MATH 105 – Review Problems

Some of these problems will be solved at the **Review Session**, and the solutions to all of them will appear right after. The Review Session is on Tuesday, July 18th, at 11.30am, in Math 100

Short Answer

1. Evaluate the following integrals.

(a)
$$\int u(u+4)(2u+1)du$$

(b)
$$\int_{3}^{4} \frac{1}{y^{2}-4y-12}dy$$

(c)
$$\int_{0}^{\frac{a\sqrt{2}}{2}} \frac{1}{\sqrt{a^{2}-x^{2}}}dx$$

(d)
$$\int \cos^{2}x \tan^{3}xdx$$

(e)
$$\int \cos^{4}(\theta)d\theta$$

(f)
$$\int \frac{x^{2}+2}{x+2}dx$$

(g)
$$\int \sin x \cos(\cos x)dx$$

(h)
$$\int \frac{\cos(\frac{\pi}{x})}{x^{2}}dx$$
 (Hint: try a substitution)
(i)
$$\int t \cos(t^{2})dt$$

(j)
$$\int x^{3/2}\ln(x)dx$$

(k)
$$\int \ln(x)dx$$
 (Hint: Think of $\ln(x)$ as $1 \cdot \ln(x)$.)

2. If f(x) is a function such that f'(x) is continuous, f(1) = 12 and $\int_{1}^{4} f'(x) dx = 17$, find f(4).

3. If
$$\int_{2}^{5} f(x)dx = -30$$
, find $\int_{1}^{2} 7f(3x-1)dx$.

- 4. A car is traveling on a straight line with velocity v(t) = t(t-2)m/s. What is the total distance traveled between t = 0 and t = 4 seconds?
- 5. Solve the following initial value problem

$$(x-2)\frac{dy}{dx} = \frac{1}{2y(x^2+1)}, \quad y(0) = 1.$$

Long Answer

- 1. Find the equation of the line tangent to the curve given by $F(x) = \int_{\sin(x)}^{\cos(x)} (1-t^2) dt$ at $x = \frac{\pi}{4}$.
- 2. Find the derivative of the function $F(x) = \int_0^x x e^t dt$. (Hint: x does not depend on t.)
- 3. Find the area between the curves $y = \sin(\pi t)$ and $y = \cos(\pi t)$ from t = 0 to $t = \frac{1}{2}$.
- 4. For a > 0, use a method of integration to show that the area of the ellipse $x^2 + \left(\frac{y}{a}\right)^2 = 1$ is πa . Hint: By symmetry, it suffices to show that the area of the portion of the ellipse lying in the first quadrant is $\frac{1}{4}\pi a$.
- 5. (a) Write down the Midpoint Riemann Sum approximation of the area under the curve $y = e^{1/t}$ between t = 1 and t = 2 with n = 3. Leave your answer in "calculator-ready" form.
 - (b) Now use sigma notation to write down a Midpoint Riemann Sum approximation of the area under the curve $y = e^{1/t}$ between t = 1 and t = 2 with n = 10. Do not evaluate the Riemann sum.
 - (c) Use the error formula

$$E_M \le \frac{M(b-a)^3}{24n^2}$$

to find a bound for the absolute error in the approximation in (b).

6. The Gompertz equation

$$\frac{dP}{dt} = -27\ln\left(\frac{P}{120}\right)P,$$

- is a differential equation used to model limited populations of phytoplankton.
- (a) If the initial population of phytoplankton in a pond is P(0) = 60, and if the population of the phytoplankton satisfies the Goempertz equation, find population as a function of t (i.e. find P(t)).
- (b) What will happen to the population of phytoplankton in the long run?