MATH 105-951 - Written Assignment \#1

Solution to the bonus question

Question: A function $f(x)$ is periodic with period a if $f(x+a)=f(x)$ for all x. For example, $f(x)=\sin (x)$ is periodic with period 2π. If $f(x)$ is periodic with period a and continuous on $[0, a]$, show that

$$
\int_{0}^{a} f(x) d x=\int_{b}^{a+b} f(x) d x
$$

Solution: The key to solving this problem is drawing a picture. Suppose the graph below represents our periodic function:

From the picture we can see that the area between $x=b$ and $x=a+b$ can be broken into two pieces:

$$
\int_{b}^{a+b} f(x) d x=\int_{b}^{a} f(x) d x+\int_{a}^{a+b} f(x) d x
$$

(note that it is NOT necessary for b to be between a and $2 a$ for this to be true). From the picture we can also see that the area between $x=a$ and $x=a+b$ should be the same as the area from $x=0$ to $x=b$. To prove this, let $u=x-a$. Then $d u=d x, u=0$ when $x=a$, and $u=b$ when $x=a+b$. So,

$$
\int_{a}^{a+b} f(x) d x=\int_{0}^{b} f(u+a) d u
$$

Since $f(x)$ is periodic with period $a, f(u+a)=f(u)$ for all u. Therefore

$$
\int_{a}^{a+b} f(x) d x=\int_{0}^{b} f(x) d x
$$

(note that we are able to change the u to x in the above because u is simply a dummy variable - the integral does not depend on u). So

$$
\int_{b}^{a+b} f(x) d x=\int_{b}^{a} f(x) d x+\int_{a}^{a+b} f(x) d x=\int_{b}^{a} f(x) d x+\int_{0}^{b} f(x) d x=\int_{0}^{a} f(x) d x
$$

