, as shown in Figure 9b. This is because of
benchmark-specific reasons such as the distribution of integer and
floating point operations. In general, processors have abundant in-
teger computation units but not as many floating point units, so the
higher the fraction of floating point operations, the higher is the
overhead due to duplication. We found that for some benchmarks
such as IS, Bfs, and Bzip2, the full duplication overhead is only
about 40%. This means that the detection efficiency improvement
over full duplication is unlikely to be very high for these bench-
marks. For example, even though IS, Bfs and Swaptions have rea-
sonable SDC coverage, their detection efficiency is not very high.
In one of the benchmarks, Lbm, our detectors have a lower detec-
tion efficiency compared to full duplication. This is because nearly

(a) The SDC coverages with error bars at the 95% confidence interval. The
error bars are less than 2%, and obtained from 3000 random fault injections
per benchmark. The SDC coverage of full duplication is considered as 100%

(b) The overhead of full duplication and hot-path duplication

(c) The normalized detection efficiency. Full duplication is the baseline and has
detection efficiency = 1. (Detection efficiency is the ratio of SDC coverage and
performance overhead)

Figure 9: The results for different performance overhead bounds, hot-path
duplication and full duplication. The X-axis shows the training and testing
programs.

all SDC prone instructions in the program have high execution
counts, and hence the performance overhead bounds cannot be sat-
isfied if they are selected for protection. Therefore, this benchmark
has low SDC coverage with our technique.

In summary, our technique significantly outperforms both full-
duplication and hot-path duplication in providing better detection
efficiency, for much lower performance overhead bounds.

7. Related Work
We classify related work into three categories, namely (1) du-

plication based techniques, (2) invariant based techniques, and (3)
application or algorithm specific techniques.

Duplication based techniques: SWIFT [19] is a compiler
based technique that uses full duplication to detect faults in pro-
gram data. However, full duplication can have significant perfor-
mance overhead, especially on embedded systems which do not
have an abundant idle resources to mask the overhead of duplica-
tion. As shown in Figure 9c, SDCTune outperforms full duplication
in terms of SDC detection efficiency, and also enables configura-
bility to protect programs from SDC causing errors under various
given performance overheads.



Feng et al. [8], and Khudia et al. [12] have attempted to reduce
the overhead of full duplication by only duplicating ”high-value”
instructions (and variables), where a fault is unlikely to be detected
by other techniques and hence lead to SDCs. Unlike our work how-
ever, they do not provide a mechanism to configure the protection
for a given performance overhead bound. This is especially impor-
tant for embedded systems where the system has to satisfy strict
performance constraints.

Another branch of work [4, 6, 14, 15, 23] has focused on pro-
tecting soft-computing applications from soft errors, by duplicat-
ing only critical instructions or data in the program. Examples of
soft-computing applications are those used in media processing and
machine learning, which can tolerate a certain amount of errors in
their outputs. These papers exploit the resilience of soft comput-
ing applications to come up with targeted protection mechanisms.
However, they cannot be applied in general purpose applications.

Thomas et al. [23] propose a technique to protect soft-computing
applications from Egregious Data Corruptions (EDCs), which are
errors that cause unacceptable deviations in the program’s output.
Similar to our work, they formulate program-level heuristics to
identify EDC prone data in the program. However, there are two
main differences between their work and ours. First, the heuristics
they propose are based on how much program data is affected by an
error. While this is important for EDC-causing errors, this is not so
for SDC-causing errors as even a small deviation in the output can
be an SDC. Therefore, we need a more complex set of heuristics
to predict SDC prone data in a program. Secondly, EDCs consti-
tute only 2 to 10% of a program’s faulty outcomes. In comparison,
SDCs constitute up to 50% of a program’s faulty outcomes, and
hence need much more heavyweight protection.

Finally, in recent work, Shafique et al. [21] propose a technique
for exploiting fault masking in applications to provide efficient de-
tection. Similar to our work, they rank the vulnerability of instruc-
tions in the program, and allow the user to specify performance
overhead bounds to selectively choose instructions to protect. How-
ever, our work differs from theirs in two ways. First, they consider
all failures as equally bad, including crashes and hangs. However,
we focus exclusively on SDC-causing faults, which are the most
insidious of faults. Therefore, we can achieve higher efficiency for
protecting against SDC-causing faults. Secondly, their work em-
ploys three metrics to determine the instructions to protect, all of
which are estimated by performing a static analysis of the appli-
cation’s control and data flow graph, which is conservative by na-
ture. In contrast, our work uses empirical data to build the model
for estimating the SDC proneness of different instructions, and is
hence relatively less conservative. Since Shafique et al. do not pro-
vide a breakdown of their coverage among SDC failures, crashes
and hangs, we cannot quantitatively compare the coverage of SD-
CTune with their technique.

Invariant based techniques [7, 18, 20] detect errors by extract-
ing likely invariants in programs through runtime profiling and de-
pendency analysis. Those likely invariants are used as assertions
to check abnormal behaviours or data out-of-bounds to detect er-
rors. Invariant based techniques typically have lower overhead than
duplication-based techniques, as the assertions consist of much
fewer instructions than the entire backward slice of the variables.
However, an important limitation of this class of techniques is that
they incur false positives, i.e., they can detect an error even when
none occurs. This is because they all learn invariants from testing
inputs, and these invariants may not hold when the program is run-
ning with real inputs in production. While our work also learns the
model for SDC proneness based on training applications, it uses
static analysis to actually derive the detectors from the backward
slices, and has no false positives as static analysis is conservative.

8. Conclusion
This paper proposes a configurable protection technique for

SDC-causing errors that allows users to trade-off performance for
reliability. We develop heuristics for estimating the SDC proneness
of instructions and build a model SDCTune based on the heuristics.
We then use SDCTune to guide the selection of instructions to be
protected with error detectors under a given performance overhead.
Our results show that SDCTune is highly accurate at predicting
the relative SDC rates of applications, and the detectors inserted
using our technique outperform both full duplication and hot-path
duplication by a factor of 0.83 to 1.87x in detection efficiency.

Acknowledgments
This work is sponsored, in part, by the Natural Science and Engineer-

ing Research Council of Canada (NSERC), Defense Advanced Research
Projects Agency (DARPA), Microsystems Technology Office (MTO), un-
der contract no. HR0011-13-C-0022. | The views expressed are those of the
authors and do not reflect the official policy or position of the NSERC, De-
partment of Defense or that of the U.S. Government. We thank our shepherd
Muhammad Shafique, for his insightful comments and suggestions.

References
[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, et al. The NAS parallel

benchmarks. HPCA, 1991.
[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:

Characterization and architectural implications. In PACT, 2008.
[3] S. Borkar. Designing reliable systems from unreliable components: the chal-

lenges of transistor variability and degradation. MICRO, 2005.
[4] J. Cong and K. Gururaj. Assuring application-level correctness against soft

errors. In ICCAD, 2011.
[5] C. Constantinescu. Intermittent faults and effects on reliability of integrated

circuits. In RAMS, 2008.
[6] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An architectural

framework for software recovery of hardware faults. In ISCA., 2010.
[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discover-

ing likely program invariants to support program evolution. Software Engineer-
ing, IEEE Transactions on, 2001.

[8] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: probabilistic soft error
reliability on the cheap. In ASPLOS, 2010.

[9] S. K. S. Hari, S. V. Adve, and H. Naeimi. Low-cost program-level detectors for
reducing silent data corruptions. In DSN, 2012.

[10] J. L. Henning. SPEC CPU2000: Measuring CPU performance in the new
millennium. Computer, 2000.

[11] M. Hiller, A. Jhumka, and N. Suri. On the placement of software mechanisms
for detection of data errors. In DSN, 2002.

[12] D. S. Khudia, G. Wright, and S. Mahlke. Efficient soft error protection for
commodity embedded microprocessors using profile information. In LCTES,
2012.

[13] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO., 2004.

[14] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian. Partially
protected caches to reduce failures due to soft errors in multimedia applications.
IEEE Transactions on VLSI, 2009.

[15] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Saving DRAM
refresh-power through critical data partitioning. In ASPLOS, 2011.

[16] T. Mason et al. LAMPVIEW: A loop-aware toolset for facilitating paralleliza-
tion. Master’s thesis, Dept. of Electrical Engineeringi, Princeton University,
2009.

[17] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer. Application-based metrics for
strategic placement of detectors. In PRDC., 2005.

[18] K. Pattabiraman, G. P. Saggese, D. Chen, Z. Kalbarczyk, and R. K. Iyer. Dy-
namic derivation of application-specific error detectors and their implementation
in hardware. In EDCC., 2006.

[19] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. SWIFT:
Software implemented fault tolerance. In CGO, 2005.

[20] S. K. Sahoo, M.-L. Li, P. Ramachandran, S. V. Adve, V. S. Adve, and Y. Zhou.
Using likely program invariants to detect hardware errors. In DSN, 2008.

[21] M. Shafique, S. Rehman, P. V. Aceituno, and J. Henkel. Exploiting program-
level masking and error propagation for constrained reliability optimization. In
DAC, 2013.

[22] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,
G. D. Liu, and W.-m. Hwu. Parboil: A revised benchmark suite for scientific and
commercial throughput computing. Center for Reliable and High-Performance
Computing, 2012.

[23] A. Thomas and K. Pattabiraman. Error detector placement for soft computation.
In DSN, 2013.

[24] L. Wang, Z. Kalbarczyk, and R. Iyer. Formalizing system behavior for evaluating
a system hang detector. In Reliable Distributed Systems, 2008. SRDS ’08. IEEE
Symposium on, pages 269–278, Oct 2008.

[25] J. Wei, A. Thomas, G. Li, and K. Pattabiraman. Quantifying the accuracy of
high-level fault injection techniques for hardware faults. In DSN, 2014.

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
programs: Characterization and methodological considerations. In ISCA, 1995.

[27] K. C. Yeager. The MIPS R10000 superscalar microprocessor. MICRO, 1996.


