Midterm Duration: 80 minutes

This test has 7 questions on 9 pages, for a total of 47 points. Question 7 is a bonus question.

- Read all the questions carefully before starting to work.
- Q1 and Q2 are short-answer questions; put your answer in the boxes provided.
- All other questions are long-answer; you should give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, watches, cell phones, etc.)

First Name: _____ Last Name: _____

Student-No: _____ Section: _____

Signature: _____

Question:	1	2	3	4	5	6	7	Total
Points:	15	5	6	8	6	7	0	47
Score:								

Stu	ident Conduct dur	ring Examinations			
 Each examination candidate must be pr request of the invigilator or examiner, h fication. 		(ii) purposely exposing written papers to the view of other examination candidates or imaging devices;(iii) purposely viewing the written papers of other examination can-			
 Examination candidates are not permit examiners or invigilators, except in case guities in examination questions, illegibl like. 	s of supposed errors or ambi-	 didates; (iv) using or having visible at the place of writing any books, papers or other memory aid devices other than those authorized by the examiner(s); and, 			
 No examination candidate shall be permi room after the expiration of one-half hou time, or to leave during the first half hou the examination run forty-five (45) min candidate shall be permitted to enter th examination has begun. 	r from the scheduled starting r of the examination. Should autes or less, no examination	(v) using or operating electronic devices including but not lim- ited to telephones, calculators, computers, or similar devices other than those authorized by the examiner(s)(electronic de- vices other than those authorized by the examiner(s) must be completely powered down if present at the place of writing).			
4. Examination candidates must conduct themselves honestly and in ac- cordance with established rules for a given examination, which will be articulated by the examiner or invigilator prior to the examination commencing. Should dishonest behaviour be observed by the exam- iner(s) or invigilator(s), pleas of accident or forgetfulness shall not be received.		6. Examination candidates must not destroy or damage any examination material, must hand in all examination papers, and must not take any examination material from the examination room without permission of the examiner or invigilator.			
 Examination candidates suspected of any similar practices, may be immediately dis by the examiner/invigilator, and may b tion: 	smissed from the examination	 Notwithstanding the above, for any mode of examination that does not fall into the traditional, paper-based method, examination candi- dates shall adhere to any special rules for conduct as established and articulated by the examiner. 			
(i) speaking or communicating with o unless otherwise authorized;	ther examination candidates,	 Examination candidates must follow any additional examination rules or directions communicated by the examiner(s) or invigilator(s). 			

Solution:

Short-Answer Questions. Questions 1 and 2 are short-answer questions. Put your answer in the box provided, but show all of your work. Each part is worth 3 marks, but not all parts are of equal difficulty.

15 marks 1. Evaluate the following integrals.

(a)
$$\int \left(e^{4x} + 5\cos(2x) + 3x^7 + \frac{1}{x^{1/4}} \right) dx$$

$$\frac{e^{4x}}{4} + \frac{5}{2}\sin(2x) + \frac{1}{8}x^8 + \frac{4}{3}x^{\frac{3}{4}} + C$$

(b)
$$\int_{2}^{5} \frac{e^{1/x}}{x^{2}} dx.$$

Answer:
Solution: Let $u = \frac{1}{x}$. Then $du = \frac{-1}{x^{2}} dx$, and $u = \frac{1}{2}$ when $x = 2$ and $u = \frac{1}{5}$ when $x = 5$. So,
 $\int_{2}^{5} \frac{e^{1/x}}{x^{2}} dx = -\int_{\frac{1}{2}}^{\frac{1}{5}} e^{u} du = -e^{u} \Big|_{\frac{1}{2}}^{\frac{1}{5}} = e^{\frac{1}{2}} - e^{\frac{1}{5}}.$

Remark: An alternative (found by some!) is to use $u = e^{1/x}$, $du = \frac{-1}{x^2}e^{1/x}$.

(c)
$$\int_{1}^{\pi} x^{3} \ln(x) dx$$

Solution: Integrate by parts: Let $u = \ln(x)$ and $dv = x^{3} dx$. Then $du = \frac{1}{x}, v = \frac{x^{4}}{4}$,
and

$$\int_{1}^{\pi} x^{3} \ln(x) dx = \left[\frac{x^{4}}{4} \ln(x)\right]_{1}^{\pi} - \int_{1}^{\pi} \frac{x^{4}}{4} \cdot \frac{1}{x} dx = \left[\frac{x^{4}}{4} \ln(x)\right]_{1}^{\pi} - \int_{1}^{\pi} \frac{x^{3}}{4} dx$$

$$= \left[\frac{\pi^{4}}{4} \ln(\pi) - 0\right] - \left[\frac{\pi^{4}}{16} - \frac{1}{16}\right]$$

$$= \frac{\pi^{4} \ln(\pi) - \pi^{4} + 1}{16}.$$

(d)
$$\int \frac{\sin^3(\sqrt{x})}{\sqrt{x}} dx$$

Answer:

Solution: First, let $u = \sqrt{x}$. Then $du = \frac{1}{2\sqrt{x}}$, and

$$\int \frac{\sin^3(\sqrt{x})}{\sqrt{x}} dx = 2 \int \sin^3(u) du.$$

Since we have an **odd** power of sin(x), we use the trig identity $sin^2(u) + cos^2(u) = 1$:

$$2\int \sin^3(u)du = 2\int \sin^2(u)\sin(u)du = 2\int (1-\cos^2(u))\sin(u)du.$$

Now let $v = \cos(u)$. Then $dv = -\sin(u)du$ and we have that

$$\int \frac{\sin^3(\sqrt{x})}{\sqrt{x}} dx = -2 \int (1 - v^2) dv = 2 \int (v^2 - 1) dv = \frac{2}{3} v^3 - 2v + C$$
$$= \frac{2}{3} \cos^3(u) - 2 \cos(u) + C$$
$$= \frac{2}{3} \cos^3(\sqrt{x}) - 2 \cos(\sqrt{x}) + C.$$

(e) *Without* calculating the resulting coefficients, and with no reference to a specific integral, give the appropriate form of the partial fraction decomposition that will decompose the following fractions into a sum of simpler fractions.

(i)
$$\frac{15}{(x+3)(x-1)}$$

(ii)
$$\frac{5x}{(x-1)(x^2+x+1)}$$

(iii)
$$\frac{3x+1}{(x+1)(x^2+2x-3)}$$

Solution: (i)
$$\frac{A}{x+3} + \frac{B}{x-1}$$
.
(ii) $\frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$.
(Note: The discriminant is $\Delta = 1^2 - 4 \cdot 1 \cdot 1 = -3 < 0$.)
(iii) $\frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{x+3}$.
(Note: $x^2 + 2x - 3 = (x-1)(x+3)$.)

Page 4 of 9

3 marks 2. (a) Let
$$G(x) = \int_{1}^{x^2} e^{e^t} dt$$
. Calculate $G'(1)$.

Solution: Let $F(x) = \int_1^x e^{e^t} dt$. Then $G(x) = F(x^2)$ and, by the Chain Rule,

 $G'(x) = F'(x^2) \cdot 2x.$

Also, since e^{e^t} is continuous, by the Fundamental Theorem of Calculus part 1 we know that $F'(x) = e^{e^x}$.

Therefore

$$G'(x) = F'(x^2) \cdot 2x = e^{e^{x^2}} \cdot 2x$$

 $G'(1) = 2e^e$.

and so

2 marks (b) Find the equation of the line tangent to G(x) at the point x = 1.

Solution: From (a) we know that the slope of the line tangent to G(x) at x = 1 is $m = 2e^e$. Using the point-slope formula for a line with the point (1, G(1)), we have that the equation of the tangent line is

$$y - G(1) = 2e^{e}(x - 1).$$

Now,

$$G(1) = \int_{1}^{1} e^{e^{t}} dt = 0$$

since there is no area below the graph between x = 1 and x = 1. So, the equation of the tangent line is

 $y = 2e^e(x-1).$

Long-Solution Problems. In questions 3–7, justify your answers and show all of your work. Unless otherwise indicated, simplification of answers is not required in these questions.

3 marks 3. (a) Approximate
$$\int_{1}^{2} \ln(x) dx$$
 using a *midpoint* Riemann sum with $n = 3$.

Solution: Here a = 1 and b = 2, so $\Delta x = \frac{b-a}{n} = \frac{2-1}{3} = \frac{1}{3}$. Furthermore, we have that $f(x) = \ln(x)$ and, since we're asked to use midpoints, $x_k^* = a + (k - \frac{1}{2})\Delta x = 1 + (k - \frac{1}{2})\frac{1}{3}$.

So

$$\int_{1}^{2} \ln(x) dx \approx M_{3} = \sum_{k=1}^{3} f(x_{k}^{*}) \Delta x = \frac{1}{3} \left(\ln\left(\frac{7}{6}\right) + \ln\left(\frac{9}{6}\right) + \ln\left(\frac{11}{6}\right) \right).$$

(b) Use the formula $E_M \leq \frac{M(b-a)^3}{24n^2}$ to find a bound for the absolute error in the approximation in (a).

Solution: By definition, M is a number such that $|f''(x)| \leq M$ for all $x \in [1, 2]$. Since $f(x) = \ln(x)$, $f'(x) = \frac{1}{x}$ and $f''(x) = \frac{-1}{x^2}$. Therefore $|f''(x)| = \frac{1}{x^2}$. Now, since $\frac{1}{x^2}$ is a decreasing function, we have that $|f''(x)| \leq \frac{1}{1^2} = 1$, so we can take M = 1.

Thus,

$$|\text{error}| \le 1 \cdot \frac{(2-1)^3}{24 \cdot 3^2} = \frac{1}{24 \cdot 3^2}$$

(c) Given that $\int_{1}^{2} \ln(x) dx = 2 \ln(2) - 1$, what is the true error in the approximation in (a). You do **not** need to evaluate your answer.

Solution: The true error is given by

$$\left| \left(\int_{1}^{2} \ln(x) dx \right) - M_{3} \right| = \left| (2\ln(2) - 1) - \frac{1}{3} \left(\ln\left(\frac{7}{6}\right) + \ln\left(\frac{9}{6}\right) + \ln\left(\frac{11}{6}\right) \right) \right|.$$

2 marks

1 mark

8 marks 4. Use a method of integration to calculate the area of the cap of the circle $x^2 + y^2 = 1$ shown below. If you are unable to determine the appropriate limits of integration, calculate the corresponding indefinite integral.

Solution: The equation of the top-half of the circle is $y = \sqrt{1 - x^2}$. Now, the area of the cap of the circle is equal to the total area between the top-half of the circle and the x-axis from $x = -\frac{\sqrt{2}}{2}$ to $x = \frac{\sqrt{2}}{2}$ (let's call this area A_1) minus the area of the rectangle directly below the cap (let's call this area A_2). In the language of integrals,

$$A_1 = \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \sqrt{1 - x^2} dx$$
 and $A_2 = \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \frac{\sqrt{2}}{2} dx$,

since we can think of the rectangle as the area under the graph $y = \frac{\sqrt{2}}{2}$ from $x = -\frac{\sqrt{2}}{2}$ to $x = \frac{\sqrt{2}}{2}$. To calculate A_1 , we make the trigonometric substitution $x = \sin(\theta)$. Then $dx = \cos(\theta)d\theta$ and $\sqrt{1-x^2} = \sqrt{1-\sin^2(\theta)} = \sqrt{\cos^2(\theta)} = \cos(\theta)$. Also, when $x = -\frac{\sqrt{2}}{2}$ we have that $-\frac{\sqrt{2}}{2} = \sin(\theta)$, so $\theta = -\frac{\pi}{4}$. Similarly, when $x = \frac{\sqrt{2}}{2}$, $\theta = \frac{\pi}{4}$. Thus we have that

$$A_1 = \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \sqrt{1 - x^2} dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(\theta) d\theta$$

To calculate this integral, we need to make use of the double-angle formula: $\cos^2(\theta) = \frac{1}{2} + \frac{1}{2}\cos(2\theta)$. This gives us

$$A_{1} = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} + \frac{1}{2} \cos(2\theta) d\theta = \left(\frac{\theta}{2} + \frac{1}{4} \sin(2\theta)\Big|_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\right)$$
$$= \frac{\pi}{8} + \frac{1}{4} \sin\left(\frac{\pi}{2}\right) - \left(-\frac{\pi}{8} + \frac{1}{4} \sin\left(-\frac{\pi}{2}\right)\right)$$
$$= \frac{\pi}{4} + \frac{1}{2}.$$

Now,

$$A_2 = \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \frac{\sqrt{2}}{2} dx = \frac{\sqrt{2}}{2} x \Big|_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} = 1$$

Therefore the area of the cap is $\frac{\pi}{4} + \frac{1}{2} - 1 = \frac{\pi}{4} - \frac{1}{2}$.

5. The average value of an integrable function f(t) over the interval [a, b] is defined to be

$$f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(t) dt.$$

5 marks (a) If the velocity of a particle after t seconds is given by $v(t) = te^{-t}$, find the particle's average velocity over the first 2 seconds.

Solution: We need to calculate $v_{ave} = \frac{1}{2-0} \int_0^2 t e^{-t} dt$.

Let's first calculate $I = \int_0^2 t e^{-t} dt$. We will use the method of integration by parts with u = t and $dv = e^{-t} dt$. Then du = 1 dt and $v = -e^{-t}$.

This gives us that

$$I = \int_{0}^{2} te^{-t} dt = \left[t(-e^{-t}) \right]_{0}^{2} - \int_{0}^{2} (-e^{-t}) dt$$
$$= \left[t(-e^{-t}) \right]_{0}^{2} + \int_{0}^{2} e^{-t} dt$$
$$= \left[t(-e^{-t}) \right]_{0}^{2} - e^{-t} \Big|_{0}^{2}$$
$$= (-2e^{-2} - 0) - (e^{-2} - e^{0})$$
$$= 1 - 3e^{-2}.$$

So,

$$v_{ave} = \frac{1 - 3e^{-2}}{2}$$
 units of length/seconds.

Remark: Many people tried to use IBP with

$$u = e^{-t}, \ dv = tdt \Rightarrow du = -e^{-t}dt, \ v = \frac{t^2}{2}.$$

This results in the expression (ignoring the limits of integration for brevity)

$$e^{-t} \cdot \frac{t^2}{2} - \int (-e^{-t}) \frac{t^2}{2} dt$$

and the integral that appears is <u>much harder</u> than the original one.

(b) What is the particle's displacement after 2 seconds have passed?

Solution:

$$x(2) - x(0) = \int_0^2 v(t)dt = \int_0^2 te^{-t}dt = 1 - 3e^{-2}$$
 units of length.

1 mark

$$\frac{dx}{dt} = 0.2(x - x^2).$$

$$\frac{1}{x(1-x)}.$$

Solution: The partial fraction decomposition has the form

$$\frac{1}{x(1-x)} = \frac{A}{x} + \frac{B}{1-x}$$

which tells us that

$$1 = A(1 - x) + Bx = (B - A)x + A$$

So, A = 1 and $B - A = 0 \Rightarrow B = 1$. Therefore,

$$\frac{1}{x(1-x)} = \frac{1}{x} + \frac{1}{1-x}.$$

3 marks

(b) Find the general solution of the differential equation above. You may leave your answer in implicit form.

Solution: Moving all the *x*-terms to the left and all of the *t*-terms to the right we get

$$\frac{1}{x - x^2}dx = 0.2dt.$$

Integrating on both sides (and noting that $x - x^2 = x(1 - x)$) we have

$$\int \frac{1}{x(1-x)} dx = \int 0.2dt$$
$$\Rightarrow \int \frac{1}{x} + \frac{1}{1-x} dx = 0.2t + C$$
$$\Rightarrow \ln|x| - \ln|1-x| = 0.2t + C.$$

1 mark

(c) If, initially, there are 1.5 million fish, will the population of fish initially increase or decrease? Justify your answer. (Hint: You do not need to solve (b) to answer this question.)

Solution: The rate of change of the population is given by $\frac{dx}{dt} = 0.2(x - x^2) = 0.2x(1-x)$. If the initial population is x(0) = 1.5, then $\frac{dx}{dt} = 0.2 \cdot (1.5)(1-1.5) < 0$, which indicates that the population is initially decreasing.

Student-No.:

Page 9 of 9

7. Bonus [2 marks] A function f(x) is said to be *even* if f(x) = f(-x) for all x. For example, f(x) = |x| is an even function.

If f(x) is an even integrable function, show that

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$$

for any constant a > 0.

Solution: For any a > 0, we have that

$$\int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx$$

Now, for the integral $\int_{-a}^{0} f(x)dx$, let u = -x. Then du = -dx and when x = -a, u = -(-a) = a. Similarly, when x = 0, u = 0. Thus,

$$\int_{-a}^{0} f(x)dx = \int_{a}^{0} -f(-u)du = \int_{0}^{a} f(-u)du.$$

Since f is an even function, f(-u) = f(u) for all u. Hence

$$\int_{-a}^{0} f(x)dx = \int_{0}^{a} f(u)du = \int_{0}^{a} f(x)dx$$

(since u is simply a dummy variable, we can change it to x in the last step). Therefore

$$\int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx = \int_{0}^{a} f(x)dx + \int_{0}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx.$$