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INTEGRATION

Chapter 1

Calculus is built on two operations — differentiation and integration.

• Differentiation — as we saw last term, differentiation allows us to compute and
study the instantaneous rate of change of quantities. At its most basic it allows
us to compute tangent lines and velocities, but it also led us to quite sophisticated
applications including approximation of functions through Taylor polynomials and
optimisation of quantities by studying critical and singular points.

• Integration — at its most basic, allows us to analyse the area under a curve. Of
course, its application and importance extend far beyond areas and it plays a central
role in solving differential equations.

It is not immediately obvious that these two topics are related to each other. However, as
we shall see, they are indeed intimately linked.

1.1Ĳ Definition of the Integral

Arguably the easiest way to introduce integration is by considering the area between the
graph of a given function and the x-axis, between two specific vertical lines — such as is
shown in the figure above. We’ll follow this route by starting with a motivating example.

1



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

§§ A Motivating Example

Let us find the area under the curve y = ex (and above the x–axis) for 0 ď x ď 1. That is,
the area of

 

(x, y)
ˇ

ˇ 0 ď y ď ex, 0 ď x ď 1
(

.

This area is equal to the “definite integral”

Area =

ż 1

0
exdx

Do not worry about this notation or terminology just yet. We discuss it at length below.
In different applications this quantity will have different interpretations — not just area.
For example, if x is time and ex is your velocity at time x, then we’ll see later (in Exam-
ple 1.1.18) that the specified area is the net distance travelled between time 0 and time 1.
After we finish with the example, we’ll mimic it to give a general definition of the integral
şb

a f (x)dx.

Example 1.1.1

We wish to compute the area of
 

(x, y)
ˇ

ˇ 0 ď y ď ex, 0 ď x ď 1
(

. We know, from our
experience with ex in differential calculus, that the curve y = ex is not easily written in
terms of other simpler functions, so it is very unlikely that we would be able to write the
area as a combination of simpler geometric objects such as triangles, rectangles or circles.

So rather than trying to write down the area exactly, our strategy is to approximate the
area and then make our approximation more and more precise1. We choose2 to approx-
imate the area as a union of a large number of tall thin (vertical) rectangles. As we take
more and more rectangles we get better and better approximations. Taking the limit as
the number of rectangles goes to infinity gives the exact area3.

As a warm up exercise, we’ll now just use four rectangles. In Example 1.1.2, below,
we’ll consider an arbitrary number of rectangles and then take the limit as the number of
rectangles goes to infinity. So

1 This should remind the reader of the approach taken to compute the slope of a tangent line way way
back at the start of differential calculus.

2 Approximating the area in this way leads to a definition of integration that is called Riemann integra-
tion. This is the most commonly used approach to integration. However we could also approximate the
area by using long thin horizontal strips. This leads to a definition of integration that is called Lebesgue
integration. We will not be covering Lebesgue integration in these notes.

3 If we want to be more careful here, we should construct two approximations, one that is always a little
smaller than the desired area and one that is a little larger. We can then take a limit using the Squeeze
Theorem and arrive at the exact area. More on this later.

2



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

• subdivide the interval 0 ď x ď 1 into 4 equal subintervals each of width 1/4, and

• subdivide the area of interest into four corresponding vertical strips, as in the figure
below.

The area we want is exactly the sum of the areas of all four strips.

x

y
y = ex

1
4

1
2

3
4

1

Each of these strips is almost, but not quite, a rectangle. While the bottom and sides are
fine (the sides are at right-angles to the base), the top of the strip is not horizontal. This
is where we must start to approximate. We can replace each strip by a rectangle by just
levelling off the top. But now we have to make a choice — at what height do we level off
the top?

Consider, for example, the leftmost strip. On this strip, x runs from 0 to 1/4. As x
runs from 0 to 1/4, the height y runs from e0 to e1/4. It would be reasonable to choose the
height of the approximating rectangle to be somewhere between e0 and e1/4. Which height

x

y y = ex

1
4

e0
e1/4

should we choose? Well, actually it doesn’t matter. When we eventually take the limit of
infinitely many approximating rectangles all of those different choices give exactly the
same final answer. We’ll say more about this later.

In this example we’ll do two sample computations.

• For the first computation we approximate each slice by a rectangle whose height is
the height of the left hand side of the slice.

– On the first slice, x runs from 0 to 1/4, and the height y runs from e0, on the left
hand side, to e1/4, on the right hand side.

3



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

– So we approximate the first slice by the rectangle of height e0 and width 1/4,
and hence of area 1

4 e0 = 1
4 .

– On the second slice, x runs from 1/4 to 1/2, and the height y runs from e1/4 and
e1/2.

– So we approximate the second slice by the rectangle of height e1/4 and width
1/4, and hence of area 1

4 e1/4.

– And so on.

– All together, we approximate the area of interest by the sum of the areas of the
four approximating rectangles, which is

[
1 + e1/4 + e1/2 + e3/4

]1
4
= 1.5124

– This particular approximation is called the “left Riemann sum approximation
to

ş1
0 exdx with 4 subintervals”. We’ll explain this terminology later.

– This particular approximation represents the shaded area in the figure on the
left below. Note that, because ex increases as x increases, this approximation is
definitely smaller than the true area.

x

y
y = ex

1
4

2
4

3
4

4
4

x

y y = ex

1
4

2
4

3
4

4
4

• For the second computation we approximate each slice by a rectangle whose height
is the height of the right hand side of the slice.

– On the first slice, x runs from 0 to 1/4, and the height y runs from e0, on the left
hand side, to e1/4, on the right hand side.

– So we approximate the first slice by the rectangle of height e1/4 and width 1/4,
and hence of area 1

4 e1/4.

– On the second slice, x runs from 1/4 to 1/2, and the height y runs from e1/4 and
e1/2.

4



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

– So we approximate the second slice by the rectangle of height e1/2 and width
1/4, and hence of area 1

4 e1/2.

– And so on.

– All together, we approximate the area of interest by the sum of the areas of the
four approximating rectangles, which is

[
e1/4 + e1/2 + e3/4 + e1]1

4
= 1.9420

– This particular approximation is called the “right Riemann sum approximation
to

ş1
0 exdx with 4 subintervals”.

– This particular approximation represents the shaded area in the figure on the
right above. Note that, because ex increases as x increases, this approximation is
definitely larger than the true area.

Example 1.1.1

Now for the full computation that gives the exact area.

Example 1.1.2

Recall that we wish to compute the area of
 

(x, y)
ˇ

ˇ 0 ď y ď ex, 0 ď x ď 1
(

and that our
strategy is to approximate this area by the area of a union of a large number of very thin
rectangles, and then take the limit as the number of rectangles goes to infinity. In Exam-
ple 1.1.1, we used just four rectangles. Now we’ll consider a general number of rectangles,
that we’ll call n. Then we’ll take the limit n Ñ 8. So

• pick a natural number n and

• subdivide the interval 0 ď x ď 1 into n equal subintervals each of width 1/n, and

• subdivide the area of interest into corresponding thin strips, as in the figure below.

The area we want is exactly the sum of the areas of all of the thin strips.

x

y
y = ex

1
n

2
n

· · · n
n

5



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Each of these strips is almost, but not quite, a rectangle. As in Example 1.1.1, the only
problem is that the top is not horizontal. So we approximate each strip by a rectangle, just
by levelling off the top. Again, we have to make a choice — at what height do we level off
the top?

Consider, for example, the leftmost strip. On this strip, x runs from 0 to 1/n. As x runs
from 0 to 1/n, the height y runs from e0 to e1/n. It would be reasonable to choose the height
of the approximating rectangle to be somewhere between e0 and e1/n. Which height should
we choose?

Well, as we said in Example 1.1.1, it doesn’t matter. We shall shortly take the limit
n Ñ 8 and, in that limit, all of those different choices give exactly the same final answer.
We won’t justify that statement in this example, but there will be an (optional) section
shortly that provides the justification. For this example we just, arbitrarily, choose the
height of each rectangle to be the height of the graph y = ex at the smallest value of x in
the corresponding strip4. The figure on the left below shows the approximating rectangles
when n = 4 and the figure on the right shows the approximating rectangles when n = 8.

x

y
y = ex

1
4

2
4

3
4

4
4

x

y
y = ex

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

Now we compute the approximating area when there are n strips.

• We approximate the leftmost strip by a rectangle of height e0. All of the rectangles
have width 1/n. So the leftmost rectangle has area 1

n e0.

• On strip number 2, x runs from 1
n to 2

n . So the smallest value of x on strip number 2
is 1

n , and we approximate strip number 2 by a rectangle of height e1/n and hence of
area 1

n e1/n.

• And so on.

• On the last strip, x runs from n´1
n to n

n = 1. So the smallest value of x on the last strip
is n´1

n , and we approximate the last strip by a rectangle of height e(n´1)/n and hence
of area 1

n e(n´1)/n.

4 Notice that since ex is an increasing function, this choice of heights means that each of our rectangles is
smaller than the strip it came from.

6



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

The total area of all of the approximating rectangles is

Total approximating area =
1
n

e0 +
1
n

e1/n +
1
n

e2/n +
1
n

e3/n + ¨ ¨ ¨+
1
n

e(n´1)/n

=
1
n

(
1 + e1/n + e2/n + e3/n + ¨ ¨ ¨+ e(n´1)/n

)

Now the sum in the brackets might look a little intimidating because of all the exponen-
tials, but it actually has a pretty simple structure that can be easily seen if we rename
e1/n = r. Then

• the first term is 1 = r0 and

• the second term is e1/n = r1 and

• the third term is e2/n = r2 and

• the fourth term is e3/n = r3 and

• and so on and

• the last term is e(n´1)/n = rn´1.

So

Total approximating area =
1
n

(
1 + r + r2 + ¨ ¨ ¨+ rn´1

)

The sum in brackets is known as a geometric sum and satisfies a nice simple formula:

1 + r + r2 + ¨ ¨ ¨+ rn´1 =
rn ´ 1
r´ 1

provided r ‰ 1

Equation 1.1.3(Geometric sum).

The derivation of the above formula is not too difficult. So let’s derive it in a little aside.

§§§ Geometric sum

Denote the sum as

S = 1 + r + r2 + ¨ ¨ ¨+ rn´1

Notice that if we multiply the whole sum by r we get back almost the same thing:

rS = r
(

1 + r + r2 + ¨ ¨ ¨+ rn´1
)

= r + r2 + r3 + ¨ ¨ ¨+ rn

This right hand side differs from the original sum S only in that

• the right hand side is missing the “1+ ” that S starts with and

7



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

• the right hand side has an extra “+rn ” at the end that does not appear in S.

That is

rS = S´ 1 + rn

Moving this around a little gives

(r´ 1)S = (rn
´ 1)

S =
rn ´ 1
r´ 1

as required. Notice that the last step in the manipulations only works providing r ‰ 1
(otherwise we are dividing by zero).

§§§ Back to approximating areas

Now we can go back to our area approximation armed with the above result about geo-
metric sums.

Total approximating area =
1
n

(
1 + r + r2 + ¨ ¨ ¨+ rn´1

)

=
1
n

rn ´ 1
r´ 1

remember that r = e1/n

=
1
n

en/n ´ 1
e1/n ´ 1

=
1
n

e´ 1
e1/n ´ 1

To get the exact area5 all we need to do is make the approximation better and better
by taking the limit n Ñ 8. The limit will look more familiar if we rename 1/n to X. As n
tends to infinity, X tends to 0, so

Area = lim
nÑ8

1
n

e´ 1
e1/n ´ 1

= (e´ 1) lim
nÑ8

1/n
e1/n ´ 1

= (e´ 1) lim
XÑ0

X
eX ´ 1

(with X = 1/n)

Examining this limit we see that both numerator and denominator tend to zero as X Ñ

0, and so we cannot evaluate this limit by computing the limits of the numerator and
denominator separately and then dividing the results. Despite this, the limit is not too
hard to evaluate; here we give two ways:

5 We haven’t proved that this will give us the exact area, but it should be clear that taking this limit will
give us a lower bound on the area. To complete things rigorously we also need an upper bound and
the squeeze theorem. We do this in the next optional subsection.

8



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

• Perhaps the easiest way to compute the limit is by using l’Hôpital’s rule6. Since both
numerator and denominator go to zero, this is a 0/0 indeterminate form. Thus

lim
XÑ0

X
eX ´ 1

= lim
XÑ0

d
dX X

d
dX (e

X ´ 1)
= lim

XÑ0

1
eX = 1

• Another way7 to evaluate the same limit is to observe that it can be massaged into
the form of the limit definition of the derivative. First notice that

lim
XÑ0

X
eX ´ 1

=

[
lim
XÑ0

eX ´ 1
X

]´1

provided this second limit exists and is nonzero. This second limit should look a
little familiar:

lim
XÑ0

eX ´ 1
X

= lim
XÑ0

eX ´ e0

X ´ 0

which is just the definition of the derivative of ex at x = 0. Hence we have

lim
XÑ0

X
eX ´ 1

=

[
lim
XÑ0

eX ´ e0

X ´ 0

]´1

=

[
d
dX

eX
ˇ

ˇ

ˇ

X=0

]´1

=
[
eXˇ
ˇ

X=0

]´1

= 1

So, after this short aside into limits, we may now conclude that

Area = (e´ 1) lim
XÑ0

X
eX ´ 1

= e´ 1

Example 1.1.2

1.1.1 §§ Optional — A more rigorous area computation

In Example 1.1.1 above we considered the area of the region
 

(x, y)
ˇ

ˇ 0 ď y ď ex, 0 ď
x ď 1

(

. We approximated that area by the area of a union of n thin rectangles. We then
claimed that upon taking the number of rectangles to infinity, the approximation of the

6 If you do not recall L’Hôpital’s rule and indeterminate forms then we recommend you skim over your
differential calculus notes on the topic.

7 Say if you don’t recall l’Hôpital’s rule and have not had time to revise it.
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INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

area became the exact area. However we did not justify the claim. The purpose of this
optional section is to make that calculation rigorous.

The broad set-up is the same. We divide the region up into n vertical strips, each of
width 1/n and we then approximate those strips by rectangles. However rather than an
uncontrolled approximation, we construct two sets of rectangles — one set always smaller
than the original area and one always larger. This then gives us lower and upper bounds
on the area of the region. Finally we make use of the squeeze theorem8 to establish the
result.

• To find our upper and lower bounds we make use of the fact that ex is an increasing
function. We know this because the derivative d

dx ex = ex is always positive. Conse-
quently, the smallest and largest values of ex on the interval a ď x ď b are ea and eb,
respectively.

• In particular, for 0 ď x ď 1/n, ex takes values only between e0 and e1/n. As a result,
the first strip

 

(x, y)
ˇ

ˇ 0 ď x ď 1/n, 0 ď y ď ex (

– contains the rectangle of 0 ď x ď 1/n, 0 ď y ď e0 (the lighter rectangle in the
figure on the left below) and

– is contained in the rectangle 0 ď x ď 1/n, 0 ď y ď e1/n (the largest rectangle in
the figure on the left below).

Hence

1
n

e0
ď Area

 

(x, y)
ˇ

ˇ 0 ď x ď 1/n, 0 ď y ď ex (
ď

1
n

e1/n

x

y y = ex

1
n

e0
e1/n

x

y y = ex

1
n

2
n

· · · n
n

e0
e1/n
e2/n

8 Recall that if we have 3 functions f (x), g(x), h(x) that satisfy f (x) ď g(x) ď h(x) and we know that
limxÑa f (x) = limxÑa h(x) = L exists and is finite, then the squeeze theorem tells us that limxÑa g(x) =
L.

10



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

• Similarly, for the second, third, . . . , last strips, as in the figure on the right above,

1
n

e1/n
ď Area

 

(x, y)
ˇ

ˇ 1/n ď x ď 2/n, 0 ď y ď ex (
ď

1
n

e2/n

1
n

e2/n
ď Area

 

(x, y)
ˇ

ˇ 2/n ď x ď 3/n, 0 ď y ď ex (
ď

1
n

e3/n

...
...

...
1
n

e(n´1)/n
ď Area

 

(x, y)
ˇ

ˇ (n´1)/n ď x ď n/n, 0 ď y ď ex (
ď

1
n

en/n

• Adding these n inequalities together gives

1
n

(
1 + e1/n + ¨ ¨ ¨+ e(n´1)/n

)

ď Area
 

(x, y)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď ex (

ď
1
n

(
e1/n + e2/n + ¨ ¨ ¨+ en/n

)

• We can then recycle equation (1.1.3) with r = e1/n, so that rn =
(
e1/n
)n

= e. Thus we
have

1
n

e´ 1
e1/n ´ 1

ď Area
 

(x, y)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď ex (
ď

1
n

e1/n e´ 1
e1/n ´ 1

where we have used the fact that the upper bound is a simple multiple of the lower
bound:

(
e1/n + e2/n + ¨ ¨ ¨+ en/n

)
= e1/n

(
1 + e1/n + ¨ ¨ ¨+ e(n´1)/n

)
.

• We now apply the squeeze theorem to the above inequalities. In particular, the limits
of the lower and upper bounds are

lim
nÑ8

1
n

e´ 1
e1/n ´ 1

= (e´ 1) lim
X=1/nÑ0

X
eX ´ 1

= e´ 1

(by l’Hôpital’s rule) and

lim
nÑ8

1
n

e1/n e´ 1
e1/n ´ 1

= (e´ 1) lim
X=1/nÑ0

¨
XeX

eX ´ 1

= (e´ 1) lim
XÑ0

eX
¨ lim

X=Ñ0

X
eX ´ 1

= (e´ 1) ¨ 1 ¨ 1

Thus, since the exact area is trapped between the lower and upper bounds, the
squeeze theorem then implies that

Exact area = e´ 1.
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INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

1.1.2 §§ Summation notation

As you can see from the above example (and the more careful rigorous computation), our
discussion of integration will involve a fair bit of work with sums of quantities. To this
end, we make a quick aside into summation notation. While one can work through the
material below without this notation, proper summation notation is well worth learning,
so we advise the reader to persevere.

Writing out the summands explicitly can become quite impractical — for example, say
we need the sum of the first 11 squares:

1 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102 + 112

This becomes tedious. Where the pattern is clear, we will often skip the middle few terms
and instead write

1 + 22 + ¨ ¨ ¨+ 112.

A far more precise way to write this is using Σ (capital-sigma) notation. For example, we
can write the above sum as

11
ÿ

k=1

k2

This is read as

The sum from k equals 1 to 11 of k2.

More generally

Let m ď n be integers and let f (x) be a function defined on the integers. Then we
write

n
ÿ

k=m

f (k)

to mean the sum of f (k) for k from m to n:

f (m) + f (m + 1) + f (m + 2) + ¨ ¨ ¨+ f (n´ 1) + f (n).

Similarly we write

n
ÿ

i=m

ai

to mean

am + am+1 + am+2 + ¨ ¨ ¨+ an´1 + an

for some set of coefficients tam, . . . , anu.

Notation1.1.4.

12



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Consider the example

7
ÿ

k=3

1
k2 =

1
32 +

1
42 +

1
52 +

1
62 +

1
72

It is important to note that the right hand side of this expression evaluates to a number9; it
does not contain “k”. The summation index k is just a “dummy” variable and it does not
have to be called k. For example

7
ÿ

k=3

1
k2 =

7
ÿ

i=3

1
i2 =

7
ÿ

j=3

1
j2

=
7
ÿ

`=3

1
`2

Also the summation index has no meaning outside the sum. For example

k
7
ÿ

k=3

1
k2

has no mathematical meaning; it is gibberish.
A sum can be represented using summation notation in many different ways. If you

are unsure as to whether or not two summation notations represent the same sum, just
write out the first few terms and the last couple of terms. For example,

15
ÿ

m=3

1
m2 =

m=3
hkkikkj

1
32 +

m=4
hkkikkj

1
42 +

m=5
hkkikkj

1
52 + ¨ ¨ ¨+

m=14
hkkikkj

1
142 +

m=15
hkkikkj

1
152

16
ÿ

m=4

1
(m´ 1)2 =

m=4
hkkikkj

1
32 +

m=5
hkkikkj

1
42 +

m=6
hkkikkj

1
52 + ¨ ¨ ¨+

m=15
hkkikkj

1
142 +

m=16
hkkikkj

1
152

are equal.
Here is a theorem that gives a few rules for manipulating summation notation.

Let n ě m be integers. Then for all real numbers c and ai, bi, m ď i ď n.

(a)
n
ř

i=m
cai = c

( n
ř

i=m
ai

)

(b)
n
ř

i=m
(ai + bi) =

( n
ř

i=m
ai

)
+

( n
ř

i=m
bi

)

(c)
n
ř

i=m
(ai ´ bi) =

( n
ř

i=m
ai

)
´

( n
ř

i=m
bi

)

Theorem1.1.5 (Arithmetic of Summation Notation).

9 Some careful addition shows it is 46181
176400 .
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Proof. We can prove this theorem by just writing out both sides of each equation, and
observing that they are equal, by the usual laws of arithmetic10. For example, for the first
equation, the left and right hand sides are

n
ÿ

i=m

cai = cam + cam+1 + ¨ ¨ ¨+ can and c
( n

ÿ

i=m

ai

)
= c(am + am+1 + ¨ ¨ ¨+ an)

They are equal by the usual distributive law. The “distributive law” is the fancy name for
c(a + b) = ca + cb.

Not many sums can be computed exactly11. Here are some that can. The first few are
used a lot.

(a)
n
ř

i=0
ari = a 1´rn+1

1´r , for all real numbers a and r ‰ 1 and all integers n ě 0.

(b)
n
ř

i=1
1 = n, for all integers n ě 1.

(c)
n
ř

i=1
i = 1

2 n(n + 1), for all integers n ě 1.

(d)
n
ř

i=1
i2 = 1

6 n(n + 1)(2n + 1), for all integers n ě 1.

(e)
n
ř

i=1
i3 =

[
1
2 n(n + 1)

]2
, for all integers n ě 1.

Theorem1.1.6.

10 Since all the sums are finite, this isn’t too hard. More care must be taken when the sums involve an
infinite number of terms. We will examine this in Chapter 3.

11 Of course, any finite sum can be computed exactly — just sum together the terms. What we mean by
“computed exactly” in this context, is that we can rewrite the sum as a simple, and easily evaluated,
formula involving the terminals of the sum. For example

n
ÿ

k=m

rk =
rn+1 ´ rm

r´ 1
provided r ‰ 1

No matter what finite integers we choose for m and n, we can quickly compute the sum in just a few
arithmetic operations. On the other hand, the sums,

n
ÿ

k=m

1
k

n
ÿ

k=m

1
k2

cannot be expressed in such clean formulas (though you can rewrite them quite cleanly using integrals).
To explain more clearly we would need to go into a more detailed and careful discussion that is beyond
the scope of this course.
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§§§ Proof of Theorem 1.1.6 (Optional)

Proof. (a) The first sum is
n
ÿ

i=0

ari = ar0 + ar1 + ar2 + ¨ ¨ ¨+ arn

which is just the left hand side of equation (1.1.3), with n replaced by n + 1 and then
multiplied by a.

(b) The second sum is just n copies of 1 added together, so of course the sum is n.

(c) The third and fourth sums are discussed in the appendix of the CLP notes for mathe-
matics 100 and 180. In that discussion certain “tricks” are used to compute the sums
with only simple arithmetic. Those tricks do not easily generalise to the fifth sum.

(c’) Instead of repeating that appendix, we’ll derive the third sum using a trick that gen-
eralises to the fourth and fifth sums (and also to higher powers). The trick uses the
generating function12 S(x):

S(x) = 1 + x + x2 + ¨ ¨ ¨+ xn =
xn+1 ´ 1

x´ 1

Equation 1.1.7.

Notice that this is just the geometric sum given by equation 1.1.3 with n replaced by
n + 1.

Now, consider the limit

lim
xÑ1

S(x) = lim
xÑ1

(
1 + x + x2 + ¨ ¨ ¨+ xn

)
= n + 1 but also

= lim
xÑ1

xn+1 ´ 1
x´ 1

now use l’Hôpital’s rule

= lim
xÑ1

(n + 1)xn

1
= n + 1.

This is not so hard (or useful). But now consider the derivative of S(x):

S1(x) = 1 + 2x + 3x2 + ¨ ¨ ¨+ nxn´1

=
d
dx

[
xn+1 ´ 1

x´ 1

]
use the quotient rule

=
(x´ 1) ¨ (n + 1)xn ´ (xn+1 ´ 1) ¨ 1

(x´ 1)2 now clean it up

=
nxn+1 ´ (n + 1)xn + 1

(x´ 1)2 .

12 Generating functions are frequently used in mathematics to analyse sequences and series, but are be-
yond the scope of the course. The interested reader should take a look at “Generatingfunctionology”
by Herb Wilf. It is an excellent book and is also free to download.
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Hence if we take the limit of the above expression as x Ñ 1 we recover

lim
xÑ1

S1(x) = 1 + 2 + 3 + ¨ ¨ ¨+ n

= lim
xÑ1

nxn+1 ´ (n + 1)xn + 1
(x´ 1)2 now use l’Hôpital’s rule

= lim
xÑ1

n(n + 1)xn ´ n(n + 1)xn´1

2(x´ 1)
l’Hôpital’s rule again

= lim
xÑ1

n2(n + 1)xn´1 ´ n(n + 1)(n´ 1)xn´2

2

=
n2(n + 1)´ n(n´ 1)(n + 1)

2
=

n(n + 1)
2

as required. This computation can be done without l’Hôpital’s rule, but the manipu-
lations required are a fair bit messier.

(d) The derivation of the fourth and fifth sums is similar to, but even more tedious than,
that of the third sum. One takes two or three derivatives of the generating functional.

1.1.3 §§ The Definition of the Definite Integral

In this section we give a definition of the definite integral
ż b

a
f (x)dx generalising the ma-

chinery we used in Example 1.1.1. But first some terminology and a couple of remarks to
better motivate the definition.

The symbol
ż b

a
f (x)dx is read “the definite integral of the function f (x) from

a to b”. The function f (x) is called the integrand of
şb

a f (x)dx and a and b are
called the limits of integration. The interval a ď x ď b is called the interval of
integration and is also called the domain of integration.

Notation1.1.8.

Before we explain more precisely what the definite integral actually is, a few remarks
(actually — a few interpretations) are in order.

• If f (x) ě 0 and a ď b, one interpretation of the symbol
ż b

a
f (x)dx is “the area of the

region
 

(x, y)
ˇ

ˇ a ď x ď b, 0 ď y ď f (x)
(

”.
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x

y

a b

y = f(x)

In this way we can rewrite the area in Example 1.1.1 as the definite integral
ş1

0 exdx.

• This interpretation breaks down when either a ą b or f (x) is not always positive,
but it can be repaired by considering “signed areas”.

• If a ď b, but f (x) is not always positive, one interpretation of
şb

a f (x)dx is “the signed
area between y = f (x) and the x–axis for a ď x ď b”. For “signed area” (which
is also called the “net area”), areas above the x–axis count as positive while areas
below the x–axis count as negative. In the example below, we have the graph of the
function

f (x) =

$

’

&

’

%

´1 if 1 ď x ď 2
2 if 2 ă x ď 4
0 otherwise

The 2ˆ 2 shaded square above the x–axis has signed area +2ˆ 2 = +4. The 1ˆ 1
shaded square below the x–axis has signed area ´1ˆ 1 = ´1. So, for this f (x),

ż 5

0
f (x)dx = +4´ 1 = 3

x

y

1 2 4

−1

2

signed area= +4

signed area= −1

+

−

• We’ll come back to the case b ă a later.

17
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We’re now ready to define
şb

a f (x)dx. The definition is a little involved, but essentially
mimics what we did in Example 1.1.1 (which is why we did the example before the defini-
tion). The main differences are that we replace the function ex by a generic function f (x)
and we replace the interval from 0 to 1 by the generic interval13 from a to b.

• We start by selecting any natural number n and subdividing the interval from a to b
into n equal subintervals. Each subinterval has width b´a

n .

• Just as was the case in Example 1.1.1 we will eventually take the limit as n Ñ 8,
which squeezes the width of each subinterval down to zero.

• For each integer 0 ď i ď n, define xi = a + i ¨ b´a
n . Note that this means that x0 = a

and xn = b. It is worth keeping in mind that these numbers xi do depend on n even
though our choice of notation hides this dependence.

• Subinterval number i is xi´1 ď x ď xi. In particular, on the first subinterval, x
runs from x0 = a to x1 = a + b´a

n . On the second subinterval, x runs from x1 to
x2 = a + 2 b´a

n .

x

y

x1 x2 x3 · · ·

y = f(x)

a = x0 xn = bxn−1

• On each subinterval we now pick x˚i,n between xi´1 and xi. We then approximate
f (x) on the ith subinterval by the constant function y = f (x˚i,n). We include n in the
subscript to remind ourselves that these numbers depend on n.

Geometrically, we’re approximating the region

 

(x, y)
ˇ

ˇ x is between xi´1 and xi, and y is between 0 and f (x)
(

by the rectangle

 

(x, y)
ˇ

ˇ x is between xi´1 and xi, and y is between 0 and f (x˚i,n)
(

13 We’ll eventually allow a and b to be any two real numbers, not even requiring a ă b. But it is easier to
start off assuming a ă b, and that’s what we’ll do.
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In Example 1.1.1 we chose x˚i,n = xi´1 and so we approximated the function ex on
each subinterval by the value it took at the leftmost point in that subinterval.

• So, when there are n subintervals our approximation to the signed area between the
curve y = f (x) and the x–axis, with x running from a to b, is

n
ÿ

i=1

f (x˚i,n) ¨
b´ a

n

We interpret this as the signed area since the summands f (x˚i,n) ¨
b´a

n need not be
positive.

• Finally we define the definite integral by taking the limit of this sum as n Ñ 8.

Oof! This is quite an involved process, but we can now write down the definition we
need.

Let a and b be two real numbers and let f (x) be a function that is defined for all
x between a and b. Then we define

ż b

a
f (x)dx = lim

nÑ8

n
ÿ

i=1

f (x˚i,n) ¨
b´ a

n

when the limit exists and takes the same value for all choices of the x˚i,n’s. In this
case, we say that f is integrable on the interval from a to b.

Definition1.1.9.

Of course, it is not immediately obvious when this limit should exist. Thankfully it is
easier for a function to be “integrable” than it is for it to be “differentiable”.
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Let f (x) be a function on the interval [a, b]. If

• f (x) is continuous on [a, b], or

• f (x) has a finite number of jump discontinuities on [a, b] (and is otherwise
continuous)

then f (x) is integrable on [a, b].

Theorem1.1.10.

We will not justify this theorem. But a slightly weaker statement is proved in (the
optional) Section 1.1.6. Of course this does not tell us how to actually evaluate any definite
integrals — but we will get to that in time.

Some comments:

• Note that, in Definition 1.1.9, we allow a and b to be any two real numbers. We do
not require that a ă b. That is, even when a ą b, the symbol

şb
a f (x)dx is still defined

by the formula of Definition 1.1.9. We’ll get an interpretation for
şb

a f (x)dx, when
a ą b, later.

• It is important to note that the definite integral
şb

a f (x)dx represents a number, not a
function of x. The integration variable x is another “dummy” variable, just like the
summation index i in

řn
i=m ai (see Section 1.1.2). The integration variable does not

have to be called x. For example

ż b

a
f (x)dx =

ż b

a
f (t)dt =

ż b

a
f (u)du

Just as with summation variables, the integration variable x has no meaning outside
of f (x)dx. For example

x
ż 1

0
exdx and

ż x

0
exdx

are both gibberish.

The sum inside definition 1.1.9 is named after Bernhard Riemann14 who made the first
rigorous definition of the definite integral and so placed integral calculus on rigorous
footings.

14 Bernhard Riemann was a 19th century German mathematician who made extremely important con-
tributions to many different areas of mathematics — far too many to list here. Arguably two of the
most important (after Riemann sums) are now called Riemann surfaces and the Riemann hypothesis
(he didn’t name them after himself).
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The sum inside definition 1.1.9

n
ÿ

i=1

f (x˚i,n)
b´ a

n

is called a Riemann sum. It is also often written as

n
ÿ

i=1

f (x˚i )∆x

where ∆x = b´a
n .

• If we choose each x˚i,n = xi´1 = a + (i´ 1) b´a
n to be the left hand end point

of the ith interval, [xi´1, xi], we get the approximation

n
ÿ

i=1

f
(

a + (i´ 1)
b´ a

n

)
b´ a

n

which is called the “left Riemann sum approximation to
şb

a f (x)dx with n
subintervals”. This is the approximation used in Example 1.1.1.

• In the same way, if we choose x˚i,n = xi = a + i b´a
n we obtain the approxi-

mation

n
ÿ

i=1

f
(

a + i
b´ a

n

)
b´ a

n

which is called the “right Riemann sum approximation to
şb

a f (x)dx with n
subintervals”. The word “right” signifies that, on each subinterval [xi´1, xi]

we approximate f by its value at the right–hand end–point, xi = a + i b´a
n ,

of the subinterval.

• A third commonly used approximation is

n
ÿ

i=1

f
(

a + (i´ 1/2)
b´ a

n

)
b´ a

n

which is called the “midpoint Riemann sum approximation to
şb

a f (x)dx
with n subintervals”. The word “midpoint” signifies that, on each subin-
terval [xi´1, xi] we approximate f by its value at the midpoint, xi´1+xi

2 =

a + (i´ 1/2) b´a
n , of the subinterval.

Definition1.1.11.

In order to compute a definite integral using Riemann sums we need to be able to
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compute the limit of the sum as the number of summands goes to infinity. This approach is
not always feasible and we will soon arrive at other means of computing definite integrals
based on antiderivatives. However, Riemann sums also provide us with a good means of
approximating definite integrals — if we take n to be a large, but finite, integer, then the
corresponding Riemann sum can be a good approximation of the definite integral. Under
certain circumstances this can be strengthened to give rigorous bounds on the integral.
Let us revisit Example 1.1.1.

Example 1.1.12

Let’s say we are again interested in the integral
ş1

0 exdx. We can follow the same procedure
as we used previously to construct Riemann sum approximations. However since the in-
tegrand f (x) = ex is an increasing function, we can make our approximations into upper
and lower bounds without much extra work.

More precisely, we approximate f (x) on each subinterval xi´1 ď x ď xi

• by its smallest value on the subinterval, namely f (xi´i), when we compute the left
Riemann sum approximation and

• by its largest value on the subinterval, namely f (xi), when we compute the right
Riemann sum approximation.

This is illustrated in the two figures below. The shaded region in the left hand figure is
the left Riemann sum approximation and the shaded region in the right hand figure is the
right Riemann sum approximation.

x

y y = ex

1
n

2
n

· · · n
n

x

y y = ex

1
n

2
n

· · · n
n

We can see that exactly because f (x) is increasing, the left Riemann sum describes an area
smaller than the definite integral while the right Riemann sum gives an area larger15 than
the integral.

When we approximate the integral
ş1

0 exdx using n subintervals, then, on interval num-
ber i,

• x runs from i´1
n to i

n and

15 When a function is decreasing the situation is reversed — the left Riemann sum is always larger than the
integral while the right Riemann sum is smaller than the integral. For more general functions that both
increase and decrease it is perhaps easiest to study each increasing (or decreasing) interval separately.
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• y = ex runs from e(i´1)/n, when x is at the left hand end point of the interval, to ei/n,
when x is at the right hand end point of the interval.

Consequently, the left Riemann sum approximation to
ş1

0 exdx is
řn

i=1 e(i´1)/n 1
n and the

right Riemann sum approximation is
řn

i=1 ei/n ¨ 1
n . So

n
ÿ

i=1

e(i´1)/n 1
n
ď

ż 1

0
exdx ď

n
ÿ

i=1

ei/n
¨

1
n

Thus Ln =
řn

i=1 e(i´1)/n 1
n , which for any n can be evaluated by computer, is a lower bound

on the exact value of
ş1

0 exdx and Rn =
řn

i=1 ei/n 1
n , which for any n can also be evaluated by

computer, is an upper bound on the exact value of
ş1

0 exdx. For example, when n = 1000,
Ln = 1.7174 and Rn = 1.7191 (both to four decimal places) so that, again to four decimal
places,

1.7174 ď
ż 1

0
exdx ď 1.7191

Recall that the exact value is e´ 1 = 1.718281828 . . . .
Example 1.1.12

1.1.4 §§ Using Known Areas to Evaluate Integrals

One of the main aims of this course is to build up general machinery for computing def-
inite integrals (as well as interpretting and applying them). We shall start on this soon,
but not quite yet. We have already seen one concrete, if laborious, method for computing
definite integrals — taking limits of Riemann sums as we did in Example 1.1.1. A second
method, which will work for some special integrands, works by interpretting the definite
integral as “signed area”. This approach will work nicely when the area under the curve
decomposes into simple geometric shapes like triangles, rectangles and circles. Here are
some examples of this second method.

Example 1.1.13

The integral
şb

a 1dx (which is also written as just
şb

a dx) is the area of the shaded rectangle
(of width b´ a and height 1) in the figure on the right below. So

ż b

a
dx = (b´ a)ˆ (1) = b´ a

x

y

a b

1
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INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Example 1.1.13

Example 1.1.14

Let b ą 0. The integral
şb

0 xdx is the area of the shaded triangle (of base b and of height b)
in the figure on the right below. So

ż b

0
xdx =

1
2

bˆ b =
b2

2

x

y

b

b

y = x

The integral
ş0
´b xdx is the signed area of the shaded triangle (again of base b and of height

b) in the figure on the right below. So

ż 0

´b
xdx = ´

b2

2

x
y−b

−b

y = x

Example 1.1.14

Notice that it is very easy to extend this example to the integral
şb

0 cxdx for any real num-
bers b, c ą 0 and find

ż b

0
cxdx =

c
2

b2.

Example 1.1.15

In this example, we shall evaluate
ş1
´1 (1´ |x|)dx. Recall that

|x| =

#

´x if x ď 0
x if x ě 0

so that

1´ |x| =

#

1 + x if x ď 0
1´ x if x ě 0

To picture the geometric figure whose area the integral represents observe that

• at the left hand end of the domain of integration x = ´1 and the integrand 1´ |x| =
1´ | ´ 1| = 1´ 1 = 0 and
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INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

• as x increases from ´1 towards 0, the integrand 1´ |x| = 1 + x increases linearly,
until
• when x hits 0 the integrand hits 1´ |x| = 1´ |0| = 1 and then
• as x increases from 0, the integrand 1´ |x| = 1´ x decreases linearly, until
• when x hits +1, the right hand end of the domain of integration, the integrand hits

1´ |x| = 1´ |1| = 0.

So the integral
ş1
´1 (1´ |x|)dx is the area of the shaded triangle (of base 2 and of height 1)

in the figure on the right below and

ż 1

´1
(1´ |x|)dx =

1
2
ˆ 2ˆ 1 = 1

x

y

−1 1

1

Example 1.1.15

Example 1.1.16

The integral
ş1

0

?
1´ x2dx has integrand f (x) =

?
1´ x2. So it represents the area under

y =
?

1´ x2 with x running from 0 to 1. But we may rewrite

y =
a

1´ x2 as x2 + y2 = 1, y ě 0

But this is the (implicit) equation for a circle — the extra condition that y ě 0 makes it
the equation for the semi-circle centred at the origin with radius 1 lying on and above the
x-axis. Thus the integral represents the area of the quarter circle of radius 1, as shown in
the figure on the right below. So

ż 1

0

a

1´ x2dx =
1
4

π(1)2 =
π

4

x

y

1

1

Example 1.1.16

This next one is a little tricker and relies on us knowing the symmetries of the sine
function.

Example 1.1.17

The integral
şπ
´π sin xdx is the signed area of the shaded region in the figure on the right
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below. It naturally splits into two regions, one on either side of the y-axis. We don’t know
the formula for the area of either of these regions (yet), however the two regions are very
nearly the same. In fact, the part of the shaded region below the x–axis is exactly the re-
flection, in the x–axis, of the part of the shaded region above the x–axis. So the signed area
of part of the shaded region below the x–axis is the negative of the signed area of part of
the shaded region above the x–axis and

ż π

´π
sin xdx = 0 x

y

−π π

1

−1

Example 1.1.17

1.1.5 §§ Another Interpretation for Definite Integrals

So far, we have only a single intepretation16 for definite integrals — namely areas under
graphs. In the following example, we develop a second interpretation.

Example 1.1.18

Suppose that a particle is moving along the x–axis and suppose that at time t its velocity is
v(t) (with v(t) ą 0 indicating rightward motion and v(t) ă 0 indicating leftward motion).
What is the change in its x–coordinate between time a and time b ą a?

We’ll work this out using a procedure similar to our definition of the integral. First
pick a natural number n and divide the time interval from a to b into n equal subintervals,
each of width b´a

n . We are working our way towards a Riemann sum (as we have done
several times above) and so we will eventually take the limit n Ñ 8.

• The first time interval runs from a to a + b´a
n . If we think of n as some large number,

the width of this interval, b´a
n is very small and over this time interval, the velocity

does not change very much. Hence we can approximate the velocity over the first
subinterval as being essentially constant at its value at the start of the time interval —
v(a). Over the subinterval the x-coordinate changes by velocity times time, namely
v(a) ¨ b´a

n .

• Similarly, the second interval runs from time a + b´a
n to time a + 2 b´a

n . Again, we
can assume that the velocity does not change very much and so we can approximate

16 If this were the only intepretation then integrals would be a nice mathematical curiousity and unlikely
to be the core topic of a large first year mathematics course.
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the velocity as being essentially constant at its value at the start of the subinterval
— namely v

(
a + b´a

n

)
. So during the second subinterval the particle’s x–coordinate

changes by approximately v
(

a + b´a
n

)
b´a

n .

• In general, time subinterval number i runs from a+ (i´ 1) b´a
n to a+ i b´a

n and during
this subinterval the particle’s x–coordinate changes, essentially, by

v
(

a + (i´ 1)
b´ a

n

)
b´ a

n
.

So the net change in x–coordinate from time a to time b is approximately

v(a)
b´ a

n
+ v
(

a +
b´ a

n

) b´ a
n

+ ¨ ¨ ¨+ v
(

a + (i´ 1)
b´ a

n

) b´ a
n

+ ¨ ¨ ¨

+ v
(

a + (n´ 1)
b´ a

n

) b´ a
n

=
n
ÿ

i=1

v
(

a + (i´ 1)
b´ a

n

) b´ a
n

This exactly the left Riemann sum approximation to the integral of v from a to b with
n subintervals. The limit as n Ñ 8 is exactly the definite integral

şb
a v(t)dt. Following

tradition, we have called the (dummy) integration variable t rather than x to remind us
that it is time that is running from a to b.

The conclusion of the above discussion is that if a particle is moving along the x–axis
and its x–coordinate and velocity at time t are x(t) and v(t), respectively, then, for all
b ą a,

x(b)´ x(a) =
ż b

a
v(t)dt.

Example 1.1.18

1.1.6 §§ Optional — careful definition of the integral

In this optional section we give a more mathematically rigorous definition of the definite

integral
ż b

a
f (x)dx. Some textbooks use a sneakier, but equivalent, definition. The integral

will be defined as the limit of a family of approximations to the area between the graph of
y = f (x) and the x–axis, with x running from a to b. We will then show conditions under-
which this limit is guaranteed to exist. We should state up front that these conditions are
more restrictive than is strictly necessary — this is done so as to keep the proof accessible.

The family of approximations needed is slightly more general than that used to define
Riemann sums in the previous sections, though it is quite similar. The main difference is
that we do not require that all the subintervals have the same size.
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• We start by selecting a positive integer n. As was the case previously, this will be the
number of subintervals used in the approximation and eventually we will take the
limit as n Ñ 8.

• Now subdivide the interval from a to b into n subintervals by selecting n + 1 values
of x that obey

a = x0 ă x1 ă x2 ă ¨ ¨ ¨ ă xn´1 ă xn = b.

The subinterval number i runs from xi´1 to xi. This formulation does not require
the subintervals to have the same size. However we will eventually require that the
widths of the subintervals shrink towards zero as n Ñ 8.

• Then for each subinterval we select a value of x in that interval. That is, for i =
1, 2, . . . , n, choose x˚i satisfying xi´1 ď x˚i ď xi. We will use these values of x to help
approximate f (x) on each subinterval.

• The area between the graph of y = f (x) and the x–axis, with x running from xi´1

x

y

x1 x2 x3 · · ·

y = f(x)

a = x0 xn = bxn−1

to xi, i.e. the contribution,
şxi

xi´1
f (x)dx, from interval number i to the integral, is

approximated by the area of a rectangle. The rectangle has width xi´ xi´1 and height
f (x˚i ).
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• Thus the approximation to the integral, using all n subintervals, is
ż b

a
f (x)dx « f (x˚1)[x1 ´ x0] + f (x˚2)[x2 ´ x1] + ¨ ¨ ¨+ f (x˚n)[xn ´ xn´1]

• Of course every different choice of n and x1, x2, . . . , xn´1 and x˚1 , x˚2 , . . . , x˚n gives a
different approximation. So to simplify the discussion that follows, let us denote a
particular choice of all these numbers by P:

P = (n, x1, x2, ¨ ¨ ¨ , xn´1, x˚1 , x˚2 , ¨ ¨ ¨ , x˚n) .

Similarly let us denote the resulting approximation by I(P):

I(P) = f (x˚1)[x1 ´ x0] + f (x˚2)[x2 ´ x1] + ¨ ¨ ¨+ f (x˚n)[xn ´ xn´1]

• We claim that, for any reasonable17 function f (x), if you take any reasonable18 se-
quence of these approximations you always get the exactly the same limiting value.
We define

şb
a f (x)dx to be this limiting value.

• Let’s be more precise. We can take the limit of these approximations in two equiv-
alent ways. Above we did this by taking the number of subintervals n to infinity.
When we did this, the width of all the subintervals went to zero. With the formu-
lation we are now using, simply taking the number of subintervals to be very large
does not imply that they will all shrink in size. We could have one very large subin-
terval and a large number of tiny ones. Thus we take the limit we need by taking the
width of the subintervals to zero. So for any choice P, we define

M(P) = max
 

x1 ´ x0 , x2 ´ x1 , ¨ ¨ ¨ , xn ´ xn´1
(

that is the maximum width of the subintervals used in the approximation deter-
mined by P. By forcing the maximum width to go to zero, the widths of all the
subintervals go to zero.

• We then define the definite integral as the limit
ż b

a
f (x)dx = lim

M(P)Ñ0
I(P).

Of course, one is now left with the question of determining when the above limit exists. A
proof of the very general conditions which guarantee existence of this limit is beyond the
scope of this course, so we instead give a weaker result (with stronger conditions) which
is far easier to prove.

For the rest of this section, assume

• that f (x) is continuous for a ď x ď b,

• that f (x) is differentiable for a ă x ă b, and

17 We’ll be more precise about what “reasonable” means shortly.
18 Again, we’ll explain this “reasonble” shortly
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• that f 1(x) is bounded — ie | f 1(x)| ď F for some constant F.

We will now show that, under these hypotheses, as M(P) approachs zero, I(P) always
approaches the area, A, between the graph of y = f (x) and the x–axis, with x running
from a to b.

These assumptions are chosen to make the argument particularly transparent. With a
little more work one can weaken the hypotheses considerably. We are cheating a little by
implicitly assuming that the area A exists. In fact, one can adjust the argument below to
remove this implicit assumption.

• Consider Aj, the part of the area coming from xj´1 ď x ď xj.

We have approximated this area by f (x˚j )[xj ´ xj´1] (see figure left).

• Let f (xj) and f (xj) be the largest and smallest values19 of f (x) for xj´1 ď x ď xj.
Then the true area is bounded by

f (xj)[xj ´ xj´1] ď Aj ď f (xj)[xj ´ xj´1].

(see figure right).

• Now since f (xj) ď f (x˚j ) ď f (xj), we also know that

f (xj)[xj ´ xj´1] ď f (x˚j )[xj´1 ´ xj] ď f (xj)[xj ´ xj´1].

• So both the true area, Aj, and our approximation of that area f (x˚j )[xj ´ xj´1] have
to lie between f (xj)[xj ´ xj´1] and f (xj)[xj ´ xj´1]. Combining these bounds we
have that the difference between the true area and our approximation of that area is
bounded by

ˇ

ˇAj ´ f (x˚j )[xj ´ xj´1]
ˇ

ˇ ď [ f (xj)´ f (xj)] ¨ [xj ´ xj´1].

(To see this think about the smallest the true area can be and the largest our approx-
imation can be and vice versa.)

19 Here we are using the extreme value theorem — its proof is beyond the scope of this course. The
theorem says that any continuous function on a closed interval must attain a minimum and maximum
at least once. In this situation this implies that for any continuous function f (x), there are xj´1 ď

xj, xj ď xj such that f (xj) ď f (x) ď f (xj) for all xj´1 ď x ď xj.
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• Now since our function, f (x) is differentiable we can apply one of the main theorems
we learned in mathematics 100 and 180 — the Mean Value Theorem20. The MVT
implies that there exists a c between xj and xj such that

f (xj)´ f (xj) = f 1(c) ¨ [xj ´ xj]

• By the assumption that | f 1(x)| ď F for all x and the fact that xj and xj must both be
between xj´1 and xj

ˇ

ˇ f (xj)´ f (xj)
ˇ

ˇ ď F ¨
ˇ

ˇxj ´ xj
ˇ

ˇ ď F ¨ [xj ´ xj´1]

Hence the error in this part of our approximation obeys
ˇ

ˇAj ´ f (x˚j )[xj ´ xj´1]
ˇ

ˇ ď F ¨ [xj ´ xj´1]
2.

• That was just the error in approximating Aj. Now we bound the total error by com-
bining the errors from approximating on all the subintervals. This gives

|A´ I(P)| =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j=1

Aj ´

n
ÿ

j=1

f (x˚j )[xj ´ xj´1]

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j=1

(
Aj ´ f (x˚j )[xj ´ xj´1]

)
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

triangle inequality

ď

n
ÿ

j=1

ˇ

ˇ

ˇ
Aj ´ f (x˚j )[xj ´ xj´1]

ˇ

ˇ

ˇ

ď

n
ÿ

j=1

F ¨ [xj ´ xj´1]
2 from above

Now do something a little sneaky. Replace one of these factors of [xj ´ xj´1] (which
is just the width of the jth subinterval) by the maximum width of the subintervals:

ď

n
ÿ

j=1

F ¨M(P) ¨ [xj ´ xj´1] F and M(P) are constant

ď F ¨M(P) ¨
n
ÿ

j=1

[xj ´ xj´1] sum is total width

= F ¨M(P) ¨ (b´ a).

20 Recall that the mean value theorem states that for a function continuous on [a, b] and differentiable on
(a, b), there exists a number c between a and b so that

f 1(c) =
f (b)´ f (a)

b´ a
.
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• Since a, b and F are fixed, this tends to zero as the maximum rectangle width M(P)
tends to zero.

Thus, we have proven

Assume that f (x) is continuous for a ď x ď b, and is differentiable for all a ă x ă
b with | f 1(x)| ď F, for some constant F. Then, as the maximum rectangle width
M(P) tends to zero, I(P) always converges to A, the area between the graph of
y = f (x) and the x–axis, with x running from a to b.

Theorem1.1.19.

1.2Ĳ Basic properties of the definite integral

When we studied limits and derivatives, we developed methods for taking limits or
derivatives of “complicated functions” like f (x) = x2 + sin(x) by understanding how lim-
its and derivatives interact with basic arithmetic operations like addition and subtraction.
This allowed us to reduce the problem into one of of computing derivatives of simpler
functions like x2 and sin(x). Along the way we established simple rules such as

lim
xÑa

( f (x) + g(x)) = lim
xÑa

f (x) + lim
xÑa

g(x) and
d
dx

( f (x) + g(x)) =
d f
dx

+
dg
dx

Some of these rules have very natural analogues for integrals and we discuss them below.
Unfortunately the analogous rules for integrals of products of functions or integrals of
compositions of functions are more complicated than those for limits or derivatives. We
discuss those rules at length in subsequent sections. For now let us consider some of the
simpler rules of the arithmetic of integrals.
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Let a, b and A, B, C be real numbers. Let the functions f (x) and g(x) be integrable
on an interval that contains a and b. Then

(a)
ż b

a
( f (x) + g(x))dx =

ż b

a
f (x)dx +

ż b

a
g(x)dx

(b)
ż b

a
( f (x)´ g(x))dx =

ż b

a
f (x)dx´

ż b

a
g(x)dx

(c)
ż b

a
C f (x)dx = C ¨

ż b

a
f (x)dx

Combining these three rules we have

(d)
ż b

a
(A f (x) + Bg(x))dx = A

ż b

a
f (x)dx + B

ż b

a
g(x)dx

That is, integrals depend linearly on the integrand.

(e)
ż b

a
dx =

ż b

a
1 ¨ dx = b´ a

Theorem1.2.1 (Arithmetic of Integration).

It is not too hard to prove this result from the definition of the definite integral. Addi-
tionally we only really need to prove (d) and (e) since

• (a) follows from (d) by setting A = B = 1,

• (b) follows from (d) by setting A = 1, B = ´1, and

• (c) follows from (d) by setting A = C, B = 0.

Proof. As noted above, it suffices for us to prove (d) and (e). Since (e) is easier, we will
start with that. It is also a good warm-up for (d).

• The definite integral in (e),
şb

a 1dx, can be interpreted geometrically as the area of the
rectangle with height 1 running from x = a to x = b; this area is clearly b´ a. We
can also prove this formula from the definition of the integral (Definition 1.1.9):

ż b

a
dx = lim

nÑ8

n
ÿ

i=1

f (x˚i,n)
b´ a

n
by definition

= lim
nÑ8

n
ÿ

i=1

1
b´ a

n
since f (x) = 1

= lim
nÑ8

(b´ a)
n
ÿ

i=1

1
n

since a, b are constants

= lim
nÑ8

(b´ a)

= b´ a
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as required.

• To prove (d) let us start by defining h(x) = A f (x) + Bg(x) and then we need to
express the integral of h(x) in terms of those of f (x) and g(x). We use Definition 1.1.9
and some algebraic manipulations21 to arrive at the result.

ż b

a
h(x)dx =

n
ÿ

i=1

h(x˚i,n) ¨
b´ a

n
by Definition 1.1.9

=
n
ÿ

i=1

(
A f (x˚i,n) + Bg(x˚i,n)

)
¨

b´ a
n

=
n
ÿ

i=1

(
A f (x˚i,n) ¨

b´ a
n

+ Bg(x˚i,n) ¨
b´ a

n

)

=

(
n
ÿ

i=1

A f (x˚i,n) ¨
b´ a

n

)
+

(
n
ÿ

i=1

Bg(x˚i,n) ¨
b´ a

n

)
by Theorem 1.1.5(b)

= A

(
n
ÿ

i=1

f (x˚i,n) ¨
b´ a

n

)
+ B

(
n
ÿ

i=1

g(x˚i,n) ¨
b´ a

n

)
by Theorem 1.1.5(a)

= A
ż b

a
f (x)dx + B

ż b

a
g(x)dx by Definition 1.1.9

as required.

Using this Theorem we can integrate sums, differences and constant multiples of functions
we know how to integrate. For example:

Example 1.2.2

In Example 1.1.1 we saw that
ş1

0 exdx = e´ 1. So

ż 1

0

(
ex + 7

)
dx =

ż 1

0
exdx + 7

ż 1

0
1dx

by Theorem 1.2.1(d) with A = 1, f (x) = ex, B = 7, g(x) = 1
= (e´ 1) + 7ˆ (1´ 0)

by Example 1.1.1 and Theorem 1.2.1(e)
= e + 6

Example 1.2.2

When we gave the formal definition of
şb

a f (x)dx in Definition 1.1.9 we explained that
the integral could be interpreted as the signed area between the curve y = f (x) and the

21 Now is a good time to look back at Theorem 1.1.5.
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x-axis on the interval [a, b]. In order for this interpretation to make sense we required that
a ă b, and though we remarked that the integral makes sense when a ą b we did not
explain any further. Thankfully there is an easy way to express the integral

şb
a f (x)dx in

terms of
şa

b f (x)dx — making it always possible to write an integral so the lower limit of
integration is less than the upper limit of integration. Theorem 1.2.3, below, tell us that, for
example,

ş3
7 exdx = ´

ş7
3 exdx. The same theorem also provides us with two other simple

manipulations of the limits of integration.

Let a, b, c be real numbers. Let the function f (x) be integrable on an interval that
contains a, b and c. Then

(a)
ż a

a
f (x)dx = 0

(b)
ż a

b
f (x)dx = ´

ż b

a
f (x)dx

(c)
ż b

a
f (x)dx =

ż c

a
f (x)dx +

ż b

c
f (x)dx

Theorem1.2.3 (Arithmetic for the Domain of Integration).

The proof of this statement is not too difficult.

Proof. Let us prove the statements in order.

• Consider the definition of the definite integral

ż b

a
f (x)dx = lim

nÑ8

n
ÿ

i=1

f (x˚i,n) ¨
b´ a

n

If we now substitute b = a in this expression we have

ż a

a
f (x)dx = lim

nÑ8

n
ÿ

i=1

f (x˚i,n) ¨
a´ a

n
loomoon

=0

= lim
nÑ8

n
ÿ

i=1

f (x˚i,n) ¨ 0
loooomoooon

=0

= lim
nÑ8

0

= 0

as required.

• Consider now the definite integral
şb

a f (x)dx. We will sneak up on the proof by first
examining Riemann sum approximations to both this and

şa
b f (x)dx. The midpoint
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Riemann sum approximation to
şb

a f (x)dx with 4 subintervals (so that each subinter-
val has width b´a

4 ) is
"

f
(

a +
1
2

b´ a
4

)
+ f

(
a +

3
2

b´ a
4

)
+ f

(
a +

5
2

b´ a
4

)
+ f

(
a +

7
2

b´ a
4

)*
¨

b´ a
4

=

"

f
(7

8
a +

1
8

b
)
+ f

(5
8

a +
3
8

b
)
+ f

(3
8

a +
5
8

b
)
+ f

(1
8

a +
7
8

b
)*
¨

b´ a
4

Now we do the same for
şa

b f (x)dx with 4 subintervals. Note that b is now the lower
limit on the integral and a is now the upper limit on the integral. This is likely to
cause confusion when we write out the Riemann sum, so we’ll temporarily rename
b to A and a to B. The midpoint Riemann sum approximation to

şB
A f (x)dx with 4

subintervals is
"

f
(

A +
1
2

B´ A
4

)
+ f

(
A +

3
2

B´ A
4

)
+ f

(
A +

5
2

B´ A
4

)
+ f

(
A +

7
2

B´ A
4

)*
¨

B´ A
4

=

"

f
(7

8
A +

1
8

B
)
+ f

(5
8

A +
3
8

B
)
+ f

(3
8

A +
5
8

B
)
+ f

(1
8

A +
7
8

B
)*
¨

B´ A
4

Now recalling that A = b and B = a, we have that the midpoint Riemann sum
approximation to

şa
b f (x)dx with 4 subintervals is

"

f
(7

8
b +

1
8

a
)
+ f

(5
8

b +
3
8

a
)
+ f

(3
8

b +
5
8

a
)
+ f

(1
8

b +
7
8

a
)*
¨

a´ b
4

Thus we see that the Riemann sums for the two integrals are nearly identical — the
only difference being the factor of b´a

4 versas a´b
4 . Hence the two Riemann sums are

negatives of each other.

The same computation with n subintervals shows that the midpoint Riemann sum
approximations to

şa
b f (x)dx and

şb
a f (x)dx with n subintervals are negatives of each

other. Taking the limit n Ñ 8 gives
şa

b f (x)dx = ´
şb

a f (x)dx.

• Finally consider (c) — we will not give a formal proof of this, but instead will inter-
pret it geometrically. Indeed one can also interpret (a) geometrically. In both cases
these become statements about areas:

ż a

a
f (x)dx = 0 and

ż b

a
f (x)dx =

ż c

a
f (x)dx +

ż b

c
f (x)dx

are

Area
 

(x, y)
ˇ

ˇ a ď x ď a, 0 ď y ď f (x)
(

= 0

and

Area
 

(x, y)
ˇ

ˇ a ď x ď b, 0 ď y ď f (x)
(

= Area
 

(x, y)
ˇ

ˇ a ď x ď c, 0 ď y ď f (x)
(

+ Area
 

(x, y)
ˇ

ˇ c ď x ď b, 0 ď y ď f (x)
(

respectively. Both of these geometric statements are intuitively obvious. See the
figures below.
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x

y
y = f(x)

a
x

y
y = f(x)

a c b

Note that we have assumed that a ď c ď b and that f (x) ě 0. One can remove these
restrictions and also make the proof more formal, but it becomes quite tedious and
less intuitive.

Example 1.2.4

Back in Example 1.1.14 we saw that when b ą 0
şb

0 xdx = b2

2 . We’ll now verify that
şb

0 xdx = b2

2 is still true when b = 0 and also when b ă 0.

• First consider b = 0. Then the statement
şb

0 xdx = b2

2 becomes

ż 0

0
xdx = 0

This is an immediate consequence of Theorem 1.2.3(a).

• Now consider b ă 0. Let us write B = ´b, so that B ą 0. In Example 1.1.14 we saw
that

ż 0

´B
xdx = ´

B2

2
.

So we have
ż b

0
xdx =

ż ´B

0
xdx = ´

ż 0

´B
xdx by Theorem 1.2.3(b)

= ´

(
´

B2

2

)
by Example 1.1.14

=
B2

2
=

b2

2

We have now shown that
ż b

0
xdx =

b2

2
for all real numbers b
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Example 1.2.4

Example 1.2.5

Applying Theorem 1.2.3 yet again, we have, for all real numbers a and b,

ż b

a
xdx =

ż 0

a
xdx +

ż b

0
xdx by Theorem 1.2.3(c) with c = 0

=

ż b

0
xdx´

ż a

0
xdx by Theorem 1.2.3(b)

=
b2 ´ a2

2
by Example 1.2.4, twice

We can also understand this result geometrically.

• (left) When 0 ă a ă b, the integral represents the area in green which is the difference
of two right–angle triangles — the larger with area b2/2 and the smaller with area
a2/2.

• (centre) When a ă 0 ă b, the integral represents the signed area of the two displayed
triangles. The one above the axis has area b2/2 while the one below has area ´a2/2
(since it is below the axis).

• (right) When a ă b ă 0, the integral represents the signed area in purple of the
difference between the two triangles — the larger with area ´a2/2 and the smaller
with area ´b2/2.

Example 1.2.5

Theorem 1.2.3(c) shows us how we can split an integral over a larger interval into one
over two (or more) smaller intervals. This is particularly useful for dealing with piece-
wise functions, like |x|.
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Example 1.2.6

Using Theorem 1.2.3, we can readily evaluate integrals involving |x|. First, recall that

|x| =

#

x if x ě 0
´x if x ă 0

Now consider (for example)
ş3
´2 |x|dx. Since the integrand changes at x = 0, it makes

sense to split the interval of integration at that point:

ż 3

´2
|x|dx =

ż 0

´2
|x|dx +

ż 3

0
|x|dx by Theorem 1.2.3

=

ż 0

´2
(´x)dx +

ż 3

0
xdx by definition of |x|

= ´

ż 0

´2
xdx +

ż 3

0
xdx by Theorem 1.2.1(c)

= ´(´22/2) + (32/2) = (4 + 9)/2
= 13/2

We can go further still — given a function f (x) we can rewrite the integral of f (|x|) in
terms of the integral of f (x) and f (´x).

ż 1

´1
f
(
|x|
)
dx =

ż 0

´1
f
(
|x|
)
dx +

ż 1

0
f
(
|x|
)
dx

=

ż 0

´1
f (´x)dx +

ż 1

0
f (x)dx

Example 1.2.6

Here is a more concrete example.

Example 1.2.7

Let us compute
ş1
´1

(
1´ |x|

)
dx again. In Example 1.1.15 we evaluated this integral by in-

terpretting it as the area of a triangle. This time we are going to use only the properties
given in Theorems 1.2.1 and 1.2.3 and the facts that

ż b

a
dx = b´ a and

ż b

a
xdx =

b2 ´ a2

2

That
şb

a dx = b´ a is part (e) of Theorem 1.2.1. We saw that
şb

a xdx = b2´a2

2 in Example 1.2.5.
First we are going to get rid of the absolute value signs by splitting the interval over

which we integrate. Recalling that |x| = x whenever x ě 0 and |x| = ´x whenever x ď 0,
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we split the interval by Theorem 1.2.3(c),

ż 1

´1

(
1´ |x|

)
dx =

ż 0

´1

(
1´ |x|

)
dx +

ż 1

0

(
1´ |x|

)
dx

=

ż 0

´1

(
1´ (´x)

)
dx +

ż 1

0

(
1´ x

)
dx

=

ż 0

´1

(
1 + x

)
dx +

ż 1

0

(
1´ x

)
dx

Now we apply parts (a) and (b) of Theorem 1.2.1, and then

ż 1

´1

[
1´ |x|

]
dx =

ż 0

´1
1dx +

ż 0

´1
xdx +

ż 1

0
1dx´

ż 1

0
xdx

= [0´ (´1)] +
02 ´ (´1)2

2
+ [1´ 0]´

12 ´ 02

2
= 1

Example 1.2.7

1.2.1 §§ More properties of integration: even and odd functions

Recall22 the following definition

Let f (x) be a function. Then,

• we say that f (x) is even when f (x) = f (´x) for all x, and

• we say that f (x) is odd when f (x) = ´ f (´x) for all x.

Definition1.2.8.

Of course most functions are neither even nor odd, but many of the standard functions
you know are.

Example 1.2.9 (Even functions)

• Three examples of even functions are f (x) = |x|, f (x) = cos x and f (x) = x2. In
fact, if f (x) is any even power of x, then f (x) is an even function.

22 We haven’t done this in this course, but you should have seen it in your differential calculus course or
perhaps even earlier.
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• The part of the graph y = f (x) with x ď 0, may be constructed by drawing the part
of the graph with x ě 0 (as in the figure on the left below) and then reflecting it in
the y–axis (as in the figure on the right below).

x

y

−π π

1

−1

x

y

−π π

1

−1

• In particular, if f (x) is an even function and a ą 0, then the two sets
 

(x, y)
ˇ

ˇ 0 ď x ď a and y is between 0 and f (x)
(

 

(x, y)
ˇ

ˇ ´a ď x ď 0 and y is between 0 and f (x)
(

are reflections of each other in the y–axis and so have the same signed area. That is
ż a

0
f (x)dx =

ż 0

´a
f (x)dx

Example 1.2.9

Example 1.2.10 (Odd functions)

• Three examples of odd functions are f (x) = sin x, f (x) = tan x and f (x) = x3. In
fact, if f (x) is any odd power of x, then f (x) is an odd function.

• The part of the graph y = f (x) with x ď 0, may be constructed by drawing the part
of the graph with x ě 0 (like the solid line in the figure on the left below) and then
reflecting it in the y–axis (like the dashed line in the figure on the left below) and
then relecting the result in the x–axis (i.e. flipping it upside down, like in the figure
on the right, below).

x

y

−π π

1

−1

x

y

−π π

1

−1
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• In particular, if f (x) is an odd function and a ą 0, then the signed areas of the two
sets

 

(x, y)
ˇ

ˇ 0 ď x ď a and y is between 0 and f (x)
(

 

(x, y)
ˇ

ˇ ´a ď x ď 0 and y is between 0 and f (x)
(

are negatives of each other — to get from the first set to the second set, you flip it
upside down, in addition to reflecting it in the x–axis. That is

ż a

0
f (x)dx = ´

ż 0

´a
f (x)dx

Example 1.2.10

We can exploit the symmetries noted in the examples above, namely
ż a

0
f (x)dx =

ż 0

´a
f (x)dx for f even

ż a

0
f (x)dx = ´

ż 0

´a
f (x)dx for f odd

together with Theorem 1.2.3
ż a

´a
f (x)dx =

ż 0

´a
f (x)dx +

ż a

0
f (x)dx

in order to simplify the integration of even and odd functions over intervals of the form
[´a, a].

Let a ą 0.

(a) If f (x) is an even function, then
ż a

´a
f (x)dx = 2

ż a

0
f (x)dx

(b) If f (x) is an odd function, then
ż a

´a
f (x)dx = 0

Theorem1.2.11 (Even and Odd).

Proof. For any function
ż a

´a
f (x)dx =

ż a

0
f (x)dx +

ż 0

´a
f (x)dx

When f is even, the two terms on the right hand side are equal. When f is odd, the two
terms on the right hand side are negatives of each other.
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1.2.2 §§ Optional — More properties of integration: inequalities for integrals

We are still unable to integrate many functions, however with a little work we can infer
bounds on integrals from bounds on their integrands.

Let a ď b be real numbers and let the functions f (x) and g(x) be integrable on
the interval a ď x ď b.

(a) If f (x) ě 0 for all a ď x ď b, then

ż b

a
f (x)dx ě 0

(b) If there are constants m and M such that m ď f (x) ď M for all a ď x ď b,
then

m(b´ a) ď
ż b

a
f (x)dx ď M(b´ a)

(c) If f (x) ď g(x) for all a ď x ď b, then

ż b

a
f (x)dx ď

ż b

a
g(x)dx

(d) We have
ˇ

ˇ

ˇ

ˇ

ż b

a
f (x)dx

ˇ

ˇ

ˇ

ˇ

ď

ż b

a
| f (x)|dx

Theorem1.2.12 (Inequalities for Integrals).

Proof. (a) By interpreting the integral as the signed area, this statement simply says that if
the curve y = f (x) lies above the x–axis and a ď b, then the signed area of

 

(x, y)
ˇ

ˇ a ď
x ď b, 0 ď y ď f (x)

(

is at least zero. This is quite clear. Alternatively, we could argue
more algebraically from Definition 1.1.9. We observe that when we define

şb
a f (x)dx

via Riemann sums, every summand, f (x˚i,n)
b´a

n ě 0. Thus the whole sum is nonnega-
tive and consequently, so is the limit, and thus so is the integral.

(b) We can argue this from (a) with a little massaging. Let g(x) = M ´ f (x), then since
f (x) ď M, we have g(x) = M´ f (x) ě 0 so that

ż b

a

(
M´ f (x)

)
dx =

ż b

a
g(x)dx ě 0.
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but we also have
ż b

a

(
M´ f (x)

)
dx =

ż b

a
Mdx´

ż b

a
f (x)dx

= M(b´ a)´
ż b

a
f (x)dx

Thus

M(b´ a)´
ż b

a
f (x)dx ě 0 rearrange

M(b´ a) ě
ż b

a
f (x)dx

as required. The argument showing
şb

a f (x)dx ě m(b´ a) is similar.

(c) Now let h(x) = g(x)´ f (x). Since f (x) ď g(x), we have h(x) = g(x)´ f (x) ě 0 so
that

ż b

a

(
g(x)´ f (x)

)
dx =

ż b

a
h(x)dx ě 0

But we also have that
ż b

a

(
g(x)´ f (x)

)
dx =

ż b

a
g(x)dx´

ż b

a
f (x)dx

Thus
ż b

a
g(x)dx´

ż b

a
f (x)dx ě 0 rearrange

ż b

a
g(x)dx ě

ż b

a
f (x)dx

as required.

(d) For any x, | f (x)| is either f (x) or ´ f (x) (depending on whether f (x) is positive or
negative), so we certainly have

f (x) ď | f (x)| and ´ f (x) ď | f (x)|

Applying part (c) to each of those inequalities gives
ż b

a
f (x)dx ď

ż b

a
| f (x)|dx and ´

ż b

a
f (x)dx ď

ż b

a
| f (x)|dx

Now |
şb

a f (x)dx| is either equal to
şb

a f (x)dx or´
şb

a f (x)dx (depending on whether the
integral is positive or negative). In either case we can apply the above two inequalities
to get the same result, namely

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a
f (x)dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż b

a
| f (x)|dx.
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Example 1.2.13
(
şπ/3

0
?

cos xdx
)

Consider the integral

ż π/3

0

?
cos xdx

This is not so easy to compute exactly23, but we can bound it quite quickly.
For x between 0 and π

3 , the function cos x takes values24 between 1 and 1
2 . Thus the

function
?

cos x takes values between 1 and 1?
2
. That is

1
?

2
ď
?

cos x ď 1 for 0 ď x ď
π

3
.

Consequently, by Theorem 1.2.12(b) with a = 0, b = π
3 , m = 1?

2
and M = 1,

π

3
?

2
ď

ż π/3

0

?
cos xdx ď

π

3

Plugging these expressions into a calculator gives us

0.7404804898 ď
ż π/3

0

?
cos xdx ď 1.047197551

Example 1.2.13

1.3Ĳ The Fundamental Theorem of Calculus

We have spent quite a few pages (and lectures) talking about definite integrals, what they
are (Definition 1.1.9), when they exist (Theorem 1.1.10), how to compute some special
cases (Section 1.1.4), some ways to manipulate them (Theorem 1.2.1 and 1.2.3) and how to
bound them (Theorem 1.2.12). Conspicuously missing from all of this has been a discus-
sion of how to compute them in general. It is high time we rectified that.

The single most important tool used to evaluate integrals is called “the fundamental
theorem of calculus”. Its grand name is justified — it links the two branches of calculus by
connecting derivatives to integrals. In so doing it also tells us how to compute integrals.
Very roughly speaking the derivative of an integral is the original function. This fact
allows us to compute integrals using antiderivatives25. Of course “very rough” is not
enough — let’s be precise.

23 It is not too hard to use Riemann sums and a computer to evaluate it numerically: 0.948025319 . . . .
24 You know the graphs of sine and cosine, so you should be able to work this out without too much

difficulty.
25 You learned these near the end of your differential calculus course. Now is a good time to revise — but

we’ll go over them here since they are so important in what follows.
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Let a ă b and let f (x) be a function which is defined and continuous on [a, b].

Part 1: Let F(x) =
ż x

a
f (t)dt for any x P [a, b]. Then the function F(x) is differen-

tiable and further

F1(x) = f (x)

Part 2: Let G(x) be any function which is defined and continuous on [a, b]. Fur-
ther let G(x) be differentiable with G1(x) = f (x) for all a ă x ă b. Then

ż b

a
f (x)dx = G(b)´ G(a) or equivalently

ż b

a
G1(x)dx = G(b)´ G(a)

Theorem1.3.1 (Fundamental Theorem of Calculus).

Before we prove this theorem and look at a bunch of examples of its application, it
is important that we recall one definition from differential calculus — antiderivatives. If
F1(x) = f (x) on some interval, then F(x) is called an antiderivative of f (x) on that in-
terval. So Part 2 of the the fundamental theorem of calculus tells us how to evaluate the
definite integral of f (x) in terms of any of its antiderivatives — if G(x) is any antideriva-
tive of f (x) then

ż b

a
f (x)dx = G(b)´ G(a)

The form
şb

a G1(x)dx = G(b)´G(a) of the fundamental theorem relates the rate of change
of G(x) over the interval a ď x ď b to the net change of G between x = a and x = b. For
that reason, it is sometimes called the “net change theorem”.

We’ll start with a simple example. Then we’ll see why the fundamental theorem is true
and then we’ll do many more, and more involved, examples.

Example 1.3.2 (A first example)

Consider the integral
şb

a xdx which we have explored previously in Example 1.2.5.

• The integrand is f (x) = x.

• We can readily verify that G(x) = x2

2 satisfies G1(x) = f (x) and so is an antideriva-
tive of the integrand.

• Part 2 of Theorem 1.3.1 then tells us that
ż b

a
f (x)dx = G(b)´ G(a)
ż b

a
xdx =

b2

2
´

a2

2

which is precisely the result we obtained (with more work) in Example 1.2.5.
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Example 1.3.2

We do not give completely rigorous proofs of the two parts of the theorem — that is
not really needed for this course. We just give the main ideas of the proofs so that you can
understand why the theorem is true.

Part 1. We wish to show that if

F(x) =
ż x

a
f (t)dt then F1(x) = f (x)

• Assume that F is the above integral and then consider F1(x). By definition

F1(x) = lim
hÑ0

F(x + h)´ F(x)
h

• To understand this limit, we interpret the terms F(x), F(x + h) as signed areas. To
simplify this further, let’s only consider the case that f is alway nonnegative and that
h ą 0. These restrictions are not hard to remove, but the proof ideas are a bit cleaner
if we keep them in place. Then we have

F(x + h) = the area of the region
 

(t, y)
ˇ

ˇ a ď t ď x + h, 0 ď y ď f (t)
(

F(x) = the area of the region
 

(t, y)
ˇ

ˇ a ď t ď x, 0 ď y ď f (t)
(

• Then the numerator

F(x + h)´ F(x) = the area of the region
 

(t, y)
ˇ

ˇ x ď t ď x + h, 0 ď y ď f (t)
(

This is just the more darkly shaded region in the figure

xa x+ h

y = f(t)

t

• We will be taking the limit h Ñ 0. So suppose that h is very small. Then, as t runs
from x to x = h, f (t) runs only over a very narrow range of values26, all close to
f (x).

• So the darkly shaded region is almost a rectangle of width h and height f (x) and so
has an area which is very close to f (x)h. Thus F(x+h)´F(x)

h is very close to f (x).

26 Notice that if f were discontinuous, then this might be false.
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• In the limit h Ñ 0, F(x+h)´F(x)
h becomes exactly f (x), which is precisely what we

want.

We can make the above more rigorous using the Mean Value Theorem27.

Part 2. We want to show that
şb

a f (t)dt = G(b)´ G(a). To do this we exploit the fact that
the derivative of a constant is zero.

• Let

H(x) =
ż x

a
f (t)dt´ G(x) + G(a)

Then the result we wish to prove is that H(b) = 0. We will do this by showing that
H(x) = 0 for all x between a and b.

• We first show that H(x) is constant by computing its derivative:

H1(x) =
d
dx

ż x

a
f (t)dt´

d
dx

(G(x)) +
d
dx

(G(a))

Since G(a) is a constant, its derivative is 0 and by assumption the derivative of G(x)
is just f (x), so

=
d
dx

ż x

a
f (t)dt´ f (x)

Now Part 1 of the theorem tells us that this derivative is just f (x), so

= f (x)´ f (x) = 0

Hence H is constant.

• To determine which constant we just compute H(a):

H(a) =
ż a

a
f (t)dt´ G(a) + G(a)

=

ż a

a
f (t)dt by Theorem 1.2.3(a)

= 0

as required.

27 The MVT tells us that there is a number c between x and x + h so that

F1(c) =
F(x + h)´ F(x)
(x + h)´ x

=
F(x + h)´ F(x)

h

But since F1(x) = f (x), this tells us that

F(x + h)´ F(x)
h

= f (c)

where c is trapped between x+ h and x. Now when we take the limit as h Ñ 0 we have that this number
c is squeezed to x and the result follows.

48



INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

The simple example we did above (Example 1.3.2), demonstrates the application of
part 2 of the fundamental theorem of calculus. Before we do more examples (and there
will be many more over the coming sections) we should do some examples illustrating
the use of part 1 of the fundamental theorem of calculus. Then we’ll move on to part 2.

Example 1.3.3
(

d
dx

şx
0 tdt

)

Consider the integral
şx

0 t dt. We know how to evaluate this — it is just Example 1.3.2 with
a = 0, b = x. So we have two ways to compute the derivative. We can evaluate the in-
tegral and then take the derivative, or we can apply Part 1 of the fundamental theorem.
We’ll do both, and check that the two answers are the same.

First, Example 1.3.2 gives

F(x) =
ż x

0
t dt =

x2

2

So of course F1(x) = x. Second, Part 1 of the fundamental theorem of calculus tells us that
the derivative of F(x) is just the integrand. That is, Part 1 of the fundamental theorem of
calculus also gives F1(x) = x.

Example 1.3.3

In the previous example we were able to evaluate the integral explicitly, so we did not
need the fundamental theorem to determine its derivative. Here is an example that really
does require the use of the fundamental theorem.

Example 1.3.4
(

d
dx

şx
0 e´t2

dt
)

We would like to find d
dx

şx
0 e´t2

dt. In the previous example, we were able to compute the
corresponding derivative in two ways — we could explicitly compute the integral and
then differentiate the result, or we could apply part 1 of the fundamental theorem of cal-
culus. In this example we do not know the integral explicitly. Indeed it is not possible
to express28 the integral

şx
0 e´t2

dt as a finite combination of standard functions such as
polynomials, exponentials, trigonometric functions and so on.

Despite this, we can find its derivative by just applying the first part of the fundamen-

28 The integral
şx

0 e´t2
dt is closely related to the “error function” which is an extremely important function

in mathematics. While we cannot express this integral (or the error function) as a finite combination of
polynomials, exponentials etc, we can express it as an infinite series

ż x

0
e´t2

dt = x´
x3

3 ¨ 1
+

x5

5 ¨ 2
´

x7

7 ¨ 3!
+

x9

9 ¨ 4!
+ ¨ ¨ ¨+ (´1)k x2k+1

(2k + 1) ¨ k!
+ ¨ ¨ ¨

But more on this in Chapter 3.
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tal theorem of calculus with f (t) = e´t2
and a = 0. That gives

d
dx

ż x

0
e´t2

dt =
d
dx

ż x

0
f (t)dt

= f (x) = e´x2

Example 1.3.4

Let us ratchet up the complexity of the previous example — we can make the limits
of the integral more complicated functions. So consider the previous example with the
upper limit x replaced by x2:

Example 1.3.5
(

d
dx

şx2

0 e´t2
dt
)

Consider the integral
şx2

0 e´t2
dt. We would like to compute its derivative with respect to x

using part 1 of the fundamental theorem of calculus.
The fundamental theorem tells us how to compute the derivative of functions of the

form
şx

a f (t)dt but the integral at hand is not of the specified form because the upper limit
we have is x2, rather than x, — so more care is required. Thankfully we can deal with this
obstacle with only a little extra work. The trick is to define an auxiliary function by simply
changing the upper limit to x. That is, define

E(x) =
ż x

0
e´t2

dt

Then the integral we want to work with is

E(x2) =

ż x2

0
e´t2

dt

The derivative E1(x) can be found via part 1 of the fundamental theorem of calculus (as
we did in Example 1.3.4) and is E1(x) = e´x2

. We can then use this fact with the chain rule
to compute the derivative we need:

d
dx

ż x2

0
e´t2

dt =
d
dx

E(x2) use the chain rule

= 2xE1(x2)

= 2xe´x4

Example 1.3.5

What if both limits of integration are functions of x? We can still make this work, but
we have to split the integral using Theorem 1.2.3.
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Example 1.3.6
(

d
dx

şx2

x e´t2
dt
)

Consider the integral

ż x2

x
e´t2

dt

As was the case in the previous example, we have to do a little pre-processing before we
can apply the fundamental theorem.

This time (by design), not only is the upper limit of integration x2 rather than x, but the
lower limit of integration also depends on x — this is different from the integral

şx
a f (t)dt

in the fundamental theorem where the lower limit of integration is a constant.
Fortunately we can use the basic properties of integrals (Theorem 1.2.3(b) and (c)) to

split
şx2

x e´t2
dt into pieces whose derivatives we already know.

ż x2

x
e´t2

dt =
ż 0

x
e´t2

dt +
ż x2

0
e´t2

dt by Theorem 1.2.3(c)

= ´

ż x

0
e´t2

dt +
ż x2

0
e´t2

dt by Theorem 1.2.3(b)

With this pre-processing, both integrals are of the right form. Using what we have learned
in the the previous two examples,

d
dx

ż x2

x
e´t2

dt =
d
dx

(
´

ż x

0
e´t2

dt +
ż x2

0
e´t2

dt

)

= ´
d
dx

ż x

0
e´t2

dt +
d
dx

ż x2

0
e´t2

dt

= ´e´x2
+ 2xe´x4

Example 1.3.6

Before we start to work with part 2 of the fundamental theorem, we need a little ter-
minology and notation. First some terminology — you may have seen this definition in
your differential calculus course.

Let f (x) and F(x) be functions. If F1(x) = f (x) on an interval, then we say that
F(x) is an antiderivative of f (x) on that interval.

Definition1.3.7 (Antiderivatives).

As we saw above, an antiderivative of f (x) = x is F(x) = x2/2 — we can easily verify
this by differentiation. Notice that x2/2 + 3 is also an antiderivative of x, as is x2/2 + C
for any constant C. This observation gives us the following simple lemma.
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Let f (x) be a function and let F(x) be an antiderivative of f (x). Then F(x) + C
is also an antiderivative for any constant C. Further, every antiderivative of f (x)
must be of this form.

Lemma1.3.8.

Proof. There are two parts to the lemma and we prove each in turn.

• Let F(x) be an antiderivative of f (x) and let C be some constant. Then

d
dx

(F(x) + C) =
d
dx

(F(x)) +
d
dx

(C)

= f (x) + 0

since the derivative of a constant is zero, and by definition the derivative of F(x) is
just f (x). Thus F(x) + C is also an antiderivative of f (x).

• Now let F(x) and G(x) both be antiderivatives of f (x) — we will show that G(x) =
F(x) + C for some constant C. To do this let H(x) = G(x)´ F(x). Then

d
dx

H(x) =
d
dx

(G(x)´ F(x)) =
d
dx

G(x)´
d
dx

F(x) = f (x)´ f (x) = 0

Since the derivative of H(x) is zero, H(x) must be a constant function29. Thus
H(x) = G(x)´ F(x) = C for some constant C and the result follows.

Based on the above lemma we have the following definition.

The “indefinite integral of f (x)” is denoted by
ş

f (x)dx and should be regarded
as the general antiderivative of f (x). In particular, if F(x) is an antiderivative of
f (x) then

ż

f (x)dx = F(x) + C

where the C is an arbitrary constant. In this context, the constant C is also often
called a “constant of integration”.

Definition1.3.9.

29 This follows from the Mean Value Theorem. Say H(x) were not constant, then there would be two
numbers a ă b so that H(a) ‰ H(b). Then the MVT tells us that there is a number c between a and b so
that

H1(c) =
H(b)´ H(a)

b´ a
.

Since both numerator and denominator are non-zero, we know the derivative at c is nonzero. But
this would contradict the assumption that derivative of H is zero. Hence we cannot have a ă b with
H(a) ‰ H(b) and so H(x) must be constant.
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Now we just need a tiny bit more notation.

The symbol

ż

f (x)dx
ˇ

ˇ

ˇ

ˇ

b

a

denotes the change in an antiderivative of f (x) from x = a to x = b. More
precisely, let F(x) be any antiderivative of f (x). Then

ż

f (x)dx
ˇ

ˇ

ˇ

ˇ

b

a
= F(x)|ba = F(b)´ F(a)

Notation1.3.10.

Notice that this notation allows us to write part 2 of the fundamental theorem as
ż b

a
f (x)dx =

ż

f (x)dx
ˇ

ˇ

ˇ

ˇ

b

a

= F(x)|ba = F(b)´ F(a)

Some texts also use an equivalent notation using square brackets:
ż b

a
f (x)dx =

[
F(x)

]b

a
= F(b)´ F(a).

You should be familiar with both notations.
We’ll soon develop some strategies for computing more complicated integrals. But for

now, we’ll try a few integrals that are simple enough that we can just guess the answer.
Of course, any antiderivative that we can guess we can also check — simply differentiate
the guess and verify you get back to the original function:

d
dx

ż

f (x)dx = f (x).

We do these examples in some detail to help us become comfortable finding indefinite
integrals.

Example 1.3.11

Compute the definite integral
ş2

1 xdx.

Solution. We have already seen, in Example 1.2.5, that
ş2

1 xdx = 22´12

2 = 3
2 . We shall now

rederive that result using the fundamental theorem of calculus.

• The main difficulty in this approach is finding the indefinite integral (an antideriva-
tive) of x. That is, we need to find a function F(x) whose derivative is x. So think
back to all the derivatives you computed last term30 and try to remember a function

30 Of course, this assumes that you did your differential calculus course last term. If you did that course at
a different time then please think back to that point in time. If it is long enough ago that you don’t quite
remember when it was, then you should probably do some revision of derivatives of simple functions
before proceeding further.
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whose derivative was something like x.

• This shouldn’t be too hard — we recall that the derivatives of polynomials are poly-
nomials. More precisely, we know that

d
dx

xn = nxn´1

So if we want to end up with just x = x1, we need to take n = 2. However this gives
us

d
dx

x2 = 2x

• This is pretty close to what we want except for the factor of 2. Since this is a constant
we can just divide both sides by 2 to obtain:

1
2
¨

d
dx

x2 =
1
2
¨ 2x which becomes

¨
d
dx

x2

2
= x

which is exactly what we need. It tells us that x2/2 is an antiderivative of x.

• Once one has an antiderivative, it is easy to compute the indefinite integral
ż

xdx =
1
2

x2 + C

as well as the definite integral:

ż 2

1
xdx =

1
2

x2
ˇ

ˇ

ˇ

ˇ

2

1
since x2/2 is the antiderivative of x

=
1
2

22
´

1
2

12 =
3
2

Example 1.3.11

While the previous example could be computed using signed areas, the following example
would be very difficult to compute without using the fundamental theorem of calculus.

Example 1.3.12

Compute
şπ/2

0 sin xdx.

Solution.

• Once again, the crux of the solution is guessing the antiderivative of sin x — that is
finding a function whose derivative is sin x.
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• The standard derivative that comes closest to sin x is

d
dx

cos x = ´ sin x

which is the derivative we want, multiplied by a factor of ´1.

• Just as we did in the previous example, we multiply this equation by a constant to
remove this unwanted factor:

(´1) ¨
d
dx

cos x = (´1) ¨ (´ sin x) giving us

d
dx
(
´ cos x

)
= sin x

This tells us that ´ cos x is an antiderivative of sin x.

• Now it is straightforward to compute the integral:

ż π/2

0
sin xdx = ´ cos x|π/2

0 since ´ cos x is the antiderivative of sin x

= ´ cos
π

2
+ cos 0

= 0 + 1 = 1

Example 1.3.12

Example 1.3.13

Find
ş2

1
1
x dx.

Solution.

• Once again, the crux of the solution is guessing a function whose derivative is 1
x .

Our standard way to differentiate powers of x, namely

d
dx

xn = nxn´1,

doesn’t work in this case — since it would require us to pick n = 0 and this would
give

d
dx

x0 =
d
dx

1 = 0.
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• Fortunately, we also know31 that

d
dx

log x =
1
x

which is exactly the derivative we want.

• We’re now ready to compute the prescribed integral.
ż 2

1

1
x

dx = log x|21 since log x is an antiderivative of 1/x

= log 2´ log 1 since log 1 = 0
= log 2

Example 1.3.13

Example 1.3.14

Find
ş´1
´2

1
x dx.

Solution.

• As we saw in the last example,

d
dx

log x =
1
x

and if we naively use this here, then we will obtain
ż ´1

´2

1
x

dx = log(´1)´ log(´2)

which makes no sense since the logarithm is only defined for positive numbers32.

• We can work around this problem using a slight variation of the logarithm — log |x|.

– When x ą 0, we know that |x| = x and so we have

log |x| = log x differentiating gives us
d
dx

log |x| =
d
dx

log x =
1
x

.

31 Recall that in most mathematics courses (especially this one) we use log x without any indicated base
to denote the natural logarithm — the logarithm base e. Many widely used computer languages, like
Java, C, Python, MATLAB, ¨ ¨ ¨ , use log(x) to denote the logarithm base e too. But many texts also use
ln x to denote the natural logarithm

log x = loge x = ln x.

The reader should be comfortable with all three notations for this function. They should also be aware
that in different contexts — such as in chemistry or physics — it is common to use log x to denote the
logarithm base 10, while in computer science often log x denotes the logarithm base 2. Context is key.

32 This is not entirely true — one can extend the definition of the logarithm to negative numbers, but to
do so one needs to understand complex numbers which is a topic beyond the scope of this course.
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– When x ă 0 we have that |x| = ´x and so

log |x| = log(´x) differentiating with the chain rule gives
d
dx

log |x| =
d
dx

log(´x)

=
1

(´x)
¨ (´1) =

1
x

– Indeed, more generally we should write the indefinite integral of 1/x as
ż

1
x

dx = log |x|+ C

which is valid for all positive and negative x. It is, however, undefined at x = 0.

• We’re now ready to compute the prescribed integral.
ż ´1

´2

1
x

dx = log |x|
ˇ

ˇ

ˇ

ˇ

´1

´2
since log |x| is an antiderivative of 1/x

= log | ´ 1| ´ log | ´ 2| = log 1´ log 2
= ´ log 2 = log 1/2.

Example 1.3.14

This next example raises a nasty issue that requires a little care. We know that the
function 1/x is not defined at x = 0 — so can we integrate over an interval that contains
x = 0 and still obtain an answer that makes sense? More generally can we integrate a
function over an interval on which that function has discontinuities?

Example 1.3.15

Find
ş1
´1

1
x2 dx.

Solution. Beware that this is a particularly nasty example, which illustrates a booby trap
hidden in the fundamental theorem of calculus. The booby trap explodes when the theo-
rem is applied sloppily.

• The sloppy solution starts, as our previous examples have, by finding an antideriva-
tive of the integrand. In this case we know that

d
dx

1
x
= ´

1
x2

which means that ´x´1 is an antiderivative of x´2.

• This suggests (if we proceed naively) that
ż 1

´1
x´2dx = ´

1
x

ˇ

ˇ

ˇ

ˇ

1

´1
since ´1/x is an antiderivative of 1/x2

= ´
1
1
´

(
´

1
´1

)

= ´2

Unfortunately,
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• At this point we should really start to be concerned. This answer cannot be correct.
Our integrand, being a square, is positive everywhere. So our integral represents the
area of a region above the x–axis and must be positive.

• So what has gone wrong? The flaw in the computation is that the fundamental
theorem of calculus, which says that

if F1(x) = f (x) then
ż b

a
f (x)dx = F(b)´ F(a),

is only applicable when F1(x) exists and equals f (x) for all x between a and b.

• In this case F1(x) = 1
x2 does not exist for x = 0. So we cannot apply the fundamental

theorem of calculus as we tried to above.

An integral, like
ş1
´1

1
x2 dx, whose integrand is undefined somewhere in the domain of

integration is called improper. We’ll give a more thorough treatment of improper integrals
later in the text. For now, we’ll just say that the correct way to define (and evaluate)
improper integrals is as a limit of well–defined approximating integrals. We shall later see
that, not only is

ş1
´1

1
x2 dx not negative, it is infinite.

Example 1.3.15

The above examples have illustrated how we can use the fundamental theorem of
calculus to convert knowledge of derivatives into knowledge of integrals. We are now in
a position to easily built a table of integrals. Here is a short table of the most important
derivatives that we know.

F(x) 1 xn sin x cos x tan x ex loge |x| arcsin x arctan x

f (x) = F1(x) 0 nxn´1 cos x ´ sin x sec2 x ex 1
x

1?
1´x2

1
1+x2

Of course we know other derivatives, such as those of sec x and cot x, however the ones
listed above are arguably the most important ones. From this table (with a very little
massaging) we can write down a short table of indefinite integrals.
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f (x) F(x) =
ş

f (x)dx

1 x + C

xn 1
n+1 xn+1 + C provided that n ‰ ´1

1
x

loge |x|+ C

ex ex + C

sin x ´ cos x + C

cos x sin x + C

sec2 x tan x + C

1
?

1´ x2
arcsin x + C

1
1 + x2 arctan x + C

Theorem1.3.16 (Important indefinite integrals).

Example 1.3.17

Find the following integrals

(i)
ş7

2 exdx

(ii)
ş2
´2

1
1+x2 dx

(iii)
ş3

0(2x3 + 7x´ 2)dx

Solution. We can proceed with each of these as before — find the antiderivative and then
apply the fundamental theorem. The third integral is a little more complicated, but we
can split it up into monomials using Theorem 1.2.1 and do each separately.
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(i) An antiderivative of ex is just ex, so

ż 7

2
exdx = ex

ˇ

ˇ

ˇ

ˇ

7

2

= e7
´ e2 = e5(e2

´ 1).

(ii) An antiderivative of 1
1+x2 is arctan(x), so

ż 2

´2

1
1 + x2 dx = arctan(x)

ˇ

ˇ

ˇ

ˇ

2

´2

= arctan(2)´ arctan(´2)

We can simplify this a little further by noting that arctan(x) is an odd function, so
arctan(´2) = ´ arctan(2) and thus our integral is

= 2 arctan(2)

(iii) We can proceed by splitting the integral using Theorem 1.2.1(d)
ż 3

0
(2x3 + 7x´ 2)dx =

ż 3

0
2x3dx +

ż 3

0
7xdx´

ż 3

0
2dx

= 2
ż 3

0
x3dx + 7

ż 3

0
xdx´ 2

ż 3

0
dx

and because we know that x4/4, x2/2, x are antiderivatives of x3, x, 1 respectively,
this becomes

=

[
x4

2

]3

0
+

[
7x2

2

]3

0
´ [2x]30

=
81
2

+
7 ¨ 9

2
´ 6

=
81 + 63´ 12

2
=

132
2

= 66.

We can also just find the antiderivative of the whole polynomial by finding the an-
tiderivatives of each term of the polynomial and then recombining them. This is
equivalent to what we have done above, but perhaps a little neater:

ż 3

0
(2x3 + 7x´ 2)dx =

[
x4

2
+

7x2

2
´ 2x

]3

0

=
81
2

+
7 ¨ 9

2
´ 6 = 66.

Example 1.3.17
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1.4Ĳ Substitution

In the previous section we explored the fundamental theorem of calculus and the link it
provides between definite integrals and antiderivatives. Indeed, integrals with simple in-
tegrands are usually evaluated via this link. In this section we start to explore methods for
integrating more complicated integrals. We have already seen — via Theorem 1.2.1 — that
integrals interact very nicely with addition, subtraction and multiplication by constants:

ż b

a
(A f (x) + Bg(x))dx = A

ż b

a
f (x)dx + B

ż b

a
g(x)dx

for A, B constants. By combining this with the list of indefinite integrals in Theorem 1.3.16,
we can compute integrals of linear combinations of simple functions. For example

ż 4

1

(
ex
´ 2 sin x + 3x2

)
dx =

ż 4

1
exdx´ 2

ż 4

1
sin xdx + 3

ż 4

1
x2dx

=

(
ex + (´2) ¨ (´ cos x) + 3

x3

3

) ˇ

ˇ

ˇ

ˇ

4

1
and so on

Of course there are a great many functions that can be approached in this way, however
there are some very simple examples that cannot.

ż

sin(πx)dx
ż

xexdx
ż

x
x2 ´ 5x + 6

dx

In each case the integrands are not linear combinations of simpler functions; in order to
compute them we need to understand how integrals (and antiderivatives) interact with
compositions, products and quotients. We reached a very similar point in our differential
calculus course where we understood the linearity of the derivative,

d
dx

(A f (x) + Bg(x)) = A
d f
dx

+ B
dg
dx

,

but had not yet seen the chain, product and quotient rules33. While we will develop tools
to find the second and third integrals in later sections, we should really start with how to
integrate compositions of functions.

It is important to state up front, that in general one cannot write down the integral of
the composition of two functions — even if those functions are simple. This is not because
the integral does not exist. Rather it is because the integral cannot be written down as
a finite combination of the standard functions we know. A very good example of this,
which we encountered in Example 1.3.4, is the composition of ex and ´x2. Even though
we know

ż

exdx = ex + C and
ż

´x2dx = ´
1
3

x3 + C

33 If your memory of these rules is a little hazy then you really should go back and revise them before
proceeding. You will definitely need a good grasp of the chain rule for what follows in this section.
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there is no simple function that is equal to the indefinite integral
ż

e´x2
dx.

even though the indefinite integral exists. In this way integration is very different from
differentiation.

With that caveat out of the way, we can introduce the substitution rule. The substitu-
tion rule is obtained by antidifferentiating the chain rule. In some sense it is the chain rule
in reverse. For completeness, let us restate the chain rule:

Let F(u) and u(x) be differentiable functions and form their composition
F(u(x)). Then

d
dx

F
(
u(x)

)
= F1

(
u(x)

)
¨ u1(x)

Equivalently, if y(x) = F(u(x)), then

dy
dx

=
dF
du
¨

du
dx

.

Theorem1.4.1 (The chain rule).

Consider a function f (u), which has antiderivative F(u). Then we know that
ż

f (u)du =

ż

F1(u)du = F(u) + C

Now take the above equation and substitute into it u = u(x) — i.e. replace the variable u
with any (differentiable) function of x to get

ż

f (u)du
ˇ

ˇ

ˇ

ˇ

u=u(x)
= F(u(x)) + C

But now the right-hand side is a function of x, so we can differentiate it with respect to x
to get

d
dx

F(u(x)) = F1(u(x)) ¨ u1(x)

This tells us that F(u(x)) is an antiderivative of the function F1(u(x)) ¨u1(x) = f (u(x))u1(x).
Thus we know

ż

f
(
u(x)

)
¨ u1(x)dx = F

(
u(x)

)
+ C =

ż

f (u)du
ˇ

ˇ

ˇ

ˇ

u=u(x)

This is the substitution rule for indefinite integrals.
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For any differentiable function u(x):
ż

f (u(x))u1(x)dx =

ż

f (u)du
ˇ

ˇ

ˇ

ˇ

u=u(x)

Theorem1.4.2 (The substitution rule — indefinite integral version).

In order to apply the substitution rule successfully we will have to write the integrand
in the form f (u(x)) ¨ u1(x). To do this we need to make a good choice of the function u(x);
after that it is not hard to then find f (u) and u1(x). Unfortunately there is no one strategy
for choosing u(x). This can make applying the substitution rule more art than science34.
Here we suggest two possible strategies for picking u(x):

(1) Factor the integrand and choose one of the factors to be u1(x). For this to work, you
must be able to easily find the antiderivative of the chosen factor. The antiderivative
will be u(x).

(2) Look for a factor in the integrand that is a function with an argument that is more
complicated than just “x”. That factor will play the role of f

(
u(x)

)
Choose u(x) to be

the complicated argument.

Here are two examples which illustrate each of those strategies in turn.

Example 1.4.3

Consider the integral
ż

9 sin8(x) cos(x)dx

We want to massage this into the form of the integrand in the substition rule — namely
f (u(x)) ¨ u1(x). Our integrand can be written as the product of the two factors

9 sin8(x)
looomooon

first factor

¨ cos(x)
loomoon

second factor

and we start by determining (or guessing) which factor plays the role of u1(x). We can
choose u1(x) = 9 sin8(x) or u1(x) = cos(x).

• If we choose u1(x) = 9 sin8(x), then antidifferentiating this to find u(x) is really not
very easy. So it is perhaps better to investigate the other choice before proceeding
further with this one.

• If we choose u1(x) = cos(x), then we know (Theorem 1.3.16) that u(x) = sin(x). This
also works nicely because it makes the other factor simplify quite a bit 9 sin8(x) =
9u8. This looks like the right way to go.

34 Thankfully this does become easier with experience and we recommend that the reader read some
examples and then practice a LOT.
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So we go with the second choice. Set u1(x) = cos(x), u(x) = sin(x), then
ż

9 sin8(x) cos(x)dx =

ż

9u(x)8
¨ u1(x)dx

=

ż

9u8du
ˇ

ˇ

ˇ

ˇ

u=sin(x)
by the substitution rule

We are now left with the problem of antidifferentiating a monomial; this we can do with
Theorem 1.3.16.

=
(

u9 + C
) ˇ
ˇ

ˇ

ˇ

u=sin(x)

= sin9(x) + C

Note that 9 sin8(x) cos(x) is a function of x. So our answer, which is the indefinite integral
of 9 sin8(x) cos(x), must also be a function of x. This is why we have substituted u =
sin(x) in the last step of our solution — it makes our solution a function of x.

Example 1.4.3

Example 1.4.4

Evaluate the integral
ż

3x2 cos(x3)dx

Solution. Again we are going to use the substitution rule and helpfully our integrand is a

product of two factors

3x2
loomoon

first factor

¨ cos(x3)
loomoon

second factor

The second factor, cos
(
x3) is a function, namely cos, with a complicated argument, namely

x3. So we try u(x) = x3. Then u1(x) = 3x2, which is the other factor in the integrand. So
the integral becomes

ż

3x2 cos(x3)dx =

ż

u1(x) cos
(
u(x)

)
dx just swap order of factors

=

ż

cos
(
u(x)

)
u1(x)dx by the substitution rule

=

ż

cos(u)du
ˇ

ˇ

ˇ

ˇ

u=x3

= (sin(u) + C)
ˇ

ˇ

ˇ

ˇ

u=x3
using Theorem 1.3.16)

= sin(x3) + C
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Example 1.4.4

One more — we’ll use this to show how to use the substitution rule with definite integrals.

Example 1.4.5
(
ş1

0 ex sin(ex)dx
)

Compute

ż 1

0
ex sin

(
ex)dx.

Solution. Again we use the substitution rule.

• The integrand is again the product of two factors and we can choose u1(x) = ex or
u1(x) = sin(ex).

• If we choose u1(x) = ex then u(x) = ex and the other factor becomes sin(u) —
this looks promising. Notice that if we applied the other strategy of looking for a
complicated argument then we would arrive at the same choice.

• So we try u1(x) = ex and u(x) = ex. This gives (if we ignore the limits of integration
for a moment)

ż

ex sin
(
ex)dx =

ż

sin
(
u(x)

)
u1(x)dx apply the substitution rule

=

ż

sin(u)du
ˇ

ˇ

ˇ

ˇ

u=ex

= (´ cos(u) + C)
ˇ

ˇ

ˇ

ˇ

u=ex

= ´ cos
(
ex)+ C

• But what happened to the limits of integration? We can incorporate them now. We
have just shown that the indefinite integral is ´ cos(ex), so by the fundamental the-
orem of calculus

ż 1

0
ex sin

(
ex)dx =

[
´ cos

(
ex)]1

0

= ´ cos(e1)´ (´ cos(e0))

= ´ cos(e) + cos(1)

Example 1.4.5

Theorem 1.4.2, the substitution rule for indefinite integrals, tells us that if F(u) is any an-
tiderivative for f (u), then F

(
u(x)

)
is an antiderivative for f

(
u(x)

)
u1(x). So the funda-
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INTEGRATION 1.4 SUBSTITUTION

mental theorem of calculus gives us
ż b

a
f
(
u(x)

)
u1(x)dx = F

(
u(x)

)ˇˇ
ˇ

ˇ

x=b

x=a

= F
(
u(b)

)
´ F

(
u(a)

)

=

ż u(b)

u(a)
f (u)du since F(u) is an antiderivative for f (u)

and we have just found

For any differentiable function u(x):

ż b

a
f (u(x))u1(x)dx =

ż u(b)

u(a)
f (u)du

Theorem1.4.6 (The substitution rule — definite integral version).

Notice that to get from the integral on the left hand side to the integral on the right
hand side you

• substitute35 u(x)Ñ u and u1(x)dx Ñ du,

• set the lower limit for the u integral to the value of u (namely u(a)) that corresponds
to the lower limit of the x integral (namely x = a), and

• set the upper limit for the u integral to the value of u (namely u(b)) that corresponds
to the upper limit of the x integral (namely x = b).

Also note that we now have two ways to evaluate definite integrals of the form
şb

a f
(
u(x)

)
u1(x)dx.

• We can find the indefinite integral
ş

f
(
u(x)

)
u1(x)dx, using Theorem 1.4.2, and then

evaluate the result between x = a and x = b. This is what was done in Example 1.4.5.

• Or we can apply Theorem 1.4.2. This entails finding the indefinite integral
ş

f (u)du
and evaluating the result between u = u(a) and u = u(b). This is what we will do
in the following example.

Example 1.4.7
(
ş1

0 x2 sin(x3 + 1)dx
)

Compute
ż 1

0
x2 sin

(
x3 + 1

)
dx

Solution.

35 A good way to remember this last step is that we replace du
dx dx by just du — which looks like we

cancelled out the dx terms: du
��dx�

�dx = du. While using “cancel the dx” is a good mnemonic (memory

aid), you should not think of the derivative du
dx as a fraction — you are not dividing du by dx.
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• In this example the integrand is already neatly factored into two pieces. While we
could deploy either of our two strategies, it is perhaps easier in this case to choose
u(x) by looking for a complicated argument.

• The second factor of the integrand is sin
(
x3 + 1

)
, which is the function sin evaluated

at x3 + 1. So set u(x) = x3 + 1, giving u1(x) = 3x2 and f (u) = sin(u)

• The first factor of the integrand is x2 which is not quite u1(x), however we can easily
massage the integrand into the required form by multiplying and dividing by 3:

x2 sin
(

x3 + 1
)
=

1
3
¨ 3x2

¨ sin
(
x3 + 1

)
.

• We want this in the form of the substitution rule, so we do a little massaging:
ż 1

0
x2 sin

(
x3 + 1

)
dx =

ż 1

0

1
3
¨ 3x2

¨ sin
(
x3 + 1

)
dx

=
1
3

ż 1

0
sin
(
x3 + 1

)
¨ 3x2dx by Theorem 1.2.1(c)

• Now we are ready for the substitution rule:

1
3

ż 1

0
sin
(
x3 + 1

)
¨ 3x2dx =

1
3

ż 1

0
sin
(
x3 + 1

)
loooooomoooooon

= f (u(x))

¨ 3x2
loomoon

=u1(x)

dx

=
1
3

ż 1

0
f (u(x))u1(x)dx with u(x) = x3 + 1 and f (u) = sin(u)

=
1
3

ż u(1)

u(0)
f (u)du by the substitution rule

=
1
3

ż 2

1
sin(u)du since u(0) = 1 and u(1) = 2

=
1
3
[
´ cos(u)

]2
1

=
1
3
(
´ cos(2)´ (´ cos(1))

)

=
cos(1)´ cos(2)

3
.

Example 1.4.7

There is another, and perhaps easier, way to view the manipulations in the previous
example. Once you have chosen u(x) you

• make the substitution u(x)Ñ u,

• replace dx Ñ
1

u1(x)
du.
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In so doing, we take the integral
ż b

a
f (u(x)) ¨ u1(x)dx =

ż u(b)

u(a)
f (u) ¨ u1(x) ¨

1
u1(x)

du

=

ż u(b)

u(a)
f (u)du exactly the substitution rule

but we do not have to manipulate the integrand so as to make u1(x) explicit. Let us redo
the previous example by this approach.

Example 1.4.8 (Example 1.4.7 revisited)

Compute the integral
ż 1

0
x2 sin

(
x3 + 1

)
dx

Solution.

• We have already observed that one factor of the integrand is sin
(
x3 + 1

)
, which is

sin evaluated at x3 + 1. Thus we try setting u(x) = x3 + 1.

• This makes u1(x) = 3x2, and we replace u(x) = x3 + 1 Ñ u and dx Ñ 1
u1(x)du =

1
3x2 du:

ż 1

0
x2 sin

(
x3 + 1

)
dx =

ż u(1)

u(0)
x2 sin

(
x3 + 1

)
loooooomoooooon

=sin(u)

1
3x2 du

=

ż 2

1
sin(u)

x2

3x2 du

=

ż 2

1

1
3

sin(u)du

=
1
3

ż 2

1
sin(u)du

which is precisely the integral we found in Example 1.4.7.

Example 1.4.8

Example 1.4.9

Compute the indefinite integrals
ż

?
2x + 1dx and

ż

e3x´2dx

Solution.
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• Starting with the first integral, we see that it is not too hard to spot the complicated
argument. If we set u(x) = 2x + 1 then the integrand is just

?
u.

• Hence we substitute 2x + 1 Ñ u and dx Ñ 1
u1(x)du = 1

2du:
ż

?
2x + 1dx =

ż

?
u

1
2

du

=

ż

u1/2 1
2

du

=

(
2
3

u3/2
¨

1
2
+ C

) ˇ

ˇ

ˇ

ˇ

u=2x+1

=
1
3
(2x + 1)3/2 + C

• We can evaluate the second integral in much the same way. Set u(x) = 3x ´ 2 and
replace dx by 1

u1(x)du = 1
3du:
ż

e3x´2dx =

ż

eu 1
3

du

=

(
1
3

eu + C
) ˇ

ˇ

ˇ

ˇ

u=3x´2

=
1
3

e3x´2 + C

Example 1.4.9

This last example illustrates that substitution can be used to easily deal with arguments of
the form ax + b, i.e. that are linear functions of x, and suggests the following theorem.

Let F(u) be an antiderivative of f (u) and let a, b be constants. Then
ż

f (ax + b)dx =
1
a

F(ax + b) + C

Theorem1.4.10.

Proof. We can show this using the substitution rule. Let u(x) = ax + b so u1(x) = a, then
ż

f (ax + b)dx =

ż

f (u) ¨
1

u1(x)
du

=

ż

1
a

f (u)du

=
1
a

ż

f (u)du since a is a constant

=
1
a

F(u)
ˇ

ˇ

ˇ

ˇ

u=ax+b
+ C since F(u) is an antiderivative of f (u)

=
1
a

F(ax + b) + C.
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Now we can do the following example using the substitution rule or the above theo-
rem:

Example 1.4.11
(
şπ/2

0 cos(3x)dx
)

Compute
şπ/2

0 cos(3x)dx.

• In this example we should set u = 3x, and substitute dx Ñ 1
u1(x)du = 1

3du. When
we do this we also have to convert the limits of the integral: u(0) = 0 and u(π/2) =
3π/2. This gives

ż π/2

0
cos(3x)dx =

ż 3π/2

0
cos(u)

1
3

du

=

[
1
3

sin(u)
]3π/2

0

=
sin(3π/2)´ sin(0)

3

=
´1´ 0

3
= ´

1
3

.

• We can also do this example more directly using the above theorem. Since sin(x) is
an antiderivative of cos(x), Theorem 1.4.10 tells us that sin(3x)

3 is an antiderivative of
cos(3x). Hence

ż π/2

0
cos(3x)dx =

[
sin(3x)

3

]π/2

0

=
sin(3π/2)´ sin(0)

3

= ´
1
3

.

Example 1.4.11

The rest of this section is just more examples of the substitution rule. We recommend
that you after reading these that you practice many examples by yourself under exam
conditions.

Example 1.4.12
(
ş1

0 x2 sin(1´ x3)dx
)

This integral looks a lot like that of Example 1.4.7. It makes sense to try u(x) = 1´ x3 since
it is the argument of sin(1´ x3). We

• substitute u = 1´ x3 and

• replace dx with 1
u1(x)du = 1

´3x2 du,
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• when x = 0, we have u = 1´ 03 = 1 and

• when x = 1, we have u = 1´ 13 = 0.

So

ż 1

0
x2 sin

(
1´ x3)

¨ dx =

ż 0

1
x2 sin(u) ¨

1
´3x2 du

=

ż 0

1
´

1
3

sin(u)du.

Note that the lower limit of the u–integral, namely 1, is larger than the upper limit, which
is 0. There is absolutely nothing wrong with that. We can simply evaluate the u–integral
in the normal way. Since ´ cos(u) is an antiderivative of sin(u):

=

[
cos(u)

3

]0

1

=
cos(0)´ cos(1)

3

=
1´ cos(1)

3
.

Example 1.4.12

Example 1.4.13
(
ş1

0
1

(2x+1)3 dx
)

Compute
ş1

0
1

(2x+1)3 dx.

We could do this one using Theorem 1.4.10, but its not too hard to do without. We can
think of the integrand as the function “one over a cube” with the argument 2x + 1. So it
makes sense to substitute u = 2x + 1. That is

• set u = 2x + 1 and

• replace dx Ñ 1
u1(x)du = 1

2du.

• When x = 0, we have u = 2ˆ 0 + 1 = 1 and

• when x = 1, we have u = 2ˆ 1 + 1 = 3.
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So
ż 1

0

1
(2x + 1)3 dx =

ż 3

1

1
u3 ¨

1
2

du

=
1
2

ż 3

1
u´3du

=
1
2

[
u´2

´2

]3

1

=
1
2

(
1
´2

¨
1
9
´

1
´2

¨
1
1

)

=
1
2

(
1
2
´

1
18

)
=

1
2
¨

8
18

=
2
9

Example 1.4.13

Example 1.4.14
(
ş1

0
x

1+x2 dx
)

Evaluate
ş1

0
x

1+x2 dx.

Solution.

• The integrand can be rewritten as x ¨ 1
1+x2 . This second factor suggests that we should

try setting u = 1 + x2 — and so we interpret the second factor as the function “one
over” evaluated at argument 1 + x2.

• With this choice we

– set u = 1 + x2,

– substitute dx Ñ 1
2x du, and

– translate the limits of integration: when x = 0, we have u = 1 + 02 = 1 and
when x = 1, we have u = 1 + 12 = 2.

• The integral then becomes

ż 1

0

x
1 + x2 dx =

ż 2

1

x
u

1
2x

du

=

ż 2

1

1
2u

du

=
1
2
[

log |u|
]2

1

=
log 2´ log 1

2
=

log 2
2

.
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Remember that we are using the notation “log” for the natural logarithm, i.e. the loga-
rithm with base e. You might also see it written as “ln x”, or with the base made explicit
as “loge x”.

Example 1.4.14

Example 1.4.15
(ş

x3 cos
(
x4 + 2

)
dx
)

Compute the integral
ş

x3 cos
(
x4 + 2

)
dx.

Solution.

• The integrand is the product of cos evaluated at the argument x4 + 2 times x3, which
aside from a factor of 4, is the derivative of the argument x4 + 2.

• Hence we set u = x4 + 2 and then substitute dx Ñ 1
u1(x)du = 1

4x3 du.

• Before proceeding further, we should note that this is an indefinite integral so we
don’t have to worry about the limits of integration. However we do need to make
sure our answer is a function of x — we cannot leave it as a function of u.

• With this choice of u, the integral then becomes
ż

x3 cos
(
x4 + 2

)
dx =

ż

x3 cos(u)
1

4x3 du
ˇ

ˇ

ˇ

ˇ

u=x4+2

=

ż

1
4

cos(u)du
ˇ

ˇ

ˇ

ˇ

u=x4+2

=

(
1
4

sin(u) + C
) ˇ

ˇ

ˇ

ˇ

u=x4+2

=
1
4

sin(x4 + 2) + C.

Example 1.4.15

The next two examples are more involved and require more careful thinking.

Example 1.4.16
(
ş
?

1 + x2 x3dx
)

Compute
ş
?

1 + x2 x3dx.

• An obvious choice of u is the argument inside the square root. So substitute u =
1 + x2 and dx Ñ 1

2x du.

• When we do this we obtain
ż

a

1 + x2 ¨ x3dx =

ż

?
u ¨ x3

¨
1

2x
du

=

ż

1
2
?

u ¨ x2du

73



INTEGRATION 1.4 SUBSTITUTION

Unlike all our previous examples, we have not cancelled out all of the x’s from the
integrand. However before we do the integral with respect to u, the integrand must
be expressed solely in terms of u — no x’s are allowed. (Look that integrand on the
right hand side of Theorem 1.4.2.)

• But all is not lost. We can rewrite the factor x2 in terms of the variable u. We know
that u = 1 + x2, so this means x2 = u´ 1. Substituting this into our integral gives

ż

a

1 + x2 ¨ x3dx =

ż

1
2
?

u ¨ x2du

=

ż

1
2
?

u ¨ (u´ 1)du

=
1
2

ż (
u3/2

´ u1/2
)

du

=
1
2

(
2
5

u5/2
´

2
3

u3/2
) ˇ

ˇ

ˇ

ˇ

u=x2+1
+ C

=

(
1
5

u5/2
´

1
3

u3/2
) ˇ

ˇ

ˇ

ˇ

u=x2+1
+ C

=
1
5
(x2 + 1)5/2

´
1
3
(x2 + 1)3/2 + C.

Oof!

• Don’t forget that you can always check the answer by differentiating:

d
dx

(
1
5
(x2 + 1)5/2

´
1
3
(x2 + 1)3/2 + C

)
=

d
dx

(
1
5
(x2 + 1)5/2

)
´

d
dx

(
1
3
(x2 + 1)3/2

)

=
1
5
¨ 2x ¨

5
2
¨ (x2 + 1)3/2

´
1
3
¨ 2x ¨

3
2
¨ (x2 + 1)1/2

= x(x2 + 1)3/2
´ x(x2 + 1)1/2

= x
[
(x2 + 1)´ 1

]
¨
a

x2 + 1

= x3
a

x2 + 1.

which is the original integrand X.

Example 1.4.16

Example 1.4.17 (
ş

tan xdx)

Evaluate the indefinite integral
ş

tan(x)dx.

Solution.

• At first glance there is nothing to manipulate here and so very little to go on. How-
ever we can rewrite tan x as sin x

cos x , making the integral
ş sin x

cos x dx. This gives us more
to work with.
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INTEGRATION 1.5 AREA BETWEEN CURVES

• Now think of the integrand as being the product 1
cos x ¨ sin x. This suggests that we set

u = cos x and that we interpret the first factor as the function “one over” evaluated
at u = cos x.

• Substitute u = cos x and dx Ñ 1
´ sin x du to give:

ż

sin x
cos x

dx =

ż

sin x
u

1
´ sin x

du
ˇ

ˇ

ˇ

ˇ

u=cos x

=

ż

´
1
u

du
ˇ

ˇ

ˇ

ˇ

u=cos x

= ´ log | cos x|+ C and if we want to go further

= log
ˇ

ˇ

ˇ

ˇ

1
cos x

ˇ

ˇ

ˇ

ˇ

+ C

= log | sec x|+ C.

Example 1.4.17

1.5Ĳ Area between curves

Before we continue our exploration of different methods for integrating functions, we
have now have sufficient tools to examine some simple applications of definite integrals.
One of the motivations for our definition of “integral” was the problem of finding the area
between some curve and the x–axis for x running between two specified values. More
precisely

ż b

a
f (x)dx

is equal to the signed area between the the curve y = f (x), the x-axis, and the vertical
lines x = a and x = b.

We found the area of this region by approximating it by the union of tall thin rectan-
gles, and then found the exact area by taking the limit as the width of the approximating
rectangles went to zero. We can use the same strategy to find areas of more complicated
regions in the xy-plane.

As a preview of the material to come, let f (x) ą g(x) ą 0 and a ă b and suppose that
we are interested in the area of the region

S1 =
 

(x, y)
ˇ

ˇ a ď x ď b , g(x) ď y ď f (x)
(

that is sketched in the left hand figure below.
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We already know that
şb

a f (x)dx is the area of the region

S2 =
 

(x, y)
ˇ

ˇ a ď x ď b , 0 ď y ď f (x)
(

sketched in the middle figure above and that
şb

a g(x)dx is the area of the region

S3 =
 

(x, y)
ˇ

ˇ a ď x ď b , 0 ď y ď g(x)
(

sketched in the right hand figure above. Now the region S1 of the left hand figure can be
constructed by taking the region S2 of center figure and removing from it the region S3 of
the right hand figure. So the area of S1 is exactly

ż b

a
f (x)dx´

ż b

a
g(x)dx =

ż b

a

(
f (x)´ g(x)

)
dx

This computation depended on the assumption that f (x) ą g(x) and, in particular, that
the curves y = g(x) and y = f (x) did not cross. If they do cross, as in this figure

then we have to be a lot more careful. The idea is to separate the domain of integration
depending on where f (x)´ g(x) changes sign — i.e. where the curves intersect. We will
illustrate this in Example 1.5.5 below.

Let us start with an example that makes the link to Riemann sums and definite inte-
grals quite explicit.

Example 1.5.1

Find the area bounded by the curves y = 4´ x2, y = x, x = ´1 and x = 1.

Solution.
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• Before we do any calculus, it is a very good idea to make a sketch of the area in
question. The curves y = x, x = ´1 and x = 1 are all straight lines, while the curve
y = 4´ x2 is a parabola whose apex is at (0, 4) and then curves down (because of
the minus sign in ´x2) with x-intercepts at (˘2, 0). Putting these together gives

Notice that the curves y = 4´ x2 and y = x intersect when 4´ x2 = x, namely when
x = 1

2

(
´1˘

?
17
)
« 1.56,´2.56. Hence the curve y = 4´ x2 lies above the line y = x

for all ´1 ď x ď 1.

• We are to find the area of the shaded region. Each point (x, y) in this shaded region
has ´1 ď x ď 1 and x ď y ď 4 ´ x2. When we were defining the integral (way
back in Definition 1.1.9) we used a and b to denote the smallest and largest allowed
values of x; let’s do that here too. Let’s also use B(x) to denote the bottom curve
(i.e. to denote the smallest allowed value of y for a given x) and use T(x) to denote
the top curve (i.e. to denote the largest allowed value of y for a given x). So in this
example

a = ´1 b = 1 B(x) = x T(x) = 4´ x2

and the shaded region is
 

(x, y)
ˇ

ˇ a ď x ď b, B(x) ď y ď T(x)
(

• We use the same strategy as we used when defining the integral in Section 1.1.3:

– Pick a natural number n (that we will later send to infinity), then

– subdivide the region into n narrow slices, each of width ∆x = b´a
n .

– For each i = 1, 2, . . . , n, slice number i runs from x = xi´1 to x = xi, and we
approximate its area by the area of a rectangle. We pick a number x˚i between
xi´1 and xi and approximate the slice by a rectangle whose top is at y = T(x˚i )
and whose bottom is at y = B(x˚i ).

– Thus the area of slice i is approximately
[
T(x˚i ) ´ B(x˚i )

]
∆x (as shown in the

figure below).

77



INTEGRATION 1.5 AREA BETWEEN CURVES

• So the Riemann sum approximation of the area is

Area «
n
ÿ

i=1

[
T(x˚i )´ B(x˚i )

]
∆x

• By taking the limit as n Ñ 8 (i.e. taking the limit as the width of the rectangles goes
to zero), we convert the Riemann sum into a definite integral (see Definition 1.1.9)
and at the same time our approximation of the area becomes the exact area:

lim
nÑ8

n
ÿ

i=1

[
T(x˚i )´ B(x˚i )

]
∆x =

ż b

a

[
T(x)´ B(x)

]
dx Riemann sumÑ integral

=

ż 1

´1

[
(4´ x2)´ x

]
dx

=

ż 1

´1

[
4´ x´ x2]dx

=

[
4x´

x2

2
´

x3

3

]1

´1

=

(
4´

1
2
´

1
3

)
´

(
´4´

1
2
+

1
3

)

=
24´ 3´ 2

6
´
´24´ 3 + 2

6

=
19
6

+
25
6

=
44
6

=
22
3

.

Example 1.5.1

Oof! Thankfully we generally do not need to go through the Riemann sum steps to
get to the answer. Usually, provided we are careful to check where curves intersect and
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which curve lies above which, we can just jump straight to the integral

Area =

ż b

a

[
T(x)´ B(x)

]
dx. (1.5.1)

So let us redo the above example.

Example 1.5.2 (Example 1.5.1 revisited)

Find the area bounded by the curves y = 4´ x2, y = x, x = ´1 and x = 1.

Solution.

• We first sketch the region

and verify36 that y = T(x) = 4´ x2 lies above the curve y = B(x) = x on the region
´1 ď x ď 1.

• The area between the curves is then

Area =

ż b

a

[
T(x)´ B(x)

]
dx

=

ż 1

´1

[
4´ x´ x2]dx

=

[
4x´

x2

2
´

x3

3

]1

´1

=
19
6

+
25
6

=
44
6

=
22
3

.

Example 1.5.2

Example 1.5.3

Find the area of the finite region bounded by y = x2 and y = 6x´ 2x2.

36 We should do this by checking where the curves intersect; that is by solving T(x) = B(x) and seeing if
any of the solutions lie in the range ´1 ď x ď 1.
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Solution. This is a little different from the previous question, since we are not given
bounding lines x = a and x = b — instead we have to determine the minimum and
maximum allowed values of x by determining where the curves intersect. Hence our very
first task is to get a good idea of what the region looks like by sketching it.

• Start by sketching the region:

– The curve y = x2 is a parabola. The point on this parabola with the smallest y–
coordinate is (0, 0). As |x| increases, y increases so the parabola opens upward.

– The curve y = 6x ´ 2x2 = ´2(x2 ´ 3x) = ´2(x ´ 3
2)

2 + 9
2 is also a parabola.

The point on this parabola with the largest value of y has x = 3/2 (so that the
negative term in ´2(x´ 3

2)
2 + 9

2 is zero). So the point with the largest value of
y is is (3/2, 9/2). As x moves away from 3/2, either to the right or to the left, y
decreases. So the parabola opens downward. The parabola crosses the x–axis
when 0 = 6x´ 2x2 = 2x(3´ x). That is, when x = 0 and x = 3.

– The two parabolas intersect when x2 = 6x´ 2x2, or

3x2
´ 6x = 0

3x(x´ 2) = 0

So there are two points of intersection, one being x = 0, y = 02 = 0 and the
other being x = 2, y = 22 = 4.

– The finite region between the curves lies between these two points of intersec-
tion.

This leads us to the sketch

x

y

y = 6x− 2x2

y = x2

(2, 4)

(0, 0) (3, 0)

• So on this region we have 0 ď x ď 2, the top curve is T(x) = 6x´ x2 and the bottom
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curve is B(x) = x2. Hence the area is given by

Area =

ż b

a

[
T(x)´ B(x)

]
dx

=

ż 2

0

[
(6x´ 2x2)´ (x2)

]
dx

=

ż 2

0

[
6x´ 3x2]dx

=

[
6

x2

2
´ 3

x3

3

]2

0

= 3(2)2
´ 23 = 4

Example 1.5.3

Example 1.5.4

Find the area of the finite region bounded by y2 = 2x + 6 and y = x´ 1.

Solution. We show two different solutions to this problem. The first takes the approach
we have in Example 1.5.3 but leads to messy algebra. The second requires a little bit
of thinking at the beginning but then is quite straightforward. Before we get to that we
should start by by sketching the region.

• The curve y2 = 2x + 6, or equivalently x = 1
2 y2 ´ 3 is a parabola. The point on

this parabola with the smallest x–coordinate has y = 0 (so that the positive term
in 1

2 y2 ´ 3 is zero). So the point on this parabola with the smallest x–coordinate is
(´3, 0). As |y| increases, x increases so the parabola opens to the right.

• The curve y = x´ 1 is a straight line of slope 1 that passes through x = 1, y = 0.

• The two curves intersect when y2

2 ´ 3 = y + 1, or

y2
´ 6 = 2y + 2

y2
´ 2y´ 8 = 0

(y + 2)(y´ 4) = 0

So there are two points of intersection, one being y = 4, x = 4 + 1 = 5 and the other
being y = ´2, x = ´2 + 1 = ´1.

• Putting this all together gives us the sketch
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x

y

y2 = 2x+ 6
y = x− 1

(5, 4)

(−3, 0)

(1, 0)
(−1,−2)

As noted above, we can find the area of this region by approximating it by a union of
narrow vertical rectangles, as we did in Example 1.5.3 — though it is a little harder. The
easy way is to approximate it by a union of narrow horizontal rectangles. Just for practice,
here is the hard solution. The easy solution is after it.
Harder solution:

• As we have done previously, we approximate the region by a union of narrow verti-
cal rectangles, each of width ∆x. Two of those rectangles are illustrated in the sketch

x

y

y2 = 2x+ 6
y = x− 1

(5, 4)

(−3, 0)

(−1,−2)

• In this region, x runs from a = ´3 to b = 5. The curve at the top of the region is

y = T
(
x) =

?
2x + 6

The curve at the bottom of the region is more complicated. To the left of (´1,´2)
the lower half of the parabola gives the bottom of the region while to the right of
(´1,´2) the straight line gives the bottom of the region. So

B(x) =

#

´
?

2x + 6 if ´ 3 ď x ď ´1
x´ 1 if ´ 1 ď x ď 5

• Just as before, the area is still given by the formula
şb

a
[
T(x)´ B(x)

]
dx, but to acco-

modate our B(x), we have to split up the domain of integration when we evaluate
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the integral.
ż b

a

[
T(x)´ B(x)

]
dx =

ż ´1

´3

[
T(x)´ B(x)

]
dx +

ż 5

´1

[
T(x)´ B(x)

]
dx

=

ż ´1

´3

[?
2x + 6´ (´

?
2x + 6)

]
dx +

ż 5

´1

[?
2x + 6´ (x´ 1)

]
dx

= 2
ż ´1

´3

?
2x + 6dx +

ż 5

´1

?
2x + 6´

ż 5

´1
(x´ 1)dx

• The third integral is straightforward, while we evaluate the first two via the sub-
stitution rule. In particular, set u = 2x + 6 and replace dx Ñ 1

2du. Also u(´3) =
0, u(´1) = 4, u(5) = 16. Hence

Area = 2
ż 4

0

?
u

du
2

+

ż 16

4

?
u

du
2
´

ż 5

´1
(x´ 1)dx

= 2
[

u3/2

3/2

1
2

]4

0
+

[
u3/2

3/2

1
2

]16

4
´

[
x2

2
´ x
]5

´1

=
2
3
[
8´ 0] +

1
3
[64´ 8]´

[(25
2
´ 5
)
´

(1
2
+ 1
)]

=
72
3
´

24
2

+ 6

= 18

Oof!

Easier solution:
The easy way to determine the area of our region is to approximate by narrow horizontal
rectangles, rather than narrow vertical rectangles. (Really we are just swapping the roles
of x and y in this problem)

• Look at our sketch of the region again — each point (x, y) in our region has ´2 ď
y ď 4 and 1

2(y
2 ´ 6) ď x ď y + 1.

• Let’s use

– c to denote the smallest allowed value of y,

– d to denote the largest allowed value of y

– L(y) (“L” stands for “left”) to denote the smallest allowed value of x, when the
y–coordinate is y, and

– R(y) (“R” stands for “right”) to denote the largest allowed value of x, when the
y–coordinate is y.

So, in this example,

c = ´2 d = 4 L(y) =
1
2
(y2

´ 6) R(y) = y + 1
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and the shaded region is
 

(x, y)
ˇ

ˇ c ď y ď d, L(y) ď x ď R(y)
(

• Our strategy is now nearly the same as that used in Example 1.5.1:

– Pick a natural number n (that we will later send to infinity), then

– subdivide the interval c ď y ď d into n narrow subintervals, each of width
∆y = d´c

n . Each subinterval cuts a thin horizontal slice from the region (see the
figure below).

– We approximate the area of slice number i by the area of a thin horizontal rect-
angle (indicated by the dark rectangle in the figure below). On this slice, the y–
coordinate runs over a very narrow range. We pick a number y˚i , somewhere in
that range. We approximate slice i by a rectangle whose left side is at x = L(y˚i )
and whose right side is at x = R(y˚i ).

– Thus the area of slice i is approximately
[
R(x˚i )´ L(x˚i )

]
∆y.

x

y

x = L(y) = 1
2
(y2 − 6)

x = R(y) = y + 1

y = y∗i

L(y∗i ) R(y∗i )

(5, 4)

(−3, 0)

(−1,−2)

• The desired area is

lim
nÑ8

n
ÿ

i=1

[
R(y˚i )´ L(y˚i )

]
∆y =

ż d

c

[
R(y)´ L(y)

]
dy Riemann sumÑ integral

=

ż 4

´2

[
(y + 1)´ 1

2

(
y2
´ 6
)]

dy

=

ż 4

´2

[
´ 1

2 y2 + y + 4
]
dy

=
[
´ 1

6 y3 + 1
2 y2 + 4y

]4

´2

= ´1
6

(
64´ (´8)

)
+ 1

2(16´ 4) + 4(4 + 2)

= ´12 + 6 + 24
= 18
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Example 1.5.4

One last example.

Example 1.5.5

Find the area between the curves y =
1
?

2
and y = sin(x) with x running from 0 to π/2.

Solution. This one is a little tricker since (as we shall see) the region is split into two pieces
and we need to treat them separately.

• Again we start by sketching the region.

x

y

y = 1/
√
2

y = sin(x) x = π
2

π
4

x = 0

We want the shaded area.

• Unlike our previous examples, the bounding curves y = 1/
?

2 and y = sin(x) cross
in the middle of the region of interest. They cross when y = 1/

?
2 and sin(x) = y =

1/
?

2, i.e. when x = π/4. So

– to the left of x = π/4, the top boundary is part of the straight line y = 1/
?

2 and
the bottom boundary is part of the curve y = sin(x)

– while to the right of x = π/4, the top boundary is part of the curve y = sin(x)
and the bottom boundary is part of the straight line y = 1/

?
2.

• Thus the formulae for the top and bottom boundaries are

T(x) =

#

1/
?

2 if 0 ď x ď π/4

sin(x) if π/4 ď x ď π/2

+

B(x) =

#

sin(x) if 0 ď x ď π/4

1/
?

2 if π/4 ď x ď π/2

+

We may compute the area of interest using our canned formula

Area =

ż b

a

[
T(x)´ B(x)

]
dx
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but since the formulas for T(x) and B(x) change at the point x = π/4, we must split
the domain of the integral in two at that point37

• Our integral over the domain 0 ď x ď π/2 is split into an integral over 0 ď x ď π/4

and one over π/4 ď x ď π/2:

Area =

ż π/2

0

[
T(x)´ B(x)

]
dx

=

ż π/4

0

[
T(x)´ B(x)

]
dx +

ż π/2

π/4

[
T(x)´ B(x)

]
dx

=

ż π/4

0

[ 1
?

2
´ sin(x)

]
dx +

ż π/2

π/4

[
sin(x)´

1
?

2

]
dx

=
[ x
?

2
+ cos(x)

]π/4

0
+
[
´ cos(x)´

x
?

2

]π/2

π/4

=
[ 1
?

2
π

4
+

1
?

2
´ 1
]
+
[ 1
?

2
´

1
?

2
π

4

]

=
2
?

2
´ 1

=
?

2´ 1

Example 1.5.5

1.6Ĳ Volumes

Another simple38 application of integration is computing volumes. We use the same strat-
egy as we used to express areas of regions in two dimensions as integrals — approximate
the region by a union of small, simple pieces whose volume we can compute and then
then take the limit as the “piece size” tends to zero.

In many cases this will lead to “multivariable integrals” that are beyond our present
scope39. But there are some special cases in which this leads to integrals that we can
handle. Here are some examples.

Example 1.6.1 (Cone)

Find the volume of the circular cone of height h and radius r.

37 We are effectively computing the area of the region by computing the area of the two disjoint pieces
separately. Alternatively, if we set f (x) = sin(x) and g(x) = 1/

?
2, we can rewrite the integral

şb
a
[
T(x)´

B(x)
]

dx as
şb

a

ˇ

ˇ f (x)´ g(x)
ˇ

ˇdx. To see that the two integrals are the same, split the domain of integration
where f (x)´ g(x) changes sign.

38 Well — arguably the idea isn’t too complicated and is a continuation of the idea used to compute areas
in the previous section. In practice this can be quite tricky as we shall see.

39 Typically such integrals (and more) are covered in a third calculus course.
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Solution. Here is a sketch of the cone. We have called the vertical axis x, just so that we

x

end up with a “dx” integral.

• In what follows we will slice the cone into thin horizontal “pancakes”. In order to
approximate the volume of those slices, we need to know the radius of the cone at a
height x above its point. Consider the cross sections shown in the following figure.

At full height h, the cone has radius r. If we cut the cone at height x, then by similar
triangles (see the figure on the right) the radius will be x

h ¨ r.

• Now think of cutting the cone into n thin horizontal “pancakes”. Each such pancake
is approximately a squat cylinder of height ∆x = h/n. This is very similar to how we
approximated the area under a curve by n tall thin rectangles. Just as we approxi-
mated the area under the curve by summing these rectangles, we can approximate
the volume of the cone by summing the volumes of these cylinders. Here is a side
view of the cone and one of the cylinders.
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• We follow the method we used in Example 1.5.1, except that our slices are now
pancakes instead of rectangles.

– Pick a natural number n (that we will later send to infinity), then

– subdivide the cone into n thin pancakes, each of width ∆x = h
n .

– For each i = 1, 2, . . . , n, pancake number i runs from x = xi´1 = (i´ 1) ¨ ∆x to
x = xi = i ¨ ∆x, and we approximate its volume by the volume of a squat cone.
We pick a number x˚i between xi´1 and xi and approximate the pancake by a

cylinder of height ∆x and radius x˚i
h r.

– Thus the volume of pancake i is approximately π
(

x˚i
h r
)2

∆x (as shown in the
figure above).

• So the Riemann sum approximation of the volume is

Area «
n
ÿ

i=1

π

(
x˚i
h

r
)2

∆x

• By taking the limit as n Ñ 8 (i.e. taking the limit as the thickness of the pan-
cakes goes to zero), we convert the Riemann sum into a definite integral (see Defini-
tion 1.1.9) and at the same time our approximation of the volume becomes the exact
volume:

ż h

0
π
(x

h
r
)2

dx

Our life40 would be easier if we could avoid all this formal work with Riemann sums
every time we encounter a new volume. So before we compute the above integral, let us
redo the above calculation in a less formal manner.

• Start again from the picture of the cone and think of slicing it into thin pancakes,

x

each of width dx.

40 At least the bits of it involving integrals.
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dx

x
h

r

x
h
r

x
h

r

x
h
r

• The pancake at height x above the point of the cone (which is the fraction x
h of the

total height of the cone) has

– radius x
h ¨ r (the fraction x

h of the full radius, r) and so

– cross–sectional area π
( x

h r
)2,

– thickness dx — we have done something a little sneaky here, see the discussion
below.

– volume π
( x

h r
)2dx

As x runs from 0 to h, the total volume is
ż h

0
π
(x

h
r
)2

dx =
πr2

h2

ż h

0
x2dx

=
πr2

h2

[
x3

3

]h

0

=
1
3

πr2h

In this second computation we are using a time-saving trick. As we saw in the formal
computation above, what we really need to do is pick a natural number n, slice the cone
into n pancakes each of thickness ∆x = h/n and then take the limit as n Ñ 8. This led to
the Riemann sum

n
ÿ

i=1

π

(
x˚i
h

r
)2

∆x which becomes
ż h

0
π
(x

h
r
)2

dx

So knowing that we will replace
n
ÿ

i=1

ÝÑ

ż h

0

x˚i ÝÑ x
∆x ÝÑ dx

when we take the limit, we have just skipped the intermediate steps. While this is not
entirely rigorous, it can be made so, and does save us a lot of algebra.

Example 1.6.1
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Example 1.6.2 (Sphere)

Find the volume of the sphere of radius r.

Solution. We’ll find the volume of the part of the sphere in the first octant41, sketched
below. Then we’ll multiply by 8.

• To compute the volume, we slice it up into thin vertical “pancakes” (just as we did

z

y

x

(x ,
√
r2 − x2 , 0)

x2 + y2 + z2 = r2

in the previous example).

• Each pancake is one quarter of a thin circular disk. The pancake a distance x from
the yz–plane is shown in the sketch above. The radius of that pancake is the distance
from the dot shown in the figure to the x–axis, i.e. the y–coordinate of the dot. To
get the coordinates of the dot, observe that

– it lies the xy–plane, and so has z–coordinate zero, and that

– it also lies on the sphere, so that its coordinates obey x2 + y2 + z2 = r2. Since
z = 0 and y ą 0, y =

?
r2 ´ x2.

• So the pancake at distance x from the yz–plane has

– thickness42 dx and

– radius
?

r2 ´ x2

– cross–sectional area 1
4 π
(?

r2 ´ x2
)2 and hence

– volume π
4

(
r2 ´ x2)dx

41 The first octant is the set of all points (x, y, z) with x ě 0, y ě 0 and z ě 0.
42 Yet again what we really do is pick a natural number n, slice the octant of the sphere into n pancakes

each of thickness ∆x = r
n and then take the limit n Ñ8. In the integral ∆x is replaced by dx. Knowing

that this is what is going to happen, we again just skip a few steps.
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• As x runs from 0 to r, the total volume of the part of the sphere in the first octant is
ż r

0

π

4
(
r2
´ x2)dx =

π

4

[
r2x´

x3

3

]r

0
=

1
6

πr3

and the total volume of the whole sphere is eight times that, which is 4
3 πr3, as ex-

pected.

Example 1.6.2

Example 1.6.3 (Revolving a region)

The region between the lines y = 3, y = 5, x = 0 and x = 4 is rotated around the line
y = 2. Find the volume of the region swept out.

Solution. As with most of these problems, we should start by sketching the problem.

y = 2

y = 3

y = 5

x = 0 x = 4

• Consider the region and slice it into thin vertical strips of width dx.

• Now we are to rotate this region about the line y = 2. Imagine looking straight down
the axis of rotation, y = 2, end on. The symbol in the figure above just to the right of
the end the line y = 2 is supposed to represent your eye43. Here is what you see as
the rotation takes place.

y = 2
y = 3

y = 5

43 Okay okay. . . We missed the pupil. I’m sure there is a pun in there somewhere.

91



INTEGRATION 1.6 VOLUMES

• Upon rotation about the line y = 2 our strip sweeps out a “washer”

– whose cross–section is a disk of radius 5´ 2 = 3 from which a disk of radius
3´ 2 = 1 has been removed so that it has a

– cross–sectional area of π32 ´ π12 = 8π and a
– thickness dx and hence a
– volume 8π dx.

• As our leftmost strip is at x = 0 and our rightmost strip is at x = 4, the total

Volume =

ż 4

0
8π dx = (8π)(4) = 32π

Notice that we could also reach this answer by writing the volume as the difference of two
cylinders.

• The outer cylinder has radius (5´ 2) and length 4. This has volume

Vouter = πr2` = π ¨ 32
¨ 4 = 36π.

• The inner cylinder has radius (3´ 2) and length 4. This has volume

Vinner = πr2` = π ¨ 12
¨ 4 = 4π.

• The volume we want is the difference of these two, namely

V = Vouter ´Vinner = 32π.

Example 1.6.3

Let us turn up the difficulty a little on this last example.

Example 1.6.4 (Revolving again)

The region between the curve y =
?

x, and the lines y = 0, x = 0 and x = 4 is rotated
around the line y = 0. Find the volume of the region swept out.

Solution. We can approach this in much the same way as the previous example.

• Consider the region and cut it into thin vertical strips of width dx.
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• When we rotate the region about the line y = 0, each strip sweeps out a thin pancake

– whose cross-section is a disk of radius
?

x with a

– cross-sectional area of π(
?

x)2 = πx and a

– thickness dx and hence a

– volume πxdx.

• As our leftmost strip is at x = 0 and our rightmost strip is at x = 4, the total

Volume =

ż 4

0
πxdx =

[π

2
x2
]4

0
= 8π

Example 1.6.4

In the last example we considered rotating a region around the x-axis. Let us do the same
but rotating around the y-axis.

Example 1.6.5 (Revolving yet again)

The region between the curve y =
?

x, and the lines y = 0, x = 0 and x = 4 is rotated
around the line x = 0. Find the volume of the region swept out.

Solution.

• We will cut the region into horizontal slices, so we should write x as a function of y.
That is, the region is bounded by x = y2, x = 4, y = 0 and y = 2.

• Now slice the region into thin horizontal strips of width dy.

• When we rotate the region about the line y = 0, each strip sweeps out a thin washer

– whose inner radius is y2 and outer radius is 4, and

– thickness is dy and hence

– has volume π(r2
out ´ r2

in)dy = π(16´ y4)dy.
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• As our bottommost strip is at y = 0 and our topmost strip is at y = 2, the total

Volume =

ż 2

0
π(16´ y4)dy =

[
16πy´

π

5
y5
]2

0
= 32π ´

32π

5
=

128π

5
.

Example 1.6.5

There is another way44 to do this one which we show at the end of this section.

Example 1.6.6 (Pyramid)

Find the volume of the pyramid which has height h and whose base is a square of side b.

Solution. Here is a sketch of the part of the pyramid that is in the first octant; we display
only this portion to make the diagrams simpler. Note that this diagram shows only 1

y

z

x

(0, b
2
h−z
h
, z)

(b/2, 0, 0)

(0, b/2, 0)

(0, 0, h)

h−z

h

y

z

(0, b
2
h−z
h
, z)

(0, b/2, 0)

(0, 0, h)

quarter of the whole pyramid.

• To compute its volume, we slice it up into thin horizontal “square pancakes”. A
typical pancake also appears in the sketch above.

– The pancake at height z is the fraction h´z
h of the distance from the peak of the

pyramid to its base.

– So the full pancake45 at height z is a square of side h´z
h b. As a check, note that

when z = h the pancake has side h´h
h b = 0, and when z = 0 the pancake has

side h´0
h b = b.

– So the pancake has cross-sectional area
( h´z

h b
)2 and thickness46 dz and hence

– volume
( h´z

h b
)2dz.

44 The method is not a core part of the course and should be considered optional.
45 Note that this is the full pancake, not just the part in the first octant.
46 We are again using our Riemann sum avoiding trick.
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• The volume of the whole pyramid (not just the part of the pyramid in the first octant)
is

ż h

0

(h´ z
h

b
)2

dz =
b2

h2

ż h

0
(h´ z)2dz

=
b2

h2

ż 0

h
´t2dt substitution rule with t = (h´ z), dz Ñ ´dt

= ´
b2

h2

[
t3

3

]0

h

= ´
b2

h2

[
´

h3

3

]

=
1
3

b2h

Example 1.6.6

Let’s ramp up the difficulty a little.

Example 1.6.7 (Napkin Ring)

Suppose you make two napkin rings47 by drilling holes with different diameters through
two wooden balls. One ball has radius r and the other radius R with r ă R. You choose
the diameter of the holes so that both napkin rings have the same height, 2h. See the figure
below.

2r 2h 2R

Which48 ring has more wood in it?

Solution. We’ll compute the volume of the napkin ring with radius R. We can then obtain
the volume of the napkin ring of radius r, by just replacing R ÞÑ r in the result.

• To compute the volume of the napkin ring of radius R, we slice it up into thin hori-
zontal “pancakes”. Here is a sketch of the part of the napkin ring in the first octant
showing a typical pancake.

47 Handy things to have (when combined with cloth napkins) if your parents are coming to dinner and
you want to convince them that you are “taking care of yourself”.

48 A good question to ask to distract your parents from the fact you are serving frozen burittos.
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z

y

x

(0,
√
R2 − h2, h)

(0,
√
R2 − z2, z)

• The coordinates of the two points marked in the yz–plane of that figure are found by
remembering that

– the equation of the sphere is x2 + y2 + z2 = R2.
– The two points have y ą 0 and are in the yz–plane, so that x = 0 for them. So

y =
?

R2 ´ z2.
– In particular, at the top of the napkin ring z = h, so that y =

?
R2 ´ h2.

• The pancake at height z, shown in the sketch, is a “washer” — a circular disk with a
circular hole cut in its center.

– The outer radius of the washer is
?

R2 ´ z2 and
– the inner radius of the washer is

?
R2 ´ h2. So the

– cross–sectional area of the washer is

π
(a

R2 ´ z2
)2
´ π

(a
R2 ´ h2

)2
= π(h2

´ z2)

• The pancake at height z

– has thickness dz and
– cross–sectional area π(h2 ´ z2) and hence
– volume π(h2 ´ z2)dz.

• Since z runs from ´h to +h, the total volume of wood in the napkin ring of radius R
is

ż h

´h
π(h2

´ z2)dz = π
[

h2z´
z3

3

]h

´h

= π
[(

h3
´

h3

3

)
´

(
(´h)3

´
(´h)3

3

)]

= π
[2

3
h3
´

2
3
(
´ h
)3
]

=
4π

3
h3
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This volume is independent of R. Hence the napkin ring of radius r contains precisely the
same volume of wood as the napkin ring of radius R!

Example 1.6.7

Example 1.6.8 (Notch)

A 45˝ notch is cut to the centre of a cylindrical log having radius 20cm. One plane face of
the notch is perpendicular to the axis of the log. See the sketch below. What volume of
wood was removed?

Solution. We show two solutions to this problem which are of comparable difficulty. The
difference lies in the shape of the pancakes we use to slice up the volume. In solution 1
we cut rectangular pancakes parallel to the yz–plane and in solution 2 we slice triangular
pancakes parallel to the xz–plane.

Solution 1:

• Concentrate on the notch. Rotate it around so that the plane face lies in the xy–plane.

• Then slice the notch into vertical rectangles (parallel to the yz–plane) as in the figure
on the left below.

z

x

y

(x,−y, 0)

z

20x
45◦

• The cylindrical log had radius 20cm. So the circular part of the boundary of the base
of the notch has equation x2 + y2 = 202. (We’re putting the origin of the xy–plane at
the centre of the circle.) If our coordinate system is such that x is constant on each
slice, then
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– the base of the slice is the line segment from (x,´y, 0) to (x,+y, 0) where y =?
202 ´ x2 so that

– the slice has width 2y = 2
?

202 ´ x2 and

– height x (since the upper face of the notch is at 45˝ to the base — see the side
view sketched in the figure on the right above).

– So the slice has cross–sectional area 2x
?

202 ´ x2.

• On the base of the notch x runs from 0 to 20 so the volume of the notch is

V =

ż 20

0
2x
a

202 ´ x2dx

Make the change of variables u = 202 ´ x2 (don’t forget to change dx Ñ ´ 1
2x du):

V =

ż 0

202
´
?

u du

=

[
´

u3/2

3/2

]0

202

=
2
3

203 =
16, 000

3

Solution 2:

• Concentrate of the notch. Rotate it around so that its base lies in the xy–plane with
the skinny edge along the y–axis.

• Slice the notch into triangles parallel to the xz–plane as in the figure on the left below.
In the figure below, the triangle happens to lie in a plane where y is negative.

z

x

y

(x, y, 0)

(0, y, 0)

z

20x
45◦

• The cylindrical log had radius 20cm. So the circular part of the boundary of the base
of the notch has equation x2 + y2 = 202. Our coordinate system is such that y is
constant on each slice, so that
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– the base of the triangle is the line segment from (0, y, 0) to (x, y, 0) where x =
a

202 ´ y2 so that

– the triangle has base x =
a

202 ´ y2 and

– height x =
a

202 ´ y2 (since the upper face of the notch is at 45˝ to the base —
see the side view sketched in the figure on the right above).

– So the slice has cross–sectional area 1
2

(a
202 ´ y2

)2.

• On the base of the notch y runs from ´20 to 20, so the volume of the notch is

V = 1
2

ż 20

´20
(202

´ y2)dy

=

ż 20

0
(202

´ y2)dy

=
[
202y´

y3

3

]20

0

=
2
3

203 =
16, 000

3

Example 1.6.8

§§ Optional — Cylindrical shells

Let us return to Example 1.6.5 in which we rotate a region around the y-axis. Here we
show another solution to this problem which is obtained by slicing the region into vertical
strips. When rotated about the y-axis, each such strip sweeps out a thin cylindrical shell.
Hence the name of this approach (and this subsection).

Example 1.6.9 (Revolving yet again)

The region between the curve y =
?

x, and the lines y = 0, x = 0 and x = 4 is rotated
around the line x = 0. Find the volume of the region swept out.

Solution.

• Consider the region and cut it into thin vertical strips of width dx.
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• When we rotate the region about the line y = 0, each strip sweeps out a thin cylin-
drical shell

– whose radius is x,

– height is
?

x, and

– thickness is dx and hence

– has volume 2π ˆ radiusˆ heightˆ thickness = 2πx3/2dx.

• As our leftmost strip is at x = 0 and our rightmost strip is at x = 4, the total

Volume =

ż 4

0
2πx3/2dx =

[
4π

5
x5/2

]4

0
=

4π

5
¨ 32 =

128π

5

which (thankfully) agrees with our previous computation.

Example 1.6.9

1.7Ĳ Integration by parts

The fundamental theorem of calculus tells us that it is very easy to integrate a derivative.
In particular, we know that

ż

d
dx

(F(x))dx = F(x) + C

We can exploit this in order to develop another rule for integration — in particular a rule
to help us integrate products of simpler function such as

ż

xexdx

In so doing we will arrive at a method called “integration by parts”.
To do this we start with the product rule and integrate. Recall that the product rule

says

d
dx

u(x)v(x) = u1(x) v(x) + u(x) v1(x)

Integrating this gives
ż [

u1(x) v(x) + u(x) v1(x)
]
dx =

[
a function whose derivative is u1v + uv1

]
+ C

= u(x)v(x) + C

Now this, by itself, is not terribly useful. In order to apply it we need to have a function
whose integrand is a sum of products that is in exactly this form u1(x)v(x) + u(x)v1(x).
This is far too specialised.
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However if we tease this apart a little:
ż [

u1(x) v(x) + u(x) v1(x)
]
dx =

ż

u1(x) v(x)dx +

ż

u(x) v1(x)dx

Bring one of the integrals to the left-hand side

u(x)v(x)´
ż

u1(x) v(x)dx =

ż

u(x) v1(x)dx

Swap left and right sides
ż

u(x) v1(x)dx = u(x)v(x)´
ż

u1(x) v(x)dx

In this form we take the integral of one product and express it in terms of the integral of
a different product. If we express it like that, it doesn’t seem too useful. However, if the
second integral is easier, then this process helps us.

Let us do a simple example before explaining this more generally.

Example 1.7.1 (
ş

xexdx)

Compute the integral
ż

xexdx.

Solution.

• We start by taking the equation above
ż

u(x) v1(x)dx = u(x)v(x)´
ż

u1(x) v(x)dx

• Now set u(x) = x and v1(x) = ex. How did we know how to make this choice? We
will explain some strategies later. For now, let us just accept this choice and keep
going.

• In order to use the formula we need to know u1(x) and v(x). In this case it is quite
straightforward: u1(x) = 1 and v(x) = ex.

• Plug everything into the formula:
ż

xexdx = xex
´

ż

exdx

So our original more difficult integral has been turned into a question of computing
an easy one.

= xex
´ ex + C

• We can check our answer by differentiating:

d
dx

(xex
´ ex + C) = xex + 1 ¨ ex

looooomooooon

by product rule

´ex + 0

= xex as required.
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Example 1.7.1

The process we have used in the above example is called “integration by parts”. When
our integrand is a product we try to write it as u(x)v1(x) — we need to choose one factor
to be u(x) and the other to be v1(x). We then compute u1(x) and v(x) and then apply the
following theorem:

Let u(x) and v(x) be continuously differentiable. Then
ż

u(x) v1(x)dx = u(x) v(x)´
ż

v(x) u1(x)dx

If we write dv for v1(x)dx and du for u1(x)dx (as the substitution rule suggests),
then the formula becomes

ż

udv = u v´
ż

vdu

The application of this formula is known as integration by parts.
The corresponding statement for definite integrals is

ż b

a
u(x) v1(x)dx = u(b) v(b)´ u(a) v(a)´

ż b

a
v(x) u1(x)dx

Theorem1.7.2 (Integration by parts).

Integration by parts is not as easy to apply as the product rule for derivatives. This is
because it relies on us

(1) judiciously choosing u(x) and v1(x), then

(2) computing u1(x) and v(x) — which requires us to antidifferentiate v1(x), and finally

(3) that the integral
ş

u1(x)v(x)dx is easier than the integral we started with.

Notice that any antiderivative of v1(x) will do. All antiderivatives of v1(x) are of the
form v(x) + A with A a constant. Putting this into the integration by parts formula gives

ż

u(x)v1(x)dx = u(x) (v(x) + A)´

ż

u1(x) (v(x) + A)dx

= u(x)v(x) + Au(x)´
ż

u1(x)v(x)dx´ A
ż

u1(x)dx
loooooomoooooon

=Au(x)+C

= u(x)v(x)´
ż

u1(x)v(x)dx + C

So that constant A will always cancel out.
In most applications (but not all) our integrand will be a product of two factors so we

have two choices for u(x) and v1(x). Typically one of these choices will be “good” (in that
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it results in a simpler integral) while the other will be “bad” (we cannot antidifferentiate
our choice of v1(x) or the resulting integral is harder). Let us illustrate what we mean by
returning to our previous example.

Example 1.7.3 (
ş

xexdx — again)

Our integrand is the product of two factors

x and ex

This gives us two obvious choices of u and v1:

u(x) = x v1(x) = ex

or
u(x) = ex v1(x) = x

We should explore both choices:

1. If take u(x) = x and v1(x) = ex. We then quickly compute

u1(x) = 1 and v(x) = ex

which means we will need to integrate (in the right-hand side of the integration by
parts formula)

ż

u1(x)v(x)dx =

ż

1 ¨ exdx

which looks straightforward. This is a good indication that this is the right choice of
u(x) and v1(x).

2. But before we do that, we should also explore the other choice, namely u(x) = ex

and v1(x) = x. This implies that

u1(x) = ex and v(x) =
1
2

x2

which means we need to integrate
ż

u1(x)v(x)dx =

ż

1
2

x2
¨ exdx.

This is at least as hard as the integral we started with. Hence we should try the first
choice.

With our choice made, we integrate by parts to get
ż

xexdx = xex
´

ż

exdx

= xex
´ ex + C.

The above reasoning is a very typical workflow when using integration by parts.
Example 1.7.3

Integration by parts is often used
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• to eliminate factors of x from an integrand like xex by using that d
dx x = 1 and

• to eliminate a log x from an integrand by using that d
dx log x = 1

x and

• to eliminate inverse trig functions, like arctan x, from an integrand by using that, for
example, d

dx arctan x = 1
1+x2 .

Example 1.7.4 (
ş

x sin xdx)

Solution.

• Again we have a product of two factors giving us two possible choices.

(1) If we choose u(x) = x and v1(x) = sin x, then we get

u1(x) = 1 and v(x) = ´ cos x

which is looking promising.

(2) On the other hand if we choose u(x) = sin x and v1(x) = x, then we have

u1(x) = cos x and v(x) =
1
2

x2

which is looking worse — we’d need to integrate
ş 1

2 x2 cos xdx.

• So we stick with the first choice. Plugging u(x) = x, v(x) = ´ cos x into integration
by parts gives us

ż

x sin xdx = ´x cos x´
ż

1 ¨ (´ cos x)dx

= ´x cos x + sin x + C

• Again we can check our answer by differentiating:

d
dx

(´x cos x + sin x + C) = ´ cos x + x sin x + cos x + 0

= x sin xX

Once we have practised this a bit we do not really need to write as much. Let us solve
it again, but showing only what we need to.

Solution.

• We use integration by parts to solve the integral.

• Set u(x) = x and v1(x) = sin x. Then u1(x) = 1 and v(x) = ´ cos x, and
ż

x sin xdx = ´x cos x +

ż

cos xdx

= ´x cos x + sin x + C.
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Example 1.7.4

It is pretty standard practice to reduce the notation even further in these problems. As
noted above, many people write the integration by parts formula as

ż

udv = uv´
ż

vdu

where du, dv are shorthand for u1(x)dx, v1(x)dx. Let us write up the previous example
using this notation.

Example 1.7.5 (
ş

x sin xdx yet again)

Solution. Using integration by parts, we set u = x and dv = sin xdx. This makes du = 1dx

and v = ´ cos x. Consequently
ż

x sin xdx =

ż

udv

= uv´
ż

vdu

= ´x cos x +

ż

cos xdx

= ´x cos x + sin x + C

You can see that this is a very neat way to write up these problems and we will continue
using this shorthand in the examples that follow below.

Example 1.7.5

We can also use integration by parts to eliminate higher powers of x. We just need to
apply the method more than once.

Example 1.7.6
(ş

x2exdx
)

Solution.

• Let u = x2 and dv = exdx. This then gives du = 2xdx and v = ex, and
ż

x2exdx = x2ex
´

ż

2xexdx

• So we have reduced the problem of computing the original integral to one of inte-
grating 2xex. We know how to do this — just integrate by parts again:

ż

x2exdx = x2ex
´

ż

2xexdx set u = 2x, dv = exdx

= x2ex
´

(
2xex

´

ż

2exdx
)

since du = 2dx, v = ex

= x2ex
´ 2xex + 2ex + C
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• We can, if needed, check our answer by differentiating:

d
dx

(
x2ex

´ 2xex + 2ex + C
)
=
(

x2ex + 2xex
)
´ (2xex + 2ex) + 2ex + 0

= x2exX

A similar iterated application of integration by parts will work for integrals
ż

P(x) (Aeax + B sin(bx) + C cos(cx))dx

where P(x) is a polynomial and A, B, C, a, b, c are constants.
Example 1.7.6

Now let us look at integrands containing logarithms. We don’t know the antiderivative
of log x, but we can eliminate log x from an integrand by using integration by parts with
u = log x. Remember log x = loge x = ln x.

Example 1.7.7 (
ş

x log xdx)

Solution.

• We have two choices for u and dv.

(1) Set u = x and dv = log xdx. This gives du = dx but v is hard to compute —
we haven’t done it yet49. Before we go further along this path, we should look
to see what happens with the other choice.

(2) Set u = log x and dv = xdx. This gives du = 1
x dx and v = 1

2 x2, and we have to
integrate

ż

v du =

ż

1
x
¨

1
2

x2dx

which is easy.

• So we proceed with the second choice.
ż

x log xdx =
1
2

x2 log x´
ż

1
2

xdx

=
1
2

x2 log x´
1
4

x2 + C

• We can check our answer quickly:

d
dx

(x2

2
ln x´

x2

4
+ C

)
= x ln x +

x2

2
1
x
´

x
2
+ 0 = x ln x

49 We will soon.
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Example 1.7.7

Example 1.7.8 (
ş

log xdx)

It is not immediately obvious that one should use integration by parts to compute the in-
tegral

ż

log xdx

since the integrand is not a product. But we should persevere — indeed this is a situation
where our shorter notation helps to clarify how to proceed.

Solution.

• In the previous example we saw that we could remove the factor log x by setting
u = log x and using integration by parts. Let us try repeating this. When we make
this choice, we are then forced to take dv = dx — that is we choose v1(x) = 1. Once
we have made this sneaky move everything follows quite directly.

• We then have du = 1
x dx and v = x, and the integration by parts formula gives us

ż

log xdx = x log x´
ż

1
x
¨ xdx

= x log x´
ż

1dx

= x log x´ x + C

• As always, it is a good idea to check our result by verifying that the derivative of the
answer really is the integrand.

d
dx
(
x ln x´ x + C

)
= ln x + x

1
x
´ 1 + 0 = ln x

Example 1.7.8

The same method works almost exactly to compute the antiderivatives of arcsin(x)
and arctan(x):

Example 1.7.9 (
ş

arctan(x)dx and
ş

arcsin(x)dx)

Compute the antiderivatives of the inverse sine and inverse tangent functions.

Solution.

• Again neither of these integrands are products, but that is no impediment. In both
cases we set dv = dx (ie v1(x) = 1) and choose v(x) = x.
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• For inverse tan we choose u = arctan(x), so du = 1
1+x2 dx:

ż

arctan(x)dx = x arctan(x)´
ż

x ¨
1

1 + x2 dx now use substitution rule

= x arctan(x)´
ż

w1(x)
2

¨
1
w

dx with w(x) = 1 + x2, w1(x) = 2x

= x arctan(x)´
1
2

ż

1
w

dw

= x arctan(x)´
1
2

log |w|+ C

= x arctan(x)´
1
2

log |1 + x2
|+ C but 1 + x2

ą 0, so

= x arctan(x)´
1
2

log(1 + x2) + C

• Similarly for inverse sine we choose u = arcsin(x) so du = 1?
1´x2

dx:

ż

arcsin(x)dx = x arcsin(x)´
ż

x
?

1´ x2
dx now use substitution rule

= x arcsin(x)´
ż

´w1(x)
2

¨w´1/2dx with w(x) = 1´ x2, w1(x) = ´2x

= x arcsin(x) +
1
2

ż

w´1/2dw

= x arcsin(x) +
1
2
¨ 2w1/2 + C

= x arcsin(x) +
a

1´ x2 + C

• Both can be checked quite quickly by differentitating — but we leave that as an
exercise for the reader.

Example 1.7.9

There are many other examples we could do, but we’ll finish with a tricky one.

Example 1.7.10 (
ş

ex sin xdx)

Solution. Let us attempt this one a little naively and then we’ll come back and do it more

carefully (and successfully).

• We can choose either u = ex, dv = sin xdx or the other way around.

1. Let u = ex, dv = sin xdx. Then du = exdx and v = ´ cos x. This gives
ż

ex sin x = ´ex cos x +

ż

ex cos xdx

So we are left with an integrand that is very similar to the one we started with.
What about the other choice?
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2. Let u = sin x, dv = exdx. Then du = cos xdx and v = ex. This gives
ż

ex sin x = ex sin x´
ż

ex cos xdx

So we are again left with an integrand that is very similar to the one we started
with.

• How do we proceed? — It turns out to be easier if you do both
ş

ex sin xdx and
ş

ex cos xdx simultaneously. We do so in the next example.

Example 1.7.10

Example 1.7.11
(
şb

a ex sin xdx and
şb

a ex cos xdx
)

This time we’re going to do the two integrals

I1 =

ż b

a
ex sin xdx I2 =

ż b

a
ex cos xdx

at more or less the same time.

• First

I1 =

ż b

a
ex sin xdx =

ż b

a
udv with u = ex, dv = sin xdx

so v = ´ cos x, du = exdx

=
[
´ ex cos x

]b

a
+

ż b

a
ex cos xdx

We have not found I1 but we have related it to I2.

I1 =
[
´ ex cos x

]b

a
+ I2

• Now start over with I2.

I2 =

ż b

a
ex cos xdx =

ż b

a
udv with u = ex, dv = cos xdx

so v = sin x, du = exdx

=
[
ex sin x

]b

a
´

ż b

a
ex sin xdx

Once again, we have not found I2 but we have related it back to I1.

I2 =
[
ex sin x

]b

a
´ I1
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• So summarising, we have

I1 =
[
´ ex cos x

]b

a
+ I2 I2 =

[
ex sin x

]b

a
´ I1

• So now, substitute the expression for I2 from the second equation into the first equa-
tion to get

I1 =
[
´ ex cos x + ex sin x

]b

a
´ I1 which implies I1 =

1
2

[
ex( sin x´ cos x

)]b

a

If we substitute the other way around we get

I2 =
[
ex sin x + ex cos x

]b

a
´ I2 which implies I2 =

1
2

[
ex( sin x + cos x

)]b

a

That is,
ż b

a
ex sin xdx =

1
2

[
ex( sin x´ cos x

)]b

a

ż b

a
ex cos xdx =

1
2

[
ex( sin x + cos x

)]b

a

• This also says, for example, that 1
2 ex( sin x´ cos x

)
is an antiderivative of ex sin x so

that
ż

ex sin xdx =
1
2

ex( sin x´ cos x
)
+ C

• Note that we can always check whether or not this is correct. It is correct if and only
if the derivative of the right hand side is ex sin x. Here goes. By the product rule

d
dx

[1
2

ex( sin x´ cos x
)
+ C

]
=

1
2

[
ex( sin x´ cos x

)
+ ex( cos x + sin x

)]
= ex sin x

which is the desired derivative.

• There is another way to find
ş

ex sin xdx and
ş

ex cos xdx that, in contrast to the above
computations, doesn’t involve any trickery. But it does require the use of complex
numbers and so is beyond the scope of this course. The secret is to use that sin x =
eix´e´ix

2i and cos x = eix+e´ix

2 , where i is the square root of ´1 of the complex number
system.

Example 1.7.11

1.8Ĳ Trigonometric Integrals

Integrals of polynomials of the trigonometric functions sin x, cos x, tan x and so on, are
generally evaluated by using a combination of simple substitutions and trigonometric
identities. There are of course a very large number50 of trigonometric identities, but usu-
ally we use only a handful of them. The most important three are:

50 The more pedantic reader could construct an infinite list of them.
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sin2 x + cos2 x = 1

Equation 1.8.1.

sin(2x) = 2 sin x cos x

Equation 1.8.2.

cos(2x) = cos2 x´ sin2 x

= 2 cos2 x´ 1

= 1´ 2 sin2 x

Equation 1.8.3.

Notice that the last two lines of Equation (1.8.3) follow from the first line by replacing
either sin2 x or cos2 x using Equation (1.8.1). It is also useful to rewrite these last two lines:

sin2 x =
1´ cos(2x)

2

Equation 1.8.4.

cos2 x =
1 + cos(2x)

2

Equation 1.8.5.

These last two are particularly useful since they allow us to rewrite higher powers of
sine and cosine in terms of lower powers. For example:

sin4(x) =
[

1´ cos(2x)
2

]2

by Equation (1.8.4)

=
1
4
´

1
2

cos(2x) +
1
4

cos2(2x)
looomooon

do it again

use Equation (1.8.5)

=
1
4
´

1
2

cos(2x) +
1
8
(1 + cos(4x))

=
3
8
´

1
2

cos(2x) +
1
8

cos(4x)
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So while it was hard to integrate sin4(x) directly, the final expression is quite straightfor-
ward (with a little substitution rule).

There are many such tricks for integrating powers of trigonometric functions. Here we
concentrate on two families

ż

sinm x cosn xdx and
ż

tanm x secn xdx

for integer n, m. The details of the technique depend on the parity of n and m — that is,
whether n and m are even or odd numbers.

1.8.1 §§ Integrating
ş

sinm x cosn xdx

§§§ One of n and m is odd

Consider the integral
ş

sin2 x cos xdx. We can integrate this by substituting u = sin x and
du = cos xdx. This gives

ż

sin2 x cos xdx =

ż

u2du

=
1
3

u3 + C =
1
3

sin3 x + C

This method can be used whenever n is an odd integer.

• Substitute u = sin x and du = cos xdx.

• This leaves an even power of cosines — convert them using cos2 x = 1´ sin2 x =
1´ u2.

Here is an example.

Example 1.8.6
(ş

sin2 x cos3 xdx
)

Start by factoring off one power of cos x to combine with dx to get cos xdx = du.
ż

sin2 x cos3 xdx =

ż

sin2 x
loomoon

=u2

cos2 x
loomoon

=1´u2

cos xdx
looomooon

=du

set u = sin x

=

ż

u2 (1´ u2)du

=
u3

3
´

u5

5
+ C

=
sin3 x

3
´

sin5 x
5

+ C

Example 1.8.6

Of course if m is an odd integer we can use the same strategy with the roles of sin x
and cos x exchanged. That is, we substitute u = cos x, du = ´ sin xdx and sin2 x =
1´ cos2 x = 1´ u2.
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§§§ Both n and m are even

If m and n are both even, the strategy is to use the trig identities (1.8.4) and (1.8.5) to get
back to the m or n odd case. This is typically more laborious than the previous case we
studied. Here are a couple of examples that arise quite commonly in applications.

Example 1.8.7
(ş

cos2 xdx
)

By (1.8.5)
ż

cos2 xdx =
1
2

ż [
1 + cos(2x)

]
dx=

1
2

[
x +

1
2

sin(2x)
]
+ C

Example 1.8.7

Example 1.8.8
(ş

cos4 xdx
)

First we’ll prepare the integrand cos4 x for easy integration by applying (1.8.5) a couple
times. We have already used (1.8.5) once to get

cos2 x =
1
2
[
1 + cos(2x)

]

Squaring it gives

cos4 x =
1
4
[
1 + cos(2x)

]2
=

1
4
+

1
2

cos(2x) +
1
4

cos2(2x)

Now by (1.8.5) a second time

cos4 x =
1
4
+

1
2

cos(2x) +
1
4

1 + cos(4x)
2

=
3
8
+

1
2

cos(2x) +
1
8

cos(4x)

Now it’s easy to integrate
ż

cos4 xdx =
3
8

ż

dx +
1
2

ż

cos(2x)dx +
1
8

ż

cos(4x)dx

=
3
8

x +
1
4

sin(2x) +
1

32
sin(4x) + C

Example 1.8.8

Example 1.8.9
(ş

cos2 x sin2 xdx
)

Here we apply both (1.8.4) and (1.8.5).
ż

cos2 x sin2 xdx =
1
4

ż [
1 + cos(2x)

][
1´ cos(2x)

]
dx

=
1
4

ż [
1´ cos2(2x)

]
dx
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We can then apply (1.8.5) again

=
1
4

ż [
1´

1
2
(1 + cos(4x))

]
dx

=
1
8

ż [
1´ cos(4x)

]
dx

=
1
8

x´
1

32
sin(4x) + C

Oof! We could also have done this one using (1.8.2) to write the integrand as sin2(2x) and
then used (1.8.4) to write it in terms of cos(4x).

Example 1.8.9

Example 1.8.10
(şπ

0 cos2 xdx and
şπ

0 sin2 xdx
)

Of course we can compute the definite integral
şπ

0 cos2 xdx by using the antiderivative for
cos2 x that we found in Example 1.8.7. But here is a trickier way to evaluate that inte-
gral, and also the integral

şπ
0 sin2 xdx at the same time, very quickly without needing the

antiderivative of Example 1.8.7.

Solution.

• Observe that
şπ

0 cos2 xdx and
şπ

0 sin2 xdx are equal because they represent the same
area — look at the graphs below — the darkly shaded regions in the two graphs
have the same area and the lightly shaded regions in the two graphs have the same
area.

y

x
ππ/2

1
y = sin2 x

y

x
ππ/2

1
y = cos2 x

• Consequently,
ż π

0
cos2 xdx =

ż π

0
sin2 xdx =

1
2

[
ż π

0
sin2 xdx +

ż π

0
cos2 xdx

]

=
1
2

ż π

0

[
sin2 x + cos2 x

]
dx

=
1
2

ż π

0
dx

=
π

2
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Example 1.8.10

1.8.2 §§ Integrating
ş

tanm x secn xdx

The strategy for dealing with these integrals is similar to the strategy that we used to
evaluate integrals of the form

ş

sinm x cosn xdx and again depends on the parity of the
exponents n and m. It uses51

d
dx

tan x = sec2 x
d
dx

sec x = sec x tan x 1 + tan2 x = sec2 x

We split the methods for integrating
ş

tanm x secn xdx into 5 cases which we list below.
These will become much more clear after an example (or two).

(1) When m is odd and any n — rewrite the integrand in terms of sin x and cos x:

tanm x secn xdx =
( sin x

cos x
)m( 1

cos x
)ndx

=
sinm´1 x
cosn+m x

sin xdx

and then substitute u = cos x, du = ´ sin xdx, sin2 x = 1 ´ cos2 x = 1 ´ u2. See
Examples 1.8.11 and 1.8.12.

(2) Alternatively, if m is odd and n ě 1 move one factor of sec x tan x to the side so that
you can see sec x tan xdx in the integral, and substitute u = sec x, du = sec x tan x dx
and tan2 x = sec2 x´ 1 = u2 ´ 1. See Example 1.8.13.

(3) If n is even with n ě 2, move one factor of sec2 x to the side so that you can see sec2 xdx
in the integral, and substitute u = tan x, du = sec2 x dx and sec2 x = 1 + tan2 x =
1 + u2. See Example 1.8.14.

(4) When m is even and n = 0 — that is the integrand is just an even power of tangent
— we can still use the u = tan x substitution, after using tan2 x = sec2 x´ 1 (possibly
more than once) to create a sec2 x. See Example 1.8.16.

(5) This leaves the case n odd and m even. There are strategies like those above for treating
this case. But they are more complicated and also involve more tricks (that basically
have to be memorized). Examples using them are provided in the optional section
entitled “Integrating sec x, csc x, sec3 x and csc3 x”, below. A more straight forward
strategy uses another technique called “partial fractions”. We shall return to this strat-
egy after we have learned about partial fractions. See Example 1.10.5 and 1.10.6 in
Section 1.10.

51 You will need to memorise the derivatives of tangent and secant. However there is no need to memorise
1 + tan2 x = sec2 x. To derive it very quickly just divide sin2 x + cos2 x = 1 by cos2 x.
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§§§ m is odd — odd power of tangent

In this case we rewrite the integrand in terms of sine and cosine and then substitute u =
cos x, du = ´ sin xdx.

Example 1.8.11 (
ş

tan xdx)

Solution.

• Write the integrand tan x = 1
cos x sin x.

• Now substitute u = cos x, du = ´ sin x dx just as we did in treating integrands of
the form sinm x cosn x with m odd.
ż

tan x dx =

ż

1
cos x

sin x dx substitute u = cos x

=

ż

1
u
¨ (´1)du

= ´ log |u|+ C
= ´ log | cos x|+ C can also write in terms of secant

= log | cos x|´1 + C = log | sec x|+ C

Example 1.8.11

Example 1.8.12
(ş

tan3 xdx
)

Solution.

• Write the integrand tan3 x = sin2 x
cos3 x sin x.

• Again substitute u = cos x, du = ´ sin x dx. We rewrite the remaining even powers
of sin x using sin2 x = 1´ cos2 x = 1´ u2.

• Hence
ż

tan3 x dx =

ż

sin2 x
cos3 x

sin x dx subsitute u = cos x

=

ż

1´ u2

u3 (´1)du

=
u´2

2
+ log |u|+ C

=
1

2 cos2 x
+ log | cos x|+ C can rewrite in terms of secant

=
1
2

sec2 x´ log | sec x|+ C

Example 1.8.12
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§§§ m is odd and n ě 1 — odd power of tangent and at least one secant

Here we collect a factor of tan x sec x and then substitute u = sec x and du = sec x tan xdx.
We can then rewrite any remaining even powers of tanx in terms of sec x using tan2 x =
sec2 x´ 1 = u2 ´ 1.

Example 1.8.13
(ş

tan3 x sec4 xdx
)

Solution.

• Start by factoring off one copy of sec x tan x and combine it with dx to form sec x tan xdx,
which will be du.

• Now substitute u = sec x, du = sec x tan xdx and tan2 x = sec2 x´ 1 = u2 ´ 1.

• This gives

ż

tan3 x sec4 xdx =

ż

tan2 x
loomoon

u2´1

sec3 x
loomoon

u3

sec x tan xdx
loooooomoooooon

du

=

ż [
u2
´ 1]u3du

=
u6

6
´

u4

4
+ C

=
1
6

sec6 x´
1
4

sec4 x + C

Example 1.8.13

§§§ n ě 2 is even — a positive even power of secant

In the previous case we substituted u = sec x, while in this case we substitute u = tan x.
When we do this we write du = sec2 xdx and then rewrite any remaining even powers of
sec x as powers of tan x using sec2 x = 1 + tan2 x = 1 + u2.

Example 1.8.14
(ş

sec4 xdx
)

Solution.

• Factor off one copy of sec2 x and combine it with dx to form sec2 xdx, which will be
du.

• Then substitute u = tan x, du = sec2 xdx and rewrite any remaining even powers of
sec x as powers of tan x = u using sec2 x = 1 + tan2 x = 1 + u2.
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• This gives
ż

sec4 xdx =

ż

sec2 x
loomoon

1+u2

sec2 xdx
looomooon

du

=

ż [
1 + u2]du

= u +
u3

3
+ C

= tan x +
1
3

tan3 x + C

Example 1.8.14

Example 1.8.15
(ş

tan3 x sec4 xdx — redux
)

Solution. Let us revisit this example using this slightly different approach.

• Factor off one copy of sec2 x and combine it with dx to form sec2 xdx, which will be
du.

• Then substitute u = tan x, du = sec2 xdx and rewrite any remaining even powers of
sec x as powers of tan x = u using sec2 x = 1 + tan2 x = 1 + u2.

• This gives
ż

tan3 x sec4 xdx =

ż

tan3 x
loomoon

u3

sec2 x
loomoon

1+u2

sec2 xdx
looomooon

du

=

ż [
u3 + u5]du

=
u4

4
+

u6

6
+ C

=
1
4

tan4 x +
1
6

tan6 x + C

• This is not quite the same as the answer we got above in Example 1.8.13. However
we can show they are (nearly) equivalent. To do so we subsitute v = sec x and
tan2 x = sec2 x´ 1 = v2 ´ 1:

1
6

tan6 x +
1
4

tan4 x =
1
6
(v2

´ 1)3 +
1
4
(v2

´ 1)2

=
1
6
(v6

´ 3v4 + 3v2
´ 1) +

1
4
(v4

´ 2v2 + 1)

=
v6

6
´

v4

2
+

v2

2
´

1
6
+

v4

4
´

v2

2
+

1
4

=
v6

6
´

v4

4
+ 0 ¨ v2 +

(
1
4
´

1
6

)

=
1
6

sec6 x´
1
4

sec4 x +
1

12
.
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So while 1
6 tan6 x+ 1

4 tan4 x ‰ 1
6 sec6 x´ 1

4 sec4 x, they only differ by a constant. Hence
both are valid antiderivatives of tan3 x sec4 x.

Example 1.8.15

§§§ m is even and n = 0 — even powers of tangent

We integrate this by setting u = tan x. For this to work we need to pull one factor of sec2 x
to one side to form du = sec2 xdx. To find this factor of sec2 x we (perhaps repeatedly)
apply the identity tan2 x = sec2 x´ 1.

Example 1.8.16
(ş

tan4 xdx
)

Solution.

• There is no sec2 x term present, so we try to create it from tan4 x by using tan2 x =
sec2 x´ 1.

tan4 x = tan2 x ¨ tan2 x

= tan2 x
[

sec2 x´ 1
]

= tan2 x sec2 x´ tan2 x
loomoon

sec2 x´1

= tan2 x sec2 x´ sec2 x + 1

• Now we can subtitute u = tan x, du = sec2 xdx.
ż

tan4 xdx =

ż

tan2 x
loomoon

u2

sec2 xdx
looomooon

du

´

ż

sec2 xdx
looomooon

du

+

ż

dx

=

ż

u2du´
ż

du +

ż

dx

=
u3

3
´ u + x + C

=
tan3 x

3
´ tan x + x + C

Example 1.8.16

Example 1.8.17
(ş

tan8 xdx
)

Solution. Let us try the same approach.
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• First pull out a factor of tan2 x to create a sec2 x factor:

tan8 x = tan6 x ¨ tan2 x

= tan6 x ¨
[

sec2 x´ 1
]

= tan6 x sec2 x´ tan6 x

The first term is now ready to be integrated, but we need to reapply the method to
the second term:

= tan6 x sec2 x´ tan4 x ¨
[

sec2 x´ 1
]

= tan6 x sec2 x´ tan4 x sec2 x + tan4 x do it again

= tan6 x sec2 x´ tan4 x sec2 x + tan2 x ¨
[

sec2 x´ 1
]

= tan6 x sec2 x´ tan4 x sec2 x + tan2 x sec2 x´ tan2 x and again

= tan6 x sec2 x´ tan4 x sec2 x + tan2 x sec2 x´
[

sec2 x´ 1
]

• Hence

ż

tan8 xdx =

ż [
tan6 x sec2 x´ tan4 x sec2 x + tan2 x sec2 x´ sec2 x + 1

]
dx

=

ż [
tan6 x´ tan4 x + tan2 x´ 1

]
sec2 xdx +

ż

dx

=

ż [
u6
´ u4 + u2

´ 1
]

du + x + C

=
u7

7
´

u5

5
+

u3

3
´ u + x + C

=
1
7

tan7 x´
1
5

tan5 x +
1
3

tan3 x´ tan x + x + C

Indeed this example suggests that for integer k ě 0:

ż

tan2k xdx =
1

2k´ 1
tan2k´1(x)´

1
2k´ 3

tan2k´3 x + ¨ ¨ ¨ ´ (´1)k tan x + (´1)kx + C

Example 1.8.17

This last example also shows how we might integrate an odd power of tangent:

Example 1.8.18
(ş

tan7 x
)

Solution. We follow the same steps
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• Pull out a factor of tan2 x to create a factor of sec2 x:

tan7 x = tan5 x ¨ tan2 x

= tan5 x ¨
[

sec2 x´ 1
]

= tan5 x sec2 x´ tan5 x do it again

= tan5 x sec2 x´ tan3 x ¨
[

sec2 x´ 1
]

= tan5 x sec2 x´ tan3 x sec2 x + tan3 x and again

= tan5 x sec2 x´ tan3 x sec2 x + tan x
[

sec2 x´ 1
]

= tan5 x sec2 x´ tan3 x sec2 x + tan x sec2 x´ tan x

• Now we can substitute u = tan x and du = sec2 xdx and also use the result from
Example 1.8.11 to take care of the last term:

ż

tan7 xdx =

ż [
tan5 x sec2 x´ tan3 x sec2 x + tan x sec2 x

]
dx´

ż

tan xdx

Now factor out the common sec2 x term and integrate tan x via Example 1.8.11

=

ż [
tan5 x´ tan3 x + tan x

]
sec xdx´ log | sec x|+ C

=

ż [
u5
´ u3 + u

]
du´ log | sec x|+ C

=
u6

6
´

u4

4
+

u2

2
´ log | sec x|+ C

=
1
6

tan6 x´
1
4

tan4 x +
1
2

tan2 x´ log | sec x|+ C

This example suggests that for integer k ě 0:
ż

tan2k+1 xdx =
1
2k

tan2k(x)´
1

2k´ 2
tan2k´2 x + ¨ ¨ ¨ ´ (´1)k 1

2
tan2 x + (´1)k log | sec x|+ C

Example 1.8.18

Of course we have not considered integrals involving powers of cot x and csc x. But
they can be treated in much the same way as tan x and sec x were.

1.8.3 §§ Optional — Integrating sec x, csc x, sec3 x and csc3 x
As noted above, when n is odd and m is even, one can use similar strategies as to the
previous cases. However the computations are often more involved and more tricks need
to be deployed. For this reason we make this section optional — the computations are
definitely non-trivial. Rather than trying to construct a coherent “method” for this case,
we instead give some examples to give the idea of what to expect.

Example 1.8.19 (
ş

sec xdx — by trickery)

Solution. There is a very sneaky trick to compute this integral.
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• The standard trick for this integral is to multiply the integrand by 1 = sec x+tan x
sec x+tan x

sec x = sec x
sec x + tan x
sec x + tan x

=
sec2 x + sec x tan x

sec x + tan x

• Notice now that the numerator of this expression is exactly the derivative its de-
nominator. Hence we can substitute u = sec x + tan x and then du = (sec x tan x +
sec2 x)dx.

• Hence
ż

sec xdx =

ż

sec x
sec x + tan x
sec x + tan x

dx =

ż

sec2 x + sec x tan x
sec x + tan x

dx

=

ż

1
u

du

= log |u|+ C
= log | sec x + tan x|+ C

Example 1.8.19

There is a second method for integrating
ş

sec xdx, that is more tedious, but more straight
forward. In particular, it does not involve a memorized trick. The integral

ş

sec x dx is
converted into the integral

ş du
1´u2 by using the substitution u = sin x, du = cos x dx. The

integral
ş du

1´u2 is then integrated by the method of partial fractions, which we shall learn
about in Section 1.10 “Partial Fractions”. The details are in Example 1.10.5 in those notes.
This second method gives the answer

ż

sec xdx =
1
2

log
1 + sin x
1´ sin x

+ C

which appears to be different than the answer in Example 1.8.19. But they are really the
same (of course) since

1 + sin x
1´ sin x

=
(1 + sin x)2

1´ sin2 x
=

(1 + sin x)2

cos2 x

ùñ
1
2

log
1 + sin x
1´ sin x

=
1
2

log
(1 + sin x)2

cos2 x
= log

ˇ

ˇ

ˇ

sin x + 1
cos x

ˇ

ˇ

ˇ
= log | tan x + sec x|

Oof!

Example 1.8.20
(ş

csc xdx — by the u = tan x
2 substitution

)

Solution. The integral
ş

csc xdx may also be evaluated by both the methods above. That

is either

• by multiplying the integrand by a cleverly chosen 1 = cot x´csc x
cot x´csc x and then substitut-

ing u = cot x´ csc x, du = (´ csc2 x + csc x cot x)dx, or
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• by substituting u = cos x, du = ´ sin x dx to give
ş

csc xdx = ´
ş du

1´u2 and then
using the method of partial fractions.

These two methods give the answers
ż

csc xdx = log | cot x´ csc x|+ C = ´
1
2

log
1 + cos x
1´ cos x

+ C (1.8.1)

In this example, we shall evaluate
ş

csc xdx by yet a third method, which can be used to
integrate rational functions52 of sin x and cos x.

• This method uses the substitution

x = 2 arctan u i.e. u = tan
x
2

and dx =
2

1 + u2 du

— a half-angle substitution.

• To express sin x and cos x in terms of u, we first use the double angle trig identities
(Equations 1.8.2 and 1.8.3 with x ÞÑ x/2) to express sin x and cos x in terms of sin x

2
and cos x

2 :

sin x = 2 sin
x
2

cos
x
2

cos x = cos2 x
2
´ sin2 x

2

• We then use the triangle

x/2

1

u
√
1 + u2

to express sin x
2 and cos x

2 in terms of u. The bottom and right hand sides of the
triangle have been chosen so that tan x

2 = u. This tells us that

sin
x
2
=

u
?

1 + u2
cos

x
2
=

1
?

1 + u2

• This in turn implies that:

sin x = 2 sin
x
2

cos
x
2
= 2

u
?

1 + u2

1
?

1 + u2
=

2u
1 + u2

cos x = cos2 x
2
´ sin2 x

2
=

1
1 + u2 ´

u2

1 + u2 =
1´ u2

1 + u2

Oof!

52 A rational function of sin x and cos x is a ratio with both the numerator and denominator being finite
sums of terms of the form a sinm x cosn x, where a is a constant and m and n are positive integers.
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• Let’s use this substitution to evaluate
ş

csc x dx.

ż

csc xdx =

ż

1
sin x

dx =

ż

1 + u2

2u
2

1 + u2 du =

ż

1
u

du = log |u|+ C

= log
ˇ

ˇ

ˇ
tan

x
2

ˇ

ˇ

ˇ
+ C

To see that this answer is really the same as that in (1.8.1), note that

cot x´ csc x =
cos x´ 1

sin x
=

´2 sin2(x/2)
2 sin(x/2) cos(x/2)

= ´ tan
x
2

Example 1.8.20

Example 1.8.21
(ş

sec3 xdx — by trickery
)

Solution. The standard trick used to evaluate
ş

sec3 xdx is integration by parts.

• Set u = sec x, dv = sec2 xdx. Hence du = sec x tan xdx, v = tan x and
ż

sec3 xdx =

ż

sec x
loomoon

u

sec2 xdx
looomooon

dv

= sec x
loomoon

u

tan x
loomoon

v

´

ż

tan x
loomoon

v

sec x tan xdx
loooooomoooooon

du

• Since tan2 x + 1 = sec2 x, we have tan2 x = sec2 x´ 1 and
ż

sec3 xdx = sec x tan x´
ż

[sec3 x´ sec x]dx

= sec x tan x + log | sec x + tan x|+ C´
ż

sec3 xdx

where we used
ş

sec xdx = log | sec x + tan x|+ C, which we saw in Example 1.8.19.

• Now moving the
ş

sec3 xdx from the right hand side to the left hand side

2
ż

sec3 xdx = sec x tan x + log | sec x + tan x|+ C and so
ż

sec3 xdx =
1
2

sec x tan x +
1
2

log | sec x + tan x|+ C

for a new arbitrary constant C (which is just one half the old one).

Example 1.8.21

The integral
ş

sec3 dx can also be evaluated by two other methods.
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• Substitute u = sin x, du = cos xdx to convert
ş

sec3 xdx into
ş du
[1´u2]2

and evaluate

the latter using the method of partial fractions. This is done in Example 1.10.6 in
Section 1.10.
• Use the u = tan x

2 substitution. We use this method to evaluate
ş

csc3 xdx in Example
1.8.22, below.

Example 1.8.22
(ş

csc3 xdx – by the u = tan x
2 substitution

)

Solution. Let us use the half-angle substitution that we introduced in Example 1.8.20.

• In this method we set

u = tan
x
2

dx =
2

1 + u2 du sin x =
2u

1 + u2 cos x =
1´ u2

1 + u2

• The integral then becomes
ż

csc3 xdx =

ż

1
sin3 x

dx

=

ż (1 + u2

2u

)3 2
1 + u2 du

=
1
4

ż

1 + 2u2 + u4

u3 du

=
1
4

!u´2

´2
+ 2 log |u|+

u2

2

)

+ C

=
1
8

!

´ cot2 x
2
+ 4 log

ˇ

ˇ

ˇ
tan

x
2

ˇ

ˇ

ˇ
+ tan2 x

2

)

+ C

Oof!

• This is a perfectly acceptable answer. But if you don’t like the x
2 ’s, they may be

eliminated by using

tan2 x
2
´ cot2 x

2
=

sin2 x
2

cos2 x
2
´

cos2 x
2

sin2 x
2

=
sin4 x

2 ´ cos4 x
2

sin2 x
2 cos2 x

2

=

(
sin2 x

2 ´ cos2 x
2

)(
sin2 x

2 + cos2 x
2

)

sin2 x
2 cos2 x

2

=
sin2 x

2 ´ cos2 x
2

sin2 x
2 cos2 x

2
since sin2 x

2
+ cos2 x

2
= 1

=
´ cos x
1
4 sin2 x

by (1.8.2) and (1.8.3)
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and

tan
x
2
=

sin x
2

cos x
2
=

sin2 x
2

sin x
2 cos x

2

=
1
2 [1´ cos x]

1
2 sin x

by (1.8.2) and (1.8.3)

So we may also write
ż

csc3 xdx = ´
1
2

cot x csc x +
1
2

log | csc x´ cot x|+ C

Example 1.8.22

That last optional section was a little scary — let’s get back to something a little easier.

1.9Ĳ Trigonometric Substitution

In this section we discuss substitutions that simplify integrals containing square roots of
the form

a

a2 ´ x2
a

a2 + x2
a

x2 ´ a2.

When the integrand contains one of these square roots, then we can us trigonometric
substitutions to eliminate them. That is, we substitute

x = a sin u or x = a tan u or x = a sec u

and then use trigonometric identities

sin2 θ + cos2 θ = 1 and 1 + tan2 θ = sec2 θ

to simplify the result. To be more precise, we can

• eliminate
?

a2 ´ x2 from an integrand by substituting x = a sin u to give

a

a2 ´ x2 =
a

a2 ´ a2 sin2 u =
a

a2 cos2 u = |a cos u|

• eliminate
?

a2 + x2 from an integrand by substituting x = a tan u to give

a

a2 + x2 =
a

a2 + a2 tan2 u =
a

a2 sec2 u = |a sec u|

• eliminate
?

x2 ´ a2 from an integrand by substituting x = a sec u to give

a

x2 ´ a2 =
a

a2 sec2 u´ a2 =
a

a2 tan2 u = |a tan u|
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When we have used substitutions before, we usually gave the new integration vari-
able, u, as a function of the old integration variable x. Here we are doing the reverse —
we are giving the old integration variable, x, in terms of the new integration variable u.
We may do so, as long as we may invert to get u as a function of x. For example, with
x = a sin u, we may take u = arcsin x

a . This is a good time for you to review the defini-
tions of arcsin θ, arctan θ and arcsec θ. See Section 2.12, “Inverse Functions”, of the CLP
Mathematics 100 notes.

As a warm-up, consider the area of a quarter of the unit circle.

Example 1.9.1 (Quarter of the unit circle)

Compute the area of the unit circle lying in the first quadrant.

Solution. We know that the answer is π/4, but we can also compute this as an integral —
we saw this way back in Example 1.1.16:

area =

ż 1

0

a

1´ x2dx

• To simplify the integrand we substitute x = sin u. With this choice dx
du = cos u and

so dx = cos udu.

• We also need to translate the limits of integration and it is perhaps easiest to do this
by writing u as a function of x — namely u(x) = arcsin x. Hence u(0) = 0 and
u(1) = π/2.

• Hence the integral becomes
ż 1

0

a

1´ x2dx =

ż π/2

0

a

1´ sin2 u ¨ cos udu

=

ż π/2

0

a

cos2 u ¨ cos udu

=

ż π/2

0
cos2 udu

Notice that here we have used that the positive square root
?

cos2 u = | cos u| = cos u
because cos(u) ě 0 for 0 ď u ď π/2.

• To go further we use the techniques of Section 1.8.
ż 1

0

a

1´ x2dx =

ż π/2

0
cos2 udu and since cos2 u =

1 + cos 2u
2

=
1
2

ż π/2

0
(1 + cos(2u))du

=
1
2

[
u +

1
2

sin(2u)
]π/2

0

=
1
2

(
π

2
´ 0 +

sin π

2
´

sin 0
2

)

=
π

4
X
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Example 1.9.1

Example 1.9.2
(
ş x2
?

1´x2
dx
)

Solution. We proceed much as we did in the previous example.

• To simplify the integrand we substitute x = sin u. With this choice dx
du = cos u and

so dx = cos udu. Also note that u = arcsin x.

• The integral becomes
ż

x2
?

1´ x2
dx =

ż

sin2 u
a

1´ sin2 u
¨ cos udu

=

ż

sin2 u
?

cos2 u
¨ cos udu

• To proceed further we need to get rid of the square-root. Since u = arcsin x has
domain ´1 ď x ď 1 and range ´π/2 ď u ď π/2, it follows that cos u ě 0 (since cosine
is non-negative on these inputs). Hence

a

cos2 u = cos u when ´π/2 ď u ď π/2

• So our integral now becomes
ż

x2
?

1´ x2
dx =

ż

sin2 u
?

cos2 u
¨ cos udu

=

ż

sin2 u
cos u

¨ cos udu

=

ż

sin2 udu

=
1
2

ż

(1´ cos 2u)du by Equation (1.8.4)

=
u
2
´

1
4

sin 2u + C

=
1
2

arcsin x´
1
4

sin(2 arcsin x) + C

• We can simplify this further using a double-angle identity. Recall that u = arcsin x
and that x = sin u. Then

sin 2u = 2 sin u cos u

We can replace cos u using cos2 u = 1´ sin2 u. Taking a square-root of this formula
gives cos u = ˘

a

1´ sin2 u. We need the positive branch here since cos u ě 0 when
´π/2 ď u ď π/2 (which is exactly the range of arcsin x). Continuing along:

sin 2u = 2 sin u ¨
a

1´ sin2 u

= 2x
a

1´ x2
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Thus our solution is
ż

x2
?

1´ x2
dx =

1
2

arcsin x´
1
4

sin(2 arcsin x) + C

=
1
2

arcsin x´
1
2

x
a

1´ x2 + C

Example 1.9.2

The above two example illustrate the main steps of the approach. The next example is
similar, but with more complicated limits of integration.

Example 1.9.3
(
şr

a

?
r2 ´ x2 dx

)

Let’s find the area of the shaded region in the sketch below.

a r

x2 + y2 = r2

x

y

We’ll set up the integral using vertical strips. The strip in the figure has width dx and
height

?
r2 ´ x2. So the area is given by the integral

area =

ż r

a

a

r2 ´ x2 dx

Which is very similar to the previous example.

Solution.

• To evaluate the integral we substitute

x = x(u) = r sin u dx =
dx
du

du = r cos u du

It is also helpful to write u as a function of x — namely u = arcsin x
r .

• The integral runs from x = a to x = r. These correspond to

u(r) = arcsin
r
r
= arcsin 1 =

π

2
u(a) = arcsin

a
r

which does not simplify further
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• The integral then becomes
ż r

a

a

r2 ´ x2dx =

ż π/2

arcsin(a/r)

a

r2 ´ r2 sin2 u ¨ r cos udu

=

ż π/2

arcsin(a/r)
r2
a

1´ sin2 u ¨ cos udu

= r2
ż π/2

arcsin(a/r)

a

cos2 u ¨ cos udu

To proceed further (as we did in Examples 1.9.1 and 1.9.2) we need to think about
whether cos u is positive or negative.

• Since a (as shown in the diagram) satisfies 0 ď a ď r, we know that u(a) lies between
arcsin(0) = 0 and arcsin(1) = π/2. Hence the variable u lies between 0 and π/2, and
on this range cos u ě 0. This allows us get rid of the square-root:

a

cos2 u = | cos u| = cos u

• Putting this fact into our integral we get
ż r

a

a

r2 ´ x2dx = r2
ż π/2

arcsin(a/r)

a

cos2 u ¨ cos udu

= r2
ż π/2

arcsin(a/r)
cos2 udu

Recall the identity cos2 u = 1+cos 2u
2 from Section 1.8

=
r2

2

ż π/2

arcsin(a/r)
(1 + cos 2u)du

=
r2

2

[
u +

1
2

sin(2u)
]π/2

arcsin(a/r)

=
r2

2

(
π

2
+

1
2

sin π ´ arcsin(a/r)´
1
2

sin(2 arcsin(a/r))
)

=
r2

2

(
π

2
´ arcsin(a/r)´

1
2

sin(2 arcsin(a/r))
)

Oof! But there is a little further to go before we are done.

• We can again simplify the term sin(2 arcsin(a/r)) using a double angle identity. Set
θ = arcsin(a/r). Then θ is the angle in the triangle on the right below. By the double
angle formula for sin(2θ) (Equation (1.8.2))

sin(2θ) = 2 sin θ cos θ

θ

r
a

√
r2 − a2

= 2
a
r

?
r2 ´ a2

r
.
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• So finally the area is

area =

ż r

a

a

r2 ´ x2dx

=
r2

2

(
π

2
´ arcsin(a/r)´

1
2

sin(2 arcsin(a/r))
)

=
πr2

4
´

r2

2
arcsin(a/r)´

a
2

a

r2 ´ a2

• This is a relatively complicated formula, but we can make some “reasonableness”
checks, by looking at special values of a.

– If a = 0 the shaded region, in the figure at the beginning of this example, is
exactly one quarter of a disk of radius r and so has area 1

4 πr2. Substituting
a = 0 into our answer does indeed give 1

4 πr2.

– At the other extreme, if a = r, the shaded region disappears completely and so
has area 0. Subbing a = r into our answer does indeed give 0, since arcsin 1 =
π
2 .

Example 1.9.3

Example 1.9.4
(
şr

a x
?

r2 ´ x2 dx
)

The integral
şr

a x
?

r2 ´ x2 dx looks a lot like the integral we just did in the previous 3 exam-
ples. It can also be evaluated using the trigonometric substitution x = r sin u — but that is
unnecessarily complicated. Just because you have now learned how to use trigonometric
substitution53 doesn’t mean that you should forget everything you learned before.

Solution. This integral is much more easily evaluated using the simple substitution u =
r2 ´ x2.

• Set u = r2 ´ x2. Then du = ´2xdx, and so
ż r

a
x
a

r2 ´ x2 dx =

ż 0

r2´a2

?
u

du
´2

= ´
1
2

[
u3/2

3/2

]0

r2´a2

=
1
3
[
r2
´ a2]3/2

Example 1.9.4

Enough sines and cosines — let us try a tangent substitution.

53 To paraphrase the Law of the Instrument, possibly Mark Twain and definitely some psychologists,
when you have a shiny new hammer, everything looks like a nail.
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Example 1.9.5
(
ş dx

x2
?

9+x2

)

Solution. As per our guidelines at the start of this section, the presence of the square root

term
?

32 + x2 tells us to substitute x = 3 tan u.

• Substitute

x = 3 tan u dx = 3 sec2 u du

This allows us to remove the square root:
a

9 + x2 =
a

9 + 9 tan2 u = 3
a

1 + tan2 u = 3
a

sec2 u = 3| sec u|

• Hence our integral becomes
ż

dx
x2
?

9 + x2
=

ż

3 sec2 u
9 tan2 u ¨ 3| sec u|

du

• To remove the absolute value we must consider the range of values of u in the in-
tegral. Since x = 3 tan u we have u = arctan(x/3). The range54 of arctangent is
´π/2 ď arctan ď π/2 and so u = arctan(x/3) will always like between ´π/2 and
+π/2. Hence cos u will always be positive, which in turn implies that | sec u| = sec u.

• Using this fact our integral becomes:
ż

dx
x2
?

9 + x2
=

ż

3 sec2 u
27 tan2 u| sec u|

du

=
1
9

ż

sec u
tan2 u

du since sec u ą 0

• Rewrite this in terms of sine and cosine
ż

dx
x2
?

9 + x2
=

1
9

ż

sec u
tan2 u

du (1.9.1)

=
1
9

ż

1
cos u

¨
cos2 u
sin2 u

du =
1
9

ż

cos u
sin2 u

du (1.9.2)

Now we can use the substitution rule with y = sin u and dy = cos udu

=
1
9

ż

dy
y2 (1.9.3)

= ´
1

9y
+ C (1.9.4)

= ´
1

9 sin u
+ C (1.9.5)

54 To be pedantic, we mean the range of the “standard” arctangent function or its “principle value”. One
can define other arctangent functions with different ranges.
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• The original integral was a function of x, so we still have to rewrite sin u in terms of
x. Remember that x = 3 tan u or u = arctan(x/3). So u is the angle shown in the
triangle below and we can read off the triangle that

sin u =
x

?
9 + x2

u

√
9 + x2

x

3
ùñ

ż

dx
x2
?

9 + x2
= ´

?
9 + x2

9x
+ C

Example 1.9.5

Example 1.9.6
(
ş x2
?

x2´1
dx
)

Solution. This one requires a secant substitution, but otherwise is very similar to those

above.

• Set x = sec u and dx = sec u tan udu. Then
ż

x2
?

x2 ´ 1
dx =

ż

sec2 u
?

sec2 u´ 1
sec u tan udu

=

ż

sec3 u ¨
tan u
?

tan2 u
du since tan2 u = sec2 u´ 1

=

ż

sec3 u ¨
tan u
| tan u|

du

to

• As before we need to consider the range of u values in order to determine the sign
of tan u. Notice that the integrand is only defined when either x ă ´1 or x ą 1; thus
we should treat the cases x ă ´1 and x ą 1 separately. Let us assume that x ą 1 and
we will come back to the case x ă ´1 at the end of the example.

When x ą 1, the standard u = arcsec x takes values in (0, π/2). This follows since
when 0 ă u ă π/2, we have 0 ă cos u ă 1 and so sec u ą 1. Further, when 0 ă u ă
π/2, we have tan u ą 0. Thus | tan u| = tan u.

• Back to our integral:
ż

x2
?

x2 ´ 1
dx =

ż

sec3 u ¨
tan u
| tan u|

du

=

ż

sec3 udu since tan u ě 0

This is exactly Example 1.8.21

=
1
2

sec u tan u +
1
2

log | sec u + tan u|+ C
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• Since we started with a function of x we need to finish with one. We know that
sec u = x and then we can use trig identities

tan2 u = sec2 u´ 1 = x2
´ 1 so tan u = ˘

a

x2 ´ 1 but we know tan u ě 0, so

tan u =
a

x2 ´ 1

Thus
ż

x2
?

x2 ´ 1
dx =

1
2

x
a

x2 ´ 1 +
1
2

log |x +
a

x2 ´ 1|+ C

• The above holds when x ą 1. We can confirm that it is also true when x ă ´1 by
showing the right-hand side is a valid antiderivative of the integrand. To do so we
must differentiate our answer. Notice that we do not need to consider the sign of
x +

?
x2 ´ 1 when we differentiate since we have already seen that

d
dx

log |x| =
1
x

when either x ă 0 or x ą 0. So the computation that follows applies to both x ą
1 and x ă ´1. The expressions become quite long so we differentiate each term
separately:

d
dx

[
x
a

x2 ´ 1
]
=

[
a

x2 ´ 1 +
x2

?
x2 ´ 1

]

=
1

?
x2 ´ 1

[
(x2

´ 1) + x2
]

d
dx

log
ˇ

ˇ

ˇ

ˇ

x +
a

x2 ´ 1
ˇ

ˇ

ˇ

ˇ

=
1

x +
?

x2 ´ 1
¨

[
1 +

x
?

x2 ´ 1

]

=
1

x +
?

x2 ´ 1
¨

x +
?

x2 ´ 1
?

x2 ´ 1

=
1

?
x2 ´ 1

Putting things together then gives us

d
dx

[
1
2

x
a

x2 ´ 1 +
1
2

log |x +
a

x2 ´ 1|+ C
]
=

1
2
?

x2 ´ 1

[
(x2

´ 1) + x2 + 1
]
+ 0

=
x2

?
x2 ´ 1

This tells us that our answer for x ą 1 is also valid when x ă 1 and so
ż

x2
?

x2 ´ 1
dx =

1
2

x
a

x2 ´ 1 +
1
2

log |x +
a

x2 ´ 1|+ C

when x ă ´1 and when x ą 1.
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Example 1.9.6

The method, as we have demonstrated it above, works when our integrand contains
the square root of very specific families of quadratic polynomials. In fact, the same method
works for more general quadratic polynomials — all we need to do is complete the square55.

Example 1.9.7
(
ş5

3

?
x2´2x´3

x´1 dx
)

This time we have an integral with a square root in the integrand, but the argument of the
square root, while a quadratic function of x, is not in one of the standard forms

?
a2 ´ x2,?

a2 + x2,
?

x2 ´ a2. The reason that it is not in one of those forms is that the argument,
x2´2x´3, contains a term , namely´2x that is of degree one in x. So we try to manipulate
it into one of the standard forms by completing the square.

Solution.

• We first rewrite the quadratic polynomial x2 ´ 2x ´ 3 in the form (x ´ a)2 + b for
some constants a, b. The easiest way to do this is to expand both expressions and
compare coefficients of x:

x2
´ 2x´ 3 = (x´ a)2 + b = (x2

´ 2ax + a2) + b

So — if we choose ´2a = ´2 (so the coefficients of x1 match) and a2 + b = ´3 (so
the coefficients of x0 match), then both expressions are equal. Hence we set a = 1
and b = ´4. That is

x2
´ 2x´ 3 = (x´ 1)2

´ 4

Many of you may have seen this method when learning to sketch parabolas.

• Once this is done we can convert the square root of the integrand into a standard
form by making the simple substitution y = x´ 1. Here goes
ż 5

3

?
x2 ´ 2x´ 3

x´ 1
dx =

ż 5

3

a

(x´ 1)2 ´ 4
x´ 1

dx

=

ż 4

2

a

y2 ´ 4
y

dy with y = x´ 1, dy = dx

=

ż π/3

0

?
4 sec2 u´ 4

2 sec u
2 sec u tan u du with y = 2 sec u

and dy = 2 sec u tan u du

Notice that we could also do this in fewer steps by setting (x ´ 1) = 2 sec u, dx =
2 sec u tan udu.

55 If you have not heard of “completing the square” don’t worry. It is not a difficult method and it will
only take you a few moments to learn. It refers to rewriting a quadratic polynomial

P(x) = ax2 + bx + c as P(x) = a(x + d)2 + e

for new constants d, e.
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• To get the limits of integration we used that

– the value of u that corresponds to y = 2 obeys 2 = y = 2 sec u = 2
cos u or

cos u = 1, so that u = 0 works and

– the value of u that corresponds to y = 4 obeys 4 = y = 2 sec u = 2
cos u or

cos u = 1
2 , so that u = π/3 works.

• Now returning to the evaluation of the integral, we simplify and continue.
ż 5

3

?
x2 ´ 2x´ 3

x´ 1
dx =

ż π/3

0
2
a

sec2 u´ 1 tan u du

= 2
ż π/3

0
tan2 u du since sec2 u = 1 + tan2 u

In taking the square root of sec2 u´ 1 = tan2 u we used that tan u ě 0 on the range
0 ď u ď π

3 .

= 2
ż π/3

0

[
sec2 u´ 1

]
du since sec2 u = 1 + tan2 u, again

= 2
[

tan u´ u
]π/3

0

= 2
[?

3´ π/3
]

Example 1.9.7

1.10Ĳ Partial Fractions

Partial fractions is the name given to a technique of integration that may be used to in-
tegrate any rational function56. We already know how to integrate some simple rational
functions

ż

1
x

dx = log |x|+ C
ż

1
1 + x2 dx = arctan(x) + C

Combining these with the substitution rule, we can integrate similar but more complicated
rational functions:

ż

1
2x + 3

dx =
1
2

log |2x + 3|+ C
ż

1
3 + 4x2 dx =

1
2
?

3
arctan

(
2x
?

3

)
+ C

By summing such terms together we can integrate yet more complicated forms
ż
[

x +
1

x + 1
+

1
x´ 1

]
dx =

x2

2
+ log |x + 1|+ log |x´ 1|+ C

56 Recall that a rational function is the ratio of two polynomials.
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However we are not (typically) presented with a rational function nicely decomposed into
neat little pieces. It is far more likely that the rational function will be written as the ratio
of two polynomials. For example:

ż

x3 + x
x2 ´ 1

dx

In this specific example it is not hard to confirm that

x +
1

x + 1
+

1
x´ 1

=
x(x + 1)(x´ 1) + (x´ 1) + (x + 1)

(x + 1)(x´ 1)
=

x3 + x
x2 ´ 1

and hence
ż

x3 + x
x2 ´ 1

dx =

ż
[

x +
1

x + 1
+

1
x´ 1

]
dx

=
x2

2
+ log |x + 1|+ log |x´ 1|+ C

Of course going in this direction (from a sum of terms to a single rational function) is
straightforward. To be useful we need to understand how to do this in reverse: decompose
a given rational function into a sum of simpler pieces that we can integrate.

Suppose that N(x) and D(x) are polynomials. The basic strategy is to write N(x)
D(x) as a

sum of very simple, easy to integrate rational functions, namely

(1) polynomials — we shall see below that these are needed when the degree57 of N(x) is
equal to or strictly bigger than the degree of D(x), and

(2) rational functions of the particularly simple form A
(ax+b)n and

(3) rational functions of the form Ax+B
(ax2+bx+c)m .

We already know how to integrate the first two forms, and we’ll see how to integrate the
third form in the near future.

To begin to explore this method of decomposition, let us go back to the example we
just saw

x +
1

x + 1
+

1
x´ 1

=
x(x + 1)(x´ 1) + (x´ 1) + (x + 1)

(x + 1)(x´ 1)
=

x3 + x
x2 ´ 1

The technique that we will use is based on two observations:

(1) The denominators on the left-hand side of are the factors of the denominator x2 ´ 1 =
(x´ 1)(x + 1) on the right-hand side.

57 The degree of a polynomial is the largest power of x. For example, the degree of 2x3 + 4x2 + 6x + 8 is
three.
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(2) Use P(x) to denote the polynomial on the left hand side, and then use N(x) and D(x)
to denote the numerator and denominator of the right hand side. That is

P(x) = x N(x) = x3 + x D(x) = x2
´ 1.

Then the degree of N(x) is the sum of the degrees of P(x) and D(x). This is because
the highest degree term in N(x) is x3, which comes from multiplying P(x) by D(x),
as we see in

x +
1

x + 1
+

1
x´ 1

=

P(x)
hkkikkj

x

D(x)
hkkkkkkkikkkkkkkj

(x + 1)(x´ 1) +(x´ 1) + (x + 1)
(x + 1)(x´ 1)

=
x3 + x
x2 ´ 1

More generally, the presence of a polynomial on the left hand side is signalled on the
right hand side by the fact that the degree of the numerator is at least as large as the
degree of the denominator.

1.10.1 §§ Partial fraction decomposition examples

Rather than writing up the technique — known as the partial fraction decomposition —
in full generality, we will instead illustrate it through a sequence of examples.

Example 1.10.1
(
ş x´3

x2´3x+2dx
)

In this example, we integrate N(x)
D(x) =

x´3
x2´3x+2 .

Solution.

• Step 1. We first check to see if a polynomial P(x) is needed. To do so, we check to
see if the degree of the numerator, N(x), is strictly smaller than the degree of the
denominator D(x). In this example, the numerator, x ´ 3, has degree one and that
is indeed strictly smaller than the degree of the denominator, x2 ´ 3x + 2, which is
two. In this case58 we do not need to extract a polynomial P(x) and we move on to
step 2.

• Step 2. The second step is to factor the denominator

x2
´ 3x + 2 = (x´ 1)(x´ 2)

In this example it is quite easy, but in future examples (and quite possibly in your
homework, quizzes and exam) you will have to work harder to factor the denomi-
nator. In Appendix A.16 we have written up some simple tricks for factoring poly-
nomials. We will illustrate them in Example 1.10.3 below.

• Step 3. The third step is to write x´3
x2´3x+2 in the form

x´ 3
x2 ´ 3x + 2

=
A

x´ 1
+

B
x´ 2

58 We will soon get to an example (Example 1.10.2 in fact) in which the numerator degree is at least as
large as the denominator degree — in that situation we have to extract a polynomial P(x) before we
can move on to step 2.

138



INTEGRATION 1.10 PARTIAL FRACTIONS

for some constants A and B. More generally, if the denominator consists of n differ-
ent linear factors, then we decompose the ratio as

rational function =
A1

linear factor 1
+

A2

linear factor 2
+ ¨ ¨ ¨+

An

linear factor n

To proceed we need to determine the values of the constants A, B and there are
several different methods to do so. Here are two methods

• Step 3 – Algebra Method. This approach has the benefit of being conceptually clearer
and easier, but the downside is that it is more tedious.

To determine the values of the constants A, B, we put59 the right-hand side back
over the common denominator (x´ 1)(x´ 2).

x´ 3
x2 ´ 3x + 2

=
A

x´ 1
+

B
x´ 2

=
A(x´ 2) + B(x´ 1)

(x´ 1)(x´ 2)

The fraction on the far left is the same as the fraction on the far right if and only if
their numerators are the same.

x´ 3 = A(x´ 2) + B(x´ 1)

Write the right hand side as a polynomial in standard form (i.e. collect up all x terms
and all constant terms)

x´ 3 = (A + B)x + (´2A´ B)

For these two polynomials to be the same, the coefficient of x on the left hand side
and the coefficient of x on the right hand side must be the same. Similarly the co-
efficients of x0 (i.e. the constant terms) must match. This gives us a system of two
equations.

A + B = 1 ´2A´ B = ´3

in the two unknowns A, B. We can solve this system by

– using the first equation, namely A + B = 1, to determine A in terms of B:

A = 1´ B

– Substituting this into the remaining equation eliminates the A from second
equation, leaving one equation in the one unknown B, which can then be solved
for B:

´2A´ B = ´3 substitute A = 1´ B
´2(1´ B)´ B = ´3 clean up

´2 + B = ´3 so B = ´1

59 That is, we take the decomposed form and sum it back together.
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– Once we know B, we can substitute it back into A = 1´ B to get A.

A = 1´ B = 1´ (´1) = 2

Hence
x´ 3

x2 ´ 3x + 2
=

2
x´ 1

´
1

x´ 2

• Step 3 – Sneaky Method. This takes a little more work to understand, but it is more
efficient than the algebra method.

We wish to find A and B for which
x´ 3

(x´ 1)(x´ 2)
=

A
x´ 1

+
B

x´ 2

Note that the denominator on the left hand side has been written in factored form.

– To determine A, we multiply both sides of the equation by A’s denominator,
which is x´ 1,

x´ 3
x´ 2

= A +
(x´ 1)B

x´ 2
and then we completely eliminate B from the equation by evaluating at x = 1.
This value of x is chosen to make x´ 1 = 0.

x´ 3
x´ 2

ˇ

ˇ

ˇ

ˇ

x=1
= A +

(x´ 1)B
x´ 2

ˇ

ˇ

ˇ

ˇ

x=1
ùñ A =

1´ 3
1´ 2

= 2

– To determine B, we multiply both sides of the equation by B’s denominator,
which is x´ 2,

x´ 3
x´ 1

=
(x´ 2)A

x´ 1
+ B

and then we completely eliminate A from the equation by evaluating at x = 2.
This value of x is chosen to make x´ 2 = 0.

x´ 3
x´ 1

ˇ

ˇ

ˇ

ˇ

x=2
=

(x´ 2)A
x´ 1

ˇ

ˇ

ˇ

ˇ

x=2
+ B ùñ B =

2´ 3
2´ 1

= ´1

Hence we have (the thankfully consistent answer)

x´ 3
x2 ´ 3x + 2

=
2

x´ 1
´

1
x´ 2

Notice that no matter which method we use to find the constants we can easily check
our answer by summing the terms back together:

2
x´ 1

´
1

x´ 2
=

2(x´ 2)´ (x´ 1)
(x´ 2)(x´ 1)

=
2x´ 4´ x + 1

x2 ´ 3x + 2
=

x´ 3
x2 ´ 3x + 2

X

Step 4. The final step is to integrate.
ż

x´ 3
x2 ´ 3x + 2

dx =

ż

2
x´ 1

dx +

ż

´1
x´ 2

dx = 2 log |x´ 1| ´ log |x´ 2|+ C
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Example 1.10.1

Perhaps the first thing that you notice is that this process takes quite a few steps60. How-
ever no single step is all that complicated; it only takes practice. With that said, let’s do
another, slightly more complicated, one.

Example 1.10.2
(
ş 3x3´8x2+4x´1

x2´3x+2 dx
)

In this example, we integrate N(x)
D(x) =

3x3´8x2+4x´1
x2´3x+2 .

Solution.

• Step 1. We first check to see if the degree of the numerator N(x) is strictly smaller
than the degree of the denominator D(x). In this example, the numerator, 3x3 ´

8x2 + 4x´ 1, has degree three and the denominator, x2 ´ 3x + 2, has degree two. As
3 ě 2, we have to implement the first step.

The goal of the first step is to write N(x)
D(x) in the form

N(x)
D(x)

= P(x) +
R(x)
D(x)

with P(x) being a polynomial and R(x) being a polynomial of degree strictly smaller
than the degree of D(x). The right hand side is P(x)D(x)+R(x)

D(x) , so we have to express
the numerator in the form N(x) = P(x)D(x) + R(x), with P(x) and R(x) being
polynomials and with the degree of R being strictly smaller than the degree of D.
P(x)D(x) is a sum of expressions of the form axnD(x). We want to pull as many
expressions of this form as possible out of the numerator N(x), leaving only a low
degree remainder R(x).

We do this using long division — the same long division you learned in school, but
with the base 10 replaced by x.

– We start by observing that to get from the highest degree term in the denomina-
tor (x2) to the highest degree term in the numerator (3x3), we have to multiply
it by 3x. So we write,

x2 − 3x+ 2
3x
3x3− 8x2+ 4x− 1

In the above expression, the denominator is on the left, the numerator is on the
right and 3x is written above the highest order term of the numerator. Always
put lower powers of x to the right of higher powers of x — this mirrors how
you do long division with numbers; lower powers of ten sit to the right of lower
powers of ten.

– Now we subtract 3x times the denominator, x2´3x+ 2, which is 3x3´9x2 + 6x,
from the numerator.

60 Though, in fairness, we did step 3 twice — and that is the most tedious bit. . . Actually — sometimes
factoring the denominator can be quite challenging. We’ll consider this issue in more detail shortly.
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x2 − 3x+ 2
3x
3x3− 8x2+ 4x− 1
3x3− 9x2+ 6x

x2− 2x− 1

3x(x2 − 3x+ 2)

– This has left a remainder of x2 ´ 2x´ 1. To get from the highest degree term in
the denominator (x2) to the highest degree term in the remainder (x2), we have
to multiply by 1. So we write,

x2 − 3x+ 2
3x + 1
3x3− 8x2+ 4x− 1
3x3− 9x2+ 6x

x2− 2x− 1

– Now we subtract 1 times the denominator, x2 ´ 3x + 2, which is x2 ´ 3x + 2,
from the remainder.

x2 − 3x+ 2
3x + 1
3x3− 8x2+ 4x− 1
3x3− 9x2+ 6x

x2− 2x− 1
x2− 3x+ 2

x− 3

3x(x2 − 3x+ 2)

1 (x2 − 3x+ 2)

– This leaves a remainder of x´ 3. Because the remainder has degree 1, which is
smaller than the degree of the denominator (being degree 2), we stop.

– In this example, when we subtracted 3x(x2 ´ 3x + 2) and 1(x2 ´ 3x + 2) from
3x3 ´ 8x2 + 4x´ 1 we ended up with x´ 3. That is,

3x3
´ 8x2 + 4x´ 1 ´ 3x(x2

´ 3x + 2) ´ 1(x2
´ 3x + 2) = x´ 3

or, collecting the two terms proportional to (x2 ´ 3x + 2)

3x3
´ 8x2 + 4x´ 1 ´ (3x + 1)(x2

´ 3x + 2) = x´ 3

Moving the (3x + 1)(x2´ 3x + 2) to the right hand side and dividing the whole
equation by x2 ´ 3x + 2 gives

3x3 ´ 8x2 + 4x´ 1
x2 ´ 3x + 2

= 3x + 1 +
x´ 3

x2 ´ 3x + 2

And we can easily check this expression just by summing the two terms on the
right-hand side.

We have written the integrand in the form N(x)
D(x) = P(x) + R(x)

D(x) , with the degree of
R(x) strictly smaller than the degree of D(x), which is what we wanted. Observe
that R(x) is the final remainder of the long division procedure and P(x) is at the top
of the long division computation.
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x2 − 3x+ 2
3x + 1
3x3− 8x2+ 4x− 1
3x3− 9x2+ 6x

x2− 2x− 1
x2− 3x+ 2

x− 3

P (x)
N(x)D(x)
3x ·D(x)

N(x)− 3x ·D(x)
1 ·D(x)
R(x) = N(x)− (3x+ 1)D(x)

This is the end of Step 1. Oof! You should definitely practice this step.

• Step 2. The second step is to factor the denominator

x2
´ 3x + 2 = (x´ 1)(x´ 2)

We already did this in Example 1.10.1.

• Step 3. The third step is to write x´3
x2´3x+2 in the form

x´ 3
x2 ´ 3x + 2

=
A

x´ 1
+

B
x´ 2

for some constants A and B. We already did this in Example 1.10.1. We found A = 2
and B = ´1.

• Step 4. The final step is to integrate.

ż

3x3 ´ 8x2 + 4x´ 1
x2 ´ 3x + 2

dx =

ż [
3x + 1

]
dx +

ż

2
x´ 1

dx +

ż

´1
x´ 2

dx

=
3
2

x2 + x + 2 log |x´ 1| ´ log |x´ 2|+ C

You can see that the integration step is quite quick — almost all the work is in preparing
the integrand.

Example 1.10.2

Here is a very solid example. It is quite long and the steps are involved. However
please persist. No single step is too difficult.

Example 1.10.3
(
ş x4+5x3+16x2+26x+22

x3+3x2+7x+5 dx
)

In this example, we integrate N(x)
D(x) =

x4+5x3+16x2+26x+22
x3+3x2+7x+5 .

Solution.

• Step 1. Again, we start by comparing the degrees of the numerator and denominator.
In this example, the numerator, x4 + 5x3 + 16x2 + 26x + 22, has degree four and the
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denominator, x3 + 3x2 + 7x + 5, has degree three. As 4 ě 3, we must execute the
first step, which is to write N(x)

D(x) in the form

N(x)
D(x)

= P(x) +
R(x)
D(x)

with P(x) being a polynomial and R(x) being a polynomial of degree strictly smaller
than the degree of D(x). This step is accomplished by long division, just as we did
in Example 1.10.3. We’ll go through the whole process in detail again.

Actually — before you read on ahead, please have a go at the long division. It is
good practice.

– We start by observing that to get from the highest degree term in the denomi-
nator (x3) to the highest degree term in the numerator (x4), we have to multiply
by x. So we write,

x3 + 3x2 + 7x+ 5
x
x4+5x3+16x2+26x+22

– Now we subtract x times the denominator x3 + 3x2 + 7x + 5, which is x4 +
3x3 + 7x2 + 5x, from the numerator.

x3 + 3x2 + 7x+ 5
x
x4+5x3+16x2+26x+22
x4+3x3+ 7x2+ 5x

2x3+ 9x2+21x+22

x(x3 + 3x2 + 7x+ 5)

– The remainder was 2x3 + 9x2 + 21x + 22. To get from the highest degree term
in the denominator (x3) to the highest degree term in the remainder (2x3), we
have to multiply by 2. So we write,

x3 + 3x2 + 7x+ 5
x+ 2
x4+5x3+16x2+26x+22
x4+3x3+ 7x2+ 5x

2x3+ 9x2+21x+22

– Now we subtract 2 times the denominator x3 + 3x2 + 7x + 5, which is 2x3 +
6x2 + 14x + 10, from the remainder.

x3 + 3x2 + 7x+ 5
x+ 2
x4+5x3+16x2+26x+22
x4+3x3+ 7x2+ 5x

2x3+ 9x2+21x+22
2x3+ 6x2+14x+10

3x2+ 7x+12

x(x3 + 3x2 + 7x+ 5)

2(x3 + 3x2 + 7x+ 5)

– This leaves a remainder of 3x2 + 7x + 12. Because the remainder has degree 2,
which is smaller than the degree of the denominator, which is 3, we stop.
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– In this example, when we subtracted x(x3 + 3x2 + 7x + 5) and 2(x3 + 3x2 +
7x + 5) from x4 + 5x3 + 16x2 + 26x + 22 we ended up with 3x2 + 7x + 12. That
is,

x4 + 5x3 + 16x2 + 26x + 22 ´ x(x3 + 3x2 + 7x + 5) ´ 2(x3 + 3x2 + 7x + 5)

= 3x2 + 7x + 12

or, collecting the two terms proportional to (x3 + 3x2 + 7x + 5)

x4 + 5x3 + 16x2 + 26x + 22 ´ (x + 2)(x3 + 3x2 + 7x + 5) = 3x2 + 7x + 12

Moving the (x + 2)(x3 + 3x2 + 7x + 5) to the right hand side and dividing the
whole equation by x3 + 3x2 + 7x + 5 gives

x4 + 5x3 + 16x2 + 26x + 22
x3 + 3x2 + 7x + 5

= x + 2 +
3x2 + 7x + 12

x3 + 3x2 + 7x + 5

This is of the form N(x)
D(x) = P(x) + R(x)

D(x) , with the degree of R(x) strictly smaller than
the degree of D(x), which is what we wanted. Observe, once again, that R(x) is
the final remainder of the long division procedure and P(x) is at the top of the long
division computation.

x3 + 3x2 + 7x+ 5
x+ 2
x4+5x3+16x2+26x+22
x4+3x3+ 7x2+ 5x

2x3+ 9x2+21x+22
2x3+ 6x2+14x+10

3x2+ 7x+12

P (x)

R(x)

• Step 2. The second step is to factor the denominator D(x) = x3 + 3x2 + 7x + 5. In
the “real world” factorisation of polynomials is often very hard. Fortunately61, this
is not the “real world” and there is a trick available to help us find this factorisation.
The reader should take some time to look at Appendix A.16 before proceeding.

– The trick exploits the fact that most polynomials that appear in homework as-
signments and on tests have integer coefficients and some integer roots. Any
integer root of a polynomial that has integer coefficients, like D(x) = x3 + 3x2 +
7x+ 5, must divide the constant term of the polynomial exactly. Why this is true
is explained62 in Appendix A.16.

– So any integer root of x3 + 3x2 + 7x + 5 must divide 5 exactly. Thus the only
integers which can be roots of D(x) are ˘1 and ˘5. Of course, not all of these
give roots of the polynomial — in fact there is no guarantee that any of them
will be. We have to test each one.

61 One does not typically think of mathematics assignments or exams as nice kind places. . . The polyno-
mials that appear in the “real world” are not so forgiving. Nature, red in tooth and claw — to quote
Tennyson inappropriately (especially when this author doesn’t know any other words from the poem).

62 Appendix A.16 contains several simple tricks for factoring polynomials. We recommend that you have
a look at them.
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– To test if +1 is a root, we sub x = 1 into D(x):

D(1) = 13 + 3(1)2 + 7(1) + 5 = 16

As D(1) ‰ 0, 1 is not a root of D(x).
– To test if ´1 is a root, we sub it into D(x):

D(´1) = (´1)3 + 3(´1)2 + 7(´1) + 5 = ´1 + 3´ 7 + 5 = 0

As D(´1) = 0, ´1 is a root of D(x). As ´1 is a root of D(x),
(
x ´ (´1)

)
=

(x + 1) must factor D(x) exactly. We can factor the (x + 1) out of D(x) =
x3 + 3x2 + 7x + 5 by long division once again.

– Dividing D(x) by (x + 1) gives:

x+ 1
x2+ 2x+ 5
x3+3x2+7x+5
x3+ x2

2x2+7x+5
2x2+2x

5x+5
5x+5

0

x2(x+ 1)

2x(x+ 1)

5(x+ 1)

This time, when we subtracted x2(x + 1) and 2x(x + 1) and 5(x + 1) from x3 +
3x2 + 7x + 5 we ended up with 0 — as we knew would happen, because we
knew that x + 1 divides x3 + 3x2 + 7x + 5 exactly. Hence

x3 + 3x2 + 7x + 5 ´ x2(x + 1) ´ 2x(x + 1) ´ 5(x + 1) = 0

or

x3 + 3x2 + 7x + 5 = x2(x + 1) + 2x(x + 1) + 5(x + 1)

or

x3 + 3x2 + 7x + 5 = (x2 + 2x + 5)(x + 1)

– It isn’t quite time to stop yet; we should attempt to factor the quadratic factor,
x2 + 2x + 5. We can use the quadratic formula63 to find the roots of x2 + 2x + 5:

´b˘
?

b2 ´ 4ac
2a

=
´2˘

?
4´ 20

2
=
´2˘

?
´16

2
Since this expression contains the square root of a negative number the equation
x2 + 2x + 5 = 0 has no real solutions; without the use of complex numbers,
x2 + 2x + 5 cannot be factored.

63 To be precise, the quadratic equation ax2 + bx + c = 0 has solutions

x =
´b˘

?
b2 ´ 4ac

2a
.

The term b2´ 4ac is called the discriminant and it tells us about the number of solutions. If the discrim-
inant is positive then there are two real solutions. When it is zero, there is a single solution. And if it is
negative, there is no real solutions (you need complex numbers to say more than this).
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We have reached the end of step 2. At this point we have

x4 + 5x3 + 16x2 + 26x + 22
x3 + 3x2 + 7x + 5

= x + 2 +
3x2 + 7x + 12

(x + 1)(x2 + 2x + 5)

• Step 3. The third step is to write 3x2+7x+12
(x+1)(x2+2x+5) in the form

3x2 + 7x + 12
(x + 1)(x2 + 2x + 5)

=
A

x + 1
+

Bx + C
x2 + 2x + 5

for some constants A, B and C.

Note that the numerator, Bx + C of the second term on the right hand side is not just
a constant. It is of degree one, which is exactly one smaller than the degree of the
denominator, x2 + 2x + 5. More generally, if the denominator consists of n different
linear factors and m different quadratic factors, then we decompose the ratio as

rational function =
A1

linear factor 1
+

A2

linear factor 2
+ ¨ ¨ ¨+

An

linear factor n

+
B1x + C1

quadratic factor 1
+

B2x + C2

quadratic factor 2
+ ¨ ¨ ¨+

Bmx + Cm

quadratic factor m

To determine the values of the constants A, B, C, we put the right hand side back
over the common denominator (x + 1)(x2 + 2x + 5).

3x2 + 7x + 12
(x + 1)(x2 + 2x + 5)

=
A

x + 1
+

Bx + C
x2 + 2x + 5

=
A(x2 + 2x + 5) + (Bx + C)(x + 1)

(x + 1)(x2 + 2x + 5)

The fraction on the far left is the same as the fraction on the far right if and only if
their numerators are the same.

3x2 + 7x + 12 = A(x2 + 2x + 5) + (Bx + C)(x + 1)

Again, as in Example 1.10.1, there are a couple of different ways to determine the
values of A, B and C from this equation.

• Step 3 – Algebra Method. The conceptually clearest procedure is to write the right
hand side as a polynomial in standard form (i.e. collect up all x2 terms, all x terms
and all constant terms)

3x2 + 7x + 12 = (A + B)x2 + (2A + B + C)x + (5A + C)

For these two polynomials to be the same, the coefficient of x2 on the left hand side
and the coefficient of x2 on the right hand side must be the same. Similarly the
coefficients of x1 must match and the coefficients of x0 must match.

This gives us a system of three equations

A + B = 3 2A + B + C = 7 5A + C = 12

in the three unknowns A, B, C. We can solve this system by
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– using the first equation, namely A + B = 3, to determine A in terms of B:
A = 3´ B.

– Substituting this into the remaining two equations eliminates the A’s from these
two equations, leaving two equations in the two unknowns B and C.

A = 3´ B 2A + B + C = 7 5A + C = 12
ñ 2(3´ B) + B + C = 7 5(3´ B) + C = 12
ñ ´B + C = 1 ´5B + C = ´3

– Now we can use the equation ´B + C = 1, to determine B in terms of C: B =
C´ 1.

– Substituting this into the remaining equation eliminates the B’s leaving an equa-
tion in the one unknown C, which is easy to solve.

B = C´ 1 ´5B + C = ´3
ñ ´5(C´ 1) + C = ´3
ñ ´4C = ´8

– So C = 2, and then B = C´ 1 = 1, and then A = 3´ B = 2. Hence

3x2 + 7x + 12
(x + 1)(x2 + 2x + 5)

=
2

x + 1
+

x + 2
x2 + 2x + 5

• Step 3 – Sneaky Method. While the above method is transparent, it is rather tedious. It
is arguably better to use the second, sneakier and more efficient, procedure. In order
for

3x2 + 7x + 12 = A(x2 + 2x + 5) + (Bx + C)(x + 1)

the equation must hold for all values of x.

– In particular, it must be true for x = ´1. When x = ´1, the factor (x + 1)
multiplying Bx + C is exactly zero. So B and C disappear from the equation,
leaving us with an easy equation to solve for A:

3x2 + 7x + 12
ˇ

ˇ

ˇ

x=´1
=
[

A(x2 + 2x + 5) + (Bx + C)(x + 1)
]

x=´1
ùñ 8 = 4A ùñ A = 2

– Sub this value of A back in and simplify.

3x2 + 7x + 12 = 2(x2 + 2x + 5) + (Bx + C)(x + 1)

x2 + 3x + 2 = (Bx + C)(x + 1)

Since (x + 1) is a factor on the right hand side, it must also be a factor on the
left hand side.

(x + 2)(x + 1) = (Bx + C)(x + 1) ñ (x + 2) = (Bx + C) ñ B = 1, C = 2
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So again we find that

3x2 + 7x + 12
(x + 1)(x2 + 2x + 5)

=
2

x + 1
+

x + 2
x2 + 2x + 5

X

Thus our integrand can be written as

x4 + 5x3 + 16x2 + 26x + 22
x3 + 3x2 + 7x + 5

= x + 2 +
2

x + 1
+

x + 2
x2 + 2x + 5

.

• Step 4. Now we can finally integrate! The first two pieces are easy.
ż

(x + 2)dx = 1
2 x2 + 2x

ż

2
x + 1

dx = 2 log |x + 1|

(We’re leaving the arbitrary constant to the end of the computation.)

The final piece is a little harder. The idea is to complete the square64 in the denomi-
nator

x + 2
x2 + 2x + 5

=
x + 2

(x + 1)2 + 4

and then make a change of variables to make the fraction look like ay+b
y2+1 . In this case

x + 2
(x + 1)2 + 4

=
1
4

x + 2
( x+1

2 )2 + 1

so we make the change of variables y = x+1
2 , dy = dx

2 , x = 2y´ 1, dx = 2 dy
ż

x + 2
(x + 1)2 + 4

dx =
1
4

ż

x + 2

( x+1
2 )

2
+ 1

dx

=
1
4

ż

(2y´ 1) + 2
y2 + 1

2 dy =
1
2

ż

2y + 1
y2 + 1

dy

=

ż

y
y2 + 1

dy +
1
2

ż

1
y2 + 1

dy

64 This same idea arose in Section 1.9. Given a quadratic written as

Q(x) = ax2 + bx + c

rewrite it as

Q(x) = a(x + d)2 + e.

We can determine d and e by expanding and comparing coefficients of x:

ax2 + bx + c = a(x2 + 2dx + d2) + e = ax2 + 2dax + (e + ad2)

Hence d = b/2a and e = c´ ad2.
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Both integrals are easily evaluated, using the substitution u = y2 + 1, du = 2y dy for
the first.

ż

y
y2 + 1

dy =

ż

1
u

du
2

=
1
2

log |u| =
1
2

log(y2 + 1) =
1
2

log
[(x + 1

2

)2
+ 1
]

1
2

ż

1
y2 + 1

dy =
1
2

arctan y =
1
2

arctan
(x + 1

2

)

That’s finally it. Putting all of the pieces together

ż

x4+5x3+16x2+26x + 22
x3 + 3x2 + 7x + 5

dx =
1
2

x2+ 2x + 2 log |x + 1|

+
1
2

log
[(x+1

2

)2
+ 1
]
+

1
2

arctan
(x+1

2

)
+ C

Example 1.10.3

The best thing after working through a few a nice long examples is to do another nice
long example — it is excellent practice65. We recommend that the reader attempt the
problem before reading through our solution.

Example 1.10.4
(
ş 4x3+23x2+45x+27

x3+5x2+8x+4 dx
)

In this example, we integrate N(x)
D(x) =

4x3+23x2+45x+27
x3+5x2+8x+4 .

• Step 1. The degree of the numerator N(x) is equal to the degree of the denominator
D(x), so the first step to write N(x)

D(x) in the form

N(x)
D(x)

= P(x) +
R(x)
D(x)

with P(x) being a polynomial (which should be of degree 0, i.e. just a constant) and
R(x) being a polynomial of degree strictly smaller than the degree of D(x). By long
division

x3 + 5x2 + 8x+ 4
4

4x3 + 23x2 + 45x+27
4x3 + 20x2 + 32x+16

3x2 + 13x+11

65 At the risk of quoting Nietzsche, “That which does not kill us makes us stronger.” Though this author
always preferred the logically equivalent contrapositive — “That which does not make us stronger will
kill us.” However no one is likely to be injured by practicing partial fractions or looking up quotes on
wikipedia. Its also a good excuse to remind yourself of what a contrapositive is — though we will likely
look at them again when we get to sequences and series.
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so

4x3 + 23x2 + 45x + 27
x3 + 5x2 + 8x + 4

= 4 +
3x2 + 13x + 11

x3 + 5x2 + 8x + 4

• Step 2. The second step is to factorise D(x) = x3 + 5x2 + 8x + 4.

– To start, we’ll try and guess an integer root. Any integer root of D(x) must
divide the constant term, 4, exactly. Only ˘1, ˘2, ˘4 can be integer roots of
x3 + 5x2 + 8x + 4.

– We test to see if ˘1 are roots.

D(1) = (1)3 + 5(1)2 + 8(1) + 4 ‰ 0 ñ x = 1 is not a root

D(´1) = (´1)3 + 5(´1)2 + 8(´1) + 4 = 0 ñ x = ´1 is a root

So (x + 1) must divide x3 + 5x2 + 8x + 4 exactly.

– By long division

x+ 1
x2+ 4x+ 4
x3+5x2+8x+4
x3+ x2

4x2+8x+4
4x2+4x

4x+4
4x+4

0

so

x3 + 5x2 + 8x + 4 = (x + 1)(x2 + 4x + 4) = (x + 1)(x + 2)(x + 2)

– Notice that we could have instead checked whether or not ˘2 are roots

D(2) = (2)3 + 5(2)2 + 8(2) + 4 ‰ 0 ñ x = 2 is not a root

D(´2) = (´2)3 + 5(´2)2 + 8(´2) + 4 = 0 ñ x = ´2 is a root

We now know that both´1 and´2 are roots of x3 + 5x2 + 8x+ 4 and hence both
(x + 1) and (x + 2) are factors of x3 + 5x2 + 8x + 4. Because x3 + 5x2 + 8x + 4 is
of degree three and the coefficient of x3 is 1, we must have x3 + 5x2 + 8x + 4 =
(x + 1)(x + 2)(x + a) for some constant a. Multiplying out the right hand side
shows that the constant term is 2a. So 2a = 4 and a = 2.

This is the end of step 2. We now know that

4x3 + 23x2 + 45x + 27
x3 + 5x2 + 8x + 4

= 4 +
3x2 + 13x + 11
(x + 1)(x + 2)2
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• Step 3. The third step is to write 3x2+13x+11
(x+1)(x+2)2 in the form

3x2 + 13x + 11
(x + 1)(x + 2)2 =

A
x + 1

+
B

x + 2
+

C
(x + 2)2

for some constants A, B and C.

Note that there are two terms on the right hand arising from the factor (x + 2)2. One
has denominator (x + 2) and one has denominator (x + 2)2. More generally, for each
factor (x + a)n in the denominator of the rational function on the left hand side, we
include

A1

x + a
+

A2

(x + a)2 + ¨ ¨ ¨+
An

(x + a)n

in the partial fraction expansion on the right hand side66.

To determine the values of the constants A, B, C, we put the right hand side back
over the common denominator (x + 1)(x + 2)2.

3x2 + 13x + 11
(x + 1)(x + 2)2 =

A
x + 1

+
B

x + 2
+

C
(x + 2)2

=
A(x + 2)2 + B(x + 1)(x + 2) + C(x + 1)

(x + 1)(x + 2)2

The fraction on the far left is the same as the fraction on the far right if and only if
their numerators are the same.

3x2 + 13x + 11 = A(x + 2)2 + B(x + 1)(x + 2) + C(x + 1)

As in the previous examples, there are a couple of different ways to determine the
values of A, B and C from this equation.

• Step 3 – Algebra Method. The conceptually clearest procedure is to write the right
hand side as a polynomial in standard form (i.e. collect up all x2 terms, all x terms
and all constant terms)

3x2 + 13x + 11 = (A + B)x2 + (4A + 3B + C)x + (4A + 2B + C)

For these two polynomials to be the same, the coefficient of x2 on the left hand side
and the coefficient of x2 on the right hand side must be the same. Similarly the
coefficients of x1 and the coefficients of x0 (i.e. the constant terms) must match. This
gives us a system of three equations,

A + B = 3 4A + 3B + C = 13 4A + 2B + C = 11

in the three unknowns A, B, C. We can solve this system by

66 This is justified in the (optional) subsection “Justification of the Partial Fraction Decompositions” be-
low.
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– using the first equation, namely A + B = 3, to determine A in terms of B:
A = 3´ B.

– Substituting this into the remaining equations eliminates the A, leaving two
equations in the two unknown B, C.

4(3´ B) + 3B + C = 13 4(3´ B) + 2B + C = 11

or

´B + C = 1 ´ 2B + C = ´1

– We can now solve the first of these equations, namely ´B + C = 1, for B in
terms of C, giving B = C´ 1.

– Substituting this into the last equation, namely ´2B + C = ´1, gives ´2(C ´
1) + C = ´1 which is easily solved to give

– C = 3, and then B = C´ 1 = 2 and then A = 3´ B = 1.

Hence

4x3 + 23x2 + 45x + 27
x3 + 5x2 + 8x + 4

= 4 +
3x2 + 13x + 11
(x + 1)(x + 2)2 = 4 +

1
x + 1

+
2

x + 2
+

3
(x + 2)2

• Step 3 – Sneaky Method. The second, sneakier, method for finding A, B and C exploits
the fact that 3x2 + 13x + 11 = A(x + 2)2 + B(x + 1)(x + 2) + C(x + 1) must be true
for all values of x. In particular, it must be true for x = ´1. When x = ´1, the factor
(x + 1) multiplying B and C is exactly zero. So B and C disappear from the equation,
leaving us with an easy equation to solve for A:

3x2 + 13x + 11
ˇ

ˇ

ˇ

x=´1
=
[

A(x + 2)2 + B(x + 1)(x + 2) + C(x + 1)
]

x=´1

ùñ 1 = A

Sub this value of A back in and simplify.

3x2 + 13x + 11 = (1)(x + 2)2 + B(x + 1)(x + 2) + C(x + 1)

2x2 + 9x + 7 = B(x + 1)(x + 2) + C(x + 1) = (xB + 2B + C)(x + 1)

Since (x + 1) is a factor on the right hand side, it must also be a factor on the left
hand side.

(2x + 7)(x + 1) = (xB + 2B + C)(x + 1) ñ (2x + 7) = (xB + 2B + C)

For the coefficients of x to match, B must be 2. For the constant terms to match,
2B + C must be 7, so C must be 3. Hence we again have

4x3 + 23x2 + 45x + 27
x3 + 5x2 + 8x + 4

= 4 +
3x2 + 13x + 11
(x + 1)(x + 2)2 = 4 +

1
x + 1

+
2

x + 2
+

3
(x + 2)2
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• Step 4. The final step is to integrate

ż

4x3 + 23x2 + 45x + 27
x3 + 5x2 + 8x + 4

dx =

ż

4dx +

ż

1
x + 1

dx +

ż

2
x + 2

dx +

ż

3
(x + 2)2 dx

= 4x + log |x + 1|+ 2 log |x + 2| ´
3

x + 2
+ C

Example 1.10.4

The method of partial fractions is not just confined to the problem of integrating ratio-
nal functions. There are other integrals — such as

ş

sec xdx and
ş

sec3 xdx — that can be
transformed (via substitutions) into integrals of rational functions. We encountered both
of these integrals in Sections 1.8 and 1.9 on trigonometric integrals and substitutions.

Example 1.10.5 (
ş

sec xdx)

Solution. In this example, we integrate sec x. It is not yet clear what this integral has to do
with partial fractions. To get to a partial fractions computation, we first make one of our
old substitutions.

ż

sec xdx =

ż

1
cos x

dx massage the expression a little

=

ż

cos x
cos2 x

dx substitute u = sin x, du = cos xdx

= ´

ż

du
u2 ´ 1

and use cos2 x = 1´ sin2 x = 1´ u2

So we now have to integrate 1
u2´1 , which is a rational function of u, and so is perfect for

partial fractions.

• Step 1. The degree of the numerator, 1, is zero, which is strictly smaller than the
degree of the denominator, u2 ´ 1, which is two. So the first step is skipped.

• Step 2. The second step is to factor the denominator:

u2
´ 1 = (u´ 1)(u + 1)

• Step 3. The third step is to write 1
u2´1 in the form

1
u2 ´ 1

=
1

(u´ 1)(u + 1)
=

A
u´ 1

+
B

u + 1

for some constants A and B.

• Step 3 – Sneaky Method.
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– Multiply through by the denominator to get

1 = A(u + 1) + B(u´ 1)

This equation must be true for all u.

– If we now set u = 1 then we eliminate B from the equation leaving us with

1 = 2A so A = 1/2.

– Similarly, if we set u = ´1 then we eliminate A, leaving

1 = ´2B which implies B = ´1/2.

We have now found that A = 1/2, B = ´1/2, so

1
u2 ´ 1

=
1
2

[ 1
u´ 1

´
1

u + 1

]
.

• It is always a good idea to check our work.

1/2

u´ 1
+
´1/2

u + 1
=

1/2(u + 1)´ 1/2(u´ 1)
(u´ 1)(u + 1)

=
1

(u´ 1)(u + 1)
X

• Step 4. The final step is to integrate.
ż

sec xdx = ´

ż

du
u2 ´ 1

after substitution

= ´
1
2

ż

du
u´ 1

+
1
2

ż

du
u + 1

partial fractions

= ´
1
2

log |u´ 1|+
1
2

log |u + 1|+ C

= ´
1
2

log | sin(x)´ 1|+
1
2

log | sin(x) + 1|+ C rearrange a little

=
1
2

log
ˇ

ˇ

ˇ

ˇ

1 + sin x
1´ sin x

ˇ

ˇ

ˇ

ˇ

+ C

Notice that since ´1 ď sin x ď 1, we are free to drop the absolute values in the last
line if we wish.

Example 1.10.5

Another example in the same spirit, though a touch harder. Again, we saw this prob-
lem in Section 1.8 and 1.9.

Example 1.10.6
(ş

sec3 xdx
)

Solution.
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• We’ll start by converting it into the integral of a rational function using the substitu-
tion u = sin x, du = cos xdx.

ż

sec3 xdx =

ż

1
cos3 x

dx massage this a little

=

ż

cos x
cos4 x

dx replace cos2 x = 1´ sin2 x = 1´ u2

=

ż

cos xdx

[1´ sin2 x]2

=

ż

du
[1´ u2]2

• We could now find the partial fractions expansion of the integrand 1
[1´u2]2

by execut-

ing the usual four steps. But it is easier to use

1
u2 ´ 1

=
1
2

[ 1
u´ 1

´
1

u + 1

]

which we worked out in Example 1.10.5 above.

• Squaring this gives

1

[1´ u2]2
=

1
4

[ 1
u´ 1

´
1

u + 1

]2

=
1
4

[ 1
(u´ 1)2 ´

2
(u´ 1)(u + 1)

+
1

(u + 1)2

]

=
1
4

[ 1
(u´ 1)2 ´

1
u´ 1

+
1

u + 1
+

1
(u + 1)2

]

where we have again used 1
u2´1 = 1

2

[
1

u´1 ´
1

u+1

]
in the last step.

• It only remains to do the integrals and simplify.
ż

sec3 xdx =
1
4

ż [ 1
(u´ 1)2 ´

1
u´ 1

+
1

u + 1
+

1
(u + 1)2

]
du

=
1
4

[
´

1
u´ 1

´ log |u´ 1|+ log |u + 1| ´
1

u + 1

]
+ C group carefully

=
´1
4

[ 1
u´ 1

+
1

u + 1

]
+

1
4

[
log |u + 1| ´ log |u´ 1|

]
+ C sum carefully

= ´
1
4

2u
u2 ´ 1

+
1
4

log
ˇ

ˇ

ˇ

u + 1
u´ 1

ˇ

ˇ

ˇ
+ C clean up

=
1
2

u
1´ u2 +

1
4

log
ˇ

ˇ

ˇ

u + 1
u´ 1

ˇ

ˇ

ˇ
+ C put u = sin x

=
1
2

sin x
cos2 x

+
1
4

log
ˇ

ˇ

ˇ

sin x + 1
sin x´ 1

ˇ

ˇ

ˇ
+ C

Example 1.10.6
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1.10.2 §§ The form of partial fractions decompositions

In the examples above we used the partial fractions method to decompose rational func-
tions into easily integrated pieces. Each of those examples was quite involved and we
had to spend quite a bit of time factoring and doing long division. The key step in each
of the computations was Step 3 — in that step we decomposed the rational function N(x)

D(x)

(or R(x)
D(x) ), for which the degree of the numerator is strictly smaller than the degree of the

denominator, into a sum of particularly simple rational functions, like A
x´a . We did not,

however, give a systematic description of those decompositions.
In this subsection we fill that gap by describing the general67 form of partial fraction

decompositions. The justification of these forms is not part of the course, but the interested
reader is invited to read the next (optional) subsection where such justification is given.
In the following it is assumed that

• N(x) and D(x) are polynomials with the degree of N(x) strictly smaller than the
degree of D(x).

• K is a constant.

• a1, a2, ¨ ¨ ¨ , aj are all different numbers.

• m1, m2, ¨ ¨ ¨ , mj, and n1, n2, ¨ ¨ ¨ , nk are all strictly positive integers.

• x2 + b1x + c1, x2 + b2x + c2, ¨ ¨ ¨ , x2 + bkx + ck are all different.

§§§ Simple linear factor case

If the denominator D(x) = K(x ´ a1)(x ´ a2) ¨ ¨ ¨ (x ´ aj) is a product of j different linear
factors, then

N(x)
D(x)

=
A1

x´ a1
+

A2

x´ a2
+ ¨ ¨ ¨+

Aj

x´ aj

Equation 1.10.7.

We can then integrate each term
ż

A
x´ a

dx = A log |x´ a|+ C.

§§§ General linear factor case

If the denominator D(x) = K(x´ a1)
m1(x´ a2)

m2 ¨ ¨ ¨ (x´ aj)
mj then

67 Well — not the completely general form, in the sense that we are not allowing the use of complex
numbers. As a result we have to use both linear and quadratic factors in the denominator. If we could
use complex numbers we would be able to restrict ourselves to linear factors.

157



INTEGRATION 1.10 PARTIAL FRACTIONS

N(x)
D(x)

=
A1,1

x´ a1
+

A1,2

(x´ a1)2 + ¨ ¨ ¨+
A1,m1

(x´ a1)m1

+
A2,1

x´ a2
+

A2,2

(x´ a2)2 + ¨ ¨ ¨+
A2,m2

(x´ a2)m2
+ ¨ ¨ ¨

+
Aj,1

x´ aj
+

Aj,2

(x´ aj)2 + ¨ ¨ ¨+
Aj,mj

(x´ aj)
mj

Equation 1.10.8.

Notice that we could rewrite each line as

A1

x´ a
+

A2

(x´ a)2 + ¨ ¨ ¨+
Am

(x´ a)m =
A1(x´ a)m´1 + A2(x´ a)m´2 + ¨ ¨ ¨+ Am

(x´ a)m

=
B1xm´1 + B2xm´2 + ¨ ¨ ¨+ Bm

(x´ a)m

which is a polynomial whose degree, m´1, is strictly smaller than that of the denominator
(x´ a)m. But the form of Equation (1.10.8) is preferable because it is easier to integrate.

ż

A
x´ a

dx = A log |x´ a|+ C
ż

A
(x´ a)k dx = ´

1
k´ 1

¨
A

(x´ a)k´1 provided k ą 1.

§§§ Simple linear and quadratic factor case

If D(x) = K(x´ a1) ¨ ¨ ¨ (x´ aj)(x2 + b1x + c1) ¨ ¨ ¨ (x2 + bkx + ck) then

N(x)
D(x)

=
A1

x´ a1
+ ¨ ¨ ¨+

Aj

x´ aj
+

B1x + C1

x2 + b1x + c1
+ ¨ ¨ ¨+

Bkx + Ck
x2 + bkx + ck

Equation 1.10.9.

Note that the numerator of each term on the right hand side has degree one smaller
than the degree of the denominator.

The quadratic terms Bx+C
x2+bx+c are integrated in a two-step process that is best illustrated

with a simple example (see also Example 1.10.3 above).

Example 1.10.10
(
ş 2x+7

x2+4x+13dx
)

Solution.

• Start by completing the square in the denominator:

x2 + 4x + 13 = (x + 2)2 + 9 and thus
2x + 7

x2 + 4x + 13
=

2x + 7
(x + 2)2 + 32
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• Now set y = (x + 2)/3, dy = 1
3dx, or equivalently x = 3y´ 2, dx = 3dy:

ż

2x + 7
x2 + 4x + 13

dx =

ż

2x + 7
(x + 2)2 + 32 dx

=

ż

6y´ 4 + 7
32y2 + 32 ¨ 3dy

=

ż

6y + 3
3(y2 + 1)

dy

=

ż

2y + 1
y2 + 1

dy

Notice that we chose 3 in y = (x + 2)/3 precisely to transform the denominator into
the form y2 + 1.

• Now almost always the numerator will be a linear polynomial of y and we decom-
pose as follows

ż

2x + 7
x2 + 4x + 13

dx =

ż

2y + 1
y2 + 1

dy

=

ż

2y
y2 + 1

dy +

ż

1
y2 + 1

dy

= log |y2 + 1|+ arctan y + C

= log

ˇ

ˇ

ˇ

ˇ

ˇ

(
x + 2

3

)2

+ 1

ˇ

ˇ

ˇ

ˇ

ˇ

+ arctan
(

x + 2
3

)
+ C

Example 1.10.10

§§§ Optional — General linear and quadratic factor case

If D(x) = K(x´ a1)
m1 ¨ ¨ ¨ (x´ aj)

mj(x2 + b1x + c1)
n1 ¨ ¨ ¨ (x2 + bkx + ck)

nk then

N(x)
D(x)

=
A1,1

x´ a1
+

A1,2

(x´ a1)2 + ¨ ¨ ¨+
A1,m1

(x´ a1)m1
+ ¨ ¨ ¨

+
Aj,1

x´ aj
+

Aj,2

(x´ aj)2 + ¨ ¨ ¨+
Aj,mj

(x´ aj)
mj

+
B1,1x + C1,1

x2 + b1x + c1
+

B1,2x + C1,2

(x2 + b1x + c1)2 +¨ ¨ ¨+
B1,n1 x + C1,n1

(x2 + b1x + c1)n1
+¨ ¨ ¨

+
Bk,1x + Ck,1

x2 + bkx + ck
+

Bk,2x + Ck,2

(x2 + bkx + ck)2 +¨ ¨ ¨+
Bk,nk

x + C1,nk

(x2 + bkx + ck)nk

Equation 1.10.11.
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We have already seen how to integrate the simple and general linear terms, and the
simple quadratic terms. Integrating general quadratic terms is not so straightforward.

Example 1.10.12
(
ş dx
(x2+1)n

)

This example is not so easy, so it should definitely be considered optional.

Solution. In what follows write

In =

ż

dx
(x2 + 1)n .

• When n = 1 we know that
ż

dx
x2 + 1

= arctan x + C

• Now assume that n ą 1, then
ż

1
(x2 + 1)n dx =

ż

(x2 + 1´ x2)

(x2 + 1)n dx sneaky

=

ż

1
(x2 + 1)n´1 dx´

ż

x2

(x2 + 1)n dx

= In´1 ´

ż

x2

(x2 + 1)n dx

So we can write In in terms of In´1 and this second integral.

• We can use integration by parts to compute the second integral:
ż

x2

(x2 + 1)n dx =

ż

x
2
¨

2x
(x2 + 1)n dx sneaky

We set u = x/2 and dv = 2x
(x2+1)n dx, which gives du = 1

2dx and v = ´ 1
n´1 ¨

1
(x2+1)n´1 .

You can check v by differentiating. Integration by parts gives
ż

x
2
¨

2x
(x2 + 1)n dx = ´

x
2(n´ 1)(x2 + 1)n´1 +

ż

dx
2(n´ 1)(x2 + 1)n´1

= ´
x

2(n´ 1)(x2 + 1)n´1 +
1

2(n´ 1)
¨ In´1

• Now put everything together:

In =

ż

1
(x2 + 1)n dx

= In´1 +
x

2(n´ 1)(x2 + 1)n´1 ´
1

2(n´ 1)
¨ In´1

=
2n´ 3

2(n´ 1)
In´1 +

x
2(n´ 1)(x2 + 1)n´1
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• We can then use this recurrence to write down In for the first few n:

I2 =
1
2

I1 +
x

2(x2 + 1)
+ C

=
1
2

arctan x +
x

2(x2 + 1)

I3 =
3
4

I2 +
x

4(x2 + 1)2

=
3
8

arctan x +
3x

8(x2 + 1)
+

x
4(x2 + 1)2 + C

I4 =
5
6

I3 +
x

6(x2 + 1)3

=
5

16
arctan x +

5x
16(x2 + 1)

+
5x

24(x2 + 1)2 +
x

6(x2 + 1)3 + C

and so forth. You can see why partial fraction questions involving denominators
with repeated quadratic factors do not often appear on exams.

Example 1.10.12

1.10.3 §§ Optional — Justification of the partial fraction decompositions

We will now see the justification for the form of the partial fraction decompositions. We
will only consider the case in which the denominator has only linear factors. The argu-
ments when there are quadratic factors too are similar68.

§§§ Simple linear factor case

In the most common partial fraction decomposition, we split up

N(x)
(x´ a1)ˆ ¨ ¨ ¨ ˆ (x´ ad)

into a sum of the form

A1

x´ a1
+ ¨ ¨ ¨+

Ad
x´ ad

We now show that this decomposition can always be achieved, under the assumptions
that the ai’s are all different and N(x) is a polynomial of degree at most d´ 1. To do so,
we shall repeatedly apply the following Lemma.

68 If we use complex numbers then every polynomial can be written as a product of linear factors. This is
the fundamental theorem of algebra.
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Let N(x) and D(x) be polynomials of degree n and d respectively, with n ď d.
Suppose that a is NOT a zero of D(x). Then there is a polynomial P(x) of degree
p ă d and a number A such that

N(x)
D(x) (x´ a)

=
P(x)
D(x)

+
A

x´ a

Lemma1.10.13.

Proof. • To save writing, let z = x ´ a. We then write Ñ(z) = N(z + a) and D̃(z) =
D(z + a), which are again polynomials of degree n and d respectively. We also know
that D̃(0) = D(a) ‰ 0.

• In order to complete the proof we need to find a polynomial P̃(z) of degree p ă d
and a number A such that

Ñ(z)
D̃(z) z

=
P̃(z)
D̃(z)

+
A
z
=

P̃(z)z + AD̃(z)
D̃(z) z

or equivalently, such that

P̃(z)z + AD̃(z) = Ñ(z).

• Now look at the polynomial on the left hand side. Every term in P̃(z)z, has at least
one power of z. So the constant term on the left hand side is exactly the constant
term in AD̃(z), which is equal to AD̃(0). The constant term on the right hand side
is equal to Ñ(0). So the constant terms on the left and right hand sides are the same
if we choose A = Ñ(0)

D̃(0) . Recall that D̃(0) cannot be zero, so A is well defined.

• Now move AD̃(z) to the right hand side.

P̃(z)z = Ñ(z)´ AD̃(z)

The constant terms in Ñ(z) and AD̃(z) are the same, so the right hand side contains
no constant term and the right hand side is of the form Ñ1(z)z for some polynomial
Ñ1(z).

• Since Ñ(z) is of degree at most d and AD̃(z) is of degree exactly d, Ñ1 is a polynomial
of degree d´ 1. It now suffices to choose P̃(z) = Ñ1(z).

Now back to

N(x)
(x´ a1)ˆ ¨ ¨ ¨ ˆ (x´ ad)

Apply Lemma 1.10.13, with D(x) = (x´ a2)ˆ ¨ ¨ ¨ ˆ (x´ ad) and a = a1. It says

N(x)
(x´ a1)ˆ ¨ ¨ ¨ ˆ (x´ ad)

=
A1

x´ a1
+

P(x)
(x´ a2)ˆ ¨ ¨ ¨ ˆ (x´ ad)
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for some polynomial P of degree at most d´ 2 and some number A1.
Apply Lemma 1.10.13 a second time, with D(x) = (x ´ a3) ˆ ¨ ¨ ¨ ˆ (x ´ ad), N(x) =

P(x) and a = a2. It says

P(x)
(x´ a2)ˆ ¨ ¨ ¨ ˆ (x´ ad)

=
A2

x´ a2
+

Q(x)
(x´ a3)ˆ ¨ ¨ ¨ ˆ (x´ ad)

for some polynomial Q of degree at most d´ 3 and some number A2.
At this stage, we know that

N(x)
(x´ a1)ˆ ¨ ¨ ¨ ˆ (x´ ad)

=
A1

x´ a1
+

A2

x´ a2
+

Q(x)
(x´ a3)ˆ ¨ ¨ ¨ ˆ (x´ ad)

If we just keep going, repeatedly applying Lemma 1, we eventually end up with

N(x)
(x´ a1)ˆ ¨ ¨ ¨ ˆ (x´ ad)

=
A1

x´ a1
+ ¨ ¨ ¨+

Ad
x´ ad

as required.

§§§ The general case with linear factors

Now consider splitting

N(x)
(x´ a1)n1 ˆ ¨ ¨ ¨ ˆ (x´ ad)nd

into a sum of the form69

[ A1,1

x´ a1
+ ¨ ¨ ¨+

A1,n1

(x´ a1)n1

]
+ ¨ ¨ ¨+

[ Ad,1

x´ ad
+ ¨ ¨ ¨+

Ad,nd

(x´ ad)nd

]

We now show that this decomposition can always be achieved, under the assumptions
that the ai’s are all different and N(x) is a polynomial of degree at most n1 + ¨ ¨ ¨+ nd ´ 1.
To do so, we shall repeatedly apply the following Lemma.

Let N(x) and D(x) be polynomials of degree n and d respectively, with n ă d+m.
Suppose that a is NOT a zero of D(x). Then there is a polynomial P(x) of degree
p ă d and numbers A1, ¨ ¨ ¨ , Am such that

N(x)
D(x) (x´ a)m =

P(x)
D(x)

+
A1

x´ a
+

A2

(x´ a)2 + ¨ ¨ ¨+
Am

(x´ a)m

Lemma1.10.14.

69 If we allow ourselves to use complex numbers as roots, this is the general case. We don’t need to
consider quadratic (or higher) factors since all polynomials can be written as products of linear factors
with complex coefficients.
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Proof. • As we did in the proof of the previous lemma, we write z = x ´ a. Then
Ñ(z) = N(z + a) and D̃(z) = D(z + a) are polynomials of degree n and d respec-
tively, D̃(0) = D(a) ‰ 0.

• In order to complete the proof we have to find a polynomial P̃(z) of degree p ă d
and numbers A1, ¨ ¨ ¨ , Am such that

Ñ(z)
D̃(z) zm =

P̃(z)
D̃(z)

+
A1

z
+

A2

z2 + ¨ ¨ ¨+
Am

zm

=
P̃(z)zm + A1zm´1D̃(z) + A2zm´2D̃(z) + ¨ ¨ ¨+ AmD̃(z)

D̃(z) zm

or equivalently, such that

P̃(z)zm + A1zm´1D̃(z) + A2zm´2D̃(z) + ¨ ¨ ¨+ Am´1zD̃(z) + AmD̃(z) = Ñ(z)

• Now look at the polynomial on the left hand side. Every single term on the left
hand side, except for the very last one, AmD̃(z), has at least one power of z. So the
constant term on the left hand side is exactly the constant term in AmD̃(z), which is
equal to AmD̃(0). The constant term on the right hand side is equal to Ñ(0). So the
constant terms on the left and right hand sides are the same if we choose Am = Ñ(0)

D̃(0) .

Recall that D̃(0) ‰ 0 so Am is well defined.

• Now move AmD̃(z) to the right hand side.

P̃(z)zm + A1zm´1D̃(z) + A2zm´2D̃(z) + ¨ ¨ ¨+ Am´1zD̃(z) = Ñ(z)´ AmD̃(z)

The constant terms in Ñ(z) and AmD̃(z) are the same, so the right hand side contains
no constant term and the right hand side is of the form Ñ1(z)z with Ñ1 a polynomial
of degree at most d + m´ 2. (Recall that Ñ is of degree at most d + m´ 1 and D̃ is of
degree at most d.) Divide the whole equation by z to get

P̃(z)zm´1 + A1zm´2D̃(z) + A2zm´3D̃(z) + ¨ ¨ ¨+ Am´1D̃(z) = Ñ1(z).

• Now, we can repeat the previous argument. The constant term on the left hand side,
which is exactly equal to Am´1D̃(0) matchs the constant term on the right hand side,
which is equal to Ñ1(0) if we choose Am´1 = Ñ1(0)

D̃(0) . With this choice of Am´1

P̃(z)zm´1 + A1zm´2D̃(z) + A2zm´3D̃(z) + ¨ ¨ ¨+ Am´2zD̃(z)
= Ñ1(z)´ Am´1D̃(z) = Ñ2(z)z

with Ñ2 a polynomial of degree at most d + m´ 3. Divide by z and continue.

• After m steps like this, we end up with

P̃(z)z = Ñm´1(z)´ A1D̃(z)

after having chosen A1 =
Ñm´1(0)

D̃(0) .
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• There is no constant term on the right side so that Ñm´1(z)´ A1D̃(z) is of the form
Ñm(z)z with Ñm a polynomial of degree d´ 1. Choosing P̃(z) = Ñm(z) completes
the proof.

Now back to
N(x)

(x´ a1)n1 ˆ ¨ ¨ ¨ ˆ (x´ ad)nd

Apply Lemma 1.10.14, with D(x) = (x ´ a2)
n2 ˆ ¨ ¨ ¨ ˆ (x ´ ad)

nd , m = n1 and a = a1. It
says

N(x)
(x´ a1)n1 ˆ ¨ ¨ ¨ ˆ (x´ ad)nd

=
A1,1

x´ a1
+

A1,2

(x´ a1)2 + ¨ ¨ ¨+
A1,n1

(x´ a)n1
+

P(x)
(x´ a2)n2 ˆ ¨ ¨ ¨ ˆ (x´ ad)nd

Apply Lemma 1.10.14 a second time, with D(x) = (x ´ a3)
n3 ˆ ¨ ¨ ¨ ˆ (x ´ ad)

nd , N(x) =
P(x), m = n2 and a = a2. And so on. Eventually, we end up with

[ A1,1

x´ a1
+ ¨ ¨ ¨+

A1,n1

(x´ a1)n1

]
+ ¨ ¨ ¨+

[ Ad,1

x´ ad
+ ¨ ¨ ¨+

Ad,nd

(x´ ad)nd

]

which is exactly what we were trying to show.

1.11Ĳ Numerical Integration

By now the reader will have come to appreciate that integration is generally quite a bit
more difficult than differentiation. There are a great many simple-looking integrals, such
as

ş

e´x2
dx, that are either very difficult or even impossible to express in terms of stan-

dard functions70. Such integrals are not merely mathematical curiosities, but arise very
naturally in many contexts. For example, the error function

erf(x) =
2
?

π

ż x

0
e´t2

dt

is extremely important in many areas of mathematics, and also in many practical applica-
tions of statistics.

In such applications we need to be able to evaluate this integral (and many others) at
a given numerical value of x. In this section we turn to the problem of how to find (ap-
proximate) numerical values for integrals, without having to evaluate them algebraically.
To develop these methods we return to Riemann sums and our geometric interpretation
of the definite integral as the signed area.

We start by describing (and applying) three simple algorithms for generating, numer-
ically, approximate values for the definite integral

şb
a f (x)dx. In each algorithm, we begin

in much the same way as we approached Riemann sums.

70 We apologise for being a little sloppy here — but we just want to say that it can be very hard or even
impossible to write some integrals as some finite sized expression involving polynomials, exponen-
tials, logarithms and trigonometric functions. We don’t want to get into a discussion of computability,
though that is a very interesting topic.
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• We first select an integer n ą 0, called the “number of steps”.

• We then divide the interval of integration, a ď x ď b, into n equal subintervals, each
of length ∆x = b´a

n . The first subinterval runs from x0 = a to x1 = a + ∆x. The
second runs from x1 to x2 = a + 2∆x, and so on. The last runs from xn´1 = b´ ∆x
to xn = b.

x

y

x1 x2 x3 · · ·

y = f(x)

a = x0 xn = bxn−1

This splits the original integral into n pieces:

ż b

a
f (x)dx =

ż x1

x0

f (x)dx +

ż x2

x1

f (x)dx + ¨ ¨ ¨+

ż xn

xn´1

f (x)dx

Each subintegral
şxj

xj´1
f (x)dx is approximated by the area of a simple geometric figure.

The three algorithms we consider approximate the area by rectangles, trapezoids and
parabolas (respectively).

We will explain these rules in detail below, but we give a brief overview here:
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(1) The midpoint rule approximates each subintegral by the area of a rectangle of height
given by the value of the function at the midpoint of the subinterval

ż xj

xj´1

f (x)dx « f
(

xj´1 + xj

2

)
∆x

This is illustrated in the leftmost figure above.

(2) The trapezoidal rule approximates each subintegral by the area of a trapezoid with
vertices at (xj´1, 0), (xj´1, f (xj´1)), (xj, f (xj)), (xj, 0):

ż xj

xj´1

f (x)dx «
1
2
(

f (xj´1) + f (xj
)

∆x

The trapezoid is illustrated in the middle figure above. We shall derive the formula
for the area shortly.

(3) Simpson’s rule approximates two adjacent subintegrals by the area under a parabola
that passes through the points (xj´1, f (xj´1)), (xj, f (xj)) and (xj+1, f (xj+1)):

ż xj+1

xj´1

f (x)dx «
1
3
(

f (xj´1) + 4 f (xj) + f (xj+1
)

∆x

The parabola is illustrated in the right hand figure above. We shall derive the formula
for the area shortly.

In what follows we need to refer to the midpoint between xj´1 and xj very fre-
quently. To save on writing (and typing) we introduce the notation

x̄j =
1
2
(
xj´1 + xj

)
.

Notation1.11.1 (Midpoints).

1.11.1 §§ The midpoint rule

The integral
şxj

xj´1
f (x)dx represents the area between the curve y = f (x) and the x–axis

with x running from xj´1 to xj. The width of this region is xj ´ xj´1 = ∆x. The height
varies over the different values that f (x) takes as x runs from xj´1 to xj.

The midpoint rule approximates this area by the area of a rectangle of width xj´ xj´1 =
∆x and height f (x̄j) which is the exact height at the midpoint of the range covered by x.
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xj−1 xj

f(xj)

f(xj−1)

x̄jxj−1 xj

f
(xj−1+xj

2

)

The area of the approximating rectangle is f (x̄j)∆x, and the midpoint rule approximates
each subintegral by

ż xj

xj´1

f (x)dx « f (x̄j)∆x

.
Applying this approximation to each subinterval and summing gives us the following

approximation of the full integral:
ż b

a
f (x)dx =

ż x1

x0

f (x)dx +

ż x2

x1

f (x)dx + ¨ ¨ ¨ +

ż xn

xn´1

f (x)dx

« f (x̄1)∆x + f (x̄2)∆x + ¨ ¨ ¨ + f (x̄n)∆x

So notice that the approximation is the sum of the function evaluated at the midpoint
of each interval and then multiplied by ∆x. Our other approximations will have similar
forms.

In summary:

The midpoint rule approximation is

ż b

a
f (x)dx «

[
f (x̄1) + f (x̄2) + ¨ ¨ ¨+ f (x̄n)

]
∆x

where ∆x = b´a
n and

x0 = a x1 = a + ∆x x2 = a + 2∆x ¨ ¨ ¨ xn´1 = b´ ∆x xn = b

x̄1 = x0+x1
2 x̄2 = x1+x2

2 ¨ ¨ ¨ x̄n´1 =
xn´2+xn´1

2 x̄n =
xn´1+xn

2

Equation 1.11.2(The midpoint rule).

Example 1.11.3
(
ş1

0
4

1+x2 dx
)

We approximate the above integral using the midpoint rule with n = 8 step.

Solution.

• First we set up all the x-values that we will need. Note that a = 0, b = 1, ∆x = 1
8 and

x0 = 0 x1 = 1
8 x2 = 2

8 ¨ ¨ ¨ x7 = 7
8 x8 = 8

8 = 1
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Consequently

x̄1 = 1
16 x̄2 = 3

16 x̄3 = 5
16 ¨ ¨ ¨ x̄8 = 15

16

• We now apply Equation (1.11.2) to the integrand f (x) = 4
1+x2 :

ż 1

0

4
1 + x2 dx «

[
f (x̄1)

hkkikkj

4
1 + x̄2

1
+

f (x̄2)
hkkikkj

4
1 + x̄2

2
+¨ ¨ ¨+

f (x̄n´1)
hkkikkj

4
1 + x̄2

7
+

f (x̄n)
hkkikkj

4
1 + x̄2

8

]
∆x

=

[
4

1 + 1
162

+
4

1 + 32

162

+
4

1 + 52

162

+
4

1 + 72

162

+
4

1 + 92

162

+
4

1 + 112

162

+
4

1 + 132

162

+
4

1 + 152

162

]
1
8

=
[
3.98444 + 3.86415 + 3.64413 + 3.35738 + 3.03858 + 2.71618 + 2.40941 + 2.12890

]1
8

= 3.1429

where we have rounded to four decimal places.

• In this case we can compute the integral exactly (which is one of the reasons it was
chosen as a first example):

ż 1

0

4
1 + x2 dx = 4 arctan x

ˇ

ˇ

ˇ

1

0
= π

• So the error in the approximation generated by eight steps of the midpoint rule is

|3.1429´ π| = 0.0013

• The relative error is then

|approximate´ exact|
exact

=
|3.1429´ π|

π
= 0.0004

That is the error is 0.0004 times the actual value of the integral.

• We can write this as a percentage error by multiplying it by 100

percentage error = 100ˆ
|approximate´ exact|

exact
= 0.04%

That is, the error is about 0.04% of the exact value.

Example 1.11.3

The midpoint rule gives us quite good estimates of the integral without too much work —
though it is perhaps a little tedious to do by hand71. Of course, it would be very helpful to
quantify what we mean by “good” in this context and that requires us to discuss errors.

71 Thankfully it is very easy to write a program to apply the midpoint rule.
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Suppose that α is an approximation to A. This approximation has

• absolute error |A´ α| and

• relative error |A´α|
A and

• percentage error 100 |A´α|
A

Definition1.11.4.

We will discuss errors further in Section 1.11.4 below.

Example 1.11.5
(şπ

0 sin x dx
)

As a second example, we apply the midpoint rule with n = 8 steps to the above integral.

• We again start by setting up all the x-values that we will need. So a = 0, b = π,
∆x = π

8 and

x0 = 0 x1 = π
8 x2 = 2π

8 ¨ ¨ ¨ x7 = 7π
8 x8 = 8π

8 = π

Consequently,

x̄1 = π
16 x̄2 = 3π

16 ¨ ¨ ¨ x̄7 = 13π
16 x̄8 = 15π

16

• Now apply Equation (1.11.2) to the integrand f (x) = sin x:
ż π

0
sin x dx «

[
sin(x̄1) + sin(x̄2) + ¨ ¨ ¨+ sin(x̄8)

]
∆x

=
[

sin( π
16) + sin(3π

16 ) + sin(5π
16 ) + sin(7π

16 ) + sin(9π
16 ) + sin(11π

16 ) + sin(13π
16 ) + sin(15π

16 )
]

π
8

=
[
0.1951 + 0.5556 + 0.8315 + 0.9808 + 0.9808 + 0.8315 + 0.5556 + 0.1951

]
ˆ 0.3927

= 5.1260ˆ 0.3927 = 2.013

• Again, we have chosen this example so that we can compare it against the exact
value:

ż π

0
sin xdx =

[
´ cos x

]π

0 = ´ cos π + cos 0 = 2.

• So with eight steps of the midpoint rule we achieved

absolute error = |2.013´ 2| = 0.013

relative error =
|2.013´ 2|

2
= 0.0065

percentage error = 100ˆ
|2.013´ 2|

2
= 0.65%

With little work we have managed to estimate the integral to within 1% of its true
value.

Example 1.11.5
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1.11.2 §§ The trapezoidal rule

Consider again the area represented by the integral
şxj

xj´1
f (x)dx. The trapezoidal rule72

(unsurprisingly) approximates this area by a trapezoid73 whose vertices lie at

(xj´1, 0), (xj´1, f (xj´1)), (xj, f (xj)) and (xj, 0).

xj−1 xj

f(xj)

f(xj−1)

xj−1 xj

f(xj)

f(xj−1)

The trapezoidal approximation of the integral
şxj

xj´1
f (x)dx is the shaded region in the

figure on the right above. It has width xj´ xj´1 = ∆x. Its left hand side has height f (xj´1)
and its right hand side has height f (xj).

As the figure below shows, the area of a trapezoid is its width times its average height.

w x

r

ℓ

y

area ℓw

area (r − ℓ)w/2

area (r + ℓ)w/2

So the trapezoidal rule approximates each subintegral by
ż xj

xj´1

f (x)dx «
f (xj´1)+ f (xj)

2 ∆x

Applying this approximation to each subinterval and then summing the result gives us
the following approximation of the full integral

ż b

a
f (x)dx =

ż x1

x0

f (x)dx +

ż x2

x1

f (x)dx + ¨ ¨ ¨ +

ż xn

xn´1

f (x)dx

«
f (x0)+ f (x1)

2 ∆x + f (x1)+ f (x2)
2 ∆x + ¨ ¨ ¨ +

f (xn´1)+ f (xn)
2 ∆x

=
[

1
2 f (x0) + f (x1) + f (x2) + ¨ ¨ ¨+ f (xn´1) +

1
2 f (xn)

]
∆x

72 This method is also called the “trapezoid rule” and “trapezium rule”.
73 A trapezoid is a four sided polygon, like a rectangle. But, unlike a rectangle, the top and bottom of a

trapezoid need not be parallel.
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So notice that the approximation has a very similar form to the midpoint rule, excepting
that

• we evaluate the function at the xj’s rather than at the midpoints, and

• we multiply the value of the function at the endpoints x0, xn by 1/2.

In summary:

The trapezoidal rule approximation is

ż b

a
f (x)dx «

[
1
2 f (x0) + f (x1) + f (x2) + ¨ ¨ ¨+ f (xn´1) +

1
2 f (xn)

]
∆x

where

∆x = b´a
n , x0 = a, x1 = a + ∆x, x2 = a + 2∆x, ¨ ¨ ¨ , xn´1 = b´ ∆x, xn = b

Equation 1.11.6(The trapezoidal rule).

To compare and contrast we apply the trapezoidal rule to the examples we did above
with the midpoint rule.

Example 1.11.7
(
ş1

0
4

1+x2 dx — using the trapezoidal rule
)

Solution. We proceed very similarly to Example 1.11.3 and again use n = 8 steps.

• We again have f (x) = 4
1+x2 , a = 0, b = 1, ∆x = 1

8 and

x0 = 0 x1 = 1
8 x2 = 2

8 ¨ ¨ ¨ x7 = 7
8 x8 = 8

8 = 1

• Applying the trapezoidal rule, Equation (1.11.6), gives

ż 1

0

4
1 + x2 dx «

[
1
2

f (x0)
hkkikkj

4
1 + x2

0
+

f (x1)
hkkikkj

4
1 + x2

1
+¨ ¨ ¨+

f (xn´1)
hkkikkj

4
1 + x2

7
+

1
2

f (xn)
hkkikkj

4
1 + x2

8

]
∆x

=

[
1
2

4
1 + 02 +

4
1 + 1

82

+
4

1 + 22

82

+
4

1 + 32

82

+
4

1 + 42

82

+
4

1 + 52

82

+
4

1 + 62

82

+
4

1 + 72

82

+
1
2

4

1 + 82

82

]
1
8

=
[1

2
ˆ 4 + 3.939 + 3.765 + 3.507

+ 3.2 + 2.876 + 2.56 + 2.266 +
1
2
ˆ 2
]1

8
= 3.139

to three decimal places.
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• The exact value of the integral is still π. So the error in the approximation generated
by eight steps of the trapezoidal rule is |3.139´π| = 0.0026, which is 100 |3.139´π|

π % =
0.08% of the exact answer. Notice that this is roughly twice the error that we achieved
using the midpoint rule in Example 1.11.3.

Example 1.11.7

Let us also redo Example 1.11.5 using the trapezoidal rule.

Example 1.11.8
(şπ

0 sin x dx — using the trapezoidal rule
)

Solution. We proceed very similarly to Example 1.11.5 and again use n = 8 steps.

• We again have a = 0, b = π, ∆x = π
8 and

x0 = 0 x1 = π
8 x2 = 2π

8 ¨ ¨ ¨ x7 = 7π
8 x8 = 8π

8 = π

• Applying the trapezoidal rule, Equation (1.11.6), gives
ż π

0
sin x dx «

[
1
2 sin(x0) + sin(x1) + ¨ ¨ ¨+ sin(x7) +

1
2 sin(x8)

]
∆x

=
[

1
2 sin 0 + sin π

8 + sin 2π
8 + sin 3π

8 + sin 4π
8 + sin 5π

8 + sin 6π
8 + sin 7π

8 + 1
2 sin 8π

8

]
π
8

=
[

1
2ˆ0 + 0.3827 + 0.7071 + 0.9239 + 1.0000 + 0.9239 + 0.7071 + 0.3827 + 1

2ˆ0
]
ˆ 0.3927

= 5.0274ˆ 0.3927 = 1.974

• The exact answer is
şπ

0 sin x dx = ´ cos x
ˇ

ˇ

ˇ

π

0
= 2. So with eight steps of the trape-

zoidal rule we achieved 100 |1.974´2|
2 = 1.3% accuracy. Again this is approximately

twice the error we achieved in Example 1.11.5 using the midpoint rule.

Example 1.11.8

These two examples suggest that the midpoint rule is more accurate than the trape-
zoidal rule. Indeed, this observation is born out by a rigorous analysis of the error — see
Section 1.11.4.

1.11.3 §§ Simpson’s Rule

When we use the trapezoidal rule we approximate the area
şxj

xj´1
f (x)dx by the area be-

tween the x-axis and a straight line that runs from (xj´1, f (xj´1)) to (xj, f (xj)) — that is,
we approximate the function f (x) on this interval by a linear function that agrees with the
function at each endpoint. An obvious way to extend this — just as we did when extend-
ing linear approximations to quadratic approximations in our differential calculus course
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— is to approximate the function with a quadratic. This is precisely what Simpson’s74 rule
does.

Simpson’s rule approximates the integral over two neighbouring subintervals by the
area between a parabola and the x-axis. In order to describe this parabola we need 3
distinct points (which is why we approximate two subintegrals at a time). That is, we
approximate

ż x1

x0

f (x)dx +

ż x2

x1

f (x)dx =

ż x2

x0

f (x)dx

by the area bounded by the parabola that passes through the three points
(
x0, f (x0)

)
,(

x1, f (x1)
)

and
(
x2, f (x2)

)
, the x-axis and the vertical lines x = x0 and x = x2. We repeat

x0 x1 x2

(
x0, f(x0)

)

(
x1, f(x1)

) (
x2, f(x2)

)

this on the next pair of subintervals and approximate
şx4

x2
f (x)dx by the area between the

x–axis and the part of a parabola with x2 ď x ď x4. This parabola passes through the three
points

(
x2, f (x2)

)
,
(
x3, f (x3)

)
and

(
x4, f (x4)

)
. And so on. Because Simspon’s rule does

the approximation two slices at a time, n must be even.
To derive Simpson’s rule formula, we first find the equation of the parabola that passes

through the three points
(
x0, f (x0)

)
,
(
x1, f (x1)

)
and

(
x2, f (x2)

)
. Then we find the area

between the x–axis and the part of that parabola with x0 ď x ď x2. To simplify this
computation consider a parabola passing through the points (´h, y´1), (0, y0) and (h, y1).

Write the equation of the parabola as

y = Ax2 + Bx + C

Then the area between it and the x-axis with x running from ´h to h is

ż h

´h

[
Ax2 + Bx + C

]
dx =

[
A
3

x3 +
B
2

x2 + Cx
]h

´h

=
2A
3

h3 + 2Ch it is helpful to write it as

=
h
3

(
2Ah2 + 6C

)

74 Simpson’s rule is named after the 18th century English mathematician Thomas Simpson, despite its
use a century earlier by the German mathematician and astronomer Johannes Kepler. In many German
texts the rule is often called Kepler’s rule.
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Now, the the three points (´h, y´1), (0, y0) and (h, y1) lie on this parabola if and only if

Ah2
´ Bh + C = y´1 at (´h, y´1)

C = y0 at (0, y0)

Ah2 + Bh + C = y1 at (h, y1)

Adding the first and third equations together gives us

2Ah2 + (B´ B)h + 2C = y´1 + y1

To this we add four times the middle equation

2Ah2 + 6C = y´1 + 4y0 + y1.

This means that

area =

ż h

´h

[
Ax2 + Bx + C

]
dx =

h
3

(
2Ah2 + 6C

)

=
h
3
(y´1 + 4y0 + y1)

Note that here

• h is one half of the length of the x–interval under consideration

• y´1 is the height of the parabola at the left hand end of the interval under consider-
ation

• y0 is the height of the parabola at the middle point of the interval under considera-
tion

• y1 is the height of the parabola at the right hand end of the interval under consider-
ation

So Simpson’s rule approximates
ż x2

x0

f (x)dx « 1
3 ∆x

[
f (x0) + 4 f (x1) + f (x2)

]

and
ż x4

x2

f (x)dx « 1
3 ∆x

[
f (x2) + 4 f (x3) + f (x4)

]

and so on. Summing these all together gives:
ż b

a
f (x)dx =

ż x2

x0

f (x)dx +

ż x4

x2

f (x)dx +

ż x6

x4

f (x)dx + ¨ ¨ ¨+

ż xn

xn´2

f (x)dx

« ∆x
3

[
f (x0) + 4 f (x1) + f (x2)

]
+ ∆x

3

[
f (x2) + 4 f (x3) + f (x4)

]

+ ∆x
3

[
f (x4) + 4 f (x5) + f (x6)

]
+ ¨ ¨ ¨ + ∆x

3

[
f (xn´2) + 4 f (xn´1) + f (xn)

]

=
[

f (x0)+ 4 f (x1)+ 2 f (x2)+ 4 f (x3)+ 2 f (x4)+ ¨ ¨ ¨+ 2 f (xn´2)+ 4 f (xn´1)+ f (xn)
]

∆x
3

In summary
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The Simpson’s rule approximation is

ż b

a
f (x)dx «

[
f (x0)+ 4 f (x1)+ 2 f (x2)+ 4 f (x3)+ 2 f (x4)+ ¨ ¨ ¨

¨ ¨ ¨+ 2 f (xn´2)+ 4 f (xn´1)+ f (xn)
]

∆x
3

where n is even and

∆x = b´a
n , x0 = a, x1 = a + ∆x, x2 = a + 2∆x, ¨ ¨ ¨ , xn´1 = b´ ∆x, xn = b

Equation 1.11.9(Simpson’s rule).

Notice that Simpson’s rule requires essentially no more work than the trapezoidal rule.
In both rules we must evaluate f (x) at x = x0, x1, . . . , xn, but we add those terms multi-
plied by different constants75.

Let’s put it to work on our two running examples.

Example 1.11.10
(
ş1

0
4

1+x2 dx — using Simpson’s rule
)

Solution. We proceed almost identically to Example 1.11.7 and again use n = 8 steps.

• We have the same ∆, a, b, x0, . . . , xn as Example 1.11.7.

• Applying Equation 1.11.9 gives
ż 1

0

4
1 + x2 dx «

[
4

1 + 02 + 4
4

1 + 1
82

+ 2
4

1 + 22

82

+ 4
4

1 + 32

82

+ 2
4

1 + 42

82

+ 4
4

1 + 52

82

+ 2
4

1 + 62

82

+ 4
4

1 + 72

82

+
4

1 + 82

82

]
1

8ˆ 3

=
[
4 + 4ˆ 3.938461538 + 2ˆ 3.764705882 + 4ˆ 3.506849315

+ 2ˆ 3.2 + 4ˆ 2.876404494 + 2ˆ 2.56 + 4ˆ 2.265486726 + 2
] 1

8ˆ 3
= 3.14159250

to eight decimal places.

• This agrees with π (the exact value of the integral) to six decimal places. So the error
in the approximation generated by eight steps of Simpson’s rule is |3.14159250 ´
π| = 1.5ˆ 10´7, which is 100 |3.14159250´π|

π % = 5ˆ 10´6% of the exact answer.

75 There is an easy generalisation of Simpson’s rule that uses cubics instead of parabolas. It leads to the
formula

ż b

a
f (x)dx = [ f (x0) + 3 f (x1) + 3 f (x2) + 2 f (x3) + 2 f (x4) + 3 f (x5) + 3 f (x6) + 2 f (x7) + ¨ ¨ ¨+ f (xn)]

3∆x
8

where n is a multiple of 3. This result is known as Simpson’s second rule and Simpson’s 3/8 rule. While
one can push this approach further (using quartics, quintics etc), it can sometimes lead to larger errors
— the interested reader should look up Runge’s phenomenon.
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Example 1.11.10

It is striking that the absolute error approximating with Simpson’s rule is so much smaller
than the error from the midpoint and trapezoidal rules.

midpoint error = 0.0013
trapezoid error = 0.0026
Simpson error = 0.00000015

Buoyed by this success, we will also redo Example 1.11.8 using Simpson’s rule.

Example 1.11.11
(şπ

0 sin x dx — Simpson’s rule
)

Solution. We proceed almost identically to Example 1.11.8 and again use n = 8 steps.

• We have the same ∆, a, b, x0, . . . , xn as Example 1.11.7.

• Applying Equation 1.11.9 gives

ż π

0
sin x dx «

[
sin(x0) + 4 sin(x1) + 2 sin(x2) + ¨ ¨ ¨+ 4 sin(x7) + sin(x8)

]
∆x
3

=
[

sin(0) + 4 sin(π
8 ) + 2 sin(2π

8 ) + 4 sin(3π
8 ) + 2 sin(4π

8 )

+ 4 sin(5π
8 ) + 2 sin(6π

8 ) + 4 sin(7π
8 ) + sin(8π

8 )
]

π
8ˆ3

=
[
0 + 4ˆ 0.382683 + 2ˆ 0.707107 + 4ˆ 0.923880 + 2ˆ 1.0

+ 4ˆ 0.923880 + 2ˆ 0.707107 + 4ˆ 0.382683 + 0
]

π
8ˆ3

= 15.280932ˆ 0.130900
= 2.00027

• With only eight steps of Simpson’s rule we achieved 1002.00027´2
2 = 0.014% accuracy.

Example 1.11.11

Again we contrast the error we achieved with the other two rules:

midpoint error = 0.013
trapezoid error = 0.026
Simpson error = 0.00027

This completes our derivation of the midpoint, trapezoidal and Simpson’s rules for
approximating the values of definite integrals. So far we have not attempted to see how
efficient and how accurate the algorithms are in general. That’s our next task.
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1.11.4 §§ Three Simple Numerical Integrators – Error Behaviour

Now we are armed with our three (relatively simple) method for numerical integration
we should give thought to how practical they might be in the real world76. Two obvious
considerations when deciding whether or not a given algorithm is of any practical value
are

(a) the amount of computational effort required to execute the algorithm and

(b) the accuracy that this computational effort yields.

For algorithms like our simple integrators, the bulk of the computational effort usually
goes into evaluating the function f (x). The number of evaluations of f (x) required for n
steps of the midpoint rule is n, while the number required for n steps of the trapezoidal
and Simpson’s rules is n + 1. So all three of our rules require essentially the same amount
of effort – one evaluation of f (x) per step.

To get a first impression of the error behaviour of these methods, we apply them to a
problem whose answer we know exactly:

ż π

0
sin x dx = ´ cos x

ˇ

ˇ

π

0 = 2.

To be a little more precise, we would like to understand how the errors of the three meth-
ods change as we increase the effort we put in (as measured by the number of steps n). The
following table lists the error in the approximate value for this number generated by our
three rules applied with three different choices of n. It also lists the number of evaluations
of f required to compute the approximation.

Midpoint Trapezoidal Simpson’s
n error # evals error # evals error # evals
10 4.1ˆ 10´1 10 8.2ˆ 10´1 11 5.5ˆ 10´3 11

100 4.1ˆ 10´3 100 8.2ˆ 10´3 101 5.4ˆ 10´7 101
1000 4.1ˆ 10´5 1000 8.2ˆ 10´5 1001 5.5ˆ 10´11 1001

Observe that

• Using 101 evaluations of f worth of Simpson’s rule gives an error 80 times smaller
than 1000 evaluations of f worth of the midpoint rule.

• The trapezoidal rule error with n steps is about twice the midpoint rule error with n
steps.

• With the midpoint rule, increasing the number of steps by a factor of 10 appears to
reduce the error by about a factor of 100 = 102 = n2.

• With the trapezoidal rule, increasing the number of steps by a factor of 10 appears
to reduce the error by about a factor of 102 = n2.

76 Indeed, even beyond the “real world” of many applications in first year calculus texts, some of the
methods we have described are used by actual people (such as ship builders, engineers and surveyors)
to estimate areas and volumes of actual objects!
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• With Simpson’s rule, increasing the number of steps by a factor of 10 appears to
reduce the error by about a factor of 104 = n4.

So it looks like

approx value of
ż b

a
f (x)dx given by n midpoint steps «

ż b

a
f (x)dx + KM ¨

1
n2

approx value of
ż b

a
f (x)dx given by n trapezoidal steps «

ż b

a
f (x)dx + KT ¨

1
n2

approx value of
ż b

a
f (x)dx given by n Simpson’s steps «

ż b

a
f (x)dx + KM ¨

1
n4

with some constants KM, KT and KS. It also seems that KT « 2KM.
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A log-log plot of the error in the n step approximation to
ż π

0
sin x dx.

Figure1.11.1.
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To test these conjectures for the behaviour of the errors we apply our three rules with
about ten different choices of n of the form n = 2m with m integer. Figure 1.11.1 con-
tains two graphs of the results. The left-hand plot shows the results for the midpoint and
trapezoidal rules and the right-hand plot shows the results for Simpson’s rule.

For each rule we are expecting (based on our conjectures above) that the error

en = |exact value ´ approximate value|

with n steps is (roughly) of the form

en = K
1
nk

for some constants K and k. We would like to test if this is really the case, by graphing
Y = en against X = n and seeing if the graph “looks right”. But it is not easy to tell
whether or not a given curve really is Y = K

Xk , for some specific k, by just looking at it.
However, your eye is pretty good at determining whether or not a graph is a straight line.
Fortunately, there is a little trick that turns the curve Y = K

Xk into a straight line – no matter
what k is.

Instead of plotting Y against X, we plot log Y against log X. This transformation77

works because when Y = K
Xk

log Y = log K´ k log X

So plotting y = log Y against x = log X gives the straight line y = log K ´ kx, which has
slope ´k and y–intercept log K.

The three graphs in Figure 1.11.1 plot y = log2 en against x = log2 n for our three rules.
Note that we have chosen to use logarithms78 with this “unusual base” because it makes
it very clear how much the error is improved if we double the number of steps used. To be
more precise — one unit step along the x-axis represents changing n ÞÑ 2n. For example,
applying Simpson’s rule with n = 24 steps results in an error of 0000166, so the point
(x = log2 24 = 4, y = log2 0000166 =

log 0000166
log 2 = ´15.8) has been included on the graph.

Doubling the effort used — that is, doubling the number of steps to n = 25— results
in an error of 0.00000103. So, the data point (x = log2 25 = 5 , y = log2 0.00000103 =
ln 0.00000103

ln 2 = ´19.9) lies on the graph. Note that the x-coordinates of these points differ
by 1 unit.

77 There is a variant of this trick that works even when you don’t know the answer to the integral ahead
of time. Suppose that you suspect that the approximation satisfies

Mn = A + K 1
nk

where A is the exact value of the integral and suppose that you don’t know the values of A, K and k.
Then

Mn ´M2n = K 1
nk ´ K 1

(2n)k = K
(
1´ 1

2k

) 1
nk

so plotting y = log(Mn ´M2n) against x = log n gives the straight line y = log
[
K
(
1´ 1

2k

)]
´ kx.

78 Now is a good time for a quick revision of logarithms — see “Whirlwind review of logarithms” in
Section 2.7 of the CLP Mathematics 100 notes.
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For each of the three sets of data points, a straight line has also been plotted “through”
the data points. A procedure called linear regression79 has been used to decide precisely
which straight line to plot. It provides a formula for the slope and y–intercept of the
straight line which “best fits” any given set of data points. From the three lines, it sure
looks like k = 2 for the midpoint and trapezoidal rules and k = 4 for Simpson’s rule.
It also looks like the ratio between the value of K for the trapezoidal rule, namely K =
20.7253, and the value of K for the midpoint rule, namely K = 2´0.2706, is pretty close to 2:
20.7253/2´0.2706 = 20.9959.

The intuition, about the error behaviour, that we have just developed is in fact correct
— provided the integrand f (x) is reasonably smooth. To be more precise

Assume that | f 2(x)| ď M for all a ď x ď b. Then

the total error introduced by the midpoint rule is bounded by
M
24

(b´ a)3

n2

and

the total error introduced by the trapezoidal rule is bounded by
M
12

(b´ a)3

n2

when approximating
ż b

a
f (x)dx. Further, if | f (4)(x)| ď L for all a ď x ď b, then

the total error introduced by Simpson’s rule is bounded by
L

180
(b´ a)5

n4 .

Theorem1.11.12 (Numerical integration errors).

The first of these error bounds in proven in the following (optional) section. Here are
some examples which illustrate how they are used. First let us check that the above result
is consistent with our data in Figure 1.11.1

Example 1.11.13
(
Midpoint rule error approximating

şπ
0 sin x dx

)

• The integral
şπ

0 sin x dx has b´ a = π.

• The second derivative of the integrand satisfies

ˇ

ˇ

ˇ

ˇ

d2

dx2 sin x
ˇ

ˇ

ˇ

ˇ

= | ´ sin x| ď 1

So we take M = 1.

79 Linear regression is not part of this course as its derivation requires some multivariable calculus. It is a
very standard technique in statistics.
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• So the error, en, introduced when n steps are used is bounded by

|en| ď
M
24

(b´ a)3

n2

=
π3

24
1
n2

« 1.29
1
n2

• The data in the graph in Figure 1.11.1 gives

|en| « 2´.2706 1
n2 = 0.83

1
n2

which is consistent with the bound |en| ď
π3

24
1

n2 .

Example 1.11.13

In a typical application we would be asked to evaluate a given integral to some spec-
ified accuracy. For example, if you are manufacturer and your machinery can only cut

materials to an accuracy of 1
10

th
of a millimeter, there is no point in making design specifi-

cations more accurate than 1
10

th
of a millimeter.

Example 1.11.14

Suppose, for example, that we wish to use the midpoint rule to evaluate80

ż 1

0
e´x2

dx

to within an accuracy of 10´6.

Solution.

• The integral has a = 0 and b = 1.

• The first two derivatives of the integrand are

d
dx

e´x2
= ´2xe´x2

and

d2

dx2 e´x2
=

d
dx
(
´ 2xe´x2)

= ´2e´x2
+ 4x2e´x2

= 2(2x2
´ 1)e´x2

• As x runs from 0 to 1, 2x2 ´ 1 increases from ´1 to 1, so that

0 ď x ď 1 ùñ |2x2
´ 1| ď 1, e´x2

ď 1 ùñ
ˇ

ˇ2(2x2
´ 1)e´x2 ˇ

ˇ ď 2

So we take M = 2.

80 This is our favourite running example of an integral that cannot be evaluated algebraically — we need
to use numerical methods.
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• The error introduced by the n step midpoint rule is at most

en ď
M
24

(b´ a)3

n2

ď
2

24
(1´ 0)3

n2 =
1

12n2

• We need this error to be smaller than 10´6 so

en ď
1

12n2 ď 10´6 and so

12n2
ě 106 clean up

n2
ě

106

12
= 83333.3 . . . square root both sides

n ě 288.7

So 289 steps of the midpoint rule will do the job.

• In fact n = 289 results in an error of about 3.7ˆ 10´7.

Example 1.11.14

That seems like far too much work, and the trapezoidal rule will have twice the error. So
we should look at Simpson’s rule.

Example 1.11.15

Suppose now that we wish evaluate
ş1

0 e´x2
dx to within an accuracy of 10´6 — but now

using Simpson’s rule. How many steps should we use?

Solution.

• Again we have a = 0, b = 1.

• We then need to bound d4

dx4 e´x2
on the domain of integration, 0 ď x ď 1.

d3

dx3 e´x2
=

d
dx

 

2(2x2
´ 1)e´x2(

= 8xe´x2
´ 4x(2x2

´ 1)e´x2

= 4(´2x3 + 3x)e´x2

d4

dx4 e´x2
=

d
dx

 

4(´2x3 + 3x)e´x2(
= 4(´6x2 + 3)e´x2

´ 8x(´2x3 + 3x)e´x2

= 4(4x4
´ 12x2 + 3)e´x2

• Now, for any x, e´x2
ď 1. Also, for 0 ď x ď 1,

0 ď x2, x4
ď 1 so

3 ď 4x4 + 3 ď 7 and

´12 ď ´12x2
ď 0 adding these together gives

´9 ď 4x4
´ 12x2 + 3 ď 7
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Consequently, |4x4 ´ 12x2 + 3| is bounded by 9 and so
ˇ

ˇ

ˇ

ˇ

d4

dx4 e´x2
ˇ

ˇ

ˇ

ˇ

ď 4ˆ 9 = 36

So take L = 36.

• The error introduced by the n step Simpson’s rule is at most

en ď
L

180
(b´ a)5

n4

ď
36

180
(1´ 0)5

n4 =
1

5n4

• In order for this error to be no more than 10´6 we require n to satisfy

en ď
1

5n4 ď 10´6 and so

5n4
ě 106

n4
ě 200000 take fourth root

n ě 21.15

So 22 steps of Simpson’s rule will do the job.

• n = 22 steps actually results in an error of 3.5 ˆ 10´8. The reason that we get an
error so much smaller than we need is that we have overestimated the number of
steps required. This, in turn, occurred because we made quite a rough bound of
ˇ

ˇ

ˇ

d4

dx4 f (x)
ˇ

ˇ

ˇ
ď 36. If we are more careful then we will get a slightly smaller n. It

actually turns out81 that you only need n = 10 to approximate within 10´6.

Example 1.11.15

1.11.5 §§ Optional — An error bound for the midpoint rule

We now try develop some understanding as to why we got the above experimental results.
We start with the error generated by a single step of the midpoint rule. That is, the error
introduced by the approximation

ż x1

x0

f (x)dx « f (x̄1)∆x where ∆x = x1 ´ x0, x̄1 = x0+x1
2

To do this we are going to need to apply integration by parts in a sneaky way. Let us start
by considering82 a subinterval α ď x ď β and let’s call the width of the subinterval 2q so

81 The authors tested this empirically.
82 We chose this interval so that we didn’t have lots of subscripts floating around in the algebra.
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that β = α + 2q. If we were to now apply the midpoint rule to this subinterval, then we
would write

ż β

α
f (x)dx « 2q ¨ f (α + q) = q f (α + q) + q f (β´ q)

since the interval has width 2q and the midpoint is α + q = β´ q.
The sneaky trick we will employ is to write

ż β

α
f (x)dx =

ż α+q

α
f (x)dx +

ż β

β´q
f (x)dx

and then examine each of the integrals on the right-hand side (using integration by parts)
and show that they are each of the form

ż α+q

α
f (x)dx « q f (α + q) + small error term

ż β

β´q
f (x)dx « q f (β´ q) + small error term

Let us apply integration by parts to
şα+q

α f (x)dx — with u = f (x), dv = dx so du =
f 1(x)dx and we will make the slightly non-standard choice of v = x´ α:

ż α+q

α
f (x)dx =

[
(x´ α) f (x)

]α+q
α

´

ż α+q

α
(x´ α) f 1(x)dx

= q f (α + q)´
ż α+q

α
(x´ α) f 1(x)dx

Notice that the first term on the right-hand side is the term we need, and that our non-
standard choice of v allowed us to avoid introducing an f (α) term.

Now integrate by parts again using u = f 1(x), dv = (x ´ α)dx, so du = f 2(x), v =
(x´α)2

2 :

ż α+q

α
f (x)dx = q f (α + q)´

ż α+q

α
(x´ α) f 1(x)dx

= q f (α + q)´
[
(x´ α)2

2
f 1(x)

]α+q

α

+

ż α+q

α

(x´ α)2

2
f 2(x)dx

= q f (α + q)´
q2

2
f 1(α + q) +

ż α+q

α

(x´ α)2

2
f 2(x)dx

To obtain a similar expression for the other integral, we repeat the above steps and obtain:

ż β

β´q
f (x)dx = q f (β´ q) +

q2

2
f 1(β´ q) +

ż β

β´q

(x´ β)2

2
f 2(x)dx
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Now add together these two expressions
ż α+q

α
f (x)dx +

ż β

β´q
f (x)dx = q f (α + q) + q f (β´ q) +

q2

2
( f 1(β´ q)´ f 1(α + q))

+

ż α+q

α

(x´ α)2

2
f 2(x)dx +

ż β

β´q

(x´ β)2

2
f 2(x)dx

Then since α + q = β´ q we can combine the integrals on the left-hand side and eliminate
some terms from the right-hand side:

ż β

α
f (x)dx = 2q f (α + q) +

ż α+q

α

(x´ α)2

2
f 2(x)dx +

ż β

β´q

(x´ β)2

2
f 2(x)dx

Rearrange this expression a little and take absolute values
ˇ

ˇ

ˇ

ˇ

ˇ

ż β

α
f (x)dx´ 2q f (α + q)

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż α+q

α

(x´ α)2

2
f 2(x)dx

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

ˇ

ż β

β´q

(x´ β)2

2
f 2(x)dx

ˇ

ˇ

ˇ

ˇ

ˇ

where we have also made use of the triangle inequality83. By assumption | f 2(x)| ď M on
the interval α ď x ď β, so

ˇ

ˇ

ˇ

ˇ

ˇ

ż β

α
f (x)dx´ 2q f (α + q)

ˇ

ˇ

ˇ

ˇ

ˇ

ď M
ż α+q

α

(x´ α)2

2
dx + M

ż β

β´q

(x´ β)2

2
dx

=
Mq3

3
=

M(β´ α)3

24

where we have used q = β´α
2 in the last step.

Thus on any interval xi ď x ď xi+1 = xi + ∆x
ˇ

ˇ

ˇ

ˇ

ż xi+1

xi

f (x)dx´ ∆x f
(

xi + xi+1

2

)ˇ
ˇ

ˇ

ˇ

ď
M
24

(∆x)3

Putting everything together we see that the error using the midpoint rule is bounded
by
ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a
f (x)dx´ [ f (x̄1) + f (x̄2) + ¨ ¨ ¨+ f (x̄n)]∆x

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż x1

x0

f (x)dx´ ∆x f (x̄1)

ˇ

ˇ

ˇ

ˇ

+ ¨ ¨ ¨+

ˇ

ˇ

ˇ

ˇ

ˇ

ż xn

xn´1

f (x)dx´ ∆x f (x̄n)

ˇ

ˇ

ˇ

ˇ

ˇ

ď nˆ
M
24

(∆x)3 = nˆ
M
24

(
b´ a

n

)3

=
M(b´ a)3

24n2

as required.
A very similar analysis shows that, as was stated in Theorem 1.11.12 above,

83 The triangle inequality says that for any real numbers x, y

|x + y| ď |x|+ |y|.
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• the total error introduced by the trapezoidal rule is bounded by
M
12

(b´ a)3

n2 ,

• the total error introduced by Simpson’s rule is bounded by
M

180
(b´ a)5

n4

1.12Ĳ Improper Integrals

1.12.1 §§ Definitions

To this point we have only considered nicely behaved integrals
şb

a f (x)dx. Though the
algebra involved in some of our examples was quite difficult, all the integrals had

• finite limits of integration a and b, and

• a bounded integrand f (x) (and in fact continuous except possibly for finitely many
jump discontinuities).

Not all integrals we need to study are quite so nice.

An integral having either an infinite limit of integration or an unbounded inte-
grand is called an improper integral.

Definition1.12.1.

Two examples are
ż 8

0

dx
1 + x2 and

ż 1

0

dx
x

The first has an infinite domain of integration and the integrand of the second tends to 8
as x approaches the left end of the domain of integration. We’ll start with an example that
illustrates the traps that you can fall into if you treat such integrals sloppily. Then we’ll
see how to treat them carefully.

Example 1.12.2
(
ş1
´1

1
x2 dx

)

Consider the integral
ż 1

´1

1
x2 dx

If we “do” this integral completely naively then we get
ż 1

´1

1
x2 dx =

x´1

´1

ˇ

ˇ

ˇ

ˇ

1

´1

=
1
´1

´
´1
´1

= ´2
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which is wrong84. In fact, the answer is ridiculous. The integrand 1
x2 ą 0, so the integral

has to be positive.
The flaw in the argument is that the fundamental theorem of calculus, which says that

if F1(x) = f (x) then
şb

a f (x)dx = F(b)´ F(a)

is applicable only when F1(x) exists and equals f (x) for all a ď x ď b. In this case F1(x) =
1
x2 does not exist for x = 0. The given integral is improper. We’ll see later that the correct
answer is +8.

Example 1.12.2

Let us put this example to one side for a moment and turn to the integral
ş8

a
dx

1+x2 . In this
case, the integrand is bounded but the domain of integration extends to +8. We can eval-
uate this integral by sneaking up on it. We compute it on a bounded domain of integration,
like

şR
a

dx
1+x2 , and then take the limit R Ñ 8. Let us put this into practice:

a R x

y = f(x)

Example 1.12.3
(
ş8

a
dx

1+x2

)

Solution.

• Since the domain extends to +8we first integrate on a finite domain
ż R

a

dx
1 + x2 = arctan x

ˇ

ˇ

ˇ

ˇ

R

a

= arctan R´ arctan a

• We then take the limit as R Ñ +8:
ż 8

a

dx
1 + x2 = lim

RÑ8

ż R

a

dx
1 + x2

= lim
RÑ8

[
arctan R´ arctan a

]

=
π

2
´ arctan a.

84 Very wrong. But it is not an example of “not even wrong” — which is a phrase attributed to the physicist
Wolfgang Pauli who was known for his harsh critiques of sloppy arguments. The phrase is typically
used to describe arguments that are so incoherent that not only can one not prove they are true, but
they lack enough coherence to be able to show they are false. The interested reader should do a little
searchengineing and look at the concept of falisfyability.
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Example 1.12.3

To be more precise, we actually formally define an integral with an infinite domain
as the limit of the integral with a finite domain as we take one or more of the limits of
integration to infinity.

(a) If the integral
şR

a f (x) dx exists for all R ą a, then

ż 8

a
f (x) dx = lim

RÑ8

ż R

a
f (x) dx

when the limit exists (and is finite).

(b) If the integral
şb

r f (x) dx exists for all r ă b, then

ż b

´8

f (x) dx = lim
rÑ´8

ż b

r
f (x) dx

when the limit exists (and is finite).

(c) If the integral
şR

r f (x) dx exists for all r ă R, then

ż 8

´8

f (x) dx = lim
rÑ´8

ż c

r
f (x) dx + lim

RÑ8

ż R

c
f (x) dx

when both limits exist (and are finite). Any c can be used.

When the limit(s) exist, the integral is said to be convergent. Otherwise it is said
to be divergent.

Definition1.12.4 (Improper integral with infinite domain of integration).

We must also be able to treat an integral like
ş1

0
dx
x that has a finite domain of integration

but whose integrand is unbounded near one limit of integration85 Our approach is similar
— we sneak up on the problem. We compute the integral on a smaller domain, such as
ş1

t
dx
x , with t ą 0, and then take the limit t Ñ 0+.

Example 1.12.5
(
ş1

0
1
x dx

)

Solution.

• Since the integrand is unbounded near x = 0, we integrate on the smaller domain

85 This will, in turn, allow us to deal with integrals whose integrand is unbounded somewhere inside the
domain of integration.
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t ď x ď 1 with t ą 0:

ż 1

t

1
x

dx = log |x|
ˇ

ˇ

ˇ

ˇ

1

t
= ´ log |t|

• We then take the limit as t Ñ 0+ to obtain

ż 1

0

1
x

dx = lim
t=0+

ż 1

t

1
x

dx = lim
t=0+

´ log |t| = +8

Thus this integral diverges to +8.

Example 1.12.5

t 1 x

y

y = 1
x

Indeed, we define integrals with unbounded integrands via this process:

190



INTEGRATION 1.12 IMPROPER INTEGRALS

(a) If the integral
şb

t f (x) dx exists for all a ă t ă b, then

ż b

a
f (x) dx = lim

tÑa+

ż b

t
f (x) dx

when the limit exists (and is finite).

(b) If the integral
şT

a f (x) dx exists for all a ă T ă b, then

ż b

a
f (x) dx = lim

TÑb´

ż T

a
f (x) dx

when the limit exists (and is finite).

(c) Let a ă c ă b. If the integrals
şT

a f (x) dx and
şb

t f (x) dx exist for all a ă T ă c
and c ă t ă b, then

ż b

a
f (x) dx = lim

TÑc´

ż T

a
f (x) dx + lim

tÑc+

ż b

t
f (x) dx

when both limit exist (and are finite).

When the limit(s) exist, the integral is said to be convergent. Otherwise it is said
to be divergent.

Definition1.12.6 (Improper integral with unbounded integrand).

Notice that (c) is used when the integrand is unbounded at some point in the middle
of the domain of integration, such as was the case in our original example

ż 1

´1

1
x2 dx

A quick computation shows that this integral diverges to +8

ż 1

´1

1
x2 dx = lim

aÑ0´

ż a

´1

1
x2 dx + lim

bÑ0+

ż 1

b

1
x2 dx

= lim
aÑ0´

[
1´

1
a

]
+ lim

bÑ0+

[
1
b
´ 1
]

= +8

More generally, if an integral has more than one “source of impropriety” (for exam-
ple an infinite domain of integration and an integrand with an unbounded integrand or
multiple infinite discontinuities) then you split it up into a sum of integrals with a single
“source of impropriety” in each. For the integral, as a whole, to converge every term in
that sum has to converge.

For example
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Example 1.12.7
(
ş8

´8
dx

(x´2)x2

)

Consider the integral
ż 8

´8

dx
(x´ 2)x2

• The domain of integration that extends to both +8 and ´8.

• The integrand is singular (i.e. becomes infinite) at x = 2 and at x = 0.

• So we would write the integral as
ż 8

´8

dx
(x´ 2)x2 =

ż a

´8

dx
(x´ 2)x2 +

ż 0

a

dx
(x´ 2)x2 +

ż b

0

dx
(x´ 2)x2

+

ż 2

b

dx
(x´ 2)x2 +

ż c

2

dx
(x´ 2)x2 +

ż 8

c

dx
(x´ 2)x2

where

– a is any number strictly less than 0,
– b is any number strictly between 0 and 2, and
– c is any number strictly bigger than 2.

So, for example, take a = ´1, b = 1, c = 3.

• When we examine the right-hand side we see that

– the first integral has domain of integration extending to ´8
– the second integral has an integrand that becomes unbounded as x Ñ 0´,
– the third integral has an integrand that becomes unbounded as x Ñ 0+,
– the fourth integral has an integrand that becomes unbounded as x Ñ 2´,
– the fifth integral has an integrand that becomes unbounded as x Ñ 2+, and
– the last integral has domain of integration extending to +8.

• Each of these integrals can then be expressed as a limit of an integral on a small
domain.

Example 1.12.7

1.12.2 §§ Examples

With the more formal definitions out of the way, we are now ready for some (important)
examples.

Example 1.12.8
(
ş8

1
dx
xp with p ą 0

)

Solution.
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• Fix any p ą 0.

• The domain of the integral
ş8

1
dx
xp extends to +8 and the integrand 1

xp is continuous
and bounded on the whole domain.

• So we write this integral as the limit

ż 8

1

dx
xp = lim

RÑ8

ż R

1

dx
xp

• The antiderivative of 1/xp changes when p = 1, so we will split the problem into
three cases, p ą 1, p = 1 and p ă 1.

• When p ą 1,

ż R

1

dx
xp =

1
1´ p

x1´p
ˇ

ˇ

ˇ

ˇ

R

1

=
R1´p ´ 1

1´ p

Taking the limit as R Ñ 8 gives

ż 8

1

dx
xp = lim

RÑ8

ż R

1

dx
xp

= lim
RÑ8

R1´p ´ 1
1´ p

=
´1

1´ p
=

1
p´ 1

since 1´ p ă 0.

• Similarly when p ă 1 we have

ż 8

1

dx
xp = lim

RÑ8

ż R

1

dx
xp = lim

RÑ8

R1´p ´ 1
1´ p

= +8

because 1´ p ą 0 and the term R1´p diverges to +8.

• Finally when p = 1

ż R

1

dx
x

= log |R| ´ log 0 = log R

Then taking the limit as R Ñ 8 gives us
ż 8

1

dx
xp = lim

RÑ8
log |R| = +8.
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• So summarising, we have

ż 8

1

dx
xp =

#

divergent if p ď 1
1

p´1 if p ą 1

Example 1.12.8

Example 1.12.9
(
ş1

0
dx
xp with p ą 0

)

Solution.

• Again fix any p ą 0.

• The domain of integration of the integral
ş1

0
dx
xp is finite, but the integrand 1

xp becomes
unbounded as x approaches the left end, 0, of the domain of integration.

• So we write this integral as

ż 1

0

dx
xp = lim

tÑ0+

ż 1

t

dx
xp

• Again, the antiderivative changes at p = 1, so we split the problem into three cases.

• When p ą 1 we have

ż 1

t

dx
xp =

1
1´ p

x1´p
ˇ

ˇ

ˇ

ˇ

1

t

=
1´ t1´p

1´ p

Since 1´ p ă 0 when we take the limit as t Ñ 0 the term t1´p diverges to +8 and
we obtain

ż 1

0

dx
xp = lim

tÑ0+

1´ t1´p

1´ p
= +8

• When p = 1 we similarly obtain

ż 1

0

dx
x

= lim
tÑ0+

ż 1

t

dx
x

= lim
tÑ0+

(
´ log |t|

)

= +8
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• Finally, when p ă 1 we have

ż 1

0

dx
xp = lim

tÑ0+

ż 1

t

dx
xp

= lim
tÑ0+

1´ t1´p

1´ p
=

1
1´ p

since 1´ p ą 0.

• In summary

ż 1

0

dx
xp =

#

1
1´p if p ă 1

divergent if p ě 1

Example 1.12.9

Example 1.12.10
(
ş8

0
dx
xp with p ą 0

)

Solution.

• Yet again fix p ą 0.

• This time the domain of integration of the integral
ş8

0
dx
xp extends to +8, and in

addition the integrand 1
xp becomes unbounded as x approaches the left end, 0, of the

domain of integration.

• So we split the domain in two — given our last two examples, the obvious place to
cut is at x = 1:

ż 8

0

dx
xp =

ż 1

0

dx
xp +

ż 8

1

dx
xp

• We saw, in Example 1.12.9, that the first integral diverged whenever p ě 1, and we
also saw, in Example 1.12.8, that the second integral diverged whenever p ď 1.

• So the integral
ş8

0
dx
xp diverges for all values of p.

Example 1.12.10

Example 1.12.11
(
ş1
´1

dx
x

)

This is a pretty subtle example. Look at the sketch below: This suggests that the signed
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−1
1

x

y

y = 1
x

area to the left of the y–axis should exactly cancel the area to the right of the y–axis making
the value of the integral

ş1
´1

dx
x exactly zero.

But both of the integrals
ż 1

0

dx
x

= lim
tÑ0+

ż 1

t

dx
x

= lim
tÑ0+

[
log x

]1

t
= lim

tÑ0+
log

1
t

= +8

ż 0

´1

dx
x

= lim
TÑ0´

ż T

´1

dx
x

= lim
TÑ0´

[
log |x|

]T

´1
= lim

TÑ0´
log |T| = ´8

diverge so
ş1
´1

dx
x diverges. Don’t make the mistake of thinking that8´8 = 0. It is undefined.

And it is undefined for good reason.
For example, we have just seen that the area to the right of the y–axis is

lim
tÑ0+

ż 1

t

dx
x

= +8

and that the area to the left of the y–axis is (substitute ´7t for T above)

lim
tÑ0+

ż ´7t

´1

dx
x

= ´8

If8´8 = 0, the following limit should be 0.

lim
tÑ0+

[
ż 1

t

dx
x

+

ż ´7t

´1

dx
x

]
= lim

tÑ0+

[
log

1
t
+ log | ´ 7t|

]

= lim
tÑ0+

[
log

1
t
+ log(7t)

]

= lim
tÑ0+

[
´ log t + log 7 + log t

]
= lim

tÑ0+
log 7

= log 7

This appears to give 8´8 = log 7. Of course the number 7 was picked at random. You
can make8´8 be any number at all, by making a suitable replacement for 7.
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Example 1.12.11

Example 1.12.12 (Example 1.12.2 revisited)

The careful computation of the integral of Example 1.12.2 is

ż 1

´1

1
x2 dx = lim

TÑ0´

ż T

´1

1
x2 dx + lim

tÑ0+

ż 1

t

1
x2 dx

= lim
TÑ0´

[
´

1
x

]T

´1
+ lim

tÑ0+

[
´

1
x

]1

t

= 8+8

Hence the integral diverges to +8.

Example 1.12.12

Example 1.12.13
(
ş8

´8
dx

1+x2

)

Since

lim
RÑ8

ż R

0

dx
1 + x2 = lim

RÑ8

[
arctan x

]R

0
= lim

RÑ8
arctan R =

π

2

lim
rÑ´8

ż 0

r

dx
1 + x2 = lim

rÑ´8

[
arctan x

]0

r
= lim

rÑ´8
´ arctan r =

π

2

The integral
ş8

´8
dx

1+x2 converges and takes the value π.

Example 1.12.13

Example 1.12.14

For what values of p does
ş8

e
dx

x(log x)p converge?

Solution.

• For x ě e, the denominator x(log x)p is never zero. So the integrand is bounded
on the entire domain of integration and this integral is improper only because the
domain of integration extends to +8 and we proceed as usual.
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• We have
ż 8

e

dx
x(log x)p = lim

RÑ8

ż R

e

dx
x(log x)p use substitution

= lim
RÑ8

ż log R

1

du
up with u = log x, du =

dx
x

= lim
RÑ8

$

&

%

1
1´p

[
(log R)1´p ´ 1

]
if p ‰ 1

log(log R) if p = 1

=

#

divergent if p ď 1
1

p´1 if p ą 1

In this last step we have used similar logic that that used in Example 1.12.8, but with
R replaced by log R.

Example 1.12.14

Example 1.12.15 (the gamma function)

The gamma function Γ(x) is defined by the improper integral

Γ(t) =
ż 8

0
xt´1e´x dx

We shall now compute Γ(n) for all natural numbers n.

• To get started, we’ll compute

Γ(1) =
ż 8

0
e´x dx = lim

RÑ8

ż R

0
e´x dx = lim

RÑ8

[
´ e´x

]R

0
= 1

• Then compute

Γ(2) =
ż 8

0
xe´x dx

= lim
RÑ8

ż R

0
xe´x dx use integration by parts with

u = x, dv = e´xdx,

v = ´e´x, du = dx

= lim
RÑ8

[
´ xe´x

ˇ

ˇ

ˇ

R

0
+

ż R

0
e´x dx

]

= lim
RÑ8

[
´ xe´x

´ e´x
]R

0

= 1

For the last equality, we used that lim
xÑ8

xe´x = 0.
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• Now we move on to general n, using the same type of computation as we just used
to evaluate Γ(2). For any natural number n,

Γ(n + 1) =
ż 8

0
xne´x dx

= lim
RÑ8

ż R

0
xne´x dx again integrate by parts with

u = xn, dv = e´xdx,

v = ´e´x, du = nxn´1dx

= lim
RÑ8

[
´ xne´x

ˇ

ˇ

ˇ

R

0
+

ż R

0
nxn´1e´x dx

]

= lim
RÑ8

n
ż R

0
xn´1e´x dx

= nΓ(n)

To get to the third row, we used that lim
xÑ8

xne´x = 0.

• Now that we know Γ(2) = 1 and Γ(n + 1) = nΓ(n), for all n P N, we can compute
all of the Γ(n)’s.

Γ(2) = 1
Γ(3) = Γ(2 + 1)= 2Γ(2) = 2 ¨ 1
Γ(4) = Γ(3 + 1)= 3Γ(3) = 3 ¨ 2 ¨ 1
Γ(5) = Γ(4 + 1)= 4Γ(4) = 4 ¨ 3 ¨ 2 ¨ 1

...
Γ(n) = (n´ 1) ¨ (n´ 2) ¨ ¨ ¨ 4 ¨ 3 ¨ 2 ¨ 1 = (n´ 1)!

That is, the factorial is just86 the Gamma function shifted by one.

Example 1.12.15

1.12.3 §§ Convergence Tests for Improper Integrals

It is very common to encounter integrals that are too complicated to evaluate explicitly.
Numerical approximation schemes, evaluated by computer, are often used instead (see
Section 1.11. You want to be sure that at least the integral converges before feeding it into

86 The Gamma function is far more important than just a generalisation of the factorial. It appears all over
mathematics, physics, statistics and beyond. It has all sorts of interesting properties and its definition
can be extended from natural numbers n to all numbers excluding 0,´1,´2,´3, . . . . For example, one
can show that

Γ(1´ z)Γ(z) =
π

sin πz
.
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a computer87. Fortunately it is usually possible to determine whether or not an improper
integral converges even when you cannot evaluate it explicitly.

Remark 1.12.16. For pedagogical purposes, we are going to concentrate on the problem
of determining whether or not an integral

ş8

a f (x) dx converges, when f (x) has no singu-
larities for x ě a. Recall that the first step in analyzing any improper integral is to write it
as a sum of integrals each of has only a single “source of impropriety” — either a domain
of integration that extends to +8, or a domain of integration that extends to ´8, or an
integrand which is singular at one end of the domain of integration. So we are now going
to consider only the first of these three possibilities. But the techniques that we are about
to see have obvious analogues for the other two possibilities.

Now let’s start. Imagine that we have an improper integral
ş8

a f (x) dx, that f (x) has
no singularities for x ě a and that f (x) is complicated enough that we cannot evaluate the
integral explicitly88. The idea is find another improper integral

ş8

a g(x) dx

• with g(x) simple enough that we can evaluate the integral
ş8

a g(x) dx explicitly, or
at least determine easily whether or not

ş8

a g(x) dx converges, and

• with g(x) behaving enough like f (x) for large x that the integral
ş8

a f (x) dx con-
verges if and only if

ş8

a g(x) dx converges.

So far, this is a pretty vague strategy. Here is a theorem which starts to make it more
precise.

Let a be a real number. Let f and g be functions that are defined and continuous
for all x ě a and assume that g(x) ě 0 for all x ě 0.

(a) If | f (x)| ď g(x) for all x ě a and if
ş8

a g(x) dx converges then
ş8

a f (x) dx also
converges.

(b) If f (x) ě g(x) for all x ě a and if
ş8

a g(x) dx diverges then
ş8

a f (x) diverges.

Theorem1.12.17 (Comparison).

We will not prove this theorem, but, hopefully, the following supporting arguments
should at least appear reasonable to you. Consider the figure below:

87 Applying numerical integration methods to a divergent integral may result in perfectly reasonably
looking but very wrong answers.

88 You could, for example, think of something like our running example
ş8

a e´t2
dt.
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• If
ş8

a g(x) dx converges, then the area of
 

(x, y)
ˇ

ˇ x ě a, 0 ď y ď g(x)
(

is finite.

When | f (x)| ď g(x), the region
 

(x, y)
ˇ

ˇ x ě a, 0 ď y ď | f (x)|
(

is contained inside
 

(x, y)
ˇ

ˇ x ě a, 0 ď y ď g(x)
(

and so must also have finite area. Consequently the areas of both the regions
 

(x, y)
ˇ

ˇ x ě a, 0 ď y ď f (x)
(

and
 

(x, y)
ˇ

ˇ x ě a, f (x) ď y ď 0
(

are finite too89.

• If
ş8

a g(x) dx diverges, then the area of
 

(x, y)
ˇ

ˇ x ě a, 0 ď y ď g(x)
(

is infinite.

When f (x) ě g(x), the region
 

(x, y)
ˇ

ˇ x ě a, 0 ď y ď f (x)
(

contains the region
 

(x, y)
ˇ

ˇ x ě a, 0 ď y ď g(x)
(

and so also has infinite area.

Example 1.12.18
(
ş8

1 e´x2
dx
)

We cannot evaluate the integral
ş8

1 e´x2
dx explicitly90, however we would still like to un-

derstand if it is finite or not — does it converge or diverge?

Solution. We will use Theorem 1.12.17 to answer the question.

• So we want to find another integral that we can compute and that we can compare to
ş8

1 e´x2
dx. To do so we pick an integrand that looks like e´x2

, but whose indefinite
integral we know — such as e´x.

• When x ě 1, we have x2 ě x and hence e´x2
ď e´x. Thus we can use Theorem 1.12.17

to compare
ż 8

1
e´x2

dx with
ż 8

1
e´xdx

• The integral
ż 8

1
e´x dx = lim

RÑ8

ż R

1
e´x dx

= lim
RÑ8

[
´ e´x

]R

1

= lim
RÑ8

[
e´1

´ e´R
]
= e´1

converges.

89 We have separated the regions in which f (x) is positive and negative, because the integral
ş8

a f (x) dx
represents the signed area of the union of

 

(x, y)
ˇ

ˇ x ě a, 0 ď y ď f (x)
(

and
 

(x, y)
ˇ

ˇ x ě a, f (x) ď
y ď 0

(

.
90 It has been the subject of many remarks and footnotes.
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• So, by Theorem 1.12.17, with a = 1, f (x) = e´x2
and g(x) = e´x, the integral

ş8

1 e´x2
dx converges too (it is approximately equal to 0.1394).

Example 1.12.18

Example 1.12.19
(
ş8

1/2 e´x2
dx
)

Solution.

• The integral
ş8

1/2 e´x2
dx is quite similar to the integral

ş8

1 e´x2
dx of Example 1.12.18.

But we cannot just repeat the argument of Example 1.12.18 because it is not true that
e´x2

ď e´x when 0 ă x ă 1.

• In fact, for 0 ă x ă 1, x2 ă x so that e´x2
ą e´x.

• However the difference between the current example and Example 1.12.18 is

ż 8

1/2
e´x2

dx´
ż 8

1
e´x2

dx =

ż 1

1/2
e´x2

dx

which is clearly a well defined finite number (its actually about 0.286). It is important
to note that we are being a little sloppy by taking the difference of two integrals like
this — we are assuming that both integrals converge. More on this below.

• So we would expect that
ş8

1/2 e´x2
dx should be the sum of the proper integral inte-

gral
ş1

1/2 e´x2
dx and the convergent integral

ş8

1 e´x2
dx and so should be a conver-

gent integral. This is indeed the case. The Theorem below provides the justification.

Example 1.12.19

Let a and c be real numbers with a ă c and let the function f (x) be continuous
for all x ě a. Then the improper integral

ş8

a f (x) dx converges if and only if the
improper integral

ş8

c f (x) dx converges.

Theorem1.12.20.

Proof. By definition the improper integral
ş8

a f (x) dx converges if and only if the limit

lim
RÑ8

ż R

a
f (x) dx = lim

RÑ8

[
ż c

a
f (x) dx +

ż R

c
f (x) dx

]

=

ż c

a
f (x) dx + lim

RÑ8

ż R

c
f (x) dx
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exists and is finite. (Remember that, in computing the limit,
şc

a f (x) dx is a finite constant
independent of R and so can be pulled out of the limit.) But that is the case if and only if
the limit limRÑ8

şR
c f (x) dx exists and is finite, which in turn is the case if and only if the

integral
ş8

c f (x) dx converges.

Example 1.12.21

Does the integral
ş8

1

?
x

x2+x dx converge or diverge?

Solution.

• Our first task is to identify the potential sources of impropriety for this integral.

• The domain of integration extends to +8, but we must also check to see if the in-
tegrand contains any singularities. On the domain of integration x ě 1 so the de-
nominator is never zero and the integrand is continuous. So the only problem is at
+8.

• Our second task is to develop some intuition91. As the only problem is that the
domain of integration extends to infinity, whether or not the integral converges will
be determined by the behavior of the integrand for very large x.

• When x is very large, x2 is much much larger than x (which we can write as x2 " x)
so that the denominator x2 + x « x2 and the integrand

?
x

x2 + x
«

?
x

x2 =
1

x3/2

• By Example 1.12.8, with p = 3/2, the integral
ş8

1
dx

x3/2 converges. So we would expect

that
ş8

1

?
x

x2+x dx converges too.

• Our final task is to verify that our intuition is correct. To do so, we want to apply
part (a) of Theorem 1.12.17 with f (x) =

?
x

x2+x and g(x) being 1
x3/2 , or possibly some

constant times 1
x3/2 . That is, we need to show that for all x ě 1 (i.e. on the domain of

integration)
?

x
x2 + x

ď
A

x3/2

for some constant A. Let’s try this.

• Since x ě 1 we know that

x2 + x ą x2

Now take the reciprocal of both sides:

1
x2 + x

ă
1
x2

91 This takes practice, practice and more practice. At the risk of alliteration — please perform plenty of
practice problems.
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Multiply both sides by
?

x (which is always positive, so the sign of the inequality
does not change)

?
x

x2 + x
ă

?
x

x2 =
1

x3/2

• So Theorem 1.12.17(a) and Example 1.12.8, with p = 3/2 do indeed show that the
integral

ş8

1

?
x

x2+x dx converges.

Example 1.12.21

Notice that in this last example we managed to show that the integral exists by finding
an integrand that behaved the same way for large x. Our intuition then had to be bolstered
with some careful inequalities to apply the comparison Theorem 1.12.17. It would be
nice to avoid this last step and be able jump from the intuition to the conclusion without
messing around with inequalities. Thankfully there is a variant of Theorem 1.12.17 that is
often easier to apply and that also fits well with the sort of intuition that we developed to
solve Example 1.12.21.

A key phrase in the previous paragraph is “behaves the same way for large x”. A good
way to formalise this expression — “ f (x) behaves like g(x) for large x” — is to require
that the limit

lim
xÑ8

f (x)
g(x)

exists and is a finite nonzero number.

Suppose that this is the case and call the limit L ‰ 0. Then

• the ratio f (x)
g(x) must approach L as x tends to +8.

• So when x is very large — say x ą B, for some big number B — we must have that

1
2

L ď
f (x)
g(x)

ď 2L for all x ą B

Equivalently, f (x) lies between L
2 g(x) and 2Lg(x), for all x ě B.

• Consequently, the integral of f (x) converges if and only if the integral of g(x) con-
verges, by Theorems 1.12.17 and 1.12.20.

These considerations lead to the following variant of Theorem 1.12.17.
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INTEGRATION 1.12 IMPROPER INTEGRALS

Let ´8 ă a ă 8. Let f and g be functions that are defined and continuous for all
x ě a and assume that g(x) ě 0 for all x ě a.

(a) If
ş8

a g(x) dx converges and the limit

lim
xÑ8

f (x)
g(x)

exists, then
ş8

a f (x) dx converges.

(b) If
ş8

a g(x) dx diverges and the limit

lim
xÑ8

f (x)
g(x)

exists and is nonzero, then
ş8

a f (x) diverges.

Note that in (b) the limit must exist and be nonzero, while in (a) we only require
that the limit exists (it can be zero).

Theorem1.12.22 ( Limiting comparison).

Here is an example of how Theorem 1.12.22 is used.

Example 1.12.23
(
ş8

1
x+sin x
e´x+x2 dx

)

Does the integral
ż 8

1

x + sin x
e´x + x2 dx converge or diverge?

Solution.

• Our first task is to identify the potential sources of impropriety for this integral.

• The domain of integration extends to +8. On the domain of integration the de-
nominator is never zero so the integrand is continuous. Thus the only problem is at
+8.

• Our second task is to develop some intuition about the behavior of the integrand
for very large x. A good way to start is to think about the size of each term when x
becomes big.

• When x is very large:

– e´x ! x2, so that the denominator e´x + x2 « x2, and

– | sin x| ď 1 ! x, so that the numerator x + sin x « x, and

– the integrand x+sin x
e´x+x2 «

x
x2 = 1

x .

Notice that we are using A ! B to mean that “A is much much smaller than B”.
Similarly A " B means “A is much much bigger than B”. We don’t really need to be
too precise about its meaning beyond this in the present context.
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• Now, since
ş8

1
dx
x diverges, we would expect

ş8

1
x+sin x
e´x+x2 dx to diverge too.

• Our final task is to verify that our intuition is correct. To do so, we set

f (x) =
x + sin x
e´x + x2 g(x) =

1
x

and compute

lim
xÑ8

f (x)
g(x)

= lim
xÑ8

x + sin x
e´x + x2 ˜

1
x

= lim
xÑ8

(1 + sin x/x)x
(e´x/x2 + 1)x2 ˆ x

= lim
xÑ8

1 + sin x/x
e´x/x2 + 1

= 1

• Since
ş8

1 g(x) dx =
ş8

1
dx
x diverges, by Example 1.12.8 with p = 1, Theorem 1.12.22(b)

now tells us that
ş8

1 f (x) dx =
ş8

1
x+sin x
e´x+x2 dx diverges too.

Example 1.12.23
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Chapter 2

In the previous chapter we defined the definite integral, based on its interpretation as the
area of a region in the xy–plane. We also developed a bunch of theory to help us work with
integrals. This abstract definition, and the associated theory, turns out to be extremely
useful simply because ”areas of regions in the xy–plane” appear in a huge number of
different settings, many of which seem superficially not to involve ”areas of regions in the
xy–plane”. Here are some examples.

• The work involved in moving a particle or in pumping a fluid out of a reservoir. See
section 2.1.

• The average value of a function. See section 2.2.

• The center of mass of an object. See section 2.3.

• The time dependence of temperature. See section 2.4.

• Radiocarbon dating. See section 2.4.

Let us start with the first of these examples.

2.1Ĳ Work

While computing areas and volumes are nice mathematical applications of integration
we can also use integration to compute quantities of importance in physics and statistics.
One such quantity is work. Work is a way of quantifying the amount of energy that is
required to act against a force1. In SI2 metric units the force F has units newtons (which

1 For example — if your expensive closed-source textbook has fallen on the floor, work quantifies the
amount of energy required to lift the object from the floor acting against the force of gravity.

2 SI is short for “le système international d’unités” which is French for “the international system of units”.
It is the most recent internationally sanctioned version of the metric system, published in 1960. It aims
to establish sensible units of measurement (no cubic furlongs per hogshead-Fahrenheit). It defines
seven base units — metre (length), kilogram (mass), second (time), kelvin (temperature), ampere (elec-
tric current), mole (quantity of substance) and candela (luminous intensity). From these one can then
establish derived units — such as metres per second for velocity and speed.
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are kilograms meters per second squared), x has units meters and the work W has units
joules (which are newton meters or kilograms meters squared per second squared).

The work done by a force F(x) in moving an object from x = a to x = b is

W =

ż b

a
F(x) dx

In particular, if the force is a constant, F, independent of x, the work is F ¨ (b´ a).

Definition2.1.1.

Here is some motivation for this definition. Consider a particle of mass m moving
along the x–axis. Let the position of the particle at time t be x(t). The particle starts at
position a at time α, moves to the right, finishing at position b ą a at time β. While the
particle moves, it is subject to a position-dependent force F(x). Then Newton’s law of
motion3 says4 that force is mass times acceleration

m
d2x
dt2 (t) = F

(
x(t)

)

Now consider our definition of work above. It tells us that the work done in moving the
particle from x = a to x = b is

W =

ż b

a
F(x)dx

However, we know the position as a function of time, so we can substitute x = x(t),
dx = dx

dt dt (using Theorem 1.4.6) and rewrite the above integral:

W =

ż b

a
F(x)dx =

ż t=β

t=α
F(x(t))

dx
dt

dt

Using Newton’s second law we can rewrite our integrand:

= m
ż β

α

d2x
dt2

dx
dt

dt

= m
ż β

α

dv
dt

v(t)dt since v(t) =
dx
dt

= m
ż β

α

d
dt

(
1
2

v(t)2
)

dt

3 Specifically, the second of Newton’s three law of motion. These were first published in 1687 in his
“PhilosophiæNaturalis Principia Mathematica”.

4 It actually says something more graceful in latin - Mutationem motus proportionalem esse vi motrici
impressae, et fieri secundum lineam rectam qua vis illa imprimitur. Or — The alteration of motion is
ever proportional to the motive force impressed; and is made in the line in which that force is impressed.
It is amazing what you can find on the internet.

208



APPLICATIONS OF INTEGRATION 2.1 WORK

What happened here? By the chain rule, for any function f (t):

d
dt

(
1
2

f (t)2
)
= f (t) f 1(t).

In the above computation we have used this fact with f (t) = v(t). Now using the funda-
mental theorem of calculus (Theorem 1.3.1 part 2), we have

W = m
ż β

α

d
dt

(
1
2

v(t)2
)

dt

=
1
2

mv(β)2
´

1
2

mv(α)2.

By definition, the function 1
2 mv(t)2 is the kinetic energy5 of the particle at time t. So the

work W of Definition 2.1.1 is the change in kinetic energy from the time the particle was
at x = a to the time it was at x = b.

Example 2.1.2 (Hooke’s Law)

Imagine that a spring lies along the x-axis. The left hand end is fixed to a wall, but the
right hand end lies freely at x = 0. So the spring is at its “natural length”.

k

x = 0

• Now suppose that we wish to stretch out the spring so that its right hand end is at
x = L.

• Hooke’s Law6 says that when a (linear) spring is stretched (or compressed) by x
units beyond its natural length, it exerts a force of magnitude kx, where the constant
k is the spring constant of that spring.

• In our case, once we have stretched the spring by x units to the right, the spring
will be trying to pull back the right hand end by applying a force of magnitude kx
directed to the left.

• For us to continue stretching the spring we will have to apply a compensating force
of magnitude kx directed to the right. That is, we have to apply the force F(x) =
+kx.

5 This is not a physics text so we will not be too precise. Roughly speaking, kinetic energy is the energy
an object possesses due to it being in motion, as opposed to potential energy, which is the energy of
the object due to its position in a force field. Leibniz and Bernoulli determined that kinetic energy is
proportional to the square of the velocity, while the modern term “kinetic energy” was first used by
Lord Kelvin (back while he was still William Thompson).

6 Robert Hooke (1635–1703) was an English contemporary of Isaac Newton (1643–1727). It was in a 1676
letter to Hooke that Newton wrote “If I have seen further it is by standing on the shoulders of Giants.”
There is some thought that this was sarcasm and Newton was actually making fun of Hooke, who had
a spinal deformity. However at that time Hooke and Newton were still friends. Several years later they
did have a somewhat public falling-out over some of Newton’s work on optics.
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• So to stretch a spring by L units from its natural length we have to supply the work

W =

ż L

0
kxdx =

1
2

kL2

Example 2.1.2

Example 2.1.3 (Spring)

A spring has a natural length of 0.1m. If a 12N force is needed to keep it stretched to a
length of 0.12m, how much work is required to stretch it from 0.12m to 0.15m?

Solution. In order to answer this question we will need to determine the spring constant
and then integrate the appropriate function.

• Our first task is to determine the spring constant k. We are told that when the spring
is stretched to a length of 0.12m, i.e. to a length of 0.12´ 0.1 = 0.02m beyond its
natural length, then the spring generates a force of magnitude 12N.

• Hooke’s law states that the force exerted by the spring, when it is stretched by x
units, has magnitude kx, so

12 = k ¨ 0.02 = k ¨
2

100
thus

k = 600.

• So to stretch the spring

– from a length of 0.12m, i.e. a length of x = 0.12 ´ 0.1 = 0.02m beyond its
natural length,

– to a length of 0.15m, i.e. a length of x = 0.15´ 0.1 = 0.05m beyond its natural
length,

takes work

W =

ż 0.05

0.02
kxdx =

[
1
2

kx2
]0.05

0.02

= 300
(
0.052

´ 0.022)

= 0.63J

Example 2.1.3

Example 2.1.4 (Pumping Out a Reservoir)

A cylindrical reservoir7 of height h and radius r is filled with a fluid of density ρ. We

7 We could assign units to these measurements — such as metres for the lengths h and r, and kilograms
per cubic metre for the density ρ.
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would like to know how much work is required to pump all of the fluid out the top of the
reservoir.

x

dx

x
h

r

Solution. We are going to tackle this problem by applying the standard integral calculus
“slice into small pieces” strategy. This is how we computed areas and volumes — slice the
problem into small pieces, work out how much each piece contributes, and then add up
the contributions using an integral.

• Start by slicing the reservoir (or rather the fluid inside it) into thin, horizontal, cylin-
drical pancakes, as in the figure above. We proceed by detemining how much work
is required to pump out this pancake volume of fluid8.

• Each pancake is a squat cylinder with thickness dx and circular cross section of ra-
dius r and area πr2. Hence it has volume πr2dx and mass ρˆ πr2dx.

• Near the surface of the Earth gravity exerts a downward force of mg on a body of
mass m. The constant g = 9.8m/sec2 is called the standard acceleration due to gravity9.
For us to raise the pancake we have to apply a compensating upward force of mg,
which, for our pancake, is

F = gρˆ πr2dx

• To remove the pancake at height x from the reservoir we need to raise it to height h.
So we have to lift it a distance h´ x using the force F = πρgr2dx, which takes work
πρgr2 (h´ x)dx.

• The total work to empty the whole reservoir is

W =

ż h

0
π ρg r2(h´ x)dx = π ρg r2

ż h

0
(h´ x)dx

= π ρg r2
[

hx´
x2

2

]h

0

=
π

2
ρg r2h2

8 Potential for a bad “work out how much work out” pun here.
9 This quantity is not actually constant — it varies slightly across the surface of earth depending on

local density, height above sea-level and centrifugal force from the earth’s rotation. It is, for example,
slightly higher in Oslo and slightly lower in Singapore. It is actually defined to be 9.80665 m/sec2 by the
International Organisation for Standardization.
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• If we measure lengths in metres and mass in kilograms, then this quantity has units
of Joules. If we instead used feet and pounds10 then this would have units of “foot–
pounds”. One foot-pound is equal to 1.355817. . . Joules.

Example 2.1.4

Example 2.1.5 (Escape Velocity)

Suppose that you shoot a probe straight up from the surface of the Earth — at what initial
speed must the probe move in order to escape Earth’s gravity?

Solution. We determine this by computing how much work must be done in order to
escape Earth’s gravity. If we assume that all of this work comes from the probe’s initial
kinetic energy, then we can establish the minimum initial velocity required.

• The work done by gravity when a mass moves from the surface of the Earth to a
height h above the surface is

W =

ż h

0
F(x)dx

where F(x) is the gravitational force acting on the mass at height x above the Earth’s
surface.

• The gravitational force11 of the Earth acting on a particle of mass m at a height x
above the surface of the Earth is

F = ´
GMm

(R + x)2 ,

where G is the gravitational constant, M is the mass of the Earth and R is the radius
of the Earth. Note that R + x is the distance from the object to the centre of the Earth.
Additionally, note that this force is negative because gravity acts downward.

10 It is extremely mysterious to both authors why a person would do science or engineering in imperial
units. One of the authors still has nightmares about having had to do so as a student. The other author
is thankful that he escaped such tortures.

11 Newton published his inverse square law of universal gravitation in his Principia in 1687. His law
states that the gravitational force between two masses m1 and m2 is

F = ´G
m1m2

r2

where r is the distance separating the (centres of the) masses and G = 6.674 ˆ 1011Nm2/kg2 is the
gravitational constant. Notice that r measures the separation between the centres of the masses not the
distance between the surfaces of the objects.
Also, do not confuse G with g — standard acceleration due to gravity. The first measurement of G
was performed by Henry Cavendish in 1798 — the interested reader should look up the “Cavendish
experiment” for details of this very impressive work.
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• So the work done by gravity on the probe, as it travels from the surface of the Earth
to a height h, is

W = ´

ż h

0

GMm
(R + x)2 dx

= ´GMm
ż h

0

1
(R + x)2 dx

A quick application of the substitution rule with u = R + x gives

= ´GMm
ż u(h)

u(0)

1
u2 du

= ´GMm
[
´

1
u

]u=R+h

u=R

=
GMm
R + h

´
GMm

R

• So if the probe completely escapes the Earth and travels all the way to h = 8, gravity
does work

lim
hÑ8

[GMm
R + h

´
GMm

R

]
= ´

GMm
R

The minus sign means that gravity has removed energy GMm
R from the probe.

• To finish the problem we need one more assumption. Let us assume that all of this
energy comes from the probe’s initial kinetic energy and that the probe is not fitted
with any sort of rocket engine. Hence the initial kinetic energy 1

2 mv2 (coming from
an initial velocity v) must be at least as large as the work computed above. That is
we need

1
2

mv2
ě

GMm
R

which rearranges to give

v ě

c

2GM
R

• The right hand side of this inequality,
b

2GM
R , is called the escape velocity.

Example 2.1.5

Example 2.1.6 (Lifting a Cable)

A 10–meter–long cable of mass 5kg is used to lift a bucket of water, with mass 8kg, out of
a well. Find the work done.

Solution. Denote by y the height of the bucket above the top of the water in the well. So
the bucket is raised from y = 0 to y = 10. The cable has mass density 0.5kg/m. So when
the bucket is at height y,
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• the cable that remains to be lifted has mass 0.5(10´ y) kg and
• the remaining cable and water is subject to a downward gravitational force of mag-

nitude
[
0.5(10´ y) + 8

]
g =

[
13´ y

2

]
g, where g = 9.8 m/sec2.

So to raise the bucket from height y to height y + dy we need to apply a compensating
upward force of

[
13´ y

2

]
g through distance dy. This takes work

[
13´ y

2

]
g dy. So the total

work required is

ż 10

0

[
13´

y
2

]
g dy = g

[
13y´

y2

4

]10

0
=
[
130´ 25

]
g = 105g J

Example 2.1.6

2.2Ĳ Averages

Another frequent12 application of integration is computing averages and other statistical
quantities. We will not spend too much time on this topic — that is best left to a proper
course in statistics — however, we will demonstrate the application of integration to the
problem of computing averages.

Let us start with the definition13 of the average of a finite set of numbers.

12 Awful pun. The two main approaches to statistics are frequentism and Bayesianism; the latter named
after Bayes’ Theorem which is, in turn, named for Reverand Thomas Bayes. While this (both the ap-
proaches to statistics and their history and naming) is a very interesting and quite philosophical topic,
it is beyond the scope of this course. The interested reader has plenty of interesting reading here to
interest them.

13 We are being a little loose here with the distinction between mean and average. To be much more
pedantic — the average is the arithmetic mean. Other interesting “means” are the geometric and har-
monic means:

arithmetic mean =
1
n
(y1 + y2 + ¨ ¨ ¨+ yn)

geometric mean = (y1 ¨ y2 ¨ ¨ ¨ yn)
1/n

harmonic mean =

[
1
n

(
1
y1

+
1
y2

+ ¨ ¨ ¨
1
yn

)]´1

All of these quantities, along with the median and mode, are ways to measure the typical value of a set
of numbers. They all have advantages and disadvantages — another interesting topic beyond the scope
of this course, but plenty of fodder for the interested reader and their favourite search engine. But let us
put pedantry (and beyond-the-scope-of-the-course-reading) aside and just use the terms average and
mean interchangably for our purposes here.
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The average (mean) of a set of n numbers y1, y2, ¨ ¨ ¨ , yn is

yave = ȳ = 〈y〉 = y1 + y2 + ¨ ¨ ¨+ yn

n

The notations yave, ȳ and 〈y〉 are all commonly used to represent the average.

Definition2.2.1.

Now suppose that we want to take the average of a function f (x) with x running
continuously from a to b. How do we even define what that means? A natural approach
is to

• select, for each natural number n, a sample of n, more or less uniformly distributed,
values of x between a and b,

• take the average of the values of f at the selected points,

• and then take the limit as n tends to infinity.

Unsurprisingly, this process looks very much like how we computed areas and volumes
previously. So let’s get to it.

• First fix any natural number n.

• Subdivide the interval a ď x ď b into n equal subintervals, each of width ∆x = b´a
n .

• The subinterval number i runs from xi´1 to xi with xi = a + i b´a
n .

• Select, for each 1 ď i ď n, one value of x from subinterval number i and call it x˚i . So
xi´1 ď x˚i ď xi.

• The average value of f at the selected points is

1
n

n
ÿ

i=1

f (x˚i ) =
1

b´ a

n
ÿ

i=1

f (x˚i )∆x since ∆x =
b´ a

n

giving us a Riemann sum.

Now when we take the limit n Ñ 8we get exactly 1
b´a

şb
a f (x)dx. That’s why we define

Let f (x) be an integrable function defined on the interval a ď x ď b. The average
value of f on that interval is

fave = f̄ = 〈 f 〉 = 1
b´ a

ż b

a
f (x) dx

Definition2.2.2.
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Consider the case when f (x) is positive. Then rewriting Definition 2.2.2 as

fave (b´ a) =
ż b

a
f (x)dx

x

y y = f(x)

a b

fave

gives us a link between the average value and the area under the curve. The right-hand
side is the area of the region

 

(x, y)
ˇ

ˇ a ď x ď b, 0 ď y ď f (x)
(

while the left-hand side can be seen as the area of a rectangle of width b ´ a and height
fave. Since these areas must be the same, we interpret fave as the height of the rectangle
which has the same width and the same area as

 

(x, y)
ˇ

ˇ a ď x ď b, 0 ď y ď f (x)
(

.
Let us start with a couple of simple examples and then work our way up to harder

ones.

Example 2.2.3

Let f (x) = x and g(x) = x2 and compute their average values over 1 ď x ď 5.

Solution. We can just plug things into the definition.

fave =
1

5´ 1

ż 5

1
xdx

=
1
4

[
x2

2

]5

1

=
1
8
(25´ 1) =

24
8

= 3

as we might expect. And then

gave =
1

5´ 1

ż 5

1
x2dx

=
1
4

[
x3

3

]5

1

=
1
12

(125´ 1) =
124
12

= 10
1
3

Example 2.2.3

Something a little more trigonometric
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Example 2.2.4

Find the average value of sin(x) over 0 ď x ď π/2.

Solution. Again, we just need the definition.

average =
1

π/2´ 0

ż π/2

0
sin(x)dx

=
2
π
¨

[
´ cos(x)

]π/2

0

=
2
π
(´ cos(π/2) + cos(0))

=
2
π

.

Example 2.2.4

We could keep going. . . But better to do some more substantial examples.

Example 2.2.5 (Average velocity)

Let x(t) be the position at time t of a car moving along the x–axis. The velocity of the car at
time t is the derivative v(t) = x1(t). The average velocity of the car over the time interval
a ď t ď b is

vave =
1

b´ a

ż b

a
v(t)dt

=
1

b´ a

ż b

a
x1(t)dt

=
x(b)´ x(a)

b´ a
by the fundamental theorem of calculus.

The numerator in this formula is just the displacement (net distance travelled — if x1(t) ě
0, it’s the distance travelled) between time a and time b and the denominator is just the
time it took.

Notice that this is exactly the formula we used way back at the start of your differen-
tial calculus class to help introduce the idea of the derivative. Of course this is a very
circuitous way to get to this formula — but it is reassuring that we get the same answer.

Example 2.2.5

A very physics example.

Example 2.2.6 (Peak vs RMS voltage)
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When you plug a light bulb into a socket14 and turn it on, it is subjected to a voltage

V(t) = V0 sin(ωt´ δ)

where

• V0 = 170 volts,

• ω = 2π ˆ 60 (which corresponds to 60 cycles per second15) and

• the constant δ is an (unimportant) phase. It just shifts the time at which the voltage
is zero

The voltage V0 is the “peak voltage” — the maximum value the voltage takes over time.
More typically we quote the “root mean square” voltage16 (or RMS-voltage). In this exam-
ple we explain the difference, but to simplify the calculations, let us simplify the voltage
function and just use

V(t) = V0 sin(t)

Since the voltage is a sine-function, it takes both positive and negative values. If we
take its simple average over 1 period then we get

Vave =
1

2π ´ 0

ż 2π

0
V0 sin(t)dt

=
V0

2π

[
´ cos(t)

]2π

0

=
V0

2π
(´ cos(2π) + cos 0) =

V0

2π
(´1 + 1)

= 0

This is clearly not a good indication of the typical voltage.
What we actually want here is a measure of how far the voltage is from zero. Now

we could do this by taking the average of |V(t)|, but this is a little harder to work with.
Instead we take the average of the square17 of the voltage (so it is always positive) and

14 A normal household socket delivers alternating current, rather than the direct current USB supplies. At
the risk of yet another “the interested reader” suggestion — the how and why household plugs supply
AC current is another worthwhile and interesting digression from studying integration. The interested
reader should look up the “War of Currents”. The diligent and interested reader should bookmark this,
finish the section and come back to it later.

15 Some countries supply power at 50 cycles per second. Japan actually supplies both — 50 cycles in the
east of the country and 60 in the west.

16 This example was written in North America where the standard voltage supplied to homes is 120 volts.
Most of the rest of the world supplies homes with 240 volts. The main reason for this difference is the
development of the light bulb. The USA electrified earlier when the best voltage for bulb technology
was 110 volts. As time went on, bulb technology improved and countries that electrified later took
advantage of this (and the cheaper transmission costs that come with higher voltage) and standardised
at 240 volts. So many digressions in this section!

17 For a finite set of numbers one can compute the “quadratic mean” which is another way to generalise
the notion of the average:

quadratic mean =

c

1
n
(
y2

1 + y2
2 + ¨ ¨ ¨+ y2

n
)
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then take the square root at the end. That is

Vrms =

d

1
2π ´ 0

ż 2π

0
V(t)2dt

=

d

1
2π

ż 2π

0
V2

0 sin2(t)dt

=

d

V2
0

2π

ż 2π

0
sin2(t)dt

This is called the “root mean square” voltage.
Though we do know how to integrate sine and cosine, we don’t (yet) know how to in-

tegrate their squares. A quick look at double-angle formulas18 gives us a way to eliminate
the square:

cos(2θ) = 1´ 2 sin2 θ ùñ sin2 θ =
1´ cos(2θ)

2

Using this we manipulate our integrand a little more:

Vrms =

d

V2
0

2π

ż 2π

0

1
2
(1´ cos(2t))dt

=

d

V2
0

4π

[
t´

1
2

sin(2t)
]2π

0

=

d

V2
0

4π

(
2π ´

1
2

sin(4π)´ 0 +
1
2

sin(0)
)

=

d

V2
0

4π
¨ 2π

=
V0
?

2

So if the peak voltage is 170 volts then the RMS voltage is 170?
2
« 120.2.

Example 2.2.6

Continuing this very physics example:

Example 2.2.7

Let us take our same light bulb with voltage (after it is plugged in) given by

V(t) = V0 sin(ωt´ δ)

where

18 A quick glance at Appendix A.14 will refresh your memory.
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• V0 is the peak voltage,

• ω = 2π ˆ 60, and

• the constant δ is an (unimportant) phase.

If the light bulb is “100 watts”, then what is its resistance?
To answer this question we need the following facts from physics.

• If the light bulb has resistance R ohms, this causes, by Ohm’s law, a current of

I(t) =
1
R

V(t)

(amps) to flow through the light bulb.

• The current I is the number of units of charge moving through the bulb per unit
time.

• The voltage is the energy required to move one unit of charge through the bulb.

• The power is the energy used by the bulb per unit time and is measured in watts.

So the power is the product of the current times the voltage and, so

P(t) = I(t)V(t) =
V(t)2

R
=

V2
0

R
sin2(ωt´ δ)

The average power used over the time interval a ď t ď b is

Pave =
1

b´ a

ż b

a
P(t) dt =

V2
0

R(b´ a)

ż b

a
sin2(ωt´ δ) dt

Notice that this is almost exactly the form we had in the previous example when comput-
ing the root mean square voltage.

Again we simplify the integrand using the identity

cos(2θ) = 1´ 2 sin2 θ ùñ sin2 θ =
1´ cos(2θ)

2

So

Pave =
1

b´ a

ż b

a
P(t) dt =

V2
0

2R(b´ a)

ż b

a

[
1´ cos(2ωt´ 2δ)

]
dt

=
V2

0
2R(b´ a)

[
t´

sin(2ωt´ 2δ)

2ω

]b

a

=
V2

0
2R(b´ a)

[
b´ a´

sin(2ωb´ 2δ)

2ω
+

sin(2ωa´ 2δ)

2ω

]

=
V2

0
2R
´

V2
0

4ωR(b´ a)
[

sin(2ωb´ 2δ)´ sin(2ωa´ 2δ)
]
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In the limit as the length of the time interval b´ a tends to infinity, this converges to V2
0

2R .
The resistance R of a “100 watt bulb” obeys

V2
0

2R
= 100 so that R =

V2
0

200
.

We finish this example off with two side remarks.

• If we translate the peak voltage to the root mean square voltage using

V0 = Vrms ¨
?

2

then we have

P =
V2

rms
R

• If we were using direct voltage rather than alternating current then the computation
is much simpler. The voltage and current are constants, so

P = V ¨ I but I = V/R by Ohm’s law

=
V2

R

So if we have a direct current giving voltage equal to the root mean square voltage,
then we would expend the same power.

Example 2.2.7

§§ Optional — Return to the mean value theorem

One last application of Definition 2.2.2. The following theorem can be thought of as an
analogue of the mean-value theorem (which was covered in your differential calculus
class) but for integrals. The theorem says that a continuous function has to take its average
value exactly somewhere. For example, if you went for a drive along the x–axis and you
were at x(a) at time a and at x(b) at time b, then your velocity x1(t) had to be exactly your
average velocity x(b)´x(a)

b´a at some time t between a and b. In particular, if your average
velocity was greater than the speed limit, you were definitely speeding at some point
during the trip. This is, of course, no great surprise.

Let f (x) be a continuous function on the interval a ď x ď b. Then there is some c
obeying a ď c ď b such that

1
b´ a

ż b

a
f (x)dx = f (c) or

ż b

a
f (x)dx = f (c) (b´ a)

Theorem2.2.8 (Mean Value Theorem for Integrals).
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Here is why the theorem is true. Let M and m be the largest and smallest values,
respectively, that f (x) takes for x between a and b. Then m ď f (x) ď M for all a ď x ď b,
so that19

m(b´ a) ď
ż b

a
f (x)dx ď M(b´ a) ðñ m ď

1
b´ a

ż b

a
f (x)dx ď M

As x runs from a to b the continuous function f (x) takes all values between m and M
including, in particular, 1

b´a
şb

a f (x).

2.3Ĳ Centre of Mass and Torque

2.3.1 §§ Centre of Mass

If you support a body at its center of mass (in a uniform gravitational field) it balances
perfectly. That’s the definition of the center of mass of the body. If the body consists of a

m1 m2 m3 m4

finite number of masses m1, ¨ ¨ ¨ , mn attached to an infinitely strong, weightless (idealized)
rod with mass number i attached at position xi, then the center of mass is at the (weighted)
average value of x:

x̄ =

řn
i=1 mixi
řn

i=1 mi

The denominator m =
řn

i=1 mi is the total mass of the body. This formula for the center of
mass is derived in the following (optional) section. See (2.3.6).

For many (but certainly not all) purposes an (extended rigid) body acts like a point
particle located at its center of mass. For example it is very common to treat the Earth as
a point particle. Here is a more detailed example in which we think of a body as being
made up of a number of component parts and compute the center of mass of the body as
a whole by using the center of masses of the component parts. Suppose that we have a
dumbbell which consists of

• a left end made up of particles of masses ml,1, ¨ ¨ ¨ , ml,3 located at xl,1, ¨ ¨ ¨ , xl,3 and
• a right end made up of particles of masses mr,1, ¨ ¨ ¨ , mr,4 located at xr,1, ¨ ¨ ¨ , xr,4 and
• an infinitely strong, weightless (idealized) rod joining all of the particles.

Then the mass and center of mass of the left end are

Ml = ml,1 + ¨ ¨ ¨+ ml,3 X̄l =
ml,1xl,1 + ¨ ¨ ¨+ ml,3xl,3

Ml

19 The symbol ðñ is read “if and only if”. This is used in mathematics to express the logical equivalence
of two statements. To be more precise, the statement P ðñ Q tells us that P is true whenever Q is
true and Q is true whenever P is true.
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and the mass and center of mass of the right end are

Mr = mr,1 + ¨ ¨ ¨+ mr,4 X̄r =
mr,1xr,1 + ¨ ¨ ¨+ mr,4xr,4

Mr

The mass and center of mass of the entire dumbbell are

M = ml,1 + ¨ ¨ ¨+ ml,3 + mr,1 + ¨ ¨ ¨+ mr,4

= Ml + Mr

x̄ =
ml,1xl,1 + ¨ ¨ ¨+ ml,3xl,3 + mr,1xr,1 + ¨ ¨ ¨+ mr,4xr,4

M

=
MlX̄l + MrX̄r

Mr + Ml

So we can compute the center of mass of the entire dumbbell by treating it as being made
up of two point particles, one of mass Ml located at the centre of mass of the left end, and
one of mass Mr located at the center of mass of the right end.

Now we’ll extend the above ideas to cover more general classes of bodies. If the body
consists of mass distributed continuously along a straight line, say with mass density
ρ(x)kg/m and with x running from a to b, rather than consisting of a finite number of
point masses, the formula for the center of mass becomes

x̄ =

şb
a x ρ(x)dx
şb

a ρ(x)dx

Think of ρ(x)dx as the mass of the “almost point particle” between x and x + dx.
If the body is a two dimensional object, like a metal plate, lying in the xy–plane, its cen-

ter of mass is a point (x̄, ȳ) with x̄ being the (weighted) average value of the x–coordinate
over the body and ȳ being the (weighted) average value of the y–coordinate over the body.
To be concrete, suppose the body fills the region

 

(x, y)
ˇ

ˇ a ď x ď b, B(x) ď y ď T(x)
(

in the xy–plane. For simplicity, we will assume that the density of the body is a constant,
say ρ. When the density is constant, the center of mass is also called the centroid and is
thought of as the geometric center of the body.

To find the centroid of the body, we use the use our standard “slicing” strategy. We
slice the body into thin vertical strips, as illustrated in the figure below. Here is a detailed

x b

T (x)

B(x)

x

y

y = T (x)

y = B(x)

a
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description of a generic strip.

• The strip has width dx.
• Each point of the strip has essentially the same x–coordinate. Call it x.
• The top of the strip is at y = T(x) and the bottom of the strip is at y = B(x).
• So the strip has

– height T(x)´ B(x)
– area [T(x)´ B(x)]dx
– mass ρ[T(x)´ B(x)]dx
– centroid, i.e. middle point,

(
x , B(x)+T(x)

2

)
.

In computing the centroid of the entire body, we may treat each strip as a single particle
of mass ρ[T(x)´ B(x)]dx located at

(
x , B(x)+T(x)

2

)
. So the mass of the entire body is

M = ρ

ż b

a
[T(x)´ B(x)]dx = ρA (2.3.1a)

where A =
şb

a [T(x)´ B(x)]dx is the area of the region. The coordinates of the centroid are

x̄ =

şb
a x

mass of slice
hkkkkkkkkkkikkkkkkkkkkj

ρ[T(x)´ B(x)]dx
M

=

şb
a x[T(x)´ B(x)]dx

A
(2.3.1b)

ȳ =

şb
a

average y on slice
hkkkkikkkkj

B(x)+T(x)
2

mass of slice
hkkkkkkkkkkikkkkkkkkkkj

ρ[T(x)´ B(x)]dx
M

=

şb
a [T(x)2 ´ B(x)2]dx

2A
(2.3.1c)

We can of course also slice up the body using horizontal slices. If the body has constant

x

y

x = L(y)x = R(y)

L(y) R(y)

c

d

density ρ and fills the region
 

(x, y)
ˇ

ˇ L(y) ď x ď R(y), c ď y ď d
(
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then the same computation as above gives the mass of the body to be

M = ρ

ż d

c
[R(y)´ L(y)]dy = ρA (2.3.2a)

where A =
şd

c [R(y)´ L(y)]dy is the area of the region, and gives the coordinates of the
centroid to be

x̄ =

şd
c

average x on slice
hkkkkikkkkj

R(y)+L(y)
2

mass of slice
hkkkkkkkkkkikkkkkkkkkkj

ρ[R(y)´ L(y)]dy
M

=

şd
c [R(y)

2 ´ L(y)2]dy
2A

(2.3.2b)

ȳ =

şd
c y

mass of slice
hkkkkkkkkkkikkkkkkkkkkj

ρ[R(y)´ L(y)]dy
M

=

şd
c y[R(y)´ L(y)]dy

A
(2.3.2c)

Example 2.3.1

Find the x–coordinate of the centroid (centre of gravity) of the plane region R that lies in
the first quadrant x ě 0, y ě 0 and inside the ellipse 4x2 + 9y2 = 36. (The area bounded

by the ellipse x2

a2 +
y2

b2 = 1 is πab square units.)

x

y 4x2 + 9y2 = 36

Solution. In standard form 4x2 + 9y2 = 36 is x2

9 + y2

4 = 1. So, on R, x runs from 0 to 3
and R has area A = 1

4 π ˆ 3ˆ 2 = 3
2 π. For each fixed x, between 0 and 3, y runs from 0 to

2
b

1´ x2

9 . So, applying (2.3.1.b) with a = 0, b = 3, T(x) = 2
b

1´ x2

9 and B(x) = 0,

x̄ =
1
A

ż 3

0
x T(x)dx =

1
A

ż 3

0
x 2

c

1´
x2

9
dx =

4
3π

ż 3

0
x

c

1´
x2

9
dx

Sub in u = 1´ x2

9 , du = ´2
9 x dx.

x̄ = ´
9
2

4
3π

ż 0

1

?
u du = ´

9
2

4
3π

[u3/2

3/2

]0

1
= ´

9
2

4
3π

[
´

2
3

]
=

4
π

Example 2.3.1
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Example 2.3.2

Find the centroid of the quarter circular disk x ě 0, y ě 0, x2 + y2 ď r2.

x

y
x2 + y2 = r2

Solution. By symmetry, x̄ = ȳ. The area of the quarter disk is A = 1
4 πr2. By (2.3.1.b) with

a = 0, b = r, T(x) =
?

r2 ´ x2 and B(x) = 0,

x̄ =
1
A

ż r

0
x
a

r2 ´ x2 dx

To evaluate the integral, sub in u = r2 ´ x2, du = ´2x dx.
ż r

0
x
a

r2 ´ x2 dx =

ż 0

r2

?
u

du
´2

= ´
1
2

[u3/2

3/2

]0

r2
=

r3

3
(2.3.3)

So

x̄ =
4

πr2

[r3

3

]
=

4r
3π

As we observed above, we should have x̄ = ȳ. But, just for practice, let’s compute ȳ
by the integral formula (2.3.1.c), again with a = 0, b = r, T(x) =

?
r2 ´ x2 and B(x) = 0,

ȳ =
1

2A

ż r

0

(a
r2 ´ x2

)2 dx =
2

πr2

ż r

0

(
r2
´ x2)dx

=
2

πr2

[
r2x´

x3

3

]r

0
=

2
πr2

2r3

3

=
4r
3π

as expected.
Example 2.3.2

Example 2.3.3

Find the centroid of the half circular disk y ě 0, x2 + y2 ď r2.

x

y
x2 + y2 = r2
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Solution. Once again, we have a symmetry —- namely the half disk is symmetric about
the y–axis. So the centroid lies on the y–axis and x̄ = 0. The area of the half disk is
A = 1

2 πr2. By (2.3.1.c), with a = ´r, b = r, T(x) =
?

r2 ´ x2 and B(x) = 0,

ȳ =
1

2A

ż r

´r

(a
r2 ´ x2

)2 dx =
1

πr2

ż r

´r

(
r2
´ x2)dx

=
2

πr2

ż r

0

(
r2
´ x2)dx since the integrand is even

=
2

πr2

[
r2x´

x3

3

]r

0

=
4r
3π

Example 2.3.3

Example 2.3.4

Find the centroid of the region R in the diagram.

(2, 2)
2

1

21

2

R

quarter
circle

Solution. By symmetry, x̄ = ȳ. The region R is a 2ˆ 2 square with one quarter of a circle
of radius 1 removed and so has area 2ˆ 2´ 1

4 π = 16´π
4 . The top of R is y = T(x) = 2. The

bottom is y = B(x) with B(x)=
?

1´ x2 when 0 ď x ď 1 and B(x)=0 when 1 ď x ď 2. So

ȳ = x̄ =
1
A

[
ż 1

0
x[2´

a

1´ x2]dx +

ż 2

1
x[2´ 0]dx

]

=
4

16´ π

[
x2ˇ
ˇ

1
0 + x2ˇ

ˇ

2
1 ´

ż 1

0
x
a

1´ x2 dx
]

=
4

16´ π

[
4´

1
3

]
by (2.3.3) with r = 1

=
44

48´ 3π

Example 2.3.4
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Example 2.3.5

Prove that the centroid of any triangle is located at the point of intersection of the medians.
A median of a triangle is a line segment joining a vertex to the midpoint of the opposite
side.

Solution. Choose a coordinate system so that the vertices of the triangle are located at
(a, 0), (0, b) and (c, 0). (In the figure below, a is negative.) The line joining (a, 0) and (0, b)

(a, 0) (c, 0)

(0, b)

x = c
b
(b− y)x = a

b
(b− y)

has equation bx + ay = ab. (Check that (a, 0) and (0, b) both really are on this line.) The
line joining (c, 0) and (0, b) has equation bx + cy = bc. (Check that (c, 0) and (0, b) both
really are on this line.) Hence for each fixed y between 0 and b, x runs from a ´ a

b y to
c´ c

b y.
We’ll use horizontal strips to compute x̄ and ȳ. We could just apply (2.3.2) with c = 0,

d = b, R(y) = c
b (b´ y) (which is gotten by solving bx + cy = bc for x) and L(y) = a

b (b´ y)
(which is gotten by solving bx + ay = ab for x).

But rather than memorizing or looking up those formulae, we’ll derive them for this
example. So consider a thin strip at height y as illustrated in the figure above.

• The strip has length

`(y) =
[ c

b
(b´ y)´

a
b
(b´ y)

]
=

c´ a
b

(b´ y)

• The strip has width dy.
• On this strip, y has average value y.
• On this strip, x has average value 1

2

[ a
b (b´ y) + c

b (b´ y)
]
= a+c

2b (b´ y).

As the area of the triangle is A = 1
2(c´ a)b,

ȳ =
1
A

ż b

0
y `(y) dy =

2
(c´ a)b

ż b

0
y

c´ a
b

(b´ y) dy =
2
b2

ż b

0
(by´ y2) dy =

2
b2

(
b

b2

2
´

b3

3

)

=
2
b2

b3

6
=

b
3
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x̄ =
1
A

ż b

0

a + c
2b

(b´ y) `(y) dy =
2

(c´ a)b

ż b

0

a + c
2b

(b´ y)
c´ a

b
(b´ y) dy =

a + c
b3

ż b

0
(y´ b)2 dy

=
a + c

b3

[1
3
(y´ b)3

]b

0
=

a + c
b3

b3

3
=

a + c
3

We have found that the centroid of the triangle is at (x̄, ȳ) =
( a+c

3 , b
3

)
. We shall now show

that this point lies on all three medians.

• One vertex is at (a, 0). The opposite side runs from (0, b) and (c, 0) and so has mid-
point 1

2(c, b). The line from (a, 0) to 1
2(c, b) has slope b/2

c/2´a = b
c´2a and so has equa-

tion y = b
c´2a (x´ a). As b

c´2a (x̄´ a) = b
c´2a

( a+c
3 ´ a

)
= 1

3
b

c´2a (c + a´ 3a) = b
3 = ȳ,

the centroid does indeed lie on this median. In this computation we have implicitly
assumed that c ‰ 2a so that the denominator c´ 2a ‰ 0. In the event that c = 2a, the
median runs from (a, 0) to

(
a, b

2

)
and so has equation x = a. When c = 2a we also

have x̄ = a+c
3 = a, so that the centroid still lies on the median.

• Another vertex is at (c, 0). The opposite side runs from (a, 0) and (0, b) and so has
midpoint 1

2(a, b). The line from (c, 0) to 1
2(a, b) has slope b/2

a/2´c = b
a´2c and so has

equation y = b
a´2c (x ´ c). As b

a´2c (x̄ ´ c) = b
a´2c

( a+c
3 ´ c

)
= 1

3
b

a´2c (a + c ´ 3c) =
b
3 = ȳ, the centroid does indeed lie on this median. In this computation we have
implicitly assumed that a ‰ 2c so that the denominator a´ 2c ‰ 0. In the event that
a = 2c, the median runs from (c, 0) to

(
c, b

2

)
and so has equation x = c. When a = 2c

we also have x̄ = a+c
3 = c, so that the centroid still lies on the median.

• The third vertex is at (0, b). The opposite side runs from (a, 0) and (c, 0) and so has
midpoint

( a+c
2 , 0

)
. The line from (0, b) to

( a+c
2 , 0

)
has slope ´b

(a+c)/2 = ´ 2b
a+c and so

has equation y = b ´ 2b
a+c x. As b ´ 2b

a+c x̄ = b ´ 2b
a+c

a+c
3 = b

3 = ȳ, the centroid does
indeed lie on this median. This time, we have implicitly assumed that a + c ‰ 0. In
the event that a + c = 0, the median runs from (0, b) to (0, 0) and so has equation
x = 0. When a + c = 0 we also have x̄ = a+c

3 = 0, so that the centroid still lies on the
median.

Example 2.3.5

2.3.2 §§ Optional — Torque

Newton’s law of motion says that the position x(t) of a single particle moving under the
influence of a force F obeys mx2(t) = F. Similarly, the positions xi(t), 1 ď i ď n, of a set
of particles moving under the influence of forces Fi obey mx2i (t) = Fi, 1 ď i ď n. Often
systems of interest consist of some small number of rigid bodies. Suppose that we are
interested in the motion of a single rigid body, say a piece of wood. The piece of wood is
made up of a huge number of atoms. So the system of equations determining the motion
of all of the individual atoms in the piece of wood is huge. On the other hand, because
the piece of wood is rigid, its configuration is completely determined by the position of,
for example, its centre of mass and its orientation. (Rather than get into what is precisely
meant by “orientation”, let’s just say that it is certainly determined by, for example, the
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positions of a few of the corners of the piece of wood). It is possible to extract from the
huge system of equations that determine the motion of all of the individual atoms, a small
system of equations that determine the motion of the centre of mass and the orientation.
We can avoid some vector analysis, that is beyond the scope of this course, by assuming
that our rigid body is moving in two rather than three dimensions.

So, imagine a piece of wood moving in the xy–plane. Furthermore, imagine that the

piece of wood consists of a huge number of particles joined by a huge number of weight-
less but very strong steel rods. The steel rod joining particle number one to particle num-
ber two just represents a force acting between particles number one and two. Suppose
that

• there are n particles, with particle number i having mass mi
• at time t, particle number i has x–coordinate xi(t) and y–coordinate yi(t)
• at time t, the external force (gravity and the like) acting on particle number i has x–

coordinate Hi(t) and y–coordinate Vi(t). Here H stands for horizontal and V stands
for vertical.
• at time t, the force acting on particle number i, due to the steel rod joining particle

number i to particle number j has x–coordinate Hi,j(t) and y–coordinate Vi,j(t). If
there is no steel rod joining particles number i and j, just set Hi,j(t) = Vi,j(t) = 0. In
particular, Hi,i(t) = Vi,i(t) = 0.

The only assumptions that we shall make about the steel rod forces are

(A1) for each i ‰ j, Hi,j(t) = ´Hj,i(t) and Vi,j(t) = ´Vj,i(t). In words, the steel rod joining
particles i and j applies equal and opposite forces to particles i and j.

(A2) for each i ‰ j, there is a function Mi,j(t) such that Hi,j(t) = Mi,j(t)
[
xi(t)´ xj(t)

]
and

Vi,j(t) = Mi,j(t)
[
yi(t)´ yj(t)

]
. In words, the force due to the rod joining particles i

and j acts parallel to the line joining particles i and j. For (A1) to be true, we need
Mi,j(t) = Mj,i(t).

Newton’s law of motion, applied to particle number i, now tells us that

mix2i (t) = Hi(t) +
n
ÿ

j=1

Hi,j(t) (Xi)

miy2i (t) = Vi(t) +
n
ÿ

j=1

Vi,j(t) (Yi)
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Adding up all of the equations (Xi), for i = 1, 2, 3, ¨ ¨ ¨ , n and adding up all of the
equations (Yi), for i = 1, 2, 3, ¨ ¨ ¨ , n gives

n
ÿ

i=1

mix2i (t) =
n
ÿ

i=1

Hi(t) +
ÿ

1ďi,jďn

Hi,j(t) (ΣiXi)

n
ÿ

i=1

miy2i (t) =
n
ÿ

i=1

Vi(t) +
ÿ

1ďi,jďn

Vi,j(t) (ΣiYi)

The sum
ř

1ďi,jďn Hi,j(t) contains H1,2(t) exactly once and it also contains H2,1(t) exactly
once and these two terms cancel exactly, by assumption (A1). In this way, all terms in
ř

1ďi,jďn Hi,j(t) with i ‰ j exactly cancel. All terms with i = j are assumed to be zero.
So

ř

1ďi,jďn Hi,j(t) = 0. Similarly,
ř

1ďi,jďn Vi,j(t) = 0, so the equations (ΣiXi) and (ΣiYi)

simplify to

n
ÿ

i=1

mix2i (t) =
n
ÿ

i=1

Hi(t) (ΣiXi)

n
ÿ

i=1

miy2i (t) =
n
ÿ

i=1

Vi(t) (ΣiYi)

Denote by

M =
n
ÿ

i=1

mi

the total mass of the system, by

X(t) =
1
M

n
ÿ

i=1

mixi(t) and Y(t) =
1
M

n
ÿ

i=1

miyi(t)

the x– and y–coordinates of the centre of mass of the system at time t and by

H(t) =
n
ÿ

i=1

Hi(t) and V(t) =
n
ÿ

i=1

Vi(t)

the x– and y–coordinates of the total external force acting on the system at time t. In this
notation, the equations (ΣiXi) and (ΣiYi) are

MX2(t) = H(t) MY2(t) = V(t) (2.3.4)

So the centre of mass of the system moves just like a single particle of mass M subject to
the total external force.

Now multiply equation (Yi) by xi(t), subtract from it equation (Xi) multiplied by yi(t),
and sum over i. This gives the equation

ř

i
[
xi(t) (Yi)´ yi(t) (Xi)

]
:

n
ÿ

i=1

mi
[
xi(t)y2i (t)´ yi(t)x2i (t)

]
=

n
ÿ

i=1

[
xi(t)Vi(t)´ yi(t)Hi(t)

]
+

ÿ

1ďi,jďn

[
xi(t)Vi,j(t)´ yi(t)Hi,j(t)

]
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By the assumption (A2)

x1(t)V1,2(t)´ y1(t)H1,2(t) = x1(t)M1,2(t)
[
y1(t)´ y2(t)

]
´ y1(t)M1,2(t)

[
x1(t)´ x2(t)

]

= M1,2(t)
[
y1(t)x2(t)´ x1(t)y2(t)

]

x2(t)V2,1(t)´ y2(t)H2,1(t) = x2(t)M2,1(t)
[
y2(t)´ y1(t)

]
´ y2(t)M2,1(t)

[
x2(t)´ x1(t)

]

= M2,1(t)
[
´ y1(t)x2(t) + x1(t)y2(t)

]

= M1,2(t)
[
´ y1(t)x2(t) + x1(t)y2(t)

]

So the i = 1, j = 2 term in
ř

1ďi,jďn
[
xi(t)Vi,j(t) ´ yi(t)Hi,j(t)

]
exactly cancels the i = 2,

j = 1 term. In this way all of the terms in
ř

1ďi,jďn
[
xi(t)Vi,j(t) ´ yi(t)Hi,j(t)

]
with i ‰ j

cancel. Each term with i = j is exactly zero. So
ř

1ďi,jďn
[
xi(t)Vi,j(t)´ yi(t)Hi,j(t)

]
= 0 and

n
ÿ

i=1

mi
[
xi(t)y2i (t)´ yi(t)x2i (t)

]
=

n
ÿ

i=1

[
xi(t)Vi(t)´ yi(t)Hi(t)

]

Define

L(t) =
n
ÿ

i=1

mi
[
xi(t)y1i(t)´ yi(t)x1i(t)

]

T(t) =
n
ÿ

i=1

[
xi(t)Vi(t)´ yi(t)Hi(t)

]

In this notation
d
dt

L(t) = T(t) (2.3.5)

• Equation (2.3.5) plays the role of Newton’s law of motion for rotational motion.

• T(t) is called the torque and plays the role of “rotational force”.

• L(t) is called the angular momentum (about the origin) and is a measure of the rate
at which the piece of wood is rotating.

– For example, if a particle of mass m is traveling in a circle of radius r, centred
on the origin, at ω radians per unit time, then x(t) = r cos(ωt), y(t) = r sin(ωt)
and

m
[
x(t)y1(t)´ y(t)x1(t)

]
= m

[
r cos(ωt) rω cos(ωt)´ r sin(ωt)

(
´ rω sin(ωt)

)]

= mr2 ω

is proportional to ω, which is the rate of rotation about the origin.

x

y
x2 + y2 = r2

ωt
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In any event, in order for the piece of wood to remain stationary, that is to have xi(t) and
yi(t) be constant for all 1 ď i ď n, we need to have

X2(y) = Y2(t) = L(t) = 0

and then equations (2.3.4) and (2.3.5) force

H(t) = V(t) = T(t) = 0

Now suppose that the piece of wood is a seesaw that is long and thin and is lying on
the x–axis, supported on a fulcrum at x = p. Then every yi = 0 and the torque simplifies
to T(t) =

řn
i=1 xi(t)Vi(t). The forces consist of

• gravity, mig, acting downwards on particle number i, for each 1 ď i ď n and the

• force F imposed by the fulcrum that is pushing straight up on the particle at x = p.

m1g m2g m3g m4g

F

So

• The net vertical force is V(t) = F ´
n
ř

i=1
mig = F ´ Mg. If the seesaw is to remain

stationary, this must be zero so that F = Mg.

• The total torque (about the origin) is

T = Fp´
n
ÿ

i=1

migxi = Mgp´
n
ÿ

i=1

migxi

If the seesaw is to remain stationary, this must also be zero and the fulcrum must be
placed at

p =
1
M

n
ÿ

i=1

mixi (2.3.6)

which is the centre of mass of the piece of wood.

2.4Ĳ Separable Differential Equations

A differential equation is an equation for an unknown function that involves the deriva-
tive of the unknown function. Differential equations play a central role in modelling a
huge number of different phenomena. Here is a table giving a bunch of named differen-
tial equations and what they are used for. It is far from complete.
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Newton’s Law of Motion describes motion of particles

Maxwell’s equations describes electromagnetic radiation

Navier–Stokes equations describes fluid motion

Heat equation describes heat flow

Wave equation describes wave motion

Schrödinger equation describes atoms, molecules and crystals

Stress-strain equations describes elastic materials

Black–Scholes models used for pricing financial options

Predator–prey equations describes ecosystem populations

Einstein’s equations connects gravity and geometry

Ludwig–Jones–Holling’s equation models spruce budworm/Balsam fir ecosystem

Zeeman’s model models heart beats and nerve impulses

Sherman–Rinzel–Keizer model for electrical activity in Pancreatic β–cells

Hodgkin–Huxley equations models nerve action potentials

We are just going to scratch the surface of the study of differential equations. Most
universities offer half a dozen different undergraduate courses on various aspects of dif-
ferential equations. We will just look at one special, but important, type of equation.

2.4.1 §§ Separate and integrate

A separable differential equation is an equation for a function y(x) of the form

dy
dx

(x) = f (x) g
(
y(x)

)

Definition2.4.1.

We’ll start by developing a recipe for solving separable differential equations. Then
we’ll look at many examples. Usually one supresses the argument of y(x) and writes the
equation20

dy
dx

= f (x) g(y)

and solves such an equation by cross multiplying/dividing to get all of the y’s, including
the dy on one side of the equation and all of the x’s, including the dx, on the other side of
the equation.

dy
g(y)

= f (x)dx

20 Look at the right hand side of the equation. The x–dependence is separated from the y–dependence.
That’s the reason for the name “separable”.
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(We are of course assuming that g(y) is nonzero.) Then you integrate both sides
ż

dy
g(y)

=

ż

f (x)dx (2.4.1)

This looks illegal, and indeed is illegal — dy
dx is not a fraction. But we’ll now see that the

answer is still correct. This procedure is simply a mnenomic device to help you remember
that answer. Let G(y) be an antiderivative of 1

g(y) (i.e. G1(y) = 1
g(y) ) and F(x) be an

antiderivative of f (x) (i.e. F1(x) = f (x)). If we reinstate the argument of y, (2.4.1) is

G
(
y(x)

)
= F(x) + C (2.4.2)

To check that a function y(x) obeys dy
dx (x) = f (x) g

(
y(x)

)
if and only if it obeys (2.4.2),

just differentiate both sides of (2.4.2) with respect to x. By the chain rule

G
(
y(x)

)
= F(x) + C ðñ G1

(
y(x)

)
y1(x) = F1(x) ðñ

y1(x)
g(y(x))

= f (x)

ðñ y1(x) = f (x) g(y(x))

(We have again assumed that g(y) is nonzero.)
Observe that the solution (2.4.2) contains an arbitrary constant, C. The value of this

arbitrary constant can not be determined by the differential equation. You need additional
data to determine it. Often this data consists of the value of the unknown function for one
value of x. That is, often the problem you have to solve is of the form

dy
dx

(x) = f (x) g
(
y(x)

)
y(x0) = y0

where f (x) and g(y) are given functions and x0 and y0 are given numbers. This type of
problem is called an “initial value problem”. It is solved by first using the method above
to find the general solution to the differential equation, including the arbitrary constant
C, and then using the “initial condition” y(x0) = y0 to determine the value of C. We’ll see
examples of this shortly.

Example 2.4.2

The diferential equation
dy
dx

= xe´y

is separable, and we now find all of its solutions by using our mnemonic device. We start
by cross–multiplying so as to move all y’s to the left hand side and all x’s to the right hand
side.

ey dy = x dx

Then we integrate both sides

ż

eydy =

ż

xdx ðñ ey =
x2

2
+ C
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The C on the right hand side contains both the arbitrary constant for the indefinite integral
ş

eydy and the arbitrary constant for the indefinite integral
ş

xdx. Finally, we solve for y,
which is really a function of x.

y(x) = log
(x2

2
+ C

)

Recall that we are using log to refer to the natural (base e) logarithm.
Note that C is an arbitrary constant. It can take any value. It cannot be determined

by the differential equation itself. In applications C is usually determined by a require-
ment that y take some prescribed value (determined by the application) when x is some
prescribed value. For example, suppose that we wish to find a function y(x) that obeys
both

dy
dx

= xe´y and y(0) = 1

We know that, to have dy
dx = xe´y satisfied, we must have y(x) = log

( x2

2 + C
)
, for some

constant C. To also have y(0) = 1, we must have

1 = y(0) = log
(x2

2
+ C

)ˇ
ˇ

ˇ

ˇ

x=0
= log C ðñ log C = 1 ðñ C = e

So our final solution is y(x) = log
( x2

2 + e
)
.

Example 2.4.2

Example 2.4.3

Let a and b be any two constants. We’ll now solve the family of differential equations

dy
dx

= a(y´ b)

using our mnemonic device.

dy
y´ b

= a dx ùñ

ż

dy
y´ b

=

ż

a dx ùñ log |y´ b| = ax + c ùñ |y´ b| = eax+c = eceax

ùñ y´ b = Ceax

where C is either +ec or ´ec. Note that as c runs over all real numbers, +ec runs over all
strictly poisitive real numbers and ´ec runs over all strictly negative real numbers. So,
so far, C can be any real number except 0. But we were a bit sloppy here. We implicitly
assumed that y ´ b was nonzero, so that we could divide it across. None–the–less, the
constant function y = b, which corresponds to C = 0, is a perfectly good solution — when
y is the constant function y = b, both dy

dx and a(y´ b) are zero. So the general solution to
dy
dx = a(y´ b) is y(x) = Ceax + b, where the constant C can be any real number. Note that
when y(x) = Ceax + b we have y(0) = C + b. So C = y(0)´ b and the general solution is

y(x) = ty(0)´ bu eax + b
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Example 2.4.3

This is worth stating as a theorem.

Let a and b be constants. The differentiable function y(x) obeys the differential
equation

dy
dx

= a(y´ b)

if and only if
y(x) = ty(0)´ bu eax + b

Theorem2.4.4.

Example 2.4.5

Solve dy
dx = y2

Solution. When y ‰ 0,

dy
dx

= y2
ùñ

dy
y2 = dx ùñ

y´1

´1
= x + C ùñ y = ´

1
x + C

When y = 0, this computation breaks down because dy
y2 contains a division by 0. We can

check if the function y(x) = 0 satisfies the differential equation by just subbing it in:

y(x) = 0 ùñ y1(x) = 0, y(x)2 = 0 ùñ y1(x) = y(x)2

So y(x) = 0 is a solution and the full solution is

y(x) = 0 or y(x) = ´
1

x + C
, for any constant C

Example 2.4.5

Example 2.4.6

When a raindrop falls it increases in size so that its mass m(t), is a function of time t. The
rate of growth of mass, i.e. dm

dt , is km(t) for some positive constant k. According to New-
ton’s law of motion, d

dt (mv) = gm, where v is the velocity of the raindrop (with v being
positive for downward motion) and g is the acceleration due to gravity. Find the terminal
velocity, lim

tÑ8
v(t), of a raindrop.

Solution. In this problem we have two unknown functions, m(t) and v(t), and two dif-
ferential equations, dm

dt = km and d
dt (mv) = gm. The first differential equation, dm

dt = km,
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involves only m(t), not v(t), so we use it to determine m(t). By Theorem 2.4.4, with b = 0,
a = k, y replaced by m and x replaced by t,

dm
dt

= km ùñ m(t) = m(0)ekt

Now that we know m(t) (except for the value of the constant m(0)), we can substitute it
into the second differential equation, which we can then use to determine the remaining
unknown function v(t). Observe that the second equation, d

dt (mv) = gm(t) = gm(0)ekt

tells that the derivative of the function y(t) = m(t)v(t) is gm(0)ekt. So y(t) is just an
antiderivative of gm(0)ekt.

dy
dt

= gm(t) = gm(0)ekt
ùñ y(t) =

ż

gm(0)ekt dt = gm(0)
ekt

k
+ C

Now that we know y(t) = m(t)v(t) = m(0)ektv(t), we can get v(t) just by dividing out
the m(0)ekt.

y(t) = gm(0)
ekt

k
+ C ùñ m(0)ektv(t) = gm(0)

ekt

k
+ C ùñ v(t) =

g
k
+

C
m(0)ekt

Our solution, v(t), contains two arbitrary constants, namely C and m(0). They will be
determined by, for example, the mass and velocity at time t = 0. But since we are only
interested in the terminal velocity lim

tÑ8
v(t), we don’t need to know C and m(0). Since

k ą 0, lim
tÑ8

C
ekt = 0 and the terminal velocity lim

tÑ8
v(t) = g

k .

Example 2.4.6

Example 2.4.7

A glucose solution is administered intravenously into the bloodstream at a constant rate
r. As the glucose is added, it is converted into other substances at a rate that is propor-
tional to the concentration at that time. The concentration, C(t), of the glucose in the
bloodstream at time t obeys the differential equation

dC
dt

= r´ kC

where k is a positive constant of proportionality.

(a) Express C(t) in terms of k and C(0).

(b) Find lim
tÑ8

C(t).

Solution. (a) Since r´ kC = ´k
(
C´ r

k
)

the given equation is

dC
dt

= ´k
(
C´

r
k
)
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which is of the form solved in Theorem 2.4.4 with a = ´k and b = r
k . So the solution is

C(t) =
r
k
+
(

C(0)´
r
k

)
e´kt

(b) For any k ą 0, lim
tÑ8

e´kt = 0. Consequently, for any C(0) and any k ą 0, lim
tÑ8

C(t) = r
k .

We could have predicted this limit without solving for C(t). If we assume that C(t) ap-
proaches some equilibrium value Ce as t approaches infinity, then taking the limits of both
sides of dC

dt = r´ kC as t Ñ 8 gives

0 = r´ kCe ùñ Ce =
r
k

Example 2.4.7

2.4.2 §§ Optional — Carbon Dating

Scientists can determine the age of objects containing organic material by a method called
carbon dating or radiocarbon dating21. The bombardment of the upper atmosphere by cosmic
rays converts nitrogen to a radioactive isotope of carbon, 14C, with a half–life of about 5730
years. Vegetation absorbs carbon dioxide from the atmosphere through photosynthesis
and animals acquire 14C by eating plants. When a plant or animal dies, it stops replacing
its carbon and the amount of 14C begins to decrease through radioactive decay. Therefore
the level of radioactivity also decreases. More precisely, let Q(t) denote the amount of 14C
in the plant or animal t years after it dies. The number of radioactive decays per unit time,
at time t, is proportional to the amount of 14C present at time t, which is Q(t). Thus

dQ
dt

(t) = ´kQ(t) (2.4.3)

Here k is a constant of proportionality that is determined by the half–life. We shall explain
what half–life is, and also determine the value of k, in Example 2.4.8, below.

Before we do so, let’s think about the sign in (2.4.3).

• Recall that Q(t) denotes a quantity, namely the amount of 14C present at time t.
There cannot be a negative amount of 14C. Nor can this quantity be zero. (We would
not use carbon dating when there is no 14C present.) Consequently, Q(t) ą 0.

• As the time t increases, Q(t) decreases, because 14C is being continuously converted
into 14N by radioactive decay22. Thus dQ

dt (t) ă 0.

• The signs Q(t) ą 0 and dQ
dt (t) ă 0 are consistent with (2.4.3) provided the constant

of proportionality k ą 0.

21 Willard Libby, of Chicago University was awarded the Nobel Prize in Chemistry in 1960, for developing
radiocarbon dating.

22 The precise transition is 14C Ñ 14N + e´ + ν̄e where e´ is an electron and ν̄e is an electron neutrino.
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• In (2.4.3), we chose to call the constant of proportionality “´k”. We did so in order to
make k ą 0. We could just as well have chosen to call the constant of proportionality
“K”. That is, we could have replaced (2.4.3) by dQ

dt (t) = KQ(t). The constant of
proportionality K would have to be negative, (and K and k would be related by
K = ´k).

Example 2.4.8

In this example, we determine the value of the constant of proportionality k in (2.4.3) that
corresponds to the half–life of 14C, which is 5730 years.

• Imagine that some plant or animal contains a quantity Q0 of 14C at its time of death.
Let’s choose the zero point of time t = 0 to be the instant that the plant or animal
died.

• Denote by Q(t) the amount of 14C in the plant or animal t years after it died. Then
Q(t) must obey both (2.4.3) and Q(0) = Q0.

• Theorem 2.4.4, with b = 0 and a = ´k, then tells us that Q(t) = Q0e´kt for all t ě 0.

• By definition, the half–life of 14C is the length of time that it takes for half of the 14C
to decay. That is, the half–life t1/2 is determined by

Q(t1/2) =
1
2 Q(0) = 1

2 Q0 but we know that Q(t) = Q0e´kt

Q0e´kt1/2 = 1
2 Q0 now cancel Q0

e´kt1/2 = 1
2

Taking the logarithm of both sides gives

´kt1/2 = log
1
2
= ´ log 2 ùñ k =

log 2
t1/2

Recall that, in this text, we use log x to indicate the natural logarithm. That is,

log x = loge x = log x

We are told that, for 14C, the half–life t1/2 = 5730, so

k =
log 2
5730

= 0.000121 to 6 decimal places

Example 2.4.8

From the work in the above example we have accumulated enough new facts to make
a corollary to Theorem 2.4.4.
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The function Q(t) satisfies the equation

dQ
dt

= ´kQ(t)

if and only if

Q(t) = Q(0) e´kt

The half–life is defined to be the time t1/2 which obeys

Q
(
t1/2

)
=

1
2

Q(0)

The half–life is related to the constant k by

t1/2 =
log 2

k

Corollary2.4.9.

Now here is a typical problem that is solved using Corollary 2.4.9.

Example 2.4.10

A particular piece of parchment contains about 64% as much 14C as plants do today. Esti-
mate the age of the parchment.

Solution. Let Q(t) denote the amount of 14C in the parchment t years after it was first
created. By (2.4.3) and Example 2.4.8

dQ
dt

(t) = ´kQ(t) with k =
log 2
5730

= 0.000121

By Corollary 2.4.9

Q(t) = Q(0) e´kt

The time at which Q(t) reaches 0.64 Q(0) is determined by

Q(t) = 0.64 Q(0) but Q(t) = Q(0) e´kt

Q(0) e´kt = 0.64 Q(0) cancel Q(0)

e´kt = 0.64 take logarithms
´kt = log 0.64

t =
log 0.64
´k

=
log 0.64
´0.000121

= 3700 to 2 significant digits

That is, the parchment23 is about 37 centuries old.

23 The British Museum has an Egyptian mathematical text from the seventeenth century B.C.

241



APPLICATIONS OF INTEGRATION 2.4 SEPARABLE DIFFERENTIAL EQUATIONS

Example 2.4.10

We have stated that the half-life of 14C is 5730 years. How can this be determined? We
can explain this using the following example.

Example 2.4.11

A scientist in a B-grade science fiction film is studying a sample of the rare and fictitious
element, implausium. With great effort he has produced a sample of pure implausium.
The next day — 17 hours later — he comes back to his lab and discovers that his sample
is now only 37% pure. What is the half-life of the element?

Solution. We can again set up our problem using Corollary 2.4.9. Let Q(t) denote the
quantity of implausium at time t, measured in hours. Then we know

Q(t) = Q(0) ¨ e´kt

We also know that

Q(17) = 0.37Q(0).

That enables us to determine k via

Q(17) = 0.37Q(0) = Q(0)e´17k divide both sides by Q(0)

0.37 = e´17k

and so

k = ´
log 0.37

17
= 0.05849

We can then convert this to the half life using Corollary 2.4.9:

t1/2 =
log 2

k
« 11.85 hours

While this example is entirely fictitious, one really can use this approach to measure the
half-life of materials.

Example 2.4.11

2.4.3 §§ Optional — Newton’s Law of Cooling

Newton’s law of cooling says:

The rate of change of temperature of an object is proportional to the difference in tem-
perature between the object and its surroundings. The temperature of the surroundings
is sometimes called the ambient temperature.
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If we denote by T(t) the temperature of the object at time t and by A the temperature of its
surroundings, Newton’s law of cooling says that there is some constant of proportionality,
K, such that

dT
dt

(t) = K
[
T(t)´ A

]
(2.4.4)

This mathematical model of temperature change works well when studying a small object
in a large, fixed temperature, environment. For example, a hot cup of coffee in a large
room24. Let’s start by thinking a little about the sign of the constant of proportionality. At
any time t, there are three possibilities.

• If T(t) ą A, that is, if the body is warmer than its surroundings, we would expect
heat to flow from the body into its surroundings and so we would expect the body
to cool off so that dT

dt (t) ă 0. For this expectation to be consistent with (2.4.4), we
need K ă 0.
• If T(t) ă A, that is the body is cooler than its surroundings, we would expect heat

to flow from the surroundings into the body and so we would expect the body to
warm up so that dT

dt (t) ą 0. For this expectation to be consistent with (2.4.4), we
again need K ă 0.
• Finally if T(t) = A, that is the body and its environment have the same temperature,

we would not expect any heat to flow between the two and so we would expect that
dT
dt (t) = 0. This does not impose any condition on K.

In conclusion, we would expect K ă 0. Of course, we could have chosen to call the
constant of proportionality ´k, rather than K. Then the differential equation would be
dT
dt = ´k

(
T ´ A

)
and we would expect k ą 0.

Example 2.4.12

The temperature of a glass of iced tea is initially 5˝. After 5 minutes, the tea has heated to
10˝ in a room where the air temperature is 30˝.

(a) Determine the temperature as a function of time.

(b) What is the temperature after 10 minutes?

(c) Determine when the tea will reach a temperature of 20˝.

Solution. (a)

• Denote by T(t) the temperature of the tea t minutes after it was removed from the
fridge, and let A = 30 be the ambient temperature.

• By Newton’s law of cooling,

dT
dt

= K(T ´ A) = K(T ´ 30)

for some, as yet unknown, constant of proportionality K.

24 It does not work so well when the object is of a similar size to its surroundings since the temperature of
the surroundings will rise as the object cools. It also fails when there are phase transitions involved —
for example, an ice-cube melting in a warm room does not obey Newton’s law of cooling.
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• By Theorem 2.4.4 with a = K and b = 30,

T(t) = [T(0)´ 30] eKt + 30 = 30´ 25eKt

since the initial temperature T(0) = 5.

• This solution is not complete because it still contains an unknown constant, namely
K. We have not yet used the given data that T(5) = 10. We can use it to determine
K. At t = 5,

T(5) = 30´ 25e5K = 10 ùñ e5K =
20
25

ùñ 5K = log
20
25

ùñ K =
1
5

log
4
5
= ´0.044629

to six decimal places.

(b) To find the temperature at 10 minutes we can just use the solution we have determined
above.

T(10) = 30´ 25e10K

= 30´ 25e10ˆ 1
5 log 4

5

= 30´ 25e2 log 4
5 = 30´ 25elog 16

25

= 30´ 16 = 14˝

(c) The temperature is 20˝ when

30´ 25eKt = 20 ùñ eKt =
10
25

ùñ Kt = log
10
25

ùñ t =
1
K

log
2
5
= 20.5 min

to one decimal place.
Example 2.4.12

Example 2.4.13

A dead body is discovered at 3:45pm in a room where the temperature is 20˝C. At that time
the temperature of the body 1s 27˝C. Two hours later, at 5:45pm, the temperature of the
body is 25.3˝C. What was the time of death? Note that the normal (adult human) body
temperature is 37˝C.

Solution. We will assume that the body’s temperature obeys Newton’s law of cooling.

• Denote by T(t) the temperature of the body at time t, with t = 0 corresponding to
3:45pm. We wish to find the time of death — call it td.

• There is a lot of data in the statement of the problem. We are told

(1) the ambient temperature: A = 20
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(2) the temperature of the body when discovered: T(0) = 27

(3) the temperature of the body 2 hours later: T(2) = 25.3

(4) assuming the person was a healthy adult right up until he died, the temperature
at the time of death: T(td) = 37.

• Theorem 2.4.4 with a = K and b = A = 20

T(t) = [T(0)´ A] eKt + A = 20 + 7eKt

Two unknowns remain, K and td.

• We can find the first, K, by using the condition (3), which says T(2) = 25.3.

25.3 = T(2) = 20 + 7e2K
ùñ 7e2K = 5.3 ùñ 2K = log

(5.3
7

)

ùñ K = 1
2 log

(5.3
7

)
= ´0.139

• Finally, td is determined by the condition (4).

37 = T(td) = 20 + 7e´0.139td ùñ e´0.139td = 17
7 ùñ ´0.139td = log

(17
7

)

ùñ td = ´ 1
0.139 log

(17
7

)
= ´6.38

to two decimal places. Now 6.38 hours is 6 hours and 0.38ˆ 60 = 23 minutes. So
the time of death was 6 hours and 23 minutes before 3:45pm, which is 9:22am.

Example 2.4.13

A slightly tricky example — we need to determine the ambient temperature from three
measurements at different times.

Example 2.4.14

A glass of room-temperature water is carried out onto a balcony from an apartment where
the temperature is 22˝C. After one minute the water has temperature 26˝C and after two
minutes it has temperature 28˝C. What is the outdoor temperature?

Solution. We will assume that the temperature of the thermometer obeys Newton’s law
of cooling.

• Let A be the outdoor temperature and T(t) be the temperature of the water t minutes
after it is taken outside.

• By Newton’s law of cooling,

T(t) = A +
(
T(0)´ A

)
eKt

Theorem 2.4.4 with a = K and b = A. Notice there are 3 unknowns here — A, T(0)
and K — so we need three pieces of information to find them all.

• We are told T(0) = 22, so

T(t) = A +
(
22´ A

)
eKt.
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• We are also told T(1) = 26, which gives

26 = A +
(
22´ A

)
eK rearrange things

eK =
26´ A
22´ A

• Finally, T(2) = 28, so

28 = A +
(
22´ A

)
e2K rearrange

e2K =
28´ A
22´ A

but eK =
26´ A
22´ A

, so
(

26´ A
22´ A

)2

=
28´ A
22´ A

multiply through by (22´ A)2

(26´ A)2 = (28´ A)(22´ A)

We can expand out both sides and collect up terms to get

262
loomoon

=676

´52A + A2 = 28ˆ 22
loomoon

=616

´50A + A2

60 = 2A
30 = A

So the temperature outside is 30˝.

Example 2.4.14

2.4.4 §§ Optional — Population Growth

Suppose that we wish to predict the size P(t) of a population as a function of the time
t. In the most naive model of population growth, each couple produces β offspring (for
some constant β) and then dies. Thus over the course of one generation β

P(t)
2 children are

produced and P(t) parents die so that the size of the population grows from P(t) to

P(t + tg) = P(t) + β
P(t)

2
looooooomooooooon

parents+offspring

´ P(t)
loomoon

parents die

=
β

2
P(t)

where tg denotes the lifespan of one generation. The rate of change of the size of the
population per unit time is

P(t + tg)´ P(t)
tg

=
1
tg

[β

2
P(t)´ P(t)

]
= bP(t)

where b = β´2
2tg

is the net birthrate per member of the population per unit time. If we
approximate

P(t + tg)´ P(t)
tg

«
dP
dt

(t)
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we get the differential equation

dP
dt

= bP(t) (2.4.5)

By Corollary 2.4.9, with ´k replaced by b,

P(t) = P(0) ¨ ebt (2.4.6)

This is called the Malthusian25 growth model. It is, of course, very simplistic. One of its
main characteristics is that, since P(t + T) = P(0) ¨ eb(t+T) = P(t) ¨ ebT, every time you
add T to the time, the population size is multiplied by ebT. In particular, the population
size doubles every log 2

b units of time. The Malthusian growth model can be a reasonably
good model only when the population size is very small compared to its environment26.
A more sophisticated model of population growth, that takes into account the “carrying
capacity of the environment” is considered below.

Example 2.4.15

In 1927 the population of the world was about 2 billion. In 1974 it was about 4 billion. Esti-
mate when it reached 6 billion. What will the population of the world be in 2100, assuming
the Malthusian growth model?

Solution. We follow our usual pattern for dealing with such problems.

• Let P(t) be the world’s population, in billions, t years after 1927. Note that 1974
corresponds to t = 1974´ 1927 = 47.

• We are assuming that P(t) obeys equation (2.4.5). So, by (2.4.6)

P(t) = P(0) ¨ ebt

Notice that there are 2 unknowns here — b and P(0) — so we need two pieces of
information to find them.

• We are told P(0) = 2, so

P(t) = 2 ¨ ebt

• We are also told P(47) = 4, which gives

4 = 2 ¨ e47b clean up

e47b = 2 take the log and clean up

b =
log 2

47
= 0.0147 to 3 decimal places

25 This is named after Rev. Thomas Robert Malthus. He described this model in a 1798 paper called “An
essay on the principle of population”.

26 That is, the population has plenty of food and space to grow.
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• We now know P(t) completely, so we can easily determine the predicted popula-
tion27 in 2100, i.e. at t = 2100´ 1927 = 173.

P(173) = 2e173b = 2e173ˆ0.0147 = 12.7 billion

• Finally, our crude model predicts that the population is 6 billion at the time t that
obeys

P(t) = 2ebt = 6 clean up

ebt = 3 take the log and clean up

t =
log 3

b
= 47

log 3
log 2

= 74.5

which corresponds28 to the middle of 2001.

Example 2.4.15

Logistic growth adds one more wrinkle to the simple population model. It assumes
that the population only has access to limited resources. As the size of the population
grows the amount of food available to each member decreases. This in turn causes the net
birth rate b to decrease. In the logistic growth model b = b0

(
1´ P

K
)
, where K is called the

carrying capacity of the environment, so that

P1(t) = b0

(
1´

P(t)
K

)
P(t)

This is a separable differential equation and we can solve it explicitly. We shall do
so shortly. See Example 2.4.16, below. But, before doing that, we’ll see what we can
learn about the behaviour of solutions to differential equations like this without finding
formulae for the solutions. It turns out that we can learn a lot just by watching the sign of
P1(t). For concreteness, we’ll look at solutions of the differential equation

dP
dt

(t) =
(

6000´ 3P(t)
)

P(t)

We’ll sketch the graphs of four functions P(t) that obey this equation.

• For the first function, P(0) = 0.
• For the second function, P(0) = 1000.
• For the third function, P(0) = 2000.
• For the fourth function, P(0) = 3000.

The sketchs will be based on the observation that (6000´ 3P) P = 3(2000´ P) P

• is zero for P = 0, 2000,

27 The 2015 Revision of World Population, a publication of the United Nations, predicts that the world’s
population in 2100 will be about 11 billion. But “about” covers a pretty large range. They give an 80%
confidence interval running from 10 billion to 12.5 billion.

28 The world population really reached 6 billion in about 1999.
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• is strictly positive for 0 ă P ă 2000 and
• is strictly negative for P ą 2000.

Consequently

dP
dt

(t)

$

’

’

’

&

’

’

’

%

= 0 if P(t) = 0
ą 0 if 0 ă P(t) ă 2000
= 0 if P(t) = 2000
ă 0 if P(t) ą 2000

Thus if P(t) is some function that obeys dP
dt (t) =

(
6000´ 3P(t)

)
P(t), then as the graph of

P(t) passes through the point
(
t, P(t)

)

the graph has

$

’

’

’

&

’

’

’

%

slope zero, i.e. is horizontal, if P(t) = 0
positive slope, i.e. is increasing, if 0 ă P(t) ă 2000
slope zero, i.e. is horizontal, if P(t) = 2000
negative slope, i.e. is decreasing, if 0 ă P(t) ă 2000

as illustrated in the figure

t

P (t)

1000

2000

3000

As a result,

• if P(0) = 0, the graph starts out horizontally. In other words, as t starts to increase,
P(t) remains at zero, so the slope of the graph remains at zero. The population size
remains zero for all time. As a check, observe that the function P(t) = 0 obeys
dP
dt (t) =

(
6000´ 3P(t)

)
P(t) for all t.

• Similarly, if P(0) = 2000, the graph again starts out horizontally. So P(t) remains at
2000 and the slope remains at zero. The population size remains 2000 for all time.
Again, the function P(t) = 2000 obeys dP

dt (t) =
(
6000´ 3P(t)

)
P(t) for all t.

• If P(0) = 1000, the graph starts out with positive slope. So P(t) increases with t. As
P(t) increases towards 2000, the slope (6000´ 3P(t)

)
P(t), while remaining positive,

gets closer and closer to zero. As the graph approachs height 2000, it becomes more
and more horizontal. The graph cannot actually cross from below 2000 to above
2000, because to do so it would have to have strictly positive slope for some value of
P above 2000, which is not allowed.
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• If P(0) = 3000, the graph starts out with negative slope. So P(t) decreases with t.
As P(t) decreases towards 2000, the slope (6000´ 3P(t)

)
P(t), while remaining neg-

ative, gets closer and closer to zero. As the graph approachs height 2000, it becomes
more and more horizontal. The graph cannot actually cross from above 2000 to be-
low 2000, because to do so it would have to have negative slope for some value of P
below 2000, which is not allowed.

These curves are sketched in the figure below. We conclude that for any initial population
size P(0), except P(0) = 0, the population size approachs 2000 as t Ñ 8.

t

P (t)

1000

2000

3000

Now we’ll do an example in which we explictly solve the logistic growth equation.

Example 2.4.16

In 1986, the population of the world was 5 billion and was increasing at a rate of 2% per
year. Using the logistic growth model with an assumed maximum population of 100 bil-
lion, predict the population of the world in the years 2000, 2100 and 2500.

Solution. Let y(t) be the population of the world, in billions of people, at time 1986 + t.
The logistic growth model assumes

y1 = ay(K´ y)

where K is the carrying capacity and a = b0
K .

First we’ll determine the values of the constants a and K from the given data.

• We know that, if at time zero the population is below K, then as time increases the
population increases, approaching the limit K as t tends to infinity. So in this prob-
lem K is the maximum population. That is, K = 100.

• We are also told that, at time zero, the percentage rate of change of population, 100y1
y ,

is 2, so that, at time zero, y1
y = 0.02. But, from the differential equation, y1

y = a(K´ y).
Hence at time zero, 0.02 = a(100´ 5), so that a = 2

9500 .

We now know a and K and can solve the (separable) differential equation
dy
dt

= ay(K´ y) ùñ
dy

y(K´ y)
= a dt ùñ

ż

1
K

[1
y
´

1
y´ K

]
dy =

ż

a dt

ùñ
1
K
[log |y| ´ log |y´ K|] = at + C

ùñ log
|y|

|y´ K|
= aKt + CK ùñ

ˇ

ˇ

ˇ

y
y´ K

ˇ

ˇ

ˇ
= DeaKt
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with D = eCK. We know that y remains between 0 and K, so that
ˇ

ˇ

ˇ

y
y´K

ˇ

ˇ

ˇ
= y

K´y and our
solution obeys

y
K´ y

= DeaKt

At this stage, we know the values of the constants a and K, but not the value of the constant
D. We are given that at t = 0, y = 5. Subbing in this, and the values of K and a,

5
100´ 5

= De0
ùñ D =

5
95

So the solution obeys the algebraic equation

y
100´ y

=
5

95
e2t/95

which we can solve to get y as a function of t.

y = (100´ y)
5

95
e2t/95

ùñ 95y = (500´ 5y)e2t/95

ùñ
(
95 + 5e2t/95)y = 500e2t/95

ùñ y =
500e2t/95

95 + 5e2t/95 =
100e2t/95

19 + e2t/95 =
100

1 + 19e´2t/95

Finally,

• In the year 2000, t = 14 and y = 100
1+19e´28/95 « 6.6 billion.

• In the year 2100, t = 114 and y = 100
1+19e´228/95 « 36.7 billion.

• In the year 2200, t = 514 and y = 100
1+19e´1028/95 « 100 billion.

Example 2.4.16

2.4.5 §§ Optional — Mixing Problems

Example 2.4.17

At time t = 0, where t is measured in minutes, a tank with a 5–litre capacity contains 3
litres of water in which 1 kg of salt is dissolved. Fresh water enters the tank at a rate of 2
litres per minute and the fully mixed solution leaks out of the tank at the varying rate of 2t
litres per minute.

(a) Determine the volume of solution V(t) in the tank at time t.

(b) Determine the amount of salt Q(t) in solution when the amount of water in the tank
is at maximum.
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Solution. (a) The rate of change of the volume in the tank, at time t, is 2´ 2t, because
water is entering at a rate 2 and solution is leaking out at a rate 2t. Thus

dV
dt

= 2´ 2t ùñ dV = (2´ 2t) dt ùñ V =

ż

(2´ 2t) dt = 2t´ t2 + C

at least until V(t) reaches either the capacity of the tank or zero. When t = 0, V = 3 so
C = 3 and V(t) = 3 + 2t´ t2. Observe that V(t) is at a maximum when dV

dt = 2´ 2t = 0,
or t = 1.

(b) In the very short time interval from time t to time t + dt, 2t dt litres of brine leaves
the tank. That is, the fraction 2t dt

V(t) of the total salt in the tank, namely Q(t) 2t dt
V(t) kilograms,

leaves. Thus salt is leaving the tank at the rate

Q(t) 2t dt
V(t)

dt
=

2tQ(t)
V(t)

=
2tQ(t)

3 + 2t´ t2 kilograms per minute

so

dQ
dt

= ´
2tQ(t)

3 + 2t´ t2 ùñ
dQ
Q

= ´
2t

3 + 2t´ t2 dt = ´
2t

(3´ t)(1 + t)
dt =

[ 3/2
t´ 3

+
1/2
t + 1

]
dt

ùñ log Q =
3
2

log |t´ 3|+
1
2

log |t + 1|+ C

We are interested in the time interval 0 ď t ď 1. In this time interval |t´ 3| = 3´ t and
|t + 1| = t + 1 so

log Q =
3
2

log(3´ t) +
1
2

log(t + 1) + C

At t = 0, Q is 1 so

log 1 =
3
2

log(3´ 0) +
1
2

log(0 + 1) + C ùñ C = log 1´
3
2

log 3´
1
2

log 1 = ´
3
2

log 3

At t = 1

log Q =
3
2

log(3´ 1) +
1
2

log(1 + 1)´
3
2

log 3 = 2 log 2´
3
2

log 3 = log 4´ log 33/2

so Q = 4
33/2 .

Example 2.4.17

Example 2.4.18

A tank contains 1500 liters of brine with a concentration of 0.3 kg of salt per liter. Another
brine solution, this with a concentration of 0.1 kg of salt per liter is poured into the tank at
a rate of 20 li/min. At the same time, 20 li/min of the solution in the tank, which is stirred
continuously, is drained from the tank.

(a) How many kilograms of salt will remain in the tank after half an hour?
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(b) How long will it take to reduce the concentration to 0.2 kg/li?

Solution. Denote by Q(t) the amount of salt in the tank at time t. In a very short time
interval dt, the incoming solution adds 20 dt liters of a solution carrying 0.1 kg/li. So the
incoming solution adds 0.1ˆ 20 dt = 2 dt kg of salt. In the same time interval 20 dt liters
is drained from the tank. The concentration of the drained brine is Q(t)

1500 . So Q(t)
1500 20 dt kg

were removed. All together, the change in the salt content of the tank during the short
time interval is

dQ = 2 dt´
Q(t)
1500

20 dt =
(

2´
Q(t)
75

)
dt

The rate of change of salt content per unit time is

dQ
dt

= 2´
Q(t)
75

= ´
1

75
(
Q(t)´ 150

)

The solution of this equation is

Q(t) =
 

Q(0)´ 150
(

e´t/75 + 150

by Theorem 2.4.4, with a = ´ 1
75 and b = 150. At time 0, Q(0) = 1500ˆ 0.3 = 450. So

Q(t) = 150 + 300e´t/75

(a) At t = 30
Q(30) = 150 + 300e´30/75 = 351.1 kg

(b) Q(t) = 0.2ˆ 1500 = 300 kg is achieved when

150 + 300e´t/75 = 300 ùñ 300e´t/75 = 150 ùñ e´t/75 = 0.5

ùñ ´
t

75
= log(0.5) ùñ t = ´75 log(0.5) = 51.99 min

Example 2.4.18

2.4.6 §§ Optional — Interest on Investments

Suppose that you deposit $P in a bank account at time t = 0. The account pays r% interest
per year compounded n times per year.

• The first interest payment is made at time t = 1
n . Because the balance in the account

during the time interval 0 ă t ă 1
n is $P and interest is being paid for

( 1
n
)th of a year,

that first interest payment is 1
n ˆ

r
100 ˆ P. After the first interest payment, the balance

in the account is P + 1
n ˆ

r
100 ˆ P =

(
1 + r

100n
)

P.
• The second interest payment is made at time t = 2

n . Because the balance in the
account during the time interval 1

n ă t ă 2
n is

(
1 + r

100n
)

P and interest is being paid

for
( 1

n
)th of a year, the second interest payment is 1

n ˆ
r

100 ˆ
(
1 + r

100n
)

P. After the
second interest payment, the balance in the account is

(
1 + r

100n
)

P + 1
n ˆ

r
100 ˆ

(
1 +

r
100n

)
P =

(
1 + r

100n
)2P.
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• And so on.

In general, at time t = m
n (just after the mth interest payment), the balance in the account is

B(t) =
(

1 +
r

100n

)m
P =

(
1 +

r
100n

)nt
P (2.4.7)

Three common values of n are 1 (interest is paid once a year), 12 (i.e. interest is paid
once a month) and 365 (i.e. interest is paid daily). The limit n Ñ 8 is called continuous
compounding29. Under continuous compounding, the balance at time t is

B(t) = lim
nÑ8

(
1 +

r
100n

)nt
P

You may have already seen the limit

lim
xÑ0

(1 + x)a/x = ea (2.4.8)

If so, you can evaluate B(t) by applying (2.4.8) with x = r
100n and a = rt

100 (so that a
x = nt).

As n Ñ 8, x Ñ 0 so that

B(t) = lim
nÑ8

(
1 +

r
100n

)nt
P = lim

xÑ0
(1 + x)a/xP = eaP = ert/100P (2.4.9)

If you haven’t seen (2.4.8) before, that’s OK. In the following example, we rederive (2.4.9)
using a differential equation instead of (2.4.8).

Example 2.4.19

Suppose, again, that you deposit $P in a bank account at time t = 0, and that the account
pays r% interest per year compounded n times per year, and denote by B(t) the balance
at time t. Suppose that you have just received an interest payment at time t. Then the next
interest payment will be made at time t + 1

n and will be 1
n ˆ

r
100 ˆ B(t) = r

100n B(t). So,
calling 1

n = h,

B(t + h) = B(t) +
r

100
B(t)h or

B(t + h)´ B(t)
h

=
r

100
B(t)

To get continuous compounding we take the limit n Ñ 8 or, equivalently, h Ñ 0. This
gives

lim
hÑ0

B(t + h)´ B(t)
h

=
r

100
B(t) or

dB
dt

(t) =
r

100
B(t)

By Theorem 2.4.4, with a = r
100 and b = 0, (or Corollary 2.4.9 with k = ´ r

100 ),

B(t) = ert/100B(0) = ert/100P

once again.
Example 2.4.19

29 There are banks that advertise continuous compounding. You can find some by googling “interest is
compounded continuously and paid”
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Example 2.4.20

(a) A bank advertises that it compounds interest continuously and that it will double your
money in ten years. What is the annual interest rate?

(b) A bank advertises that it compounds monthly and that it will double your money in
ten years. What is the annual interest rate?

Solution. (a) Let the interest rate be r% per year. If you start with $P, then after t years,
you have Pert/100, under continuous compounding. This was (2.4.9). After 10 years you
have Per/10. This is supposed to be 2P, so

Per/10 = 2P ùñ er/10 = 2 ùñ
r

10
= log 2 ùñ r = 10 log 2 = 6.93%

(b) Let the interest rate be r% per year. If you start with $P, then after t years, you have
P
(
1 + r

100ˆ12

)12t, under monthly compounding. This was (2.4.7). After 10 years you have

P
(
1 + r

100ˆ12

)120. This is supposed to be 2P, so

P
(
1 +

r
100ˆ 12

)120
= 2P ùñ

(
1 +

r
1200

)120
= 2 ùñ 1 +

r
1200

= 21/120

ùñ
r

1200
= 21/120

´ 1 ùñ r = 1200
(
21/120

´ 1
)
= 6.95%

Example 2.4.20

Example 2.4.21

A 25 year old graduate of UBC is given $50,000 which is invested at 5% per year com-
pounded continuously. The graduate also intends to deposit money continuously at the
rate of $2000 per year.

(a) Find a differential equation that A(t) obeys, assuming that the interest rate remains
5%.

(b) Determine the amount of money in the account when the graduate is 65.

(c) At age 65, the graduate will start withdrawing money continuously at the rate of W
dollars per year. If the money must last until the person is 85, what is the largest
possible value of W?

Solution. (a) Let’s consider what happens to A over a very short time interval from time
t to time t + ∆t. At time t the account balance is A(t). During the (really short) specified
time interval the balance remains very close to A(t) and so earns interst of 5

100 ˆ∆tˆ A(t).
During the same time interval, the graduate also deposits an additional $2000∆t. So

A(t + ∆t) « A(t) + 0.05A(t)∆t + 2000∆t ùñ
A(t + ∆t)´ A(t)

∆t
« 0.05A(t) + 2000
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In the limit ∆t Ñ 0, the approximation becomes exact and we get

dA
dt

= 0.05A + 2000

(b) The amount of money at time t obeys

dA
dt

= 0.05A(t) + 2,000 = 0.05
(

A(t) + 40,000
)

So by Theorem 2.4.4 (with a = 0.05 and b = ´40,000),

A(t) =
(

A(0) + 40,000
)
e0.05t

´ 40,000

At time 0 (when the graduate is 25), A(0) = 50,000, so the amount of money at time t is

A(t) = 90,000 e0.05t
´ 40, 000

In particular, when the graduate is 65 years old, t = 40 and

A(40) = 90,000 e0.05ˆ40
´ 40, 000 = $625,015.05

(c) When the graduate stops depositing money and instead starts withdrawing money at
a rate W, the equation for A becomes

dA
dt

= 0.05A´W = 0.05(A´ 20W)

assuming that the interest rate remains 5%. This time, Theorem 2.4.4 (with a = 0.05 and
b = 20W) gives

A(t) =
(

A(0)´ 20W
)
e0.05t + 20W

If we now reset our clock so that t = 0 when the graduate is 65, A(0) = 625, 015.05. So the
amount of money at time t is

A(t) = 20W + e0.05t(625, 015.05´ 20W)

We want the account to be depleted when the graduate is 85. So, we want A(20) = 0. This
is the case if

20W + e0.05ˆ20(625, 015.05´ 20W) = 0 ùñ 20W + e(625, 015.05´ 20W) = 0
ùñ 20(e´ 1)W = 625, 015.05e

ùñ W =
625, 015.05e

20(e´ 1)
= $49, 437.96

Example 2.4.21
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Chapter 3

You have probably1 learned about Taylor polynomials and, in particular, that

ex = 1 + x +
x2

2!
+

x3

3!
+ ¨ ¨ ¨+

xn

n!
+ En(x)

where En(x) is the error introduced when you approximate ex by its Taylor polynomial of
degree n. You may2 have even seen a formula for En(x). We are now going to ask what
happens as n goes to infinity? Does the error go zero, giving an exact formula for ex? We
shall later see that it does and that

ex = 1 + x +
x2

2!
+

x3

3!
+ ¨ ¨ ¨ =

8
ÿ

n=0

xn

n!

At this point we haven’t defined, or developed any understanding of, this infinite sum.
How do we compute the sum of an infinite number of terms? Indeed, when does a sum
of an infinite number of terms even make sense? Clearly we need to build up foundations
to deal with these ideas. Along the way we shall also see other functions for which the
corresponding error obeys lim

nÑ8
En(x) = 0 for some values of x and not for other values of

x.
To motivate the next section, consider using the above formula with x = 1 to compute

the number e:

e = 1 + 1 +
1
2!

+
1
3!

+ ¨ ¨ ¨ =
8
ÿ

n=0

1
n!

As we stated above, we don’t yet understand what to make of this infinite number of
terms, but we might try to sneak up on it by thinking about what happens as we take

1 If you took Mathematics 100, 180, 104 or 184 then you definitely learned about Taylor polynomials.
Now would be an excellent time to quickly read over your notes on the topic.

2 Again, if you took Mathematics 100,180,104 or 184 then you almost certainly did see a formula for the
error En(x) and even how to bound it.
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more and more terms.

1 term 1 = 1
2 terms 1 + 1 = 2

3 terms 1 + 1 +
1
2
= 2.5

4 terms 1 + 1 +
1
2
+

1
6
= 2.666666 . . .

5 terms 1 + 1 +
1
2
+

1
6
+

1
24

= 2.708333 . . .

6 terms 1 + 1 +
1
2
+

1
6
+

1
24

+
1

120
= 2.716666 . . .

By looking at the infinite sum in this way, we naturally obtain a sequence of numbers

t 1 , 2 , 2.5 , 2.666666 , . . . , 2.708333 , . . . , 2.716666 , . . . , ¨ ¨ ¨ u.

The key to understanding the original infinite sum is to understand the behaviour of this
sequence of numbers — in particularly, what do the numbers do as we go further and
further? Does it settle down 3 to a given limit?

3.1Ĳ Sequences

In the discussion above we used the term “sequence” without giving it a precise mathe-
matical meaning. Let us rectify this now.

A sequence is a list of infinitely4 many numbers with a specified order. It is
denoted

 

a1, a2, a3, ¨ ¨ ¨ , an, ¨ ¨ ¨
(

or
 

an
(

or
 

an
(8

n=1

Definition3.1.1.

We will often specify a sequence by writing it more explicitly, like

!

an = f (n)
)8

n=1

where f (n) is some function from the natural numbers to the real numbers.

3 You will notice a great deal of similarity between the results of the next section and “limits at infinity”
which was covered last term.

4 For the more pedantic reader, here we mean a list of countably infinitely many numbers. The interested
(pedantic or otherwise) reader should look up countable and uncountable sets.
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Example 3.1.2

Here are three sequences.

!

1,
1
2

,
1
3

, ¨ ¨ ¨ ,
1
n

, ¨ ¨ ¨
)

or
!

an =
1
n

)8

n=1
!

1, 2, 3, ¨ ¨ ¨ , n, ¨ ¨ ¨
)

or
!

an = n
)8

n=1
!

1, ´1, 1, ´1, ¨ ¨ ¨ , (´1)n´1, ¨ ¨ ¨
)

or
!

an = (´1)n´1
)8

n=1

It is not necessary that there be a simple explicit formula for the nth term of a sequence.
For example the decimal digits of π is a perfectly good sequence

 

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, ¨ ¨ ¨
(

but there is no simple formula5 for the nth digit.
Example 3.1.2

Our primary concern with sequences will be the behaviour of an as n tends to infinity and,
in particular, whether or not an “settles down” to some value as n tends to infinity.

A sequence
 

an
(8

n=1 is said to converge to the limit A if an approaches A as n
tends to infinity. If so, we write

lim
nÑ8

an = A or an Ñ A as n Ñ 8

A sequence is said to converge if it converges to some limit. Otherwise it is said
to diverge.

Definition3.1.3.

The reader should immediately recognise the similarity with limits at infinity

lim
xÑ8

f (x) = L if f (x)Ñ L as x Ñ 8

Example 3.1.4

Three of the four sequences in Example 3.1.2 diverge:

• The sequence
 

an = n
(8

n=1 diverges because an grows without bound, rather than
approaching some finite value, as n tends to infinity.

5 There is, however, a remarkable result due to Bailey, Borwein and Plouffe that can be used to compute
the nth binary digit of π (i.e. writing π in base 2 rather than base 10) without having to work out the
preceeding digits.
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• The sequence
 

an = (´1)n´1(8
n=1 diverges because an oscillates between +1 and ´1

rather than approaching a singe value as n tends to infinity.
• The sequence of the decimal digits of π also diverges, though the proof that this is

the case is a bit beyond us right now6.

The other sequence in Example 3.1.2 has an = 1
n . As n tends to infinity, 1

n tends to zero. So

lim
nÑ8

1
n
= 0

Example 3.1.4

Example 3.1.5
(

lim
nÑ8

n
2n+1

)

Here is a little less trivial example. To study the behaviour of n
2n+1 as n Ñ 8, it is a good

idea to write it as
n

2n + 1
=

1
2 + 1

n

As n Ñ 8, the 1
n in the denominator tends to zero, so that the denominator 2 + 1

n tends to
2 and 1

2+ 1
n

tends to 1
2 . So

lim
nÑ8

n
2n + 1

= lim
nÑ8

1
2 + 1

n
=

1
2

Example 3.1.5

Notice that in this last example, we are really using techniques that we used before to
study infinite limits like lim

xÑ8
f (x). This experience can be easily transferred to dealing

with lim
nÑ8

an limits by using the following result.

If
lim
xÑ8

f (x) = L

and if an = f (n) for all positive integers n, then

lim
nÑ8

an = L

Theorem3.1.6.

6 If the digits of π were to converge, then π would have to be a rational number. The irrationality of π
(that it cannot be written as a fraction) was first proved by Lambert in 1761. Niven’s 1947 proof is more
accessible and we invite the interested reader to use their favourite search engine to find step–by–step
guides to that proof.
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Example 3.1.7
(

lim
nÑ8

e´n
)

Set f (x) = e´x. Then e´n = f (n) and

since lim
xÑ8

e´x = 0 we know that lim
nÑ8

e´n = 0

Example 3.1.7

The bulk of the rules for the arithmetic of limits of functions that you already know also
apply to the limits of sequences. That is, the rules you learned to work with limits such as
lim
xÑ8

f (x) also apply to limits like lim
nÑ8

an.

Let A, B and C be real numbers and let the two sequences
 

an
(8

n=1 and
 

bn
(8

n=1
converge to A and B respectively. That is, assume that

lim
nÑ8

an = A lim
nÑ8

bn = B

Then the following limits hold.

(a) lim
nÑ8

[
an + bn

]
= A + B

(The limit of the sum is the sum of the limits.)

(b) lim
nÑ8

[
an ´ bn

]
= A´ B

(The limit of the difference is the difference of the limits.)

(c) lim
nÑ8

Can = CA.

(d) lim
nÑ8

an bn = A B
(The limit of the product is the product of the limits.)

(e) If B ‰ 0 then lim
nÑ8

an

bn
=

A
B

(The limit of the quotient is the quotient of the limits provided the limit of the
denominator is not zero.)

Theorem3.1.8 (Arithmetic of limits).

We use these rules to evaluate limits of more complicated sequences in terms of the
limits of simpler sequences — just as we did for limits of functions.

Example 3.1.9
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Combining Examples 3.1.5 and 3.1.7,

lim
nÑ8

[ n
2n + 1

+ 7e´n
]
= lim

nÑ8

n
2n + 1

+ lim
nÑ8

7e´n by Theorem 3.1.8.a

= lim
nÑ8

n
2n + 1

+ 7 lim
nÑ8

e´n by Theorem 3.1.8.c

=
1
2
+ 7 ¨ 0 by Examples 3.1.5 and 3.1.7

=
1
2

Example 3.1.9

There is also a squeeze theorem for sequences.

If an ď cn ď bn for all natural numbers n, and if

lim
nÑ8

an = lim
nÑ8

bn = L

then
lim

nÑ8
cn = L

Theorem3.1.10 (Squeeze theorem).

Example 3.1.11

In this example we use the squeeze theorem to evaluate

lim
nÑ8

[
1 +

πn

n

]

where πn is the nth decimal digit of π. That is,

π1 = 3 π2 = 1 π3 = 4 π4 = 1 π5 = 5 π6 = 9 ¨ ¨ ¨

We do not have a simple formula for πn. But we do know that

0 ď πn ď 9 ùñ 0 ď
πn

n
ď

9
n
ùñ 1 ď 1 +

πn

n
ď 1 +

9
n

and we also know that

lim
nÑ8

1 = 1 lim
nÑ8

[
1 +

9
n

]
= 1

So the squeeze theorem with an = 1, bn = 1 + πn
n , and cn = 1 + 9

n gives

lim
nÑ8

[
1 +

πn

n

]
= 1
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Example 3.1.11

Finally, recall that we can compute the limit of the composition of two functions using
continuity. In the same way, we have the following result:

If lim
nÑ8

an = L and if the function g(x) is continuous at L, then

lim
nÑ8

g(an) = g(L)

Theorem3.1.12 (Continuous functions of limits).

Example 3.1.13
(

lim
nÑ8

sin πn
2n+1

)

Write sin πn
2n+1 = g

( n
2n+1

)
with g(x) = sin(πx). We saw, in Example 3.1.5 that

lim
nÑ8

n
2n + 1

=
1
2

Since g(x) = sin(πx) is continuous at x = 1
2 , which is the limit of n

2n+1 , we have

lim
nÑ8

sin
πn

2n + 1
= lim

nÑ8
g
( n

2n + 1

)
= g

(1
2

)
= sin

π

2
= 1

Example 3.1.13

With this introduction to sequences and some tools to determine their limits, we can
now return to the problem of understanding infinite sums.

3.2Ĳ Series

A series is a sum

a1 + a2 + a3 + ¨ ¨ ¨+ an + ¨ ¨ ¨

of infinitely many terms. In summation notation, it is written

8
ÿ

n=1

an

You already have a lot of experience with series, though you might not realise it. When
you write a number using its decimal expansion you are really expressing it as a series.
Perhaps the simplest example of this is the decimal expansion of 1

3 :

1
3
= 0.3333 ¨ ¨ ¨
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Recall that the expansion written in this way actually means

0.333333 ¨ ¨ ¨ =
3

10
+

3
100

+
3

1000
+

3
10000

+ ¨ ¨ ¨ =
8
ÿ

n=1

3
10n

The summation index n is of course a dummy index. You can use any symbol you like
(within reason) for the summation index.

8
ÿ

n=1

3
10n =

8
ÿ

i=1

3
10i =

8
ÿ

j=1

3
10j =

8
ÿ

`=1

3
10`

A series can be expressed using summation notation in many different ways. For example
the following expressions all represent the same series:

8
ÿ

n=1

3
10n =

n=1
hkkikkj

3
10

+

n=2
hkkikkj

3
100

+

n=3
hkkikkj

3
1000

+ ¨ ¨ ¨

8
ÿ

j=2

3
10j´1 =

j=2
hkkikkj

3
10

+

j=3
hkkikkj

3
100

+

j=4
hkkikkj

3
1000

+ ¨ ¨ ¨

8
ÿ

`=0

3
10`+1 =

`=0
hkkikkj

3
10

+

`=1
hkkikkj

3
100

+

`=3
hkkikkj

3
1000

+ ¨ ¨ ¨

3
10

+
8
ÿ

n=2

3
10n =

3
10

+

n=2
hkkikkj

3
100

+

n=3
hkkikkj

3
1000

+ ¨ ¨ ¨

We can get from the first line to the second line by substituting n = j´ 1 — don’t forget to
also change the limits of summation (so that n = 1 becomes j´ 1 = 1 which is rewritten
as j = 2). To get from the first line to the third line, substitute n = ` + 1 everywhere,
including in the limits of summation (so that n = 1 becomes `+ 1 = 1 which is rewritten
as ` = 0).

Whenever you are in doubt as to what series a summation notation expression repre-
sents, it is a good habit to write out the first few terms, just as we did above.

Of course, at this point, it is not clear whether the sum of infinitely many terms adds up
to a finite number or not. In order to make sense of this we will recast the problem in terms
of the convergence of sequences (hence the discussion of the previous section). Before we
proceed more formally let us illustrate the basic idea with a few simple examples.

Example 3.2.1

(
8
ÿ

n=1

3
10n

)

As we have just seen above the series
ř8

n=1
3

10n is

8
ÿ

n=1

3
10n =

n=1
hkkikkj

3
10

+

n=2
hkkikkj

3
100

+

n=3
hkkikkj

3
1000

+ ¨ ¨ ¨
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Notice that the nth term in that sum is

3ˆ 10´n = 0.

n´1 zeroes
hkkikkj

00 ¨ ¨ ¨ 0 3

So the sum of the first 5, 10, 15 and 20 terms in that series are

5
ÿ

n=1

3
10n = 0.33333

10
ÿ

n=1

3
10n = 0.3333333333

15
ÿ

n=1

3
10n = 0.333333333333333

20
ÿ

n=1

3
10n = 0.33333333333333333333

It sure looks like that, as we add more and more terms, we get closer and closer to 0.3̇ = 1
3 .

So it is very reasonable7 to define
ř8

n=1
3

10n to be 1
3 .

Example 3.2.1

Example 3.2.2

(
8
ÿ

n=1

1 and
ř8

n=1(´1)n

)

Every term in the series
ř8

n=1 1 is exactly 1. So the sum of the first N terms is exactly N.
As we add more and more terms this grows unboundedly. So it is very reasonable to say
that the series

ř8
n=1 1 diverges.

The series

8
ÿ

n=1

(´1)n =

n=1
hkkikkj

(´1) +

n=2
hkkikkj

1 +

n=3
hkkikkj

(´1) +

n=4
hkkikkj

1 +

n=5
hkkikkj

(´1) + ¨ ¨ ¨

So the sum of the first N terms is 0 if N is even and ´1 if N is odd. As we add more and
more terms from the series, the sum alternates between 0 and ´1 for ever and ever. So the
sum of all infinitely many terms does not make any sense and it is again reasonable to say
that the series

ř8
n=1(´1)n diverges.

Example 3.2.2

In the above examples we have tried to understand the series by examining the sum
of the first few terms and then extrapolating as we add in more and more terms. That is,
we tried to sneak up on the infinite sum by looking at the limit of (partial) sums of the
first few terms. This approach can be made into a more formal rigorous definition. More
precisely, to define what is meant by the infinite sum

ř8
n=1 an, we approximate it by the

sum of its first N terms and then take the limit as N tends to infinity.

7 Of course we are free to define the series to be whatever we want. The hard part is defining it to be
something that makes sense and doesn’t lead to contradictions. We’ll get to a more systematic definition
shortly.
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The Nth partial sum of the series
ř8

n=1 an is the sum of its first N terms

SN =
N
ÿ

n=1

an.

The partial sums form a sequence
 

SN
(8

N=1. If this sequence of partial sums
converges SN Ñ S as N Ñ 8 then we say that the series

ř8
n=1 an converges to S

and we write
8
ÿ

n=1

an = S

If the sequence of partial sums diverges, we say that the series diverges.

Definition3.2.3.

Example 3.2.4 (Geometric Series)

Let a and r be any two fixed real numbers with a ‰ 0. The series

a + ar + ar2 + ¨ ¨ ¨+ arn + ¨ ¨ ¨ =
8
ÿ

n=0

arn

is called the geometric series with first term a and ratio r.
Notice that we have chosen to start the summation index at n = 0. That’s fine. The

first8 term is the n = 0 term, which is ar0 = a. The second term is the n = 1 term,
which is ar1 = ar. And so on. We could have also written the series

ř8
n=1 arn´1. That’s

exactly the same series — the first term is arn´1
ˇ

ˇ

n=1 = ar1´1 = a, the second term is
arn´1

ˇ

ˇ

n=2 = ar2´1 = ar, and so on9. Regardless of how we write the geometric series, a is
the first term and r is the ratio between successive terms.

Geometric series have the extremely useful property that there is a very simple formula
for their partial sums. Denote the partial sum by

SN =
N
ÿ

n=0

arn = a + ar + ar2 + ¨ ¨ ¨+ arN.

8 It is actually quite common in computer science to think of 0 as the first integer. In that context, the set
of natural numbers is defined to contain 0:

N = t0, 1, 2, . . . u

while the notation

Z+ = t1, 2, 3, . . . u

is used to denote the (strictly) positive integers. Remember that in this text, as is more standard in
mathematics, we define the set of natural numbers to be the set of (strictly) positive integers.

9 This reminds the authors of the paradox of Hilbert’s hotel. The hotel with an infinite number of rooms
is completely full, but can always accommodate one more guest. The interested reader should use their
favourite search engine to find more information on this.

266



SEQUENCE AND SERIES 3.2 SERIES

The secret to evaluating this sum is to see what happens when we multiply it r:

rSN = r
(
a + ar + ar2 + ¨ ¨ ¨+ arN)

= ar + ar2 + ar3 + ¨ ¨ ¨+ arN+1

Notice that this is almost the same10 as SN. The only differences are that the first term, a,
is missing and one additional term, arN+1, has been tacked on the end. So

SN = a + ar + ar2 + ¨ ¨ ¨+ arN

rSN = ar + ar2 + ¨ ¨ ¨+ arN + arN+1

Hence taking the difference of these expressions cancels almost all the terms:

(1´ r)SN = a´ arN+1 = a(1´ rN+1)

Provided r ‰ 1 we can divide both side by 1´ r to isolate SN:

SN = a ¨
1´ rN+1

1´ r
.

On the other hand, if r = 1, then

SN = a + a + ¨ ¨ ¨+ a
loooooooomoooooooon

N+1 terms

= a(N + 1)

So in summary:

SN =

$

&

%

a 1´rN+1

1´r if r ‰ 1

a(N + 1) if r = 1

Now that we have this expression we can determine whether or not the series con-
verges. If |r| ă 1, then rN+1 tends to zero as N Ñ 8, so that SN converges to 1

1´r as N Ñ 8

and

8
ÿ

n=0

arn =
a

1´ r
provided |r| ă 1.

On the other hand if |r| ě 1, SN diverges. To understand this divergence, consider the
following 4 cases:

• If r ą 1, then rN grows to8 as N Ñ 8.

• If r ă ´1, then the magnitude of rN grows to8, and the sign of rN oscillates between
+ and ´, as N Ñ 8.

10 One can find similar properties of other special series, that allow us, with some work, to cancel many
terms in the partial sums. We will shortly see a good example of this. The interested reader should look
up “creative telescoping” to see how this idea might be used more generally, though it is somewhat
beyond this course.
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• If r = +1, then N + 1 grows to8 as N Ñ 8.

• If r = ´1, then rN just oscillates between +1 and ´1 as N Ñ 8.

In each case the sequence of partial sums does not converge and so the series does not
converge.

Example 3.2.4

Now that we know how to handle geometric series let’s return to Example 3.2.1.

Example 3.2.5 (Decimal Expansions)

The decimal expansion

0.3333 ¨ ¨ ¨ =
3

10
+

3
100

+
3

1000
+

3
10000

+ ¨ ¨ ¨ =
8
ÿ

n=1

3
10n

is a geometric series with the first term a = 3
10 and the ratio r = 1

10 . So, by Example 3.2.4,

0.3333 ¨ ¨ ¨ =
8
ÿ

n=1

3
10n =

3/10

1´ 1/10
=

3/10

9/10
=

1
3

just as we would have expected.
We can push this idea further. Consider the repeating decimal expansion:

0.16161616 ¨ ¨ ¨ =
16

100
+

16
10000

+
16

1000000
+ ¨ ¨ ¨

This is another geometric series with the first term a = 16
100 and the ratio r = 1

100 . So, by
Example 3.2.4,

0.16161616 ¨ ¨ ¨ =
8
ÿ

n=1

16
100n =

16/100

1´ 1/100
=

16/100

99/100
=

16
99

again, as expected. In this way any periodic decimal expansion converges to a ratio of two
integers — that is, to a rational number11.

11 We have included a (more) formal proof of this fact in the optional §3.7 at the end of this chapter.
Proving that a repeating decimal expansion gives a rational number isn’t too hard. Proving the converse
— that every rational number has a repeating decimal expansion is a little tricker, but we also do that
in the same optional section.
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Here is another more complicated example.

0.1234343434 ¨ ¨ ¨ =
12

100
+

34
10000

+
34

1000000
+ ¨ ¨ ¨

=
12

100
+

8
ÿ

n=2

34
100n

=
12

100
+

34
10000

1
1´ 1/100

by Example 3.2.4 with a =
34

1002 and r =
1

100

=
12

100
+

34
10000

100
99

=
1222
9900

Example 3.2.5

Typically, it is quite difficult to write down a neat closed form expression for the partial
sums of a series. Geometric series are very notable exceptions to this. Another family of
series for which we can write down partial sums is called “telescoping series”. These
series have the desirable property that many of the terms in the sum cancel each other out
rendering the partial sums quite simple.

Example 3.2.6 (Telescoping Series)

In this example, we are going to study the series
ř8

n=1
1

n(n+1) . This is a rather artificial se-

ries12 that has been rigged to illustrate a phenomenon call “telescoping”. Notice that the
nth term can be rewritten as

1
n(n + 1)

=
1
n
´

1
n + 1

and so we have

an = bn ´ bn+1 where bn =
1
n

.

Because of this we get big cancellations when we add terms together. This allows us to
get a simple formula for the partial sums of this series.

SN =
1

1 ¨ 2
+

1
2 ¨ 3

+
1

3 ¨ 4
+ ¨ ¨ ¨+

1
N ¨ (N + 1)

=
(1

1
´

1
2

)
+
(1

2
´

1
3

)
+
(1

3
´

1
4

)
+ ¨ ¨ ¨+

( 1
N
´

1
N + 1

)

The second term of each bracket exactly cancels the first term of the following bracket. So
the sum “telescopes” leaving just

SN = 1´
1

N + 1

12 Well. . . this sort of series does show up when you start to look at the Maclaurin polynomial of functions
like (1´ x) log(1´ x). So it is not totally artificial. At any rate, it illustrates the basic idea of telescoping
very nicely, and the idea of “creative telescoping” turns out to be extremely useful in the study of series
— though it is well beyond the scope of this course.
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and we can now easily compute

8
ÿ

n=1

1
n(n + 1)

= lim
NÑ8

SN = lim
NÑ8

(
1´

1
N + 1

)
= 1

Example 3.2.6

More generally, if we can write

an = bn ´ bn+1

for some other known sequence bn, then the series telescopes and we can compute partial
sums using

N
ÿ

k=1

ak =
N
ÿ

k=1

(bk ´ bk+1)

=
N
ÿ

k=1

bk ´

N
ÿ

k=1

bk+1

= b1 ´ bN+1.

and hence

8
ÿ

k=1

an = b1 ´ lim
NÑ8

bN+1

provided this limit exists.Often lim
NÑ8

bN+1 = 0 and then
8
ř

k=1
an = b1. But this does not

always happen. Here is an example.

Example 3.2.7 (A Divergent Telescoping Series)

In this example, we are going to study the series
8
ř

n=1
log
(
1+ 1

n
)
. Let’s start by just writing

out the first few terms.

8
ÿ

n=1

log
(

1 +
1
n

)
=

n=1
hkkkkkkikkkkkkj

log
(

1 +
1
1

)
+

n=2
hkkkkkkikkkkkkj

log
(

1 +
1
2

)
+

n=3
hkkkkkkikkkkkkj

log
(

1 +
1
3

)
+

n=4
hkkkkkkikkkkkkj

log
(

1 +
1
4

)
+ ¨ ¨ ¨

= log(2) + log
(3

2

)
+ log

(4
3

)
+ log

(5
4

)
+ ¨ ¨ ¨

This is pretty suggestive since

log(2) + log
(3

2

)
+ log

(4
3

)
+ log

(5
4

)
= log

(
2ˆ

3
2
ˆ

4
3
ˆ

5
4

)
= log(5)
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So let’s try using this idea to compute the partial sum SN:

SN =
N
ÿ

n=1

log
(

1 +
1
n

)

=

n=1
hkkkkkkikkkkkkj

log
(

1 +
1
1

)
+

n=2
hkkkkkkikkkkkkj

log
(

1 +
1
2

)
+

n=3
hkkkkkkikkkkkkj

log
(

1 +
1
3

)
+ ¨ ¨ ¨+

n=N´1
hkkkkkkkkkikkkkkkkkkj

log
(

1 +
1

N ´ 1

)
+

n=N
hkkkkkkikkkkkkj

log
(

1 +
1
N

)

= log(2) + log
(3

2

)
+ log

(4
3

)
+ ¨ ¨ ¨+ log

( N
N ´ 1

)
+ log

(N + 1
N

)

= log
(

2ˆ
3
2
ˆ

4
3
ˆ ¨ ¨ ¨ ˆ

N
N ´ 1

ˆ
N + 1

N

)

= log(N + 1)

Uh oh!

lim
NÑ8

SN = lim
NÑ8

log(N + 1) = +8

This telecoscoping series diverges! There is an important lesson here. Telescoping series
can diverge. They do not always converge to b1.

Example 3.2.7

As was the case for limits, differentiation and antidifferentiation, we can compute more
complicated series in terms of simpler ones by understanding how series interact with
the usual operations of arithmetic. It is, perhaps, not so surprising that there are simple
rules for addition and subtraction of series and for multiplication of a series by a constant.
Unfortunately there are no simple general rules for computing products or ratios of series.

Let A, B and C be real numbers and let the two series
ř8

n=1 an and
ř8

n=1 bn con-
verge to S and T respectively. That is, assume that

8
ÿ

n=1

an = S
8
ÿ

n=1

bn = T

Then the following hold.

(a)
8
ÿ

n=1

[
an + bn

]
= S + T and

8
ÿ

n=1

[
an ´ bn

]
= S´ T

(b)
8
ÿ

n=1

Can = CS.

Theorem3.2.8 (Arithmetic of series).
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Example 3.2.9

As a simple example of how we use the arithmetic of series Theorem 3.2.8, consider

8
ÿ

n=1

[ 1
7n +

2
n(n + 1)

]

We recognize that we know how to compute parts of this sum. We know that

8
ÿ

n=1

1
7n =

1/7

1´ 1/7
=

1
6

because it is a geometric series (Example 3.2.4) with first term a = 1
7 and ratio r = 1

7 . And
we know that

8
ÿ

n=1

1
n(n + 1)

= 1

by Example 3.2.6. We can now use Theorem 3.2.8 to build the specified “complicated”
series out of these two “simple” pieces.

8
ÿ

n=1

[ 1
7n +

2
n(n + 1)

]
=

8
ÿ

n=1

1
7n +

8
ÿ

n=1

2
n(n + 1)

by Theorem 3.2.8.a

=
8
ÿ

n=1

1
7n + 2

8
ÿ

n=1

1
n(n + 1)

by Theorem 3.2.8.b

=
1
6
+ 2 ¨ 1 =

13
6

Example 3.2.9

3.3Ĳ Convergence Tests

It is very common to encounter series for which it is difficult, or even virtually impossi-
ble, to determine the sum exactly. Often you try to evaluate the sum approximately by
truncating it, i.e. having the index run only up to some finite N, rather than infinity. But
there is no point in doing so if the series diverges. So you like to at least know if the
series converges or diverges. Furthermore you would also like to know what error is in-
troduced when you approximate

ř8
n=1 an by the “truncated series”

řN
n=1 an. That’s called

the truncation error. There are a number of “convergence tests” to help you with this.

3.3.1 §§ The Divergence Test

Our first test is very easy to apply, but it is also rarely useful. It just allows us to quickly
reject some “trivially divergent” series. It is based on the observation that
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• by definition, a series
ř8

n=1 an converges to S when the partial sums SN =
řN

n=1 an
converge to S.

• Then, as N Ñ 8, we have SN Ñ S and, because N ´ 1 Ñ 8 too, we also have
SN´1 Ñ S.

• So aN = SN ´ SN´1 Ñ S´ S = 0.

This tells us that, if we already know that a given series
ř

an is convergent, then the nth

term of the series, an, must converge to 0 as n tends to infinity. In this form, the test is not
so useful. However the contrapositive13 of the statement is a useful test for divergence.

If the sequence
 

an
(8

n=1 fails to converge to zero as n Ñ 8, then the series
ř8

n=1 an
diverges.

Theorem3.3.1 (Divergence Test).

Example 3.3.2

Let an = n
n+1 . Then

lim
nÑ8

an = lim
nÑ8

n
n + 1

= lim
nÑ8

1
1 + 1/n

= 1 ‰ 0

So the series
ř8

n=1
n

n+1 diverges.

Example 3.3.2

The divergence test is a “one way test”. It tells us that if limnÑ8 an is nonzero,
or fails to exist, then the series

ř8
n=1 an diverges. But it tells us absolutely nothing

when limnÑ8 an = 0. In particular, it is perfectly possible for a series
ř8

n=1 an
to diverge even though limnÑ8 an = 0. An example is

ř8
n=1

1
n . We’ll show in

Example 3.3.6, below, that it diverges.

Warning3.3.3.

13 We have discussed the contrapositive a few times in the CLP notes, but it doesn’t hurt to discuss it again
here (or for the reader to quickly look up the relevant footnote in Section 1.3 of the CLP 100 notes). At
any rate, given a statement of the form “If A is true, then B is true” the contrapositive is “If B is not true,
then A is not true”. The two statements in quotation marks are logically equivalent — if one is true,
then so is the other. In the present context we have

If (
ř

an converges) then (an converges to 0).

The contrapositive of this statement is then

If (an does not converge to 0) then (
ř

an does not converge).
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Now while convergence or divergence of series like
ř8

n=1
1
n can be determined using

some clever tricks — see the optional §3.3.8 —, it would be much better of have methods
that are more systematic and rely less on being sneaky. Over the next subsections we will
discuss several methods for testing series for convergence.

Note that while these tests will tell us whether or not a series converges, they do not
(except in rare cases) tell us what the series adds up to. For example, the test we will see
in the next subsection tells us quite immediately that the series

8
ÿ

n=1

1
n3

converges. However it does not tell us its value14.

3.3.2 §§ The Integral Test

In the integral test, we think of a series
ř8

n=1 an, that we cannot evaluate explicitly, as the
area of a union of rectangles, with an representing the area of a recatangle of width one
and height an. Then we compare that area with the area represented by an integral, that
we can evaluate explicitly, much as we did in Theorem 1.12.17, the comparison test for
improper integrals. We’ll start with a simple example, to illustrate the idea. Then we’ll
move on to a formulation of the test in general.

Example 3.3.4

Visualise the terms of the harmonic series
ř8

n=1
1
n as a bargraph — each term is a rectangle

of height 1
n and width 1. The limit of the series is then the limiting area of this union of

rectangles. Consider the sketch on the left below.

It shows that the area of the shaded columns,
ř4

n=1
1
n , is bigger than the area under the

14 This series converges to Apéry’s constant 1.2020569031 . . . . The constant is named for Roger Apéry
(1916–1994) who proved that this number must be irrational. This number appears in many contexts
including the following cute fact — the reciprocal of Apéry’s constant gives the probability that three
positive integers, chosen at random, do not share a common prime factor.
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curve y = 1
x with 1 ď x ď 5. That is

4
ÿ

n=1

1
n
ě

ż 5

1

1
x

dx

If we were to continue drawing the columns all the way out to infinity, then we would
have

8
ÿ

n=1

1
n
ě

ż 8

1

1
x

dx

We are able to compute this improper integral exactly:
ż 8

1

1
x

dx = lim
RÑ8

[
log |x|

]R

1
= +8

That is the area under the curve diverges to +8 and so the area represented by the
columns must also diverge to +8.

It should be clear that the above argument can be quite easily generalised. For example
the same argument holds mutatis mutandis15 for the series

8
ÿ

n=1

1
n2

Indeed we see from the sketch on the right above that

N
ÿ

n=2

1
n2 ď

ż N

1

1
x2 dx

and hence
8
ÿ

n=2

1
n2 ď

ż 8

1

1
x2 dx

This last improper integral is easy to evaluate:

ż 8

2

1
x2 dx = lim

RÑ8

[
´

1
x

]R

2

= lim
RÑ8

(
1
2
´

1
R

)
=

1
2

Thus we know that
8
ÿ

n=1

1
n2 = 1 +

8
ÿ

n=2

1
n2 ď

3
2

.

15 Latin for “Once the necessary changes are made”. This phrase still gets used a little, but these days
mathematicians tend to write something equivalent in English. Indeed, English is pretty much the
lingua franca for mathematical publishing. Quidquid erit.
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and so the series must converge.

Example 3.3.4

The above arguments are formalised in the following theorem.

Let N0 be any natural number. If f (x) is a function which is defined and contin-
uous for all x ě N0 and which obeys

(i) f (x) ě 0 for all x ě N0 and
(ii) f (x) decreases as x increases and

(iii) f (n) = an for all n ě N0.

x

y a1

1

a2

2

a3

3

a4

4

y = f(x)

Then
8
ÿ

n=1

an converges ðñ

ż 8

N0

f (x) dx converges

Furthermore, when the series converges, the truncation error

ˇ

ˇ

ˇ

ˇ

8
ÿ

n=1

an ´

N
ÿ

n=1

an

ˇ

ˇ

ˇ

ˇ

ď

ż 8

N
f (x) dx for all N ě N0

Theorem3.3.5 (The Integral Test).

Proof. Let I be any fixed integer with I ą N0. Then

• ř8
n=1 an converges if and only if

ř8
n=I an converges — removing a fixed finite num-

ber of terms from a series cannot impact whether or not it converges.

• Since an ě 0 for all n ě I ą N0, the sequence of partial sums s` =
ř`

n=I an obeys
s`+1 = s` + an+1 ě s`. That is, s` increases as ` increases.

• So
 

s`
(

must either converge to some finite number or increase to infinity. That is,
either

ř8
n=I an converges to a finite number or it is +8.
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aI

I

aI+1

I + 1

aI+2

I + 2

aI+3

I + 3

y = f(x)

x

Look at the figure above. The shaded area in the figure is
ř8

n=I an because

• the first shaded rectangle has height aI and width 1, and hence area aI and
• the second shaded rectangle has height aI+1 and width 1, and hence area aI+1, and

so on

This shaded area is smaller than the area under the curve y = f (x) for I ´ 1 ď x ă 8. So

8
ÿ

n=I

an ď

ż 8

I´1
f (x) dx

and, if the integral is finite, the sum
ř8

n=I an is finite too. Furthermore, the desired bound
on the trunction error is just the special case of this inequality with I = N + 1:

8
ÿ

n=1

an ´

N
ÿ

n=1

an =
8
ÿ

n=N+1

an ď

ż 8

N
f (x) dx

aI

I

aI+1

I + 1

aI+2

I + 2

aI+3

I + 3

y = f(x)

x

For the “divergence case” look at the figure above. The (new) shaded area in the figure
is again

ř8
n=I an because

• the first shaded rectangle has height aI and width 1, and hence area aI and
• the second shaded rectangle has height aI+1 and width 1, and hence area aI+1, and

so on

This time the shaded area is larger than the area under the curve y = f (x) for I ď x ă 8.
So

8
ÿ

n=I

an ě

ż 8

I
f (x) dx

and, if the integral is infinite, the sum
ř8

n=I an is infinite too.
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Now that we have the integral test, it is straightforward to determine for which values
of p the series16

8
ÿ

n=1

1
np

converges.

Example 3.3.6
(

The p test:
8
ř

n=1

1
np

)

Let p ą 0. We’ll now use the integral test to determine whether or not the series
ř8

n=1
1

np

(which is sometimes called the p–series) converges.

• To do so, we need a function f (x) that obeys f (n) = an = 1
np for all n bigger than

some N0. Certainly f (x) = 1
xp obeys f (n) = 1

np for all n ě 1. So let’s pick this f and
try N0 = 1. (We can always increase N0 later if we need to.)

• This function also obeys the other two conditions of Theorem 3.3.5:

(i) f (x) ą 0 for all x ě N0 = 1 and

(ii) f (x) decreases as x increases because f 1(x) = ´p 1
xp+1 ă 0 for all x ě N0 = 1.

• So the integral test tells us that the series
ř8

n=1
1

np converges if and only if the integral
ş8

1
dx
xp converges.

• We have already seen, in Example 1.12.8, that the integral
ş8

1
dx
xp converges if and

only if p ą 1.

So we conclude that
ř8

n=1
1

np converges if and only if p ą 1. This is sometimes called the
p–test.

• In particular, the series
ř8

n=1
1
n , which is called the harmonic series, has p = 1 and so

diverges. As we add more and more terms of this series together, the terms we add,
namely 1

n , get smaller and smaller and tend to zero, but they tend to zero so slowly
that the full sum is still infinite.

• On the other hand, the series
ř8

n=1
1

n1.000001 has p = 1.000001 ą 1 and so converges.
This time as we add more and more terms of this series together, the terms we add,
namely 1

n1.000001 , tend to zero (just) fast enough that the full sum is finite. Mind you,

16 This series, viewed as a function of p, is called the Riemannn zeta function, ζ(p), or the Euler-Riemann
zeta function. It is extremely important because of its connections to prime numbers (among many
other things). Indeed Euler proved that

ζ(p) =
8
ÿ

n=1

1
np =

ź

P prime

(
1´ P´p)´1

Riemann showed the connections between the zeros of this function (over complex numbers p) and
the distribution of prime numbers. Arguably the most famous unsolved problem in mathematics, the
Riemann hypothesis, concerns the locations of zeros of this function.
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for this example, the convergence takes place very slowly — you have to take a huge
number of terms to get a decent approximation to the full sum. If we approximate
ř8

n=1
1

n1.000001 by the truncated series
řN

n=1
1

n1.000001 , we make an error of at most

ż 8

N

dx
x1.000001 = lim

RÑ8

ż R

N

dx
x1.000001 = lim

RÑ8
´

1
0.000001

[ 1
R0.000001 ´

1
N0.000001

]
=

106

N0.000001

This does tend to zero as N Ñ 8, but really slowly.

Example 3.3.6

We now know that the dividing line between convergence and divergence of
ř8

n=1
1

np

occurs at p = 1. We can dig a little deeper and ask ourselves how much more quickly than
1
n the nth term needs to shrink in order for the series to converge. We know that for large
x, the function log x is smaller than xa for any positive a — you can convince yourself of
this with a quick application of L’Hôpital’s rule. So it is not unreasonable to ask whether
the series

8
ÿ

n=2

1
n log n

converges. Notice that we sum from n = 2 because when n = 1, n log n = 0. And we
don’t need to stop there17. We can analyse the convergence of this sum with any power of
log n.

Example 3.3.7
(
8
ř

n=2

1
n(log n)p

)

Let p ą 0. We’ll now use the integral test to determine whether or not the series
8
ř

n=2

1
n(log n)p

converges.

• As in the last example, we start by choosing a function that obeys f (n) = an =
1

n(log n)p for all n bigger than some N0. Certainly f (x) = 1
x(log x)p obeys f (n) =

1
n(log n)p for all n ě 2. So let’s use that f and try N0 = 2.

• Now let’s check the other two conditions of Theorem 3.3.5:

(i) Both x and log x are positive for all x ą 1, so f (x) ą 0 for all x ě N0 = 2.

(ii) As x increases both x and log x increase and so x(log x)p increases and f (x)
decreases.

• So the integral test tells us that the series
8
ř

n=2

1
n(log n)p converges if and only if the

integral
ş8

2
dx

x(log x)p converges.

17 We could go even further and see what happens if we include powers of log(log(n)) and other more
exotic slow growing functions.
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• To test the convergence of the integral, we make the substitution u = log x, du = dx
x .

ż R

2

dx
x(log x)p =

ż log R

log 2

du
up

We already know that the integral the integral
ş8

1
du
up , and hence the integral

şR
2

dx
x(log x)p ,

converges if and only if p ą 1.

So we conclude that
8
ř

n=1

1
n(log n)p converges if and only if p ą 1.

Example 3.3.7

3.3.3 §§ The Comparison Test

Our next convergence test is the comparison test. It is much like the comparison test
for improper integrals (see Theorem 1.12.17) and is true for much the same reasons. The
rough idea is quite simple. A sum of larger terms must be bigger than a sum of smaller
terms. So if we know the big sum converges, then the small sum must converge too. On
the other hand, if we know the small sum diverges, then the big sum must also diverge.
Formalising this idea gives the following theorem.

Let N0 be a natural number and let K ą 0.

(a) If |an| ď Kcn for all n ě N0 and
8
ř

n=0
cn converges, then

8
ř

n=0
an converges.

(b) If an ě Kdn ě 0 for all n ě N0 and
8
ř

n=0
dn diverges, then

8
ř

n=0
an diverges.

Theorem3.3.8 (The Comparison Test).

“Proof”. We will not prove this theorem here. We’ll just observe that it is very reasonable.
That’s why there are quotation marks around “Proof”. For an actual proof see the optional
section 3.3.9.

(a) If
8
ř

n=0
cn converges to a finite number and if the terms in

8
ř

n=0
an are smaller than the

terms in
8
ř

n=0
cn, then it is no surprise that

8
ř

n=0
an converges too.

(b) If
8
ř

n=0
dn diverges (i.e. adds up to8) and if the terms in

8
ř

n=0
an are larger than the terms

in
8
ř

n=0
dn, then of course

8
ř

n=0
an adds up to8, and so diverges, too.

280



SEQUENCE AND SERIES 3.3 CONVERGENCE TESTS

The comparison test for series is also used in much the same way as is the comparison
test for improper integrals. Of course, one needs a good series to compare against, and
often the series

ř

n´p (from Example 3.3.6), for some p ą 0, turns out to be just what is
needed.

Example 3.3.9
(
ř8

n=1
1

n2+2n+3

)

We could determine whether or not the series
ř8

n=1
1

n2+2n+3 converges by applying the
integral test. But it is not worth the effort18. Whether or not any series converges is de-
termined by the behaviour of the summand19 for very large n. So the first step in tackling
such a problem is to develop some intuition about the behaviour of an when n is very
large.

• Step 1: Develop intuition. In this case, when n is very large20 n2 " 2n " 3 so that
1

n2+2n+3 «
1

n2 . We already know, from Example 3.3.6, that
ř8

n=1
1

np converges if and
only if p ą 1. So

ř8
n=1

1
n2 , which has p = 2, converges, and we would expect that

ř8
n=1

1
n2+2n+3 converges too.

• Step 2: Verify intuition. We can use the comparison test to confirm that this is indeed
the case. For any n ě 1, n2 + 2n + 3 ą n2, so that 1

n2+2n+3 ď
1

n2 . So the compari-
son test, Theorem 3.3.8, with an = 1

n2+2n+3 and cn = 1
n2 , tells us that

ř8
n=1

1
n2+2x+3

converges.

Example 3.3.9

Of course the previous example was “rigged” to give an easy application of the com-
parison test. It is often relatively easy, using arguments like those in Example 3.3.9, to find
a “simple” series

ř8
n=1 bn with bn almost the same as an when n is large. However it is

18 Go back and quickly scan Theorem 3.3.5; to apply it we need to show that 1
n2+2n+3 is positive and

decreasing (it is), and then we need to integrate
ş 1

x2+2x+3 dx. To do that we reread the notes on partial
fractions, then rewrite x2 + 2x + 3 = (x + 1)2 + 2 and so

ż 8

1

1
x2 + 2x + 3

dx =

ż 8

1

1
(x + 1)2 + 2

dx ¨ ¨ ¨

and then arctangent appears, etc etc. Urgh. Okay — let’s go back to the text now and see how to avoid
this.

19 To understand this consider any series
ř8

n=1 an. We can always cut such a series into two parts — pick
some huge number like 106. Then

8
ÿ

n=1

an =
106
ÿ

n=1

an +
8
ÿ

n=106+1

an

The first sum, though it could be humongous, is finite. So the left hand side,
ř8

n=1 an, is a well–defined
finite number if and only if

ř8
n=106+1 an, is a well–defined finite number. The convergence or divergence

of the series is determined by the second sum, which only contains an for “large” n.
20 The symbol “"” means “much larger than”. Similarly, the symbol “!” neans “much less than”. Good

shorthand symbols can be quite expressive.
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pretty rare that an ď bn for all n. It is much more common that an ď Kbn for some constant
K. This is enough to allow application of the comparison test. Here is an example.

Example 3.3.10
(
ř8

n=1
n+cos n
n3´1/3

)

As in the previous example, the first step is to develop some intuition about the behaviour
of an when n is very large.

• Step 1: Develop intuition. When n is very large,

˝ n " | cos n| so that the numerator n + cos n « n and

˝ n3 " 1/3 so that the denominator n3 ´ 1/3 « n3.

So when n is very large

an =
n + cos n
n3 ´ 1/3

«
n
n3 =

1
n2

We already know from Example 3.3.6, with p = 2, that
ř8

n=1
1

n2 converges, so we
would expect that

ř8
n=1

n+cos n
n3´1/3

converges too.

• Step 2: Verify intuition. We can use the comparison test to confirm that this is indeed
the case. To do so we need to find a constant K such that |an| =

|n+cos n|
n3´1/3 = n+cos n

n3´1/3 is
smaller than K

n2 for all n. A good way21 to do that is to factor the dominant term (in
this case n) out of the numerator and also factor the dominant term (in this case n3)
out of the denominator.

an =
n + cos n
n3 ´ 1/3

=
n
n3

1 + cos n
n

1´ 1
3n3

=
1
n2

1 + cos n
n

1´ 1
3n3

So now we need to find a constant K such that 1+(cos n)/n
1´1/3n3 is smaller than K for all n ě 1.

˝ First consider the numerator 1 + (cos n) 1
n . For all n ě 1

∗ 1
n ď 1 and

∗ | cos n| ď 1

So the numerator 1 + (cos n) 1
n is always smaller than 1 + (1)1

1 = 2.

˝ Next consider the denominator 1´ 1/3n3.

∗ When n ě 1, 1
3n3 lies between 1

3 and 0 so that

∗ 1´ 1
3n3 is between 2

3 and 1 and consequently

∗ 1
1´1/3n3 is between 3

2 and 1.

˝ As the numerator 1 + (cos n) 1
n is always smaller than 2 and 1

1´1/3n3 is always
smaller than 3

2 , the fraction

1 + cos n
n

1´ 1
3n3

ď 2
(3

2

)
= 3

21 This is very similar to how we computed limits at infinity way way back near the beginning of Mathe-
matics 100/180.
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We now know that
|an| =

1
n2

1 + 2/n

1´ 1/3n3
ď

3
n2

and, since we know
ř8

n=1 n´2 converges, the comparison test tells us that
ř8

n=1
n+cos n
n3´1/3

converges.

Example 3.3.10

The last example was actually a relatively simple application of the comparison theo-
rem — finding a suitable constant K can be really tedious22. Fortunately, there is a variant
of the comparison test that completely eliminates the need to explicitly find K.

The idea behind this isn’t too complicated. We have already seen that the convergence
or divergence of a series depends not on its first few terms, but just on what happens
when n is really large. Consequently, if we can work out how the series terms behave for
really big n then we can work out if the series converges. So instead of comparing the
terms of our series for all n, just compare them when n is big.

Let
ř8

n=1 an and
ř8

n=1 bn be two series with bn ą 0 for all n. Assume that

lim
nÑ8

an

bn
= L

exists.

(a) If
ř8

n=1 bn converges, then
ř8

n=1 an converges too.

(b) If L ‰ 0 and
ř8

n=1 bn diverges, then
ř8

n=1 an diverges too.

In particular, if L ‰ 0, then
ř8

n=1 an converges if and only if
ř8

n=1 bn converges.

Theorem3.3.11 (Limit Comparison Theorem).

Proof. (a) Because we are told that limnÑ8
an
bn

= L, we know that,

• when n is large, an
bn

is very close to L, so that
ˇ

ˇ

ˇ

an
bn

ˇ

ˇ

ˇ
is very close to |L|.

• In particular, there is some natural number N0 so that
ˇ

ˇ

ˇ

an
bn

ˇ

ˇ

ˇ
ď |L|+ 1, for all n ě N0,

and hence

• |an| ď Kbn with K = |L|+ 1, for all n ě N0.

• The comparison Theorem 3.3.8 now implies that
ř8

n=1 an converges.

(b) Let’s suppose that L ą 0. (If L ă 0, just replace an with ´an.) Because we are told that
limnÑ8

an
bn

= L, we know that,

22 Really, really tedious. And you thought some of those partial fractions computations were bad . . .
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• when n is large, an
bn

is very close to L.

• In particular, there is some natural number N so that an
bn
ě L

2 , and hence

• an ě Kbn with K = L
2 ą 0, for all n ě N.

• The comparison Theorem 3.3.8 now implies that
ř8

n=1 an diverges.

The next two examples illustrate how much of an improvement the above theorem is
over the straight comparison test (though of course, we needed the comparison test to
develop the limit comparison test).

Example 3.3.12
(
ř8

n=1

?
n+1

n2´2n+3

)

Set an =
?

n+1
n2´2n+3 . We first try to develop some intuition about the behaviour of an for large

n and then we confirm that our intuition was correct.

• Step 1: Develop intuition. When n " 1, the numerator
?

n + 1 «
?

n, and the denom-
inator n2 ´ 2n + 3 « n2 so that an «

?
n

n2 = 1
n3/2 and it looks like our series should

converge by Example 3.3.6 with p = 3
2 .

• Step 2: Verify intuition. To confirm our intuition we set bn = 1
n3/2 and compute the

limit

lim
nÑ8

an

bn
= lim

nÑ8

?
n+1

n2´2n+3
1

n3/2

= lim
nÑ8

n3/2?n + 1
n2 ´ 2n + 3

Again it is a good idea to factor the dominant term out of the numerator and the
dominant term out of the denominator.

lim
nÑ8

an

bn
= lim

nÑ8

n2?1 + 1/n

n2
(
1´ 2/n + 3/n2

) = lim
nÑ8

?
1 + 1/n

1´ 2/n + 3/n2
= 1

We already know that the series
ř8

n=1 bn =
ř8

n=1
1

n3/2 converges by Example 3.3.6
with p = 3

2 . So our series converges by the limit comparison test, Theorem 3.3.11.

Example 3.3.12

Example 3.3.13
(
ř8

n=1

?
n+1

n2´2n+3 , again
)

We can also try to deal with the series of Example 3.3.12, using the comparison test directly.
But that requires us to find K so that

?
n + 1

n2 ´ 2n + 3
ď

K
n3/2

We might do this by examining the numerator and denominator separately:
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• The numerator isn’t too bad since for all n ě 1:

n + 1 ď 2n and so
?

n + 1 ď
?

2n

• The denominator is quite a bit more tricky, since we need a lower bound, rather than
an upper bound, and we cannot just write |n2 ´ 2n + 3| ě n2, which is false. Instead
we have to make a more careful argument. In particular, we’d like to find N0 and K1

so that n2 ´ 2n + 3 ě K1n2, i.e. 1
n2´2n+3 ď

1
K1n2 for all n ě N0. For n ě 4, we have

2n = 1
24n ď 1

2 n ¨ n = 1
2 n2. So for n ě 4,

n2
´ 2n + 3 ě n2

´
1
2

n2 + 3 ě
1
2

n2

Putting the numerator and denominator back together we have
?

n + 1
n2 ´ 2n + 3

ď

?
2n

n2/2
= 2

?
2

1
n3/2 for all n ě 4

and the comparison test then tells us that our series converges. It is pretty clear that the
approach of Example 3.3.12 was much more straighforward.

Example 3.3.13

3.3.4 §§ The Alternating Series Test

When the signs of successive terms in a series alternate between + and´, like for example
in 1´ 1

2 +
1
3 ´

1
4 + ¨ ¨ ¨ , the series is called an alternating series. More generally, the series

A1 ´ A2 + A3 ´ A4 + ¨ ¨ ¨ =
8
ÿ

n=1

(´1)n´1An

is alternating if every An ě 0. Often (but not always) the terms in alternating series get
successively smaller. That is, then A1 ě A2 ě A3 ě ¨ ¨ ¨ . In this case:

• The first partial sum is S1 = A1.

• The second partial sum, S2 = A1 ´ A2, is smaller than S1 by A2.

• The third partial sum, S3 = S2 + A3, is bigger than S2 by A3, but because A3 ď A2,
S3 remains smaller than S1. See the figure below.

• The fourth partial sum, S4 = S3´ A4, is smaller than S3 by A4, but because A4 ď A3,
S4 remains bigger than S2. Again, see the figure below.

• And so on.

So the successive partial sums oscillate, but with ever decreasing amplitude. If, in ad-
dition, An tends to 0 as n tends to 8, the amplitude of oscillation tends to zero and the
sequence S1, S2, S3, ¨ ¨ ¨ converges to some limit S. This is illustrated in the figure
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1

S1 = A1

2

S2

3

S3

4

S4

5

S5

6

S6

7

S7

8

S8

S
−A2

+A3

−A4

N

Here is a convergence test for alternating series that exploits this structure, and that is
really easy to apply.

Let
 

An
(8

n=1 be a sequence of real numbers that obeys

(i) An ě 0 for all n ě 1 and
(ii) An+1 ď An for all n ě 1 (i.e. the sequence is monotone decreasing) and

(iii) limnÑ8 An = 0.

Then

A1 ´ A2 + A3 ´ A4 + ¨ ¨ ¨ =
8
ÿ

n=1

(´1)n´1An = S

converges and, for each natural number N, S ´ SN is between 0 and (the first
dropped term) (´1)N AN+1. Here SN is, as previously, the Nth partial sum

N
ř

n=1
(´1)n´1An.

Theorem3.3.14 (Alternating Series Test).

“Proof”. We shall only give part of the proof here. For the rest of the proof see the optional
section 3.3.9. We shall fix any natural number N and concentrate on the last statement,
which gives a bound on the truncation error (which is the error introduced when you
approximate the full series by the partial sum SN)

EN = S´ SN =
8
ÿ

n=N+1

(´1)n´1An = (´1)N
[

AN+1 ´ AN+2 + AN+3 ´ AN+4 + ¨ ¨ ¨
]

This is of course another series. We’re going to study the partial sums

SN,` =
ÿ̀

n=N+1

(´1)n´1An = (´1)N
`´N
ÿ

m=1

(´1)m´1AN+m

for that series.
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• If `1 ą N + 1, with `1 ´ N even,

(´1)NSN,`1 =

ě0
hkkkkkkkkkikkkkkkkkkj

(AN+1 ´ AN+2) +

ě0
hkkkkkkkkkikkkkkkkkkj

(AN+3 ´ AN+4) + ¨ ¨ ¨+

ě0
hkkkkkkkikkkkkkkj

(A`1´1 ´ A`1) ě 0 and

(´1)NSN,`1+1 =

ě0
hkkkkkikkkkkj

(´1)NSN,`1 +

ě0
hkkikkj

A`1+1 ě 0

This tells us that (´1)NSN,` ě 0 for all ` ą N + 1, both even and odd.

• Similarly, if `1 ą N + 1, with `1 ´ N odd,

(´1)NSN,`1 = AN+1 ´ (

ě0
hkkkkkkkikkkkkkkj

AN+2 ´ AN+3)´ (

ě0
hkkkkkkkikkkkkkkj

AN+4 ´ AN+5)´ ¨ ¨ ¨ ´

ě0
hkkkkkkkikkkkkkkj

(A`1´1 ´ A`1) ď AN+1

(´1)NSN,`1+1 =

ďAN+1
hkkkkkikkkkkj

(´1)NSN,`1 ´

ě0
hkkikkj

A`1+1 ď AN+1

This tells us that (´1)NSN,` ď AN+1 for all for all ` ą N + 1, both even and odd.

So we now know that SN,` lies between its first term, (´1)N AN+1, and 0 for all ` ą N + 1.
While we are not going to prove it here (see the optional section 3.3.9), this implies that,
since AN+1 Ñ 0 as N Ñ 8, the series converges and that

S´ SN = lim
`Ñ8

SN,`

lies between (´1)N AN+1 and 0.

Example 3.3.15

We have already seen, in Example 3.3.6, that the harmonic series
ř8

n=1
1
n diverges. On the

other hand, the series
ř8

n=1(´1)n´1 1
n converges by the alternating series test with An = 1

n .
Note that

(i) An = 1
n ě 0 for all n ě 1, so that

ř8
n=1(´1)n´1 1

n really is an alternating series, and
(ii) An = 1

n decreases as n increases, and
(iii) lim

nÑ8
An = lim

nÑ8
1
n = 0.

so that all of the hypotheses of the alternating series test, i.e. of Theorem 3.3.14, are satis-
fied. We shall see, in Example 3.5.19, that

8
ÿ

n=1

(´1)n´1

n
= log 2.
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Example 3.3.15

Example 3.3.16 (e)

You may already know that ex =
ř8

n=0
xn

n! . In any event, we shall prove this in Exam-
ple 3.6.3, below. In particular

1
e
= e´1 =

8
ÿ

n=0

(´1)n

n!
= 1´

1
1!

+
1
2!
´

1
3!

+
1
4!
´

1
5!

+ ¨ ¨ ¨

is an alternating series and satisfies all of the conditions of the alternating series test, The-
orem 3.3.14a:

(i) The terms in the series alternate in sign.
(ii) The magnitude of the nth term in the series decreases monotonically as n increases.

(iii) The nth term in the series converges to zero as n Ñ 8.

So the alternating series test guarantees that, if we approximate, for example,
1
e
«

1
2!
´

1
3!

+
1
4!
´

1
5!

+
1
6!
´

1
7!

+
1
8!
´

1
9!

then the error in this approximation lies between 0 and the next term in the series, which
is 1

10! . That is

1
2!
´

1
3!

+
1
4!
´

1
5!

+
1
6!
´

1
7!

+
1
8!
´

1
9!
ď

1
e
ď

1
2!
´

1
3!

+
1
4!
´

1
5!

+
1
6!
´

1
7!

+
1
8!
´

1
9!

+
1

10!
so that

1
1
2! ´

1
3! +

1
4! ´

1
5! +

1
6! ´

1
7! +

1
8! ´

1
9! +

1
10!

ď e ď
1

1
2! ´

1
3! +

1
4! ´

1
5! +

1
6! ´

1
7! +

1
8! ´

1
9!

which, to seven decimal places says

2.7182816 ď e ď2.7182837

(To seven decimal places e = 2.7182818.)
The alternating series test tells us that, for any natural number N, the error that we

make when we approximate 1
e by the partial sum SN =

řN
n=0

(´1)n

n! has magnitude no
larger than 1

(N+1)! . This tends to zero spectacularly quickly as N increases, simply because

(N + 1)! increases spectacularly quickly as N increases23. For example 20! « 2.4ˆ 1027.
Example 3.3.16

Example 3.3.17

We will shortly see, in Example 3.5.19, that if ´1 ă x ď 1, then

log(1 + x) = x´
x2

2
+

x3

3
´

x4

4
+ ¨ ¨ ¨ =

8
ÿ

n=1

(´1)n´1 xn

n

23 The interested reader may wish to check out “Stirling’s approximation”, which says that n! «
?

2πn
( n

e
)n.
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Suppose that we have to compute log 11
10 to within an accuracy of 10´12. Since 11

10 = 1+ 1
10 ,

we can get log 11
10 by evaluating log(1 + x) at x = 1

10 , so that

log
11
10

= log
(

1 +
1

10

)
=

1
10
´

1
2ˆ 102 +

1
3ˆ 103 ´

1
4ˆ 104 + ¨ ¨ ¨ =

8
ÿ

n=1

(´1)n´1 1
nˆ 10n

By the alternating series test, this series converges. Also by the alternating series test,
approximating log 11

10 by throwing away all but the first N terms

log
11
10
«

1
10
´

1
2ˆ 102 +

1
3ˆ 103 ´

1
4ˆ 104 + ¨ ¨ ¨+(´1)N´1 1

N ˆ 10N =
N
ÿ

n=1

(´1)n´1 1
nˆ 10n

introduces an error whose magnitude is no more than the magnitude of the first term that
we threw away.

error ď
1

(N + 1)ˆ 10N+1

To achieve an error that is no more than 10´12, we have to choose N so that

1
(N + 1)ˆ 10N+1 ď 10´12

The best way to do so is simply to guess — we are not going to be able to manipulate the
inequality 1

(N+1)ˆ10N+1 ď
1

1012 into the form N ď ¨ ¨ ¨ , and even if we could, it would not be

worth the effort. We need to choose N so that the denominator (N + 1)ˆ 10N+1 is at least
1012. That is easy, because the denominator contains the factor 10N+1 which is at least 1012

whenever N + 1 ě 12, i.e. whenever N ě 11. So we will achieve an error of less than
10´12 if we choose N = 11.

1
(N + 1)ˆ 10N+1

ˇ

ˇ

ˇ

ˇ

N=11
=

1
12ˆ 1012 ă

1
1012

This is not the smallest possible choice of N, but in practice that just doesn’t matter — your
computer is not going to care whether or not you ask it to compute a few extra terms. If
you really need the smallest N that obeys 1

(N+1)ˆ10N+1 ď
1

1012 , you can next just try N = 10,
then N = 9, and so on.

1
(N + 1)ˆ 10N+1

ˇ

ˇ

ˇ

ˇ

N=11
=

1
12ˆ 1012 ă

1
1012

1
(N + 1)ˆ 10N+1

ˇ

ˇ

ˇ

ˇ

N=10
=

1
11ˆ 1011 ă

1
10ˆ 1011 =

1
1012

1
(N + 1)ˆ 10N+1

ˇ

ˇ

ˇ

ˇ

N=9
=

1
10ˆ 1010 =

1
1011 ą

1
1012

So in this problem, the smallest acceptable N = 10.
Example 3.3.17
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3.3.5 §§ The Ratio Test

The idea behind the ratio test comes from a reexamination of the geometric series. Recall
that the geometric series

8
ÿ

n=0

an =
8
ÿ

n=0

arn

converges when |r| ă 1 and diverges otherwise. So the convergence of this series is com-
pletely determined by the number r. This number is just the ratio of successive terms —
that is r = an+1/an.

In general the ratio of successive terms of a series, an+1
an

, is not constant, but depends on
n. However, as we have noted above, the convergence of a series

ř

an is determined by
the behaviour of its terms when n is large. In this way, the behaviour of this ratio when
n is small tells us nothing about the convergence of the series, but the limit of the ratio as
n Ñ 8 does. This is the basis of the ratio test.

Let N be any positive integer and assume that an ‰ 0 for all n ě N.

(a) If lim
nÑ8

ˇ

ˇ

ˇ

an+1
an

ˇ

ˇ

ˇ
= L ă 1, then

8
ř

n=1
an converges.

(b) If lim
nÑ8

ˇ

ˇ

ˇ

an+1
an

ˇ

ˇ

ˇ
= L ą 1, or lim

nÑ8

ˇ

ˇ

ˇ

an+1
an

ˇ

ˇ

ˇ
= +8, then

8
ř

n=1
an diverges.

Theorem3.3.18 (Ratio Test).

Beware that the ratio test provides absolutely no conclusion about the conver-

gence or divergence of the series
8
ř

n=1
an if lim

nÑ8

ˇ

ˇ

ˇ

an+1
an

ˇ

ˇ

ˇ
= 1. See Example 3.3.22,

below.

Warning3.3.19.

Proof. (a) Pick any number R obeying L ă R ă 1. We are assuming that
ˇ

ˇ

ˇ

an+1
an

ˇ

ˇ

ˇ
approaches

L as n Ñ 8. In particular there must be some natural number M so that
ˇ

ˇ

ˇ

an+1
an

ˇ

ˇ

ˇ
ď R for all

n ě M. So |an+1| ď R|an| for all n ě M. In particular

|aM+1| ď R |aM|

|aM+2| ď R |aM+1| ď R2
|aM|

|aM+3| ď R |aM+2| ď R3
|aM|

...

|aM+`| ď R`
|aM|

290



SEQUENCE AND SERIES 3.3 CONVERGENCE TESTS

for all ` ě 0. The series
ř8

`=0 R` |aM| is a geometric series with ratio R smaller than one in
magnitude and so converges. Consequently, by the comparison test with an replaced by

A` = an+` and cn replaced by C` = R` |aM|, the series
8
ř

`=1
aM+` =

8
ř

n=M+1
an converges. So

the series
8
ř

n=1
an converges too.

(b) We are assuming that
ˇ

ˇ

ˇ

an+1
an

ˇ

ˇ

ˇ
approaches L ą 1 as n Ñ 8. In particular there must be

some natural number M ą N so that
ˇ

ˇ

ˇ

an+1
an

ˇ

ˇ

ˇ
ě 1 for all n ě M. So |an+1| ě |an| for all

n ě M. That is, |an| increases as n increases as long as n ě M. So |an| ě |aM| for all n ě M
and an cannot converge to zero as n Ñ 8. So the series diverges by the divergence test.

Example 3.3.20
(
ř8

n=0 anxn´1)

Fix any two nonzero real numbers a and x. We have already seen in Example 3.2.4 — we
have just renamed r to x — that the geometric series

ř8
n=0 axn converges when |x| ă 1

and diverges when |x| ě 1. We are now going to consider a new series, constructed by
differentiating24 each term in the geometric series

ř8
n=0 axn. This new series is

8
ÿ

n=0

an with an = a n xn´1

Let’s apply the ratio test.

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

a (n + 1) xn

a n xn´1

ˇ

ˇ

ˇ
=

n + 1
n

|x| =
(

1 +
1
n

)
|x| Ñ L = |x| as n Ñ 8

The ratio test now tells us that the series
ř8

n=0 a n xn´1 converges if |x| ă 1 and diverges if
|x| ą 1. It says nothing about the cases x = ˘1. But in both of those cases an = a n (˘1)n

does not converge to zero as n Ñ 8 and the series diverges by the divergence test.
Example 3.3.20

Notice that in the above example, we had to apply another convergence test in addition
to the ratio test. This will be commonplace when we reach power series and Taylor series
— the ratio test will tell us something like

The series converges for |x| ă R and diverges for |x| ą R.

Of course, we will still have to to determine what happens when x = +R,´R. To deter-
mine convergence or divergence in those cases we will need to use one of the other tests

24 We shall see later, in Theorem 3.5.13, that the function
ř8

n=0 anxn´1 is indeed the derivative of the
function

ř8
n=0 axn. Of course, such a statement only makes sense where these series converge — how

can you differentiate a divergent series? (This is not an allusion to a popular series of dystopian novels.)
Actually, there is quite a bit of interesting and useful mathematics involving divergent series, but it is
well beyond the scope of this course.
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we have seen.

Example 3.3.21
(
ř8

n=0
a

n+1 Xn+1)

Once again, fix any two nonzero real numbers a and X. We again start with the geometric
series

ř8
n=0 axn but this time we construct a new series by integrating25 each term, axn,

from x = 0 to x = X giving a
n+1 Xn+1. The resulting new series is

8
ÿ

n=0

an with an =
a

n + 1
Xn+1

To apply the ratio test we need to compute

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

ˇ

a
n+2 Xn+2

a
n+1 Xn+1

ˇ

ˇ

ˇ

ˇ

=
n + 1
n + 2

|X| =
1 + 1

n

1 + 2
n
|X| Ñ L = |X| as n Ñ 8

The ratio test now tells us that the series
ř8

n=0
a

n+1 Xn+1 converges if |X| ă 1 and diverges
if |X| ą 1. It says nothing about the cases X = ˘1.

If X = 1, the series reduces to
8
ÿ

n=0

a
n + 1

Xn+1
ˇ

ˇ

ˇ

ˇ

X=1
=

8
ÿ

n=0

a
n + 1

= a
8
ÿ

m=1

1
m

with m = n + 1

which is just a times the harmonic series, which we know diverges, by Example 3.3.6.
If X = ´1, the series reduces to

8
ÿ

n=0

a
n + 1

Xn+1
ˇ

ˇ

ˇ

ˇ

X=´1
=

8
ÿ

n=0

(´1)n+1 a
n + 1

which converges by the alternating series test. See Example 3.3.15.
In conclusion, the series

ř8
n=0

a
n+1 Xn+1 converges if and only if ´1 ď X ă 1.

Example 3.3.21

The ratio test is often quite easy to apply, but one must always be careful when the
limit of the ratio is 1. The next example illustrates this.

Example 3.3.22 (L = 1)

In this example, we are going to see three different series that all have limnÑ8

ˇ

ˇ

ˇ

an+1
an

ˇ

ˇ

ˇ
= 1.

One is going to diverge and the other two are going to converge.

• The first series is the harmonic series
8
ÿ

n=1

an with an =
1
n

25 We shall also see later, in Theorem 3.5.13, that the function
ř8

n=0
a

n+1 xn+1 is indeed an antiderivative of
the function

ř8
n=0 axn.
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We have already seen, in Example 3.3.6, that this series diverges. It has

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

ˇ

1
n+1

1
n

ˇ

ˇ

ˇ

ˇ

=
n

n + 1
=

1
1 + 1

n
Ñ L = 1 as n Ñ 8

• The second series is the alternating harmonic series

8
ÿ

n=1

an with an = (´1)n´1 1
n

We have already seen, in Example 3.3.15, that this series converges. But it also has

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

ˇ

(´1)n 1
n+1

(´1)n´1 1
n

ˇ

ˇ

ˇ

ˇ

=
n

n + 1
=

1
1 + 1

n
Ñ L = 1 as n Ñ 8

• The third series is
8
ÿ

n=1

an with an =
1
n2

We have already seen, in Example 3.3.6 with p = 2, that this series converges. But it
also has

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

ˇ

1
(n+1)2

1
n2

ˇ

ˇ

ˇ

ˇ

=
n2

(n + 1)2 =
1

(1 + 1
n )

2
Ñ L = 1 as n Ñ 8

Example 3.3.22

Let’s do a somewhat artificial example that forces us to combine a few of the techniques
we have seen.

Example 3.3.23
(
ř8

n=1
(´3)n?n+1

2n+3 Xn
)

Again, the convergence of this series will depend on X.

• Let us start with the ratio test — so we compute
ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

(´3)n+1?n + 2(2n + 5)Xn+1

(´3)n
?

n + 1(2n + 3)Xn

ˇ

ˇ

ˇ

ˇ

= | ´ 3| ¨
?

n + 2
?

n + 1
¨

2n + 5
2n + 3

¨ |X|

So in the limit as n Ñ 8we are left with

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= 3|X|

• The ratio test then tells us that if 3|X| ą 1 the series diverges, while when 3|X| ă 1
the series converges.
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• This leaves us with the cases X = +1
3 and ´1

3 .

• Setting X = 1
3 gives the series

8
ÿ

n=1

(´1)n?n + 1
2n + 3

The fact that the terms alternate here suggests that we use the alternating series test.
That will show that this series converges provided

f (x) =
?

x + 1
2x + 3

is a decreasing function. To prove that, it suffices to show its derivative is negative
when x ě 1:

f 1(x) =
(2x + 3) ¨ 1

2 ¨ (x + 1)´1/2 ´ 2
?

x + 1
(2x + 3)2

=
(2x + 3)´ 4(x + 1)
2
?

x + 1(2x + 3)2

=
´2x´ 1

2
?

x + 1(2x + 3)2

So when x ě 1 this is negative and so f (x) is a decreasing function. Thus we can
apply the alternating series test to show that the series converges when x = 1

3 .

• When X = ´1
3 the series becomes

8
ÿ

n=1

?
n + 1

2n + 3
.

Notice that when n is large, the summand is approximately
?

n
2n which suggests that

the series will diverge by comparison with
ř

n´1/2. To formalise this, we can use
the limit comparison theorem:

lim
nÑ8

?
n + 1

2n + 3
1

n´1/2 = lim
nÑ8

?
n ¨
?

1 + 1/n
n(2 + 3/n)

¨ n1/2

= lim
nÑ8

n ¨
?

1 + 1/n
n(2 + 3/n)

=
1
2

So since this ratio has a finite limit and the series
ř

n´1/2 diverges, we know that
our series also diverges.

So in summary the series converges when ´1
3 ă X ď 1

3 and diverges otherwise.

Example 3.3.23
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3.3.6 §§ Convergence Test List

We now have half a dozen convergence tests:

• Divergence Test

– works well when the nth term in the series fails to converge to zero as n tends to
infinity

• Alternating Series Test

– works well when successive terms in the series alternate in sign

– don’t forget to check that successive terms decrease in magnitude and tend to
zero as n tends to infinity

• Integral Test

– works well when, if you substitute x for n in the nth term you get a function,
f (x), that you can integrate

– don’t forget to check that f (x) ě 0 and that f (x) decreases as x increases

• Ratio Test

– works well when an+1
an

simplifies enough that you can easily compute lim
nÑ8

ˇ

ˇ

an+1
an

ˇ

ˇ =

L

– this often happens when an contains powers, like 7n, or factorials, like n!

– don’t forget that L = 1 tells you nothing about the convergence/divergence of
the series

• Comparison Test and Limit Comparison Test

– works well when, for very large n, the nth term an is approximately the same as
a simpler term bn (see Example 3.3.10) and it is easy to determine whether or
not

ř8
n=1 bn converges

– don’t forget to check that bn ě 0

– usually the Limit Comparison Test is easier to apply than the Comparison Test

3.3.7 §§ Optional — The Root Test

There is another test that is very similar in spirit to the ratio test. It also comes from a
reexamination of the geometric series

8
ÿ

n=0

an =
8
ÿ

n=0

arn

The ratio test was based on the observation that r, which largely determines whether or
not the series converges, could be found by computing the ratio r = an+1/an. The root
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test is based on the observation that |r| can also be determined by looking that the nth root
of the nth term with n very large:

lim
nÑ8

n
b

ˇ

ˇarn
ˇ

ˇ = |r| lim
nÑ8

n
b

ˇ

ˇa
ˇ

ˇ = |r| if a ‰ 0

Of course, in general, the nth term is not exactly arn. However, if for very large n, the
nth term is approximately proportional to rn, with |r| given by the above limit, we would
expect the series to converge when |r| ă 1 and diverge when |r| ą 1. That is indeed the
case.

Assume that
L = lim

nÑ8
n
b

ˇ

ˇan
ˇ

ˇ

exists or is +8.

(a) If L ă 1, then
8
ř

n=1
an converges.

(b) If L ą 1, or L = +8, then
8
ř

n=1
an diverges.

Theorem3.3.24 (Root Test).

Beware that the root test provides absolutely no conclusion about the conver-

gence or divergence of the series
8
ř

n=1
an if lim

nÑ8
n
b

ˇ

ˇan
ˇ

ˇ = 1.

Warning3.3.25.

Proof. (a) Pick any number R obeying L ă R ă 1. We are assuming that n
a

|an| approaches
L as n Ñ 8. In particular there must be some natural number M so that n

a

|an| ď R for all

n ě M. So |an| ď Rn for all n ě M and the series
8
ř

n=1
an converges by comparison to the

geometric series
8
ř

n=1
Rn

(b) We are assuming that n
a

|an| approaches L ą 1 (or grows unboundedly) as n Ñ 8. In
particular there must be some natural number M so that n

a

|an| ě 1 for all n ě M. So
|an| ě 1 for all n ě M and the series diverges by the divergence test.

Example 3.3.26
(
ř8

n=1
(´3)n?n+1

2n+3 Xn
)

We have already used the ratio test, in Example 3.3.23, to show that this series converges
when |X| ă 1

3 and diverges when |X| ą 1
3 . We’ll now use the root test to draw the same

conclusions.
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• Write an = (´3)n?n+1
2n+3 Xn.

• We compute

n
a

|an| =
n

d

ˇ

ˇ

ˇ

ˇ

(´3)n
?

n + 1
2n + 3

Xn
ˇ

ˇ

ˇ

ˇ

= 3|X|
(
n + 1

)1/2n(2n + 3)´1/n

• We’ll now show that the limit of
(
n + 1

)1/2n as n Ñ 8 is exactly 1. To do, so we first
compute the limit of the logarithm.

lim
nÑ8

log
(
n + 1

)1/2n
= lim

nÑ8

log
(
n + 1

)

2n
now apply Theorem 3.1.6

= lim
xÑ8

log
(
x + 1

)

2x

= lim
xÑ8

1
x+1
2

by l’Hôpital

= 0

So

lim
nÑ8

(
n + 1

)1/2n
= lim

nÑ8
exp

 

log
(
n + 1

)1/2n(
= e0 = 1

An essentially identical computation also gives that limnÑ8
(
2n + 3)´1/n = e0 = 1.

• So

lim
nÑ8

n
a

|an| = 3|X|

and the root test also tells us that if 3|X| ą 1 the series diverges, while when 3|X| ă 1 the
series converges.

Example 3.3.26

We have done the last example once, in Example 3.3.23, using the ratio test and once, in
Example 3.3.26, using the root test. It was clearly much easier to use the ratio test. Here is
an example that is most easly handled by the root test

Example 3.3.27
(
ř8

n=1
( n

n+1

)n2
)

Write an =
( n

n+1

)n2
. Then

n
a

|an| =
n

d

( n
n + 1

)n2

=
( n

n + 1

)n
=
(

1 +
1
n

)´n
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Now we take the limit,

lim
nÑ8

(
1 +

1
n

)´n
= lim

XÑ8

(
1 +

1
X

)´X
by Theorem 3.1.6

= lim
xÑ0

(
1 + x

)´1/x where x =
1
X

= e´1

by Example 3.7.20 in the CLP 100 notes with a = ´1. As the limit is strictly smaller than

1, the series
ř8

n=1
( n

n+1

)n2
converges.

To draw the same conclusion using the ratio test, one would have to show that the
limit of

an+1

an
=
(n + 1

n + 2

)(n+1)2(n + 1
n

)n2

as n Ñ 8 is strictly smaller than 1. It’s clearly better to stick with the root test.
Example 3.3.27

3.3.8 §§ Optional — Harmonic and Basel Series

§§§ The Harmonic Series

The series

8
ÿ

n=1

1
n

that appeared in Warning 3.3.3, is called the Harmonic series26, and its partial sums

HN =
N
ÿ

n=1

1
n

are called the Harmonic numbers. Though these numbers have been studied at least as
far back as Pythagoras, the divergence of the series was first proved in around 1350 by
Nicholas Oresme (1320-5 – 1382), though the proof was lost for many years and redis-
covered by Mengoli (1626–1686) and the Bernoulli brothers (Johann 1667–1748 and Jacob
1655–1705).

Oresme’s proof is beautiful and all the more remarkable that it was produced more
than 300 years before calculus was developed by Newton and Leibnitz. It starts by group-

26 The interested reader should use their favourite search engine to read more on the link between this
series and muscial harmonics. You can also find interesting links between the Harmonic series and the
so-called “jeep problem” and also the problem of stacking a tower of dominoes to create an overhang
that does not topple over.
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ing the terms of the harmonic series carefully:

8
ÿ

n=1

1
n
= 1 +

1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+

1
8
+ ¨ ¨ ¨

= 1 +
1
2
+

(
1
3
+

1
4

)
+

(
1
5
+

1
6
+

1
7
+

1
8

)
+

(
1
9
+

1
10

+ ¨ ¨ ¨+
1

15
+

1
16

)
+ ¨ ¨ ¨

ă 1 +
1
2
+

(
1
4
+

1
4

)
+

(
1
8
+

1
8
+

1
8
+

1
8

)
+

(
1

16
+

1
16

+ ¨ ¨ ¨+
1

16
+

1
16

)
+ ¨ ¨ ¨

= 1 +
1
2
+

(
2
4

)
+

(
4
8

)
+

(
8

16

)
+ ¨ ¨ ¨

So one can see that this is 1 + 1
2 +

1
2 +

1
2 +

1
2 + ¨ ¨ ¨ and so must diverge27.

There are many variations on Oresme’s proof — for example, using groups of two or
three. A rather different proof relies on the inequality

ex
ą 1 + x for x ą 0

which follows immediately from the Taylor series for ex given in Theorem 3.6.5. From this
we can bound the exponential of the Harmonic numbers:

eHn = e1+ 1
2+

1
3+

1
4+¨¨¨+

1
n

= e1
¨ e1/2

¨ e1/3
¨ e1/4

¨ ¨ ¨ e1/n

ą (1 + 1) ¨ (1 + 1/2) ¨ (1 + 1/3) ¨ (1 + 1/4) ¨ ¨ ¨ (1 + 1/n)

=
2
1
¨

3
2
¨

4
3
¨

5
4
¨ ¨ ¨

n + 1
n

= n + 1

Since eHn grows unboundedly with n, the harmonic series diverges.

§§§ The Basel Problem

The problem of determing the exact value of the sum of the series

8
ÿ

n=1

1
n2

is called the Basel problem. The problem is named after the home town of Leonhard Euler,
who solved it. One can use telescoping series to show that this series must converge.
Notice that

1
n2 ă

1
n(n´ 1)

=
1

n´ 1
´

1
n

27 The grouping argument can be generalised further and the interested reader should look up Cauchy’s
condensation test.
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Hence we can bound the partial sum:

Sk =
k
ÿ

n=1

1
n2 ă 1 +

k
ÿ

n=2

1
n(n´ 1)

avoid dividing by 0

= 1 +
k
ÿ

n=2

(
1

n´ 1
´

1
n

)
which telescopes to

= 1 + 1´
1
k

Thus, as k increases, the partial sum Sk increases (the series is a sum of positive terms),
but is always smaller than 2. So the sequence of partial sums converges.

Mengoli posed the problem of evaluating the series exactly in 1644 and it was solved
— not entirely rigorously — by Euler in 1734. A rigorous proof had to wait another 7
years. Euler used some extremely cunning observations and manipulations of the sine
function to show that

8
ÿ

n=1

1
n2 =

π2

6
.

He used the Maclaurin series

sin x = 1´
x3

6
+

x5

24
´ ¨ ¨ ¨

and a product formula for sine

sin x = x ¨
(

1´
x
π

)
¨

(
1 +

x
π

)
¨

(
1´

x
2π

)
¨

(
1 +

x
2π

)
¨

(
1´

x
3π

)
¨

(
1 +

x
3π

)
¨ ¨ ¨

= x ¨
(

1´
x2

π

)
¨

(
1´

x2

4π

)
¨

(
1´

x2

9π

)
¨ ¨ ¨

(3.3.1)

Extracting the coefficient of x3 from both expansions gives the desired result. The proof
of the product formula is well beyond the scope of this course. But notice that at least the
values of x which make the left hand side of (3.3.1) zero, namely x = nπ with n integer,
are exactly the same as the values of x which make the right hand side of (3.3.1) zero28.

This approach can also be used to compute
ř8

n=1 n´2p for p = 1, 2, 3, . . . and show
that they are rational multiples29 of π2p. The corresponding series of odd powers are
significantly nastier and getting closed form expressions for them remains a famous open
problem.

3.3.9 §§ Optional — Some Proofs

In this optional section we provide proofs of two convergence tests. We shall repeatedly
use the fact that any sequence a1, a2, a3, ¨ ¨ ¨ , of real numbers which is increasing (i.e.

28 Knowing that the left and right hand sides of (3.3.1) are zero for the same values of x is far from the
end of the story. Two functions f (x) and g(x) having the same zeros, need not be equal. It is certainly
possible that f (x) = g(x) ˚ A(x) where A(x) is a function that is nowhere zero. The interested reader
should look up the Weierstrass factorisation theorem

29 Search–engine your way to “Riemann zeta function”.
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an+1 ě an for all n) and bounded (i.e. there is a constant M such that an ď M for all n)
converges. We shall not prove this fact30.

We start with the comparison test, and then move on to the alternating series test.

Let N0 be a natural number and let K ą 0.

(a) If |an| ď Kcn for all n ě N0 and
8
ř

n=0
cn converges, then

8
ř

n=0
an converges.

(b) If an ě Kdn ě 0 for all n ě N0 and
8
ř

n=0
dn diverges, then

8
ř

n=0
an diverges.

Theorem3.3.28 (The Comparison Test).

Proof. (a) By hypothesis
ř8

n=0 cn converges. So it suffices to prove that
ř8

n=0[Kcn ´ an]
converges, because then, by our Arithmetic of series Theorem 3.2.8,

8
ÿ

n=0

an =
8
ÿ

n=0

Kcn ´

8
ÿ

n=0

[Kcn ´ an]

will converge too. But for all n ě N0, Kcn ´ an ě 0 so that, for all N ě N0, the partial sums

SN =
N
ÿ

n=0

[Kcn ´ an]

increase with N, but never gets bigger than the finite number
N0
ř

n=0
[Kcn ´ an] + K

8
ř

n=N0+1
cn. So

the partial sums SN converge as N Ñ 8.

(b) For all N ą N0, the partial sum

SN =
N
ÿ

n=0

an ě

N0
ÿ

n=0

an + K
N
ÿ

n=N0+1

dn

By hypothesis,
řN

n=N0+1 dn, and hence SN, grows without bound as N Ñ 8. So SN Ñ 8

as N Ñ 8.

30 It is one way to state a property of the real number system called “completeness”. The interested reader
should use their favourite search engine to look up “completeness of the real numbers”.
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Let
 

an
(8

n=1 be a sequence of real numbers that obeys

(i) an ě 0 for all n ě 1 and
(ii) an+1 ď an for all n ě 1 (i.e. the sequence is monotone decreasing) and

(iii) limnÑ8 an = 0.

Then

a1 ´ a2 + a3 ´ a4 + ¨ ¨ ¨ =
8
ÿ

n=1

(´1)n´1an = S

converges and, for each natural number N, S ´ SN is between 0 and (the first
dropped term) (´1)NaN+1. Here SN is, as previously, the Nth partial sum

N
ř

n=1
(´1)n´1an.

Theorem3.3.28 (Alternating Series Test).

Proof. Let 2n be an even natural number. Then the 2nth partial sum obeys

S2n =

ě0
hkkkikkkj

(a1 ´ a2) +

ě0
hkkkikkkj

(a3 ´ a4) + ¨ ¨ ¨+

ě0
hkkkkkkikkkkkkj

(a2n´1 ´ a2n)

ď

ě0
hkkkikkkj

(a1 ´ a2) +

ě0
hkkkikkkj

(a3 ´ a4) + ¨ ¨ ¨+

ě0
hkkkkkkikkkkkkj

(a2n´1 ´ a2n) +

ě0
hkkkkkkkkikkkkkkkkj

(a2n+1 ´ a2n+2) = S2(n+1)

and

S2n = a1 ´ (

ě0
hkkikkj

a2 ´ a3)´ (

ě0
hkkikkj

a4 ´ a5)´ ¨ ¨ ¨ ´

ě0
hkkkkkkkkikkkkkkkkj

(a2n´2 ´ a2n´1)´

ě0
hkkikkj

a2n

ď a1

So the sequence S2, S4, S6, ¨ ¨ ¨ of even partial sums is a bounded, increasing sequence and
hence converges to some real number S. Since S2n+1 = S2n + a2n+1 and a2n+1 converges
zero as n Ñ 8, the odd partial sums S2n+1 also converge to S. That S´ SN is between 0
and (the first dropped term) (´1)NaN+1 was already proved in §3.3.4.

3.4Ĳ Absolute and Conditional Convergence

We have now seen examples of series that converge and of series that diverge. But we
haven’t really discussed how robust the convergence of series is — that is, can we tweak
the coefficients in some way while leaving the convergence unchanged. A good example
of this is the series

8
ÿ

n=1

(
1
3

)n

302
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This is a simple geometric series and we know it converges. We have also seen, as exam-
ples 3.3.20 and 3.3.21 showed us, that we can multiply or divide the nth term by n and it
will still converge. We can even multiply the nth term by (´1)n (making it an alternating
series), and it will still converge. Pretty robust.

On the other hand, we have explored the Harmonic series and its relatives quite a lot
and we know it is much more delicate. While

8
ÿ

n=1

1
n

diverges, we also know the following two series converge:

8
ÿ

n=1

1
n1.00000001

8
ÿ

n=1

(´1)n 1
n

.

This suggests that the divergence of the Harmonic series is much more delicate. In this
section, we discuss one way to characterise this sort of delicate convergence — especially
in the presence of changes of sign.

3.4.1 §§ Definitions

(a) A series
8
ř

n=1
an is said to converge absolutely if the series

8
ř

n=1
|an| converges.

(b) If
8
ř

n=1
an converges but

8
ř

n=1
|an| diverges we say that

8
ř

n=1
an is conditionally

convergent.

Definition3.4.1 (Absolute and conditional convergence).

If you consider these definitions for a moment, it should be clear that absolute con-
vergence is a stronger condition than just simple convergence. All the terms in

ř

n |an|

are forced to be positive (by the absolute value signs), so that
ř

n |an| must be bigger than
ř

n an— making it easier for
ř

n |an| to diverge. This is formalised by the following the-
orem, which is an immediate consequence of the comparison test, Theorem 3.3.8.a, with
cn = |an|.

If the series
8
ř

n=1
|an| converges then the series

8
ř

n=1
an also converges. That is, abso-

lute convergence implies convergence.

Theorem3.4.2 (Absolute convergence implies convergence).
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Recall that some of our convergence tests (for example, the integral test) may only be
applied to series with positive terms. Theorem 3.4.2 opens up the possibility of applying
“positive only” convergence tests to series whose terms are not all positive, by checking
for “absolute convergence” rather than for plain “convergence”.

Example 3.4.3
(
ř8

n=1(´1)n´1 1
n

)

The alternating harmonic series
8
ř

n=1
(´1)n´1 1

n of Example 3.3.15 converges (by the alternat-

ing series test). But the harmonic series
8
ř

n=1

1
n of Example 3.3.6 diverges (by the integral

test). So the alternating harmonic series
8
ř

n=1
(´1)n´1 1

n converges conditionally.

Example 3.4.3

Example 3.4.4
(
ř8

n=1(´1)n´1 1
n2

)

Because the series
ř8

n=1
ˇ

ˇ(´1)n´1 1
n2

ˇ

ˇ =
8
ř

n=1

1
n2 of Example 3.3.6 converges (by the integral

test), the series
8
ř

n=1
(´1)n´1 1

n2 converges absolutely, and hence converges.

Example 3.4.4

Example 3.4.5 (random signs)

Imagine flipping a coin infinitely many times. Set σn = +1 if the nth flip comes up heads
and σn = ´1 if the nth flip comes up tails. The series

ř8
n=1(´1)σn 1

n2 is not in general an

alternating series. But we know that the series
ř8

n=1
ˇ

ˇ(´1)σn 1
n2

ˇ

ˇ =
8
ř

n=1

1
n2 converges. So

ř8
n=1(´1)σn 1

n2 converges absolutely, and hence converges.

Example 3.4.5

3.4.2 §§ Optional — The delicacy of conditionally convergent series

Conditionally convergent series have to be treated with great care. For example, switching
the order of the terms in a finite sum does not change its value.

1 + 2 + 3 + 4 + 5 + 6 = 6 + 3 + 5 + 2 + 4 + 1

The same is true for absolutely convergent series. But it is not true for conditionally con-
vergent series. In fact by reordering any conditionally convergent series, you can make it
add up to any number you like, including +8 and ´8. This very strange result is known
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as Riemann’s rearrangement theorem, named after Bernhard Riemann (1826–1866). The
following example illustrates the phenomenon.

Example 3.4.6

The alternating Harmonic series

8
ÿ

n=1

(´1)n´1 1
n

is a very good example of conditional convergence. We can show, quite explicitly, how
we can rearrange the terms to make it add up to two different numbers. Later, in Exam-
ple 3.5.19, we’ll show that this series is equal to log 2. However, by rearranging the terms
we can make it sum to 1

2 log 2. The usual order is

1
1
´

1
2
+

1
3
´

1
4
+

1
5
´

1
6
+ ¨ ¨ ¨

For the moment think of the terms being paired as follows:
(

1
1
´

1
2

)
+

(
1
3
´

1
4

)
+

(
1
5
´

1
6

)
+ ¨ ¨ ¨

so the denominators go odd-even odd-even. Now rearrange the terms so the denomina-
tors are odd-even-even odd-even-even:

(
1´

1
2
´

1
4

)
+

(
1
3
´

1
6
´

1
8

)
+

(
1
5
´

1
10
´

1
12

)
+ ¨ ¨ ¨

Now notice that the first term in each triple is exactly twice the second term. If we now
combine those terms we get


 1´

1
2

loomoon

=1/2

´
1
4


+




1
3
´

1
6

loomoon

=1/6

´
1
8


+




1
5
´

1
10

loomoon

=1/10

´
1

12


+ ¨ ¨ ¨

=

(
1
2
´

1
4

)
+

(
1
6
´

1
8

)
+

(
1

10
´

1
12

)
+ ¨ ¨ ¨

We can now extract a factor of 1
2 from each term, so

=
1
2

(
1
1
´

1
2

)
+

1
2

(
1
3
´

1
4

)
+

1
2

(
1
5
´

1
6

)
+ ¨ ¨ ¨

=
1
2

[(
1
1
´

1
2

)
+

(
1
3
´

1
4

)
+

(
1
5
´

1
6

)
+ ¨ ¨ ¨

]

So by rearranging the terms, the sum of the series is now exactly half the original sum!
Example 3.4.6
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In fact, we can go even further, and show how we can rearrange the terms of the
alternating harmonic series to add up to any given number31. For the purposes of the
example we have chosen 1.234, but it could really be any number. The example below can
actually be formalised to give a proof of the rearrangement theorem.

Example 3.4.7

We’ll show how to reorder the conditionally convergent series
8
ř

n=1
(´1)n´1 1

n so that it

adds up to exactly 1.234 (but the reader should keep in mind that any fixed number will
work).

• First create two lists of numbers — the first list consisting of the positive terms of the
series, in order, and the second consisting of the negative numbers of the series, in
order.

1,
1
3

,
1
5

,
1
7

, ¨ ¨ ¨ and ´
1
2

, ´
1
4

, ´
1
6

, ¨ ¨ ¨

• Notice that that if we add together the numbers in the second list,we get

´
1
2

[
1 +

1
2
+

1
3
+ ¨ ¨ ¨

]

which is just ´1
2 times the harmonic series. So the numbers in the second list add up

to ´8.

Also, if we add together the numbers in the first list, we get

1 +
1
3
+

1
5
+

1
7
¨ ¨ ¨ which is greater than

1
2
+

1
4
+

1
6
+

1
8
+ ¨ ¨ ¨

That is, the sum of the first set of numbers must be bigger than the sum of the second
set of numbers (which is just ´1 times the second list). So the numbers in the first
list add up to +8.

• Now we build up our reordered series. Start by moving just enough numbers from
the beginning of the first list into the reordered series to get a sum bigger than 1.234.

1 +
1
3
= 1.3333

We know that we can do this, because the sum of the terms in the first list diverges
to +8.

• Next move just enough numbers from the beginning of the second list into the re-
ordered series to get a number less than 1.234.

1 +
1
3
´

1
2
= 0.8333

Again, we know that we can do this because the sum of the numbers in the second
list diverges to ´8.

31 This is reminiscent of the accounting trick of pushing all the company’s debts off to next year so that
this year’s accounts look really good and you can collect your bonus.
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• Next move just enough numbers from the beginning of the remaining part of the
first list into the reordered series to get a number bigger than 1.234.

1 +
1
3
´

1
2
+

1
5
+

1
7
+

1
9
= 1.2873

Again, this is possible because the sum of the numbers in the first list diverges. Even
though we have already used the first few numbers, the sum of the rest of the list
will still diverge.

• Next move just enough numbers from the beginning of the remaining part of the
second list into the reordered series to get a number less than 1.234.

1 +
1
3
´

1
2
+

1
5
+

1
7
+

1
9
´

1
4
= 1.0373

• At this point the idea is clear, just keep going like this. At the end of each step,
the difference between the sum and 1.234 is smaller than the magnitude of the first
unused number in the lists. Since the numbers in both lists tend to zero as you go
farther and farther up the list, this procedure will generate a series whose sum is
exactly 1.234. Since in each step we remove at least one number from a list and we
alternate between the two lists, the reordered series will contain all of the terms from
8
ř

n=1
(´1)n´1 1

n , with each term appearing exactly once.

Example 3.4.7

3.5Ĳ Power Series

Let’s return to the simple geometric series

8
ÿ

n=0

xn

where x is some real number. As we have seen (back in Example 3.2.4), for |x| ă 1 this
series converges to a limit, that varies with x, while for |x| ě 1 the series diverges. Conse-
quently we can consider this series to be a function of x

f (x) =
8
ÿ

n=0

xn on the domain |x| ă 1.

Furthermore (also from Example 3.2.4) we know what the function is.

f (x) =
8
ÿ

n=0

xn =
1

1´ x
.
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Hence we can consider the series
ř8

n=0 xn as a new way of representing the function 1
1´x

when |x| ă 1. This series is an example of a power series.

Of course, representing a function as simple as 1
1´x by a series doesn’t seem like it is

going to make life easier. However the idea of representing a function by a series turns
out to be extremely helpful. Power series turn out to be very robust mathematical ob-
jects and interact very nicely with not only standard arithmetic operations, but also with
differentiation and integration (see Theorem 3.5.13). This means, for example, that

d
dx

"

1
1´ x

*

=
d
dx

8
ÿ

n=0

xn provided |x| ă 1

=
8
ÿ

n=0

d
dx

xn just differentiate term by term

=
8
ÿ

n=0

nxn´1

and in a very similar way

ż

1
1´ x

dx =

ż 8
ÿ

n=0

xndx provided |x| ă 1

=
8
ÿ

n=0

ż

xndx just integrate term by term

= C +
8
ÿ

n=0

1
n + 1

xn+1

We are hiding some mathematics under the word “just” in the above, but you can see that
once we have a power series representation of a function, differentiation and integration
become very straightforward.

So we should set as our goal for this section, the development of machinery to define
and understand power series. This will allow us to answer questions32 like

Is ex =
8
ÿ

n=0

xn

n!
?

Our starting point (now that we have equipped ourselves with basic ideas about series),
is the definition of power series.

32 Recall that n! = 1ˆ 2ˆ 3ˆ ¨ ¨ ¨ ˆ n is called “n factorial”. By convention 0! = 1.

308



SEQUENCE AND SERIES 3.5 POWER SERIES

3.5.1 §§ Definitions

A series of the form

A0 + A1(x´ c) + A2(x´ c)2 + A3(x´ c)3 + ¨ ¨ ¨ =
8
ÿ

n=0

An(x´ c)n

is called a power series in (x ´ c) or a power series centered on c. The numbers An
are called the coefficients of the power series.
One often considers power series centered on c = 0 and then the series reduces
to

A0 + A1x + A2x2 + A3x3 + ¨ ¨ ¨ =
8
ÿ

n=0

Anxn

Definition3.5.1.

For example
ř8

n=0
xn

n! is the power series with c = 0 and An = 1
n! . Typically, as in

that case, the coefficients An are given fixed numbers, but the “x” is to be thought of as a
variable. Thus each power series is really a whole family of series — a different series for
each value of x.

One possible value of x is x = c and then the series reduces33 to

8
ÿ

n=0

An(x´ c)n
ˇ

ˇ

ˇ

x=c
=

8
ÿ

n=0

An(c´ c)n

= A0
loomoon

n=0

+ 0
loomoon

n=1

+ 0
loomoon

n=2

+ 0
loomoon

n=3

+ ¨ ¨ ¨

and so simply converges to A0.
We now know that a power series converges when x = c. We can now use our

convergence tests to determine for what other values of x the series converges. Per-
haps most straightforward is the ratio test. The nth term in the series

ř8
n=0 An(x ´ c)n

is an = An(x´ c)n. To apply the ratio test we need to compute the limit

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

An+1(x´ c)n+1

An(x´ c)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

An+1

An

ˇ

ˇ

ˇ

ˇ

¨ |x´ c|

= |x´ c| ¨ lim
nÑ8

ˇ

ˇ

ˇ

ˇ

An+1

An

ˇ

ˇ

ˇ

ˇ

.

When we do so there are several possible outcomes.

33 By convention, when the term (x´ c)0 appears in a power series, it has value 1 for all values of x, even
x = c.
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• If the limit of ratios exists and is non-zero

lim
nÑ8

ˇ

ˇ

ˇ

An+1

An

ˇ

ˇ

ˇ
= A ‰ 0,

then the ratio test says that the series
ř8

n=0 An(x´ c)n

– converges when A ¨ |x´ c| ă 1, i.e. when |x´ c| ă 1/A, and

– diverges when A ¨ |x´ c| ą 1, i.e. when |x´ c| ą 1/A.

Because of this, when the limit exists, the quantity

R =
1
A

=

[
lim

nÑ8

ˇ

ˇ

ˇ

An+1

An

ˇ

ˇ

ˇ

]´1

Equation 3.5.2.

is called the radius of convergence of the series34.

• If the limit of ratios exists and is zero

lim
nÑ8

ˇ

ˇ

ˇ

An+1

An

ˇ

ˇ

ˇ
= 0

then limnÑ8

ˇ

ˇ

ˇ

An+1
An

ˇ

ˇ

ˇ
|x ´ c| = 0 for every x and the ratio test tells us that the series

ř8
n=0 An(x ´ c)n converges for every number x. In this case we say that the series

has an infinite radius of convergence.

• If the limit of ratios diverges to +8

lim
nÑ8

ˇ

ˇ

ˇ

An+1

An

ˇ

ˇ

ˇ
= +8

then limnÑ8

ˇ

ˇ

ˇ

An+1
An

ˇ

ˇ

ˇ
|x´ c| = +8 for every x ‰ c. The ratio test then tells us that the

series
ř8

n=0 An(x ´ c)n diverges for every number x ‰ c. As we have seen above,
when x = c, the series reduces to A0 + 0+ 0+ 0+ 0+ ¨ ¨ ¨ , which of course converges.
In this case we say that the series has radius of convergence zero.

• If
ˇ

ˇ

ˇ

An+1
An

ˇ

ˇ

ˇ
does not approach a limit as n Ñ 8, then we learn nothing from the ratio

test and we must use other tools to understand the convergence of the series.

All of these possibilities do happen. We give an example of each below. But first, the
concept of “radius of convergence” is important enough to warrant a formal definition.

34 The use of the word “radius” might seem a little odd here, since we are really describing the interval
in the real line where the series converges. However, when one starts to consider power series over
complex numbers, the radius of convergence does describe a circle inside the complex plane and so
“radius” is a more natural descriptor.
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(a) Let 0 ă R ă 8. If
ř8

n=0 An(x ´ c)n converges for |x ´ c| ă R, and diverges
for |x´ c| ą R, then we say that the series has radius of convergence R.

(b) If
ř8

n=0 An(x´ c)n converges for every number x, we say that the series has
an infinite radius of convergence.

(c) If
ř8

n=0 An(x´ c)n diverges for every x ‰ c, we say that the series has radius
of convergence zero.

Definition3.5.3.

Example 3.5.4 (Finite nonzero radius of convergence)

We already know that, if a ‰ 0, the geometric series
8
ř

n=0
axn converges when |x| ă 1 and

diverges when |x| ě 1. So, in the terminology of Definition 3.5.3, the geometric series has
radius of convergence R = 1. As a consistency check, we can also compute R using (3.5.2).

The series
8
ř

n=0
axn has An = a. So

R =

[
lim

nÑ8

ˇ

ˇ

ˇ

An+1

An

ˇ

ˇ

ˇ

]´1

=
[

lim
nÑ8

1
]´1

= 1

as expected.

Example 3.5.4

Example 3.5.5 (Radius of convergence = +8)

The series
8
ř

n=0

xn

n! has An = 1
n! . So

lim
nÑ8

ˇ

ˇ

ˇ

An+1

An

ˇ

ˇ

ˇ
= lim

nÑ8

1/(n+1)!

1/n!
= lim

nÑ8

n!
(n + 1)!

= lim
nÑ8

1ˆ 2ˆ 3ˆ ¨ ¨ ¨ ˆ n
1ˆ 2ˆ 3ˆ ¨ ¨ ¨ ˆ nˆ (n + 1)

= lim
nÑ8

1
n + 1

= 0

and
8
ř

n=0

xn

n! has radius of convergence8. It converges for every x.

Example 3.5.5
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Example 3.5.6 (Radius of convergence = 0)

The series
8
ř

n=0
n!xn has An = n!. So

lim
nÑ8

ˇ

ˇ

ˇ

An+1

An

ˇ

ˇ

ˇ
= lim

nÑ8

(n + 1)!
n!

= lim
nÑ8

1ˆ 2ˆ 3ˆ 4ˆ ¨ ¨ ¨ ˆ nˆ (n + 1)
1ˆ 2ˆ 3ˆ 4ˆ ¨ ¨ ¨ ˆ n

= lim
nÑ8

(n + 1)

= +8

and
8
ř

n=0
n!xn has radius of convergence zero35. It converges only for x = 0, where it takes

the value 0! = 1.
Example 3.5.6

Example 3.5.7

Comparing the series

1 + 2x + x2 + 2x3 + x4 + 2x5 + ¨ ¨ ¨

to
8
ÿ

n=1

Anxn =A0+A1x+A2x2+A3x3+A4x4+A5x5+ ¨ ¨ ¨

we see that

A0 = 1 A1 = 2 A2 = 1 A3 = 2 A4 = 1 A5 = 2 ¨ ¨ ¨

so that
A1

A0
= 2

A2

A1
=

1
2

A3

A2
= 2

A4

A3
=

1
2

A5

A4
= 2 ¨ ¨ ¨

and An+1
An

does not converge as n Ñ 8. Since the limit of the ratios does not exist, we
cannot tell anything from the ratio test. Nonetheless, we can still figure out for which x’s
our power series converges.

• Because every coefficient An is either 1 or 2, the nth term in our series obeys
ˇ

ˇAnxnˇ
ˇ ď 2|x|n

and so is smaller than the nth term in the geometric series
ř8

n=0 2|x|n. This geometric
series converges if |x| ă 1. So, by the comparison test, our series converges for
|x| ă 1 too.

35 Because of this, it might seem that such a series is fairly pointless. However there are all sorts of
mathematical games that can be played with them without worrying about their convergence. Such
“formal” power series can still impart useful information and the interested reader is invited to look up
“generating functions” with their prefered search engine.
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• Since every An is at least one, the nth term in our series obeys
ˇ

ˇAnxnˇ
ˇ ě |x|n

If |x| ě 1, this an = Anxn cannot converge to zero as n Ñ 8, and our series diverges
by the divergence test.

In conclusion, our series converges if and only if |x| ă 1, and so has radius of conver-
gence 1.

Example 3.5.7

Example 3.5.8

Lets construct a series from the digits of π. Now to avoid dividing by zero, let us set

An = 1 + the nth digit of π

Since π = 3.141591 . . .

A0 = 4 A1 = 2 A2 = 5 A3 = 2 A4 = 6 A5 = 10 A6 = 2 ¨ ¨ ¨

Consequently every An is an integer between 1 and 10 and gives us the series

8
ÿ

n=0

Anxn = 4 + 2x + 5x2 + 2x3 + 6x4 + 10x5 + ¨ ¨ ¨

The number π is irrational36 and consequently the ratio An+1
An

cannot have a limit as n Ñ 8.
If you do not understand why this is the case then don’t worry too much about it37. As
in the last example, the limit of the ratios does not exist and we cannot tell anything from
the ratio test. But we can still figure out for which x’s it converges.

• Because every coefficient An is no bigger (in magnitude) than 10, the nth term in our
series obeys

ˇ

ˇAnxnˇ
ˇ ď 10|x|n

and so is smaller than the nth term in the geometric series
ř8

n=0 10|x|n. This geomet-
ric series converges if |x| ă 1. So, by the comparison test, our series converges for
|x| ă 1 too.

36 We give a proof of this in the optional §3.7 at the end of this chapter.
37 This is a little beyond the scope of the course. Roughly speaking, think about what would happen if

the limit of the ratios did exist. If the limit were smaller than 1, then it would tell you that the terms of
our series must be getting smaller and smaller and smaller — which is impossible because they are all
integers between 1 and 10. Similarly if the limit existed and were bigger than 1 then the terms of the
series would have to get bigger and bigger and bigger — also impossible. Hence if the ratio exists then
it must be equal to 1 — but in that case because the terms are integers, they would have to be all equal
when n became big enough. But that means that the expansion of π would be eventually periodic —
something that only rational numbers do (a proof is given in the optional §3.7 at the end of this chapter).
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• Since every An is at least one, the nth term in our series obeys
ˇ

ˇAnxnˇ
ˇ ě |x|n

If |x| ě 1, this an = Anxn cannot converge to zero as n Ñ 8, and our series diverges
by the divergence test.

In conclusion, our series converges if and only if |x| ă 1, and so has radius of conver-
gence 1.

Example 3.5.8

Though we won’t prove it, it is true that every power series has a radius of conver-

gence, whether or not the limit lim
nÑ8

ˇ

ˇ

ˇ

An+1
An

ˇ

ˇ

ˇ
exists.

Let
8
ř

n=0
An(x´ c)n be a power series. Then one of the following alternatives must

hold.

(a) The power series converges for every number x. In this case we say that the
radius of convergence is8.

(b) There is a number 0 ă R ă 8 such that the series converges for |x ´ c| ă R
and diverges for |x´ c| ą R. Then R is called the radius of convergence.

(c) The series converges for x = c and diverges for all x ‰ c. In this case, we say
that the radius of convergence is 0.

Theorem3.5.9.

Consider the power series

8
ÿ

n=0

An(x´ c)n.

The set of real x-values for which it converges is called the interval of conver-
gence of the series.

Definition3.5.10.

Suppose that the power series
8
ř

n=0
An(x´ c)n has radius of convergence R. Then from

Theorem 3.5.9, we have that

• if R = 8, then its interval of convergence is ´8 ă x ă 8, which is also denoted
(´8,8), and
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• if R = 0, then its interval of convergence is just the point x = 0, and

• if 0 ă R ă 8, then we know that the series converges for any x which obeys

|x´ c| ă R or equivalently ´ R ă x´ c ă R
or equivalently c´ R ă x ă c + R

But we do not (yet) know whether or not the series converges at the two end points
of that interval. We do know, however, that its interval of convergence must be one
of

˝ c´ R ă x ă c + R, which is also denoted (c´ R , c + R), or

˝ c´ R ď x ă c + R, which is also denoted [c´ R , c + R), or

˝ c´ R ă x ď c + R, which is also denoted (c´ R , c + R], or

˝ c´ R ď x ď c + R, which is also denoted [c´ R , c + R].

To reiterate — while the radius convergence, R with 0 ă R ă 8, tells us that the series
converges for |x´ c| ă R and diverges for |x´ c| ą R, it does not (by itself) tell us whether
or not the series converges when |x´ c| = R, i.e. when x = c˘ R. The following example
shows that all four possibilities can occur.

Example 3.5.11

Let p be any real number and consider the series
ř8

n=0
xn

np . This series has An = 1
np . Since

lim
nÑ8

ˇ

ˇ

ˇ

An+1

An

ˇ

ˇ

ˇ
= lim

nÑ8

np

(n + 1)p = lim
nÑ8

1
(1 + 1/n)p = 1

the series has radius of convergence 1. So it certainly converges for |x| ă 1 and diverges
for |x| ą 1. That just leaves x = ˘1.

• When x = 1, the series reduces to
ř8

n=0
1

np . We know, from Example 3.3.6, that this
series converges if and only if p ą 1.

• When x = ´1, the series reduces to
ř8

n=0
(´1)n

np . By the alternating series test, Theo-
rem 3.3.14, this series converges whenever p ą 0 (so that 1

np tends to zero as n tends
to infinity). When p ď 0 (so that 1

np does not tend to zero as n tends to infinity), it
diverges by the divergence test, Theorem 3.3.1.

So

• The power series
ř8

n=0 xn (i.e. p = 0) has interval of convergence ´1 ă x ă 1.

• The power series
ř8

n=0
xn

n (i.e. p = 1) has interval of convergence ´1 ď x ă 1.

• The power series
ř8

n=0
(´1)n

n xn (i.e. p = 1) has interval of convergence ´1 ă x ď 1.

• The power series
ř8

n=0
xn

n2 (i.e. p = 2) has interval of convergence ´1 ď x ď 1.
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Example 3.5.11

Example 3.5.12

We are told that a certain power series with centre c = 3, converges at x = 4 and diverges
at x = 1. What else can we say about the convergence or divergence of the series for other
values of x?

We are told that the series is centred at 3, so its terms are all powers of (x´ 3) and it is
of the form

ÿ

ně0

An(x´ 3)n.

A good way to summarise the convergence data we are given is with a figure like the one
below. Green dots mark the values of x where the series is known to converge. (Recall
that every power series converges at its centre.) The red dot marks the value of x where
the series is known to diverge. The bull’s eye marks the centre.

1 3 4

Can we say more about the convergence and/or divergence of the series for other values
of x? Yes!

Let us think about the radius of convergence, R, of the series. We know that it must
exist and the information we have been given allows us to bound R. Recall that

• the series converges at x provided that |x´ 3| ă R and

• the series diverges at x if |x´ 3| ą R.

We have been told that

• the series converges when x = 4, which tells us that

˝ x = 4 cannot obey |x´ 3| ą R so

˝ x = 4 must obey |x´ 3| ď R, i.e. |4´ 3| ď R, i.e. R ě 1

• the series diverges when x = 1 so we also know that

˝ x = 1 cannot obey |x´ 3| ă R so

˝ x = 1 must obey |x´ 3| ě R, i.e. |1´ 3| ě R, i.e. R ď 2

We still don’t know R exactly. But we do know that 1 ď R ď 2. Consequently,

• since 1 is the smallest that R could be, the series certainly converges at x if |x´ 3| ă 1,
i.e. if 2 ă x ă 4 and
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• since 2 is the largest that R could be, the series certainly diverges at x if |x´ 3| ą 2,
i.e. if x ą 5 or if x ă 1.

The following figure provides a resume of all of this convergence data — there is conver-
gence at green x’s and divergence at red x’s.

1 3 4 52

Notice that from the data given we cannot say anything about the convergence or diver-
gence of the series on the intervals (1, 2] and (4, 5].

One lesson that we can derive from this example is that,

• if a series has centre c and converges at a,

• then it also converges at all points between c and a, as well as at all points of distance
strictly less than |a´ c| from c on the other side of c from a.

Example 3.5.12

3.5.2 §§ Working With Power Series

Just as we have done previously with limits, differentiation and integration, we can con-
struct power series representations of more complicated functions by using those of sim-
pler functions. Here is a theorem that helps us to do so.
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Assume that the functions f (x) and g(x) are given by the power series

f (x) =
8
ÿ

n=0

An(x´ c)n g(x) =
8
ÿ

n=0

Bn(x´ c)n

for all x obeying |x ´ c| ă R. In particular, we are assuming that both power
series have radius of convergence at least R. Also let K be a constant. Then

f (x) + g(x) =
8
ÿ

n=0

[An + Bn] (x´ c)n

K f (x) =
8
ÿ

n=0

K An (x´ c)n

(x´ c)N f (x) =
8
ÿ

n=0

An (x´ c)n+N for any integer N ě 1

=
8
ÿ

k=N

Ak´N (x´ c)k where k = n + N

f 1(x) =
8
ÿ

n=0

An n (x´ c)n´1

ż x

c
f (t) dt =

8
ÿ

n=0

An
(x´ c)n+1

n + 1
ż

f (x) dx =

[ 8
ÿ

n=0

An
(x´ c)n+1

n + 1

]
+ C with C an arbitrary constant

for all x obeying |x´ c| ă R.
In particular the radius of convergence of each of the six power series on the right

hand sides is at least R. In fact, if R is the radius of convergence of
8
ř

n=0
An(x´ c)n,

then R is also the radius of convergence of all of the above right hand sides, with

the possible exceptions of
8
ř

n=0
[An + Bn] (x´ c)n and

8
ř

n=0
KAn (x´ c)n when K = 0.

Theorem3.5.13 (Operations on Power Series).

Example 3.5.14

The last statement of Theorem 3.5.13 might seem a little odd, but consider the following
two power series centred at 0:

8
ÿ

n=0

2nxn and
8
ÿ

n=0

(1´ 2n)xn.
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The ratio test tells us that they both have radius of convergence R = 1
2 . However their

sum is

8
ÿ

n=0

2nxn +
8
ÿ

n=0

(1´ 2n)xn =
8
ÿ

n=0

xn

which has the larger radius of convergence 1.
A more extreme example of the same phenomenon is supplied by the two series

8
ÿ

n=0

2nxn and
8
ÿ

n=0

(´2n)xn.

They are both geometric series with radius of convergence R = 1
2 . But their sum is

8
ÿ

n=0

2nxn +
8
ÿ

n=0

(´2n)xn =
8
ÿ

n=0

(0)xn

which has radius of convergence +8.
Example 3.5.14

We’ll now use this theorem to build power series representations for a bunch of func-
tions out of the one simple power series representation that we know — the geometric
series

1
1´ x

=
8
ÿ

n=0

xn for all |x| ă 1

Example 3.5.15
(

1
1´x2

)

Find a power series representation for 1
1´x2 .

Solution. The secret to finding power series representations for a good many functions
is to manipulate them into a form in which 1

1´y appears and use the geometric series

representation 1
1´y =

ř8
n=0 yn. We have deliberately renamed the variable to y here — it

does not have to be x. We can use that strategy to find a power series expansion for 1
1´x2

— we just have to recognize that 1
1´x2 is the same as 1

1´y if we set y to x2.

1
1´ x2 =

1
1´ y

ˇ

ˇ

ˇ

ˇ

y=x2
=

[ 8
ÿ

n=0

yn
]

y=x2
if |y| ă 1

=
8
ÿ

n=0

(
x2)n

=
8
ÿ

n=0

x2n

= 1 + x2 + x4 + x6 + ¨ ¨ ¨

This is a perfectly good power series. There is nothing wrong with the power of x being 2n.
(This just means that the coefficients of all odd powers of x are zero.) In fact, you should
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try to always write power series in forms that are as easy to understand as possible. The
geometric series that we used at the end of the first line converges for

|y| ă 1 ðñ
ˇ

ˇx2ˇ
ˇ ă 1 ðñ |x| ă 1

So our power series has radius of convergence 1 and interval of convergence ´1 ă x ă 1.

Example 3.5.15

Example 3.5.16
(

x
2+x2

)

Find a power series representation for x
2+x2 .

Solution. This example is just a more algebraically involved variant of the last one. Again,
the strategy is to manipulate x

2+x2 into a form in which 1
1´y appears.

x
2 + x2 =

x
2

1
1 + x2/2

=
x
2

1
1´

(
´x2/2

) set ´
x2

2
= y

=
x
2

1
1´ y

ˇ

ˇ

ˇ

ˇ

y=´ x2
2

=
x
2

[ 8
ÿ

n=0

yn
]

y=´ x2
2

if |y| ă 1

=
x
2

8
ÿ

n=0

(
´

x2

2

)n

=
x
2

8
ÿ

n=0

(´1)n

2n x2n =
8
ÿ

n=0

(´1)n

2n+1 x2n+1 by Theorem 3.5.13, twice

=
x
2
´

x3

4
+

x5

8
´

x7

16
+ ¨ ¨ ¨

The geometric series that we used in the second line converges for

|y| ă 1 ðñ
ˇ

ˇ´x2/2
ˇ

ˇ ă 1 ðñ |x|2 ă 2 ðñ |x| ă
?

2

So the given power series has radius of convergence
?

2 and interval of convergence
´
?

2 ă x ă
?

2.

Example 3.5.16

In the previous two examples, to construct a new series from an existing series, we
replaced x by a simple function. The following theorem gives us some more (but certainly
not all) commonly used substitutions.
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Assume that the function f (x) is given by the power series

f (x) =
8
ÿ

n=0

Anxn

for all x in the interval I. Also let K and k be real constants. Then

f
(
Kxk) =

8
ÿ

n=0

AnKn xkn

whenever Kxk is in I. In particular, if
ř8

n=0 Anxn has radius of convergence R, K
is nonzero and k is a natural number, then

ř8
n=0 AnKn xkn has radius of conver-

gence k
a

R/|K|.

Theorem3.5.17 (Substituting in a Power Series).

Example 3.5.18
(

1
(1´x)2

)

Find a power series representation for 1
(1´x)2 .

Solution. Once again the trick is to express 1
(1´x)2 in terms of 1

1´x . Notice that

1
(1´ x)2 =

d
dx

"

1
1´ x

*

=
d
dx

#

8
ÿ

n=0

xn

+

=
8
ÿ

n=1

nxn´1 by Theorem 3.5.13

Note that the n = 0 term has disappeared because, for n = 0,

d
dx

xn =
d
dx

x0 =
d
dx

1 = 0

Also note that the radius of convergence of this series is one. We can see this via Theo-
rem 3.5.13. That theorem tells us that the radius of convergence of a power series is not
changed by differentiation — and since

ř8
n=0 xn has radius of convergence one, so too

does its derivative.
Without much more work we can determine the interval of convergence by testing at

x = ˘1. When x = ˘1 the terms of the series do not go to zero as n Ñ 8 and so, by the
divergence test, the series does not converge there. Hence the interval of convergence for
the series is ´1 ă x ă 1.

Example 3.5.18

Notice that, in this last example, we differentiated a known series to get to our answer. As
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per Theorem 3.5.13, the radius of convergence didn’t change. In addition, in this par-
ticular example, the interval of convergence didn’t change. This is not always the case.
Differentiation of some series causes the interval of convergence to shrink. In particular
the differentiated series may no longer be convergent at the end points of the interval38.
Similarly, when we integrate a power series the radius of convergence is unchanged, but
the interval of convergence may expand to include one or both ends, as illustrated by the
next example.

Example 3.5.19 (log(1 + x))

Find a power series representation for log(1 + x).

Solution. Recall that d
dx log(1 + x) = 1

1+x so that log(1 + t) is an antiderivative of 1
1+t and

log(1 + x) =

ż x

0

dt
1 + t

=

ż x

0

[ 8
ÿ

n=0

(´t)n
]

dt

=
8
ÿ

n=0

ż x

0
(´t)n dt by Theorem 3.5.13

=
8
ÿ

n=0

(´1)n xn+1

n + 1

= x´
x2

2
+

x3

3
´

x4

4
+ ¨ ¨ ¨

Theorem 3.5.13 guarantees that the radius of convergence is exactly one (the radius of
convergence of the geometric series

ř8
n=0(´t)n) and that

log(1 + x) =
8
ÿ

n=0

(´1)n xn+1

n + 1
for all ´ 1 ă x ă 1

When x = ´1 our series reduces to
ř8

n=0
´1

n+1 , which is (minus) the harmonic series and
so diverges. That’s no surprise — log(1 + (´1)) = log 0 = ´8. When x = 1, the series
converges by the alternating series test. It is possible to prove, by continuity, though we
won’t do so here, that the sum is log 2. So the interval of convergence is ´1 ă x ď 1.

Example 3.5.19

Example 3.5.20 (arctan x)

Find a power series representation for arctan x.

38 Consider the power series
ř8

n=1
xn

n . We know that its interval of convergence is ´1 ď x ă 1. (Indeed
see the next example.) When we differentiate the series we get the geometric series

ř8
n=0 xn which has

interval of convergence ´1 ă x ă 1.
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Solution. Recall that d
dx arctan x = 1

1+x2 so that arctan t is an antiderivative of 1
1+t2 and

arctan x =

ż x

0

dt
1 + t2 =

ż x

0

[ 8
ÿ

n=0

(´t2)
n
]

dt =
8
ÿ

n=0

ż x

0
(´1)nt2n dt

=
8
ÿ

n=0

(´1)n x2n+1

2n + 1

= x´
x3

3
+

x5

5
´ ¨ ¨ ¨

Theorem 3.5.13 guarantees that the radius of convergence is exactly one (the radius of
convergence of the geometric series

ř8
n=0(´t2)n) and that

arctan x =
8
ÿ

n=0

(´1)n x2n+1

2n + 1
for all ´1 ă x ă 1

When x = ˘1, the series converges by the alternating series test. So the interval of con-
vergence is ´1 ď x ď 1. It is possible to prove, though once again we won’t do so here,
that when x = ˘1, the series

ř8
n=0(´1)n x2n+1

2n+1 converges to the value of the left hand side,
arctan x, at x = ˘1. That is, to arctan(˘1) = ˘π

4 .

Example 3.5.20

The operations on power series dealt with in Theorem 3.5.13 are fairly easy to apply.
Unfortunately taking the product, ratio or composition of two power series is more in-
volved and is beyond the scope of this course39. Unfortunately Theorem 3.5.13 alone will
not get us power series representations of many of our standard functions (like ex and
sin x). Fortunately we can find such representations by extending Taylor polynomials40 to
Taylor series.

3.6Ĳ Taylor Series

3.6.1 §§ Extending Taylor Polynomials

Recall41 that Taylor polynomials provide a hierarchy of approximations to a given func-
tion f (x) near a given point a. Typically, the quality of these approximations improves as
we move up the hierarchy.

• The crudest approximation is the constant approximation f (x) « f (a).

• Then comes the linear, or tangent line, approximation f (x) « f (a) + f 1(a) (x´ a).

39 As always, a quick visit to your favourite search engine will direct the interested reader to more info-
mation.

40 Now is a good time to review your notes from last term, though we’ll give you a whirlwind review
over the next page or two.

41 Please review your notes from last term if this material is feeling a little unfamiliar.
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• Then comes the quadratic approximation

f (x) « f (a) + f 1(a) (x´ a) +
1
2

f 2(a) (x´ a)2

• In general, the Taylor polynomial of degree n, for the function f (x), about the ex-
pansion point a, is the polynomial, Tn(x), determined by the requirements that
f (k)(a) = T(k)

n (a) for all 0 ď k ď n. That is, f and Tn have the same derivatives
at a, up to order n. Explicitly,

f (x) « Tn(x) = f (a) + f 1(a) (x´ a) +
1
2

f 2(a) (x´ a)2 + ¨ ¨ ¨+
1
n!

f (n)(a) (x´ a)n

=
n
ÿ

k=0

1
k!

f (k)(a) (x´ a)k

These are, of course, approximations — often very good approximations near x = a — but
still just approximations. One might hope that if we let the degree, n, of the approximation
go to infinity then the error in the approximation might go to zero. If that is the case then
the “infinite” Taylor polynomial would be an exact representation of the function. Let’s
see how this might work.

Fix a real number a and suppose that all derivatives of the function f (x) exist. Then,
for any natural number n,

f (x) = Tn(x) + En(x)

Equation 3.6.1.

where Tn(x) is the Taylor polynomial of degree n for the function f (x) expanded about a,
and En(x) = f (x)´ Tn(x) is the error in our approximation. The Taylor polynomial42 is
given by the formula

Tn(x) = f (a) + f 1(a) (x´ a) + ¨ ¨ ¨+ 1
n! f (n)(a) (x´ a)n

Equation 3.6.1-a

while the error satisfies

En(x) = 1
(n+1)! f (n+1)(c) (x´ a)n+1

Equation 3.6.1-b

42 Did you take a quick look at your notes?
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for some c strictly between a and x. Note that we typically do not know the value of c in
the formula for the error. Instead we use the bounds on c to find bounds on f (n+1)(c) and
so bound the error43.

In order for our Taylor polynomial to be an exact representation of the function f (x)
we need the error En(x) to be zero. This will not happen when n is finite unless f (x) is a
polynomial. However it can happen in the limit as n Ñ 8, and in that case we can write
f (x) as the limit

f (x) = lim
nÑ8

Tn(x) = lim
nÑ8

n
ÿ

k=0

1
k! f (k)(a) (x´ a)k

This is really a limit of partial sums, and so we can write

f (x) =
8
ÿ

k=0

1
k! f (k)(a) (x´ a)k

which is a power series representation of the function. Let us formalise this in a definition.

The Taylor series for the function f (x) expanded around a is the power series

f (x) =
8
ÿ

n=0

1
n! f (n)(a) (x´ a)n

provided the series converges. When a = 0 it is also called the Maclaurin series
of f (x).

Definition3.6.2 (Taylor series).

This definition hides the discussion of whether or not En(x) Ñ 0 as n Ñ 8 within the
caveat “provided the series converges”. Demonstrating that for a given function can be
difficult, but for many of the standard functions you are used to dealing with, it turns out
to be pretty easy. Let’s compute a few Taylor series and see how we do it.

Example 3.6.3 (Exponential Series)

Find the Maclaurin series for f (x) = ex.

Solution. Just as was the case for computing Taylor polynomials, we need to compute the
derivatives of the function at the particular choice of a. Since we are asked for a Maclaurin
series, a = 0. So now we just need to find f (k)(0) for all integers k ě 0.

We know that d
dx ex = ex and so

ex = f (x) = f 1(x) = f 2(x) = ¨ ¨ ¨ = f (k)(x) = ¨ ¨ ¨ which gives

1 = f (0) = f 1(0) = f 2(0) = ¨ ¨ ¨ = f (k)(0) = ¨ ¨ ¨ .

43 The discussion here is only supposed to jog your memory. If it is feeling insufficiently jogged, then
please look at your notes from last term.
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Equations (3.6.1) and (3.6.1-a) then give us

ex = f (x) = 1 + x +
x2

2!
+ ¨ ¨ ¨+

xn

n!
+ En(x)

We shall see, in the optional Example 3.6.6 below, that, for any fixed x, lim
nÑ8

En(x) = 0.
Consequently, for all x,

ex = lim
nÑ8

[
1 + x +

1
2

x2 +
1
3!

x3 + ¨ ¨ ¨+
1
n!

xn
]
=

8
ÿ

n=0

1
n!

xn

Example 3.6.3

We have now seen power series representations for the functions

1
1´ x

1
(1´ x)2 log(1 + x) arctan(x) ex.

We do not think that you, the reader, will be terribly surprised to see that we develop
series for sine and cosine next.

Example 3.6.4 (Sine and Cosine Series)

The trigonometric functions sin x and cos x also have widely used Maclaurin series ex-
pansions (i.e. Taylor series expansions about a = 0). To find them, we first compute all
derivatives at general x.

f (x) = sin x f 1(x) = cos x f 2(x) = ´ sin x f (3)(x) = ´ cos x f (4)(x) = sin x ¨ ¨ ¨

g(x) = cos x g1(x) = ´ sin x g2(x) = ´ cos x g(3)(x) = sin x g(4)(x) = cos x ¨ ¨ ¨

Now set x = a = 0.

f (x) = sin x f (0) = 0 f 1(0) = 1 f 2(0) = 0 f (3)(0) = ´1 f (4)(0) = 0 ¨ ¨ ¨

g(x) = cos x g(0) = 1 g1(0) = 0 g2(0) = ´1 g(3)(0) = 0 g(4)(0) = 1 ¨ ¨ ¨

For sin x, all even numbered derivatives (at x = 0) are zero, while the odd numbered
derivatives alternate between 1 and´1. Very similarly, for cos x, all odd numbered deriva-
tives (at x = 0) are zero, while the even numbered derivatives alternate between 1 and´1.
So, the Taylor polynomials that best approximate sin x and cos x near x = a = 0 are

sin x « x´ 1
3! x

3 + 1
5! x

5
´ ¨ ¨ ¨

cos x « 1´ 1
2! x

2 + 1
4! x

4
´ ¨ ¨ ¨

We shall see, in the optional Example 3.6.8 below, that, for both sin x and cos x, we have
lim

nÑ8
En(x) = 0 so that

f (x) = lim
nÑ8

[
f (0) + f 1(0) x + ¨ ¨ ¨+ 1

n! f (n)(0) xn
]

g(x) = lim
nÑ8

[
g(0) + g1(0) x + ¨ ¨ ¨+ 1

n! g
(n)(0) xn

]
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Reviewing the patterns we found in the derivatives, we conclude that, for all x,

sin x = x´ 1
3! x

3 + 1
5! x

5
´ ¨ ¨ ¨ =

8
ÿ

n=0

(´1)n 1
(2n+1)! x

2n+1

cos x = 1´ 1
2! x

2 + 1
4! x

4
´ ¨ ¨ ¨ =

8
ÿ

n=0

(´1)n 1
(2n)! x

2n

and, in particular, both of the series on the right hand sides converge for all x.

We could also test for convergence of the series using the ratio test. Computing the
ratios of successsive terms in these two series gives us

ˇ

ˇ

ˇ

ˇ

An+1

An

ˇ

ˇ

ˇ

ˇ

=
|x|2n+3/(2n + 3)!
|x|2n+1/(2n + 1)!

=
|x|2

(2n + 3)(2n + 2)
ˇ

ˇ

ˇ

ˇ

An+1

An

ˇ

ˇ

ˇ

ˇ

=
|x|2n+2/(2n + 2)!
|x|2n/(2n)!

=
|x|2

(2n + 2)(2n + 1)

for sine and cosine respectively. Hence as n Ñ 8 these ratios go to zero and consequently
both series are convergent for all x. (This is very similar to what was observed in Exam-
ple 3.5.5.)

Example 3.6.4

We have developed power series representations for a number of important func-
tions44 . Here is a theorem that summarizes them.

44 The reader might ask whether or not we will give the series for other trigonometric functions or their
inverses. While the tangent function has a perfectly well defined series, its coefficients are not as simple
as those of the series we have seen — they form a sequence of numbers known (perhaps unsurprisingly)
as the “tangent numbers”. They, and the related Bernoulli numbers, have many interesting properties,
links to which the interested reader can find with their favourite search engine. The Maclaurin series
for inverse sine is

arcsin(x) =
8
ÿ

n=0

4´n

2n + 1
(2n)!
(n!)2 x2n+1

which is quite tidy, but proving it is beyond the scope of the course.
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ex =
8
ÿ

n=0

xn

n!
= 1 + x +

1
2!

x2 +
1
3!

x3 + ¨ ¨ ¨ for all ´8 ă x ă 8

sin(x) =
8
ÿ

n=0

(´1)n 1
(2n + 1)!

x2n+1 = x´
1
3!

x3 +
1
5!

x5
´ ¨ ¨ ¨ for all ´8 ă x ă 8

cos(x) =
8
ÿ

n=0

(´1)n 1
(2n)!

x2n = 1´
1
2!

x2 +
1
4!

x4
´ ¨ ¨ ¨ for all ´8 ă x ă 8

1
1´ x

=
8
ÿ

n=0

xn = 1 + x + x2 + x3 + ¨ ¨ ¨ for all ´1 ă x ă 1

log(1 + x) =
8
ÿ

n=0

(´1)n xn+1

n + 1
= x´

x2

2
+

x3

3
´

x4

4
´ ¨ ¨ ¨ for all ´1 ă x ď 1

arctan x =
8
ÿ

n=0

(´1)n x2n+1

2n + 1
= x´

x3

3
+

x5

5
´ ¨ ¨ ¨ for all ´1 ď x ď 1

Theorem3.6.5.

Notice that the series for sine and cosine sum to something that looks very similar to
the series for ex:

sin(x) + cos(x) =
(

x´
1
3!

x3 +
1
5!

x5
´ ¨ ¨ ¨

)
+

(
1´

1
2!

x2 +
1
4!

x4
´ ¨ ¨ ¨

)

= 1 + x´
1
2!

x2
´

1
3!

x3 +
1
4!

x4 +
1
5!

x5
´ ¨ ¨ ¨

ex = 1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 +
1
5!

x5 + ¨ ¨ ¨

So both series have coefficients with the same absolute value (namely 1
n! ), but there are

differences in sign45. This is not a coincidence and we direct the interested reader to the
optional Section 3.6.3 where will show how these series are linked through

?
´1.

Example 3.6.6
(

Optional — Why
ř8

n=0
1
n! x

n is ex.
)

We have already seen, in Example 3.6.3, that

ex = 1 + x +
x2

2!
+ ¨ ¨ ¨+

xn

n!
+ En(x)

By (3.6.1-b)

En(x) =
1

(n + 1)!
ecxn+1

45 Warning: antique sign–sine pun. No doubt the reader first saw it many years syne.
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for some (unknown) c between 0 and x. Fix any real number x. We’ll now show that En(x)
converges to zero as n Ñ 8.

To do this we need get bound the size of ec, and to do this, consider what happens if x
is positive or negative.

• If x ă 0 then x ď c ď 0 and hence ex ď ec ď e0 = 1.

• On the other hand, if x ě 0 then 0 ď c ď x and so 1 = e0 ď ec ď ex.

In either case we have that 0 ď ec ď 1 + ex. Because of this the error term

|En(x)| =
ˇ

ˇ

ˇ

ec

(n + 1)!
xn+1

ˇ

ˇ

ˇ
ď [ex + 1]

|x|n+1

(n + 1)!

We claim that this upper bound, and hence the error En(x), quickly shrinks to zero as
n Ñ 8.

Call the upper bound (except for the factor ex + 1, which is independent of n) en(x) =
|x|n+1

(n+1)! . To show that this shrinks to zero as n Ñ 8, let’s write it as follows.

en(x) =
|x|n+1

(n + 1)!
=

n + 1 factors
hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

|x|
1
¨
|x|
2
¨
|x|
3
¨ ¨ ¨
|x|
n
¨
|x|

|n + 1|

Now let k be an integer bigger than |x|. We can split the product

en(x) =

k factors
hkkkkkkkkkkkkkikkkkkkkkkkkkkj(
|x|
1
¨
|x|
2
¨
|x|
3
¨ ¨ ¨
|x|
k

)
¨

(
|x|

k + 1
¨ ¨ ¨

|x|
|n + 1|

)

ď

(
|x|
1
¨
|x|
2
¨
|x|
3
¨ ¨ ¨
|x|
k

)

looooooooooooomooooooooooooon

=Q(x)

¨

(
|x|

k + 1

)n+1´k

= Q(x) ¨
(
|x|

k + 1

)n+1´k

Since k does not depend not n (though it does depend on x), the function Q(x) does not
change as we increase n. Additionally, we know that |x| ă k + 1 and so |x|

k+1 ă 1. Hence as
we let n Ñ 8 the above bound must go to zero.

Alternatively, compare en(x) and en+1(x).

en+1(x)
en(x)

=

|x|n+2

(n+2)!

|x|n+1

(n+1)!

=
|x|

n + 2

When n is bigger than, for example 2|x|, we have en+1(x)
en(x) ă 1

2 . That is, increasing the index
on en(x) by one decreases the size of en(x) by a factor of at least two. As a result en(x)
must tend to zero as n Ñ 8.
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Consequently, for all x, lim
nÑ8

En(x) = 0, as claimed, and we really have

ex = lim
nÑ8

[
1 + x +

1
2

x2 +
1
3!

x3 + ¨ ¨ ¨+
1
n!

xn
]
=

8
ÿ

n=0

1
n!

xn

Example 3.6.6

There is another way to prove that the series
ř8

n=0
xn

n! converges to the function ex.
Rather than looking at how the error term En(x) behaves as n Ñ 8, we can show that
the series satsifies the same simple differential equation46 and the same initial condition
as the function.

Example 3.6.7
(

Optional — Another approach to showing that
ř8

n=0
1
n! x

n is ex.
)

We already know from Example 3.5.5, that the series
ř8

n=0
1
n! x

n converges to some func-
tion f (x) for all values of x . All that remains to do is to show that f (x) is really ex. We will
do this by showing that f (x) and ex satisfy the same differential equation with the same
initial conditions47. We know that y = ex satisfies

dy
dx

= y and y(0) = 1

and by Theorem 2.4.4 (with a = 1, b = 0 and y(0) = 1), this is the only solution. So it
suffices to show that f (x) =

ř8
n=0

xn

n! satisfies

d f
dx

= f (x) and f (0) = 1.

• By Theorem 3.5.13,

d f
dx

=
d
dx

#

8
ÿ

n=0

1
n!

xn

+

=
8
ÿ

n=1

n
n!

xn´1 =
8
ÿ

n=1

1
(n´ 1)!

xn´1

=

n=1
hkkikkj

1 +

n=2
hkkikkj

x +

n=3
hkkikkj

x2

2!
+

n=4
hkkikkj

x3

3!
+ ¨ ¨ ¨

= f (x)

• When we substitute x = 0 into the series we get (see the discussion after Defini-
tion 3.5.1)

f (0) = 1 +
0
1!

+
0
2!

+ ¨ ¨ ¨ = 1.

46 Recall, you studied that differential equation in the section on separable differential equations (The-
orem 2.4.4 in Section 2.4) as well as wayyyy back in the section on exponential growth and decay in
differential calculus.

47 Recall that when we solve of a separable differential equation our general solution will have an arbitrary
constant in it. That constant cannot be determined from the differential equation alone and we need
some extra data to find it. This extra information is often information about the system at its beginning
(for example when position or time is zero) — hence “initial conditions”. Of course the reader is already
familiar with this because it was covered back in Section 2.4.
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Hence f (x) solves the same initial value problem and we must have f (x) = ex.
Example 3.6.7

We can show that the error terms in Maclaurin polynomials for sine and cosine go to
zero as n Ñ 8 using very much the same approach as in Example 3.6.6.

Example 3.6.8
(

Optional — Why
ř8

n=0
(´1)n

(2n+1)! x
2n+1 = sin x and

ř8
n=0

(´1)n

(2n)! x2n = cos x
)

Let f (x) be either sin x or cos x. We know that every derivative of f (x) will be one
of ˘ sin(x) or ˘ cos(x). Consequently, when we compute the error term using equa-
tion (3.6.1-b) we always have

ˇ

ˇ f (n+1)(c)
ˇ

ˇ ď 1 and hence

|En(x)| ď
|x|n+1

(n + 1)!
.

In Example 3.6.3, we showed that |x|n+1

(n+1)! Ñ 0 as n Ñ 8 — so all the hard work is already
done. Since the error term shrinks to zero for both f (x) = sin x and f (x) = cos x, and

f (x) = lim
nÑ8

[
f (0) + f 1(0) x + ¨ ¨ ¨+ 1

n! f (n)(0) xn
]

as required.
Example 3.6.8

3.6.2 §§ Computing with Taylor Series

Taylor series have a great many applications. (Hence their place in this course.) One of
the most immediate of these is that they give us an alternate way of computing many
functions. For example, the first definition we see for the sine and cosine functions is
in terms of triangles. Those definitions, however, do not lend themselves to computing
sine and cosine except at very special angles. Armed with power series representations,
however, we can compute them to very high precision at any angle. To illustrate this,
consider the computation of π — a problem that dates back to the Babylonians.

Example 3.6.9 (Computing the number π)

There are numerous methods for computing π to any desired degree of accuracy48. Many
of them use the Maclaurin expansion

arctan x =
8
ÿ

n=0

(´1)n x2n+1

2n + 1

48 The computation of π has a very, very long history and your favourite search engine will turn up many
sites that explore the topic. For a more comprehensive history one can turn to books such as “A history
of Pi” by Petr Beckmann and “The joy of π” by David Blatner.
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of Theorem 3.6.5. Since arctan(1) = π
4 , the series gives us a very pretty formula for π:

π

4
= arctan 1 =

8
ÿ

n=0

(´1)n

2n + 1

π = 4
(

1´
1
3
+

1
5
´

1
7
+ ¨ ¨ ¨

)

Unfortunately, this series is not very useful for computing π because it converges so
slowly. If we approximate the series by its Nth partial sum, then the alternating series
test (Theorem 3.3.14) tells us that the error is bounded by the first term we drop. To guar-
antee that we have 2 decimal digits of π correct, we need to sum about the first 200 terms!

A much better way to compute π using this series is to take advantage of the fact that
tan π

6 = 1?
3
:

π = 6 arctan
( 1
?

3

)
= 6

8
ÿ

n=0

(´1)n 1
2n + 1

1

(
?

3)2n+1

= 2
?

3
8
ÿ

n=0

(´1)n 1
2n + 1

1
3n

= 2
?

3
(

1´
1

3ˆ 3
+

1
5ˆ 9

´
1

7ˆ 27
+

1
9ˆ 81

´
1

11ˆ 243
+ ¨ ¨ ¨

)

Again, this is an alternating series and so (via Theorem 3.3.14) the error we introduce by
truncating it is bounded by the first term dropped. For example, if we keep ten terms,
stopping at n = 9, we get π = 3.141591 (to 6 decimal places) with an error between zero
and

2
?

3
21ˆ 310 ă 3ˆ 10´6

This is just one of very many ways to compute π. Another one, which still uses the
Maclaurin expansion of arctan x, but is much more efficient, is

π = 16 arctan
1
5
´ 4 arctan

1
239

This formula was used by John Machin in 1706 to compute π to 100 decimal digits. By
hand!

Example 3.6.9

Power series also give us access to new functions which might not be easily expressed
in terms of the functions we have been introduced to so far. The following is a good
example of this.

Example 3.6.10 (Error function)

The error function

erf(x) =
2
?

π

ż x

0
e´t2

dt
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is used in computing “bell curve” probabilities. The indefinite integral of the integrand
e´t2

cannot be expressed in terms of standard functions. But we can still evaluate the
integral to within any desired degree of accuracy by using the Taylor expansion of the
exponential. Start with the Maclaurin series for ex:

ex =
8
ÿ

n=0

1
n!

xn

and then substitute x = ´t2 into this:

e´t2
=

8
ÿ

n=0

(´1)n

n!
t2n

We can then apply Theorem 3.5.13 to integrate term-by-term:

erf(x) =
2
?

π

ż x

0

[
8
ÿ

n=0

(´t2)
n

n!

]
dt

=
2
?

π

8
ÿ

n=0

(´1)n x2n+1

(2n + 1)n!

For example, for the bell curve, the probability of being within one standard deviation of
the mean49, is

erf
(

1/
?

2
)
=

2
?

π

8
ÿ

n=0

(´1)n (1/
?

2)2n+1

(2n + 1)n!
=

2
?

2π

8
ÿ

n=0

(´1)n 1
(2n + 1)2nn!

=

c

2
π

(
1´

1
3ˆ 2

+
1

5ˆ 22 ˆ 2
´

1
7ˆ 23 ˆ 3!

+
1

9ˆ 24 ˆ 4!
´ ¨ ¨ ¨

)

This is yet another alternating series. If we keep five terms, stopping at n = 4, we get
0.68271 (to 5 decimal places) with, by Theorem 3.3.14 again, an error between zero and
the first dropped term, which is minus

c

2
π

1
11ˆ 25 ˆ 5!

ă 2ˆ 10´5

Example 3.6.10

Example 3.6.11

Evaluate
8
ÿ

n=1

(´1)n´1

n3n and
8
ÿ

n=1

1
n3n

49 If you don’t know what this means (forgive the pun) don’t worry, because it is not part of the course.
Standard deviation a way of quantifying variation within a population.
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Solution. There are not very many series that can be easily evaluated exactly. But occa-
sionally one encounters a series that can be evaluated simply by realizing that it is exactly
one of the series in Theorem 3.6.5, just with a specific value of x. The left hand given series
is

8
ÿ

n=1

(´1)n´1

n
1
3n =

1
3
´

1
2

1
32 +

1
3

1
33 ´

1
4

1
34 + ¨ ¨ ¨

The series in Theorem 3.6.5 that this most closely resembles is

log(1 + x) = x´
x2

2
+

x3

3
´

x4

4
´ ¨ ¨ ¨

Indeed
8
ÿ

n=1

(´1)n´1

n
1
3n =

1
3
´

1
2

1
32 +

1
3

1
33 ´

1
4

1
34 + ¨ ¨ ¨

=

[
x´

x2

2
+

x3

3
´

x4

4
´ ¨ ¨ ¨

]

x= 1
3

=
[

log(1 + x)
]

x= 1
3

= log
4
3

The right hand series above differs from the left hand series above only that the signs of
the left hand series alternate while those of the right hand series do not. We can flip every
second sign in a power series just by using a negative x.

[
log(1 + x)

]
x=´ 1

3

=

[
x´

x2

2
+

x3

3
´

x4

4
´ ¨ ¨ ¨

]

x=´ 1
3

= ´
1
3
´

1
2

1
32 ´

1
3

1
33 ´

1
4

1
34 + ¨ ¨ ¨

which is exactly minus the desired right hand series. So
8
ÿ

n=1

1
n3n = ´

[
log(1 + x)

]
x=´ 1

3

= ´ log
2
3
= log

3
2

Example 3.6.11

Example 3.6.12

Let f (x) = sin(2x3). Find f (15)(0), the fifteenth derivative of f at x = 0.

Solution. This is a bit of a trick question. We could of course use the product and chain
rules to directly apply fifteen derivatives and then set x = 0, but that would be extremely
tedious50. There is a much more efficient approach that exploits two pieces of knowledge
that we have.

50 We could get a computer algebra system to do it for us without much difficulty — but we wouldn’t
learn much in the process. The point of this example is to illustrate that one can do more than just
represent a function with Taylor series. More on this in the next section.

334



SEQUENCE AND SERIES 3.6 TAYLOR SERIES

• From equation (3.6.1-a), we see that the coefficient of (x´ a)n in the Taylor series of
f (x) with expansion point a is exactly 1

n! f (n)(a). So f (n)(a) is exactly n! times the
coefficient of (x´ a)n in the Taylor series of f (x) with expansion point a.

• We know, or at least can easily find, the Taylor series for sin(2x3).

Let’s apply that strategy.

• First, we know that, for all y,

sin y = y´
1
3!

y3 +
1
5!

y5
´ ¨ ¨ ¨

• Just substituting y = 2x3, we have

sin(2x3) = 2x3
´

1
3!
(2x3)

3
+

1
5!
(2x3)

5
´ ¨ ¨ ¨

= 2x3
´

8
3!

x9 +
25

5!
x15
´ ¨ ¨ ¨

• So the coefficient of x15 in the Taylor series of f (x) = sin(2x3) with expansion point
a = 0 is 25

5!

and we have

f (15)(0) = 15!ˆ
25

5!
= 348,713,164,800

Example 3.6.12

Example 3.6.13 (Optional — Computing the number e)

Back in Example 3.6.6, we saw that

ex = 1 + x + x2

2! + ¨ ¨ ¨+
xn

n! +
1

(n+1)! e
cxn+1

for some (unknown) c between 0 and x. This can be used to approximate the number e,
with any desired degree of accuracy. Setting x = 1 in this equation gives

e = 1 + 1 + 1
2! + ¨ ¨ ¨+

1
n! +

1
(n+1)! e

c

for some c between 0 and 1. Even though we don’t know c exactly, we can bound that
term quite readily. We do know that ec in an increasing function51 of c, and so 1 = e0 ď

ec ď e1 = e. Thus we know that

1
(n + 1)!

ď e´
(

1 + 1 + 1
2! + ¨ ¨ ¨+

1
n!

)
ď

e
(n + 1)!

So we have a lower bound on the error, but our upper bound involves the e — precisely
the quantity we are trying to get a handle on.

51 Check the derivative!
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But all is not lost. Let’s look a little more closely at the right-hand inequality when
n = 1:

e´ (1 + 1) ď
e
2

move the e’s to one side
e
2
ď 2 and clean it up

e ď 4.

Now this is a pretty crude bound52 but it isn’t hard to improve. Try this again with n = 1:

e´ (1 + 1 +
1
2
) ď

e
6

move e’s to one side

5e
6
ď

5
2

e ď 3.

Better. Now we can rewrite our bound:

1
(n + 1)!

ď e´
(

1 + 1 + 1
2! + ¨ ¨ ¨+

1
n!

)
ď

e
(n + 1)!

ď
3

(n + 1)!

If we set n = 4 in this we get

1
120

=
1
5!
ď e´

(
1 + 1 +

1
2
+

1
6
+

1
24

)
ď

3
120

So the error is between 1
120 and 3

120 = 1
40 — this approximation isn’t guaranteed to give us

the first 2 decimal places. If we ramp n up to 9 however, we get

1
10!

ď e´
(

1 + 1 +
1
2
+ ¨ ¨ ¨+

1
9!

)
ď

3
10!

Since 10! = 3628800, the upper bound on the error is 3
3628800 ă

3
3000000 = 10´6, and we can

approximate e by

1 + 1 + 1
2! + 1

3! + 1
4! + 1

5! + 1
6! + 1

7! + 1
8! + 1

9!

=1 + 1 + 0.5 + 0.16̇ + 0.0416̇ + 0.0083̇ + 0.00138̇ + 0.0001984 + 0.0000248 + 0.0000028
=2.718282

and it is correct to six decimal places.

Example 3.6.13

52 The authors hope that by now we all “know” that e is between 2 and 3, but maybe we don’t know how
to prove it.
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3.6.3 §§ Optional — Linking ex with trigonometric functions

Let us return to the observation that we made earlier about the Maclaurin series for sine,
cosine and the exponential functions:

cos x + sin x = 1 + x´
1
2!

x2
´

1
3!

x3 +
1
4!

x4 +
1
5!

x5
´ ¨ ¨ ¨

ex = 1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 +
1
5!

x5 + ¨ ¨ ¨

We see that these series are identical except for the differences in the signs of the coeffi-
cients. Let us try to make them look even more alike by introducing extra constants A, B
and q into the equations. Consider

A cos x + B sin x = A + Bx´
A
2!

x2
´

B
3!

x3 +
A
4!

x4 +
B
5!

x5
´ ¨ ¨ ¨

eqx = 1 + qx +
q2

2!
x2 +

q3

3!
x3 +

q4

4!
x4 +

q5

5!
x5 + ¨ ¨ ¨

Let’s try to choose A, B and q so that these to expressions are equal. To do so we must make
sure that the coefficients of the various powers of x agree. Looking just at the coefficients
of x0 and x1, we see that we need

A = 1 and B = q

Substituting this into our expansions gives

cos x + q sin x = 1 + qx´
1
2!

x2
´

q
3!

x3 +
1
4!

x4 +
q
5!

x5
´ ¨ ¨ ¨

eqx = 1 + qx +
q2

2!
x2 +

q3

3!
x3 +

q4

4!
x4 +

q5

5!
x5 + ¨ ¨ ¨

Now the coefficients of x0 and x1 agree, but the coefficient of x2 tells us that we need q to
be a number so that q2 = ´1, or

q =
?
´1

We know that no such real number q exists. But for the moment let us see what happens if
we just assume53 that we can find q so that q2 = ´1. Then we will have that

q3 = ´q q4 = 1 q5 = q ¨ ¨ ¨

so that the series for cos x + q sin x and eqx are identical. That is

eqx = cos x + q sin x

If we now write this with the more usual notation q =
?
´1 = i we arrive at what is now

known as Euler’s formula

53 We do not wish to give a primer on imaginary and complex numbers here. The interested reader can
find many many resources with their favourite search engine.
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eix = cos x + i sin x

Equation 3.6.14.

Euler’s proof of this formula (in 1740) was based on Maclaurin expansions (much like
our explanation above). Euler’s formula54 is widely regarded as one of the most important
and beautiful in all of mathematics.

Of course having established Euler’s formula one can find slicker demonstations. For
example, let

f (x) = e´ix (cos x + i sin x)

Differentiating (with product and chain rules and the fact that i2 = ´1) gives us

f 1(x) = ´ie´ix (cos x + i sin x) + e´ix (´ sin x + i cos x)
= 0

Since the derivative is zero, the function f (x) must be a constant. Setting x = 0 tells us
that

f (0) = e0 (cos 0 + i sin 0) = 1.

Hence f (x) = 1 for all x. Rearranging then arrives at

eix = cos x + i sin x

as required.
Substituting x = π into Euler’s formula we get Euler’s identity

eiπ = ´1

which is more often stated

eiπ + 1 = 0

Equation 3.6.15.

which links the 5 most important constants in mathematics, 1, 0, π, e and
?
´1.

54 It is worth mentioning here that history of this topic is perhaps a little rough on Roger Cotes (1682–
1716) who was one of the strongest mathematicians of his time and a collaborator of Newton. Cotes
published a paper on logarithms in 1714 in which he states

ix = log(cos x + i sin x).

(after translating his results into more modern notation). He proved this result by computing in two
different ways the surface area of an ellipse rotated about one axis and equating the results. Unfortu-
nately Cotes died only 2 years later at the age of 33. Upon hearing of his death Newton is supposed
to have said “If he had lived, we might have known something.” The reader might think this a rather
weak statement, however coming from Newton it was high praise.
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3.6.4 §§ Evaluating Limits using Taylor Expansions

Taylor polynomials provide a good way to understand the behaviour of a function near a
specified point and so are useful for evaluating complicated limits. Here are some exam-
ples.

Example 3.6.16

In this example, we’ll start with a relatively simple limit, namely

lim
xÑ0

sin x
x

The first thing to notice about this limit is that, as x tends to zero, both the numerator, sin x,
and the denominator, x, tend to 0. So we may not evaluate the limit of the ratio by simply
dividing the limits of the numerator and denominator. To find the limit, or show that it
does not exist, we are going to have to exhibit a cancellation between the numerator and
the denominator. Let’s start by taking a closer look at the numerator. By Example 3.6.4,

sin x = x´
1
3!

x3 +
1
5!

x5
´ ¨ ¨ ¨

Consequently55

sin x
x

= 1´
1
3!

x2 +
1
5!

x4
´ ¨ ¨ ¨

Every term in this series, except for the very first term, is proportional to a strictly positive
power of x. Consequently, as x tends to zero, all terms in this series, except for the very
first term, tend to zero. In fact the sum of all terms, starting with the second term, also
tends to zero. That is,

lim
xÑ0

[
´

1
3!

x2 +
1
5!

x4
´ ¨ ¨ ¨

]
= 0

We won’t justify that statement here, but it will be justified in the following (optional)
subsection. So

lim
xÑ0

sin x
x

= lim
xÑ0

[
1´

1
3!

x2 +
1
5!

x4
´ ¨ ¨ ¨

]

= 1 + lim
xÑ0

[
´

1
3!

x2 +
1
5!

x4
´ ¨ ¨ ¨

]

= 1

55 We are hiding some mathematics behind this “consequently”. What we are really using our knowledge
of Taylor polynomials to write

f (x) = sin(x) = x´
1
3!

x3 +
1
5!

x5 + E5(x)

where E5(x) = f (6)(c)
6! x6 and c is between 0 and x. We are effectively hiding “E5(x)” inside the “¨ ¨ ¨ ”.

Now we can divide both sides by x (assuming x ‰ 0):

sin(x)
x

= 1´
1
3!

x2 +
1
5!

x4 +
E5(x)

x
.

and everything is fine provided the term E5(x)
x stays well behaved.
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Example 3.6.16

The limit in the previous example can also be evaluated relatively easily using l’Hôpital’s
rule56. While the following limit can also, in principal, be evaluated using l’Hôpital’s rule,
it is much more efficient to use Taylor series57.

Example 3.6.17

In this example we evaluate

lim
xÑ0

arctan x´ x
sin x´ x

Once again, the first thing to notice about this limit is that, as x tends to zero, the numera-
tor tends to arctan 0´ 0, which is 0, and the denominator tends to sin 0´ 0, which is also
0. So we may not evaluate the limit of the ratio by simply dividing the limits of the nu-
merator and denominator. Again, to find the limit, or show that it does not exist, we are
going to have to exhibit a cancellation between the numerator and the denominator. To
get a more detailed understanding of the behaviour of the numerator and denominator
near x = 0, we find their Taylor expansions. By Example 3.5.20,

arctan x = x´
x3

3
+

x5

5
´ ¨ ¨ ¨

so the numerator

arctan x´ x = ´
x3

3
+

x5

5
´ ¨ ¨ ¨

By Example 3.6.4,

sin x = x´
1
3!

x3 +
1
5!

x5
´ ¨ ¨ ¨

so the denominator
sin x´ x = ´

1
3!

x3 +
1
5!

x5
´ ¨ ¨ ¨

and the ratio
arctan x´ x

sin x´ x
=

´ x3

3 + x5

5 ´ ¨ ¨ ¨

´ 1
3! x

3 + 1
5! x

5 ´ ¨ ¨ ¨

Notice that every term in both the numerator and the denominator contains a common
factor of x3, which we can cancel out.

arctan x´ x
sin x´ x

=
´1

3 +
x2

5 ´ ¨ ¨ ¨

´ 1
3! +

1
5! x

2 ´ ¨ ¨ ¨

As x tends to zero,

56 Many of you learned about l’Hôptial’s rule in school and all of you should have seen it last term in your
differential calculus course.

57 It takes 3 applications of l’Hôpital’s rule and some careful cleaning up of the intermediate expressions.
Oof!
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• the numerator tends to ´1
3 , which is not 0, and

• the denominator tends to ´ 1
3! = ´1

6 , which is also not 0.

so we may now legitimately evaluate the limit of the ratio by simply dividing the limits
of the numerator and denominator.

lim
xÑ0

arctan x´ x
sin x´ x

= lim
xÑ0

´1
3 +

x2

5 ´ ¨ ¨ ¨

´ 1
3! +

1
5! x

2 ´ ¨ ¨ ¨

=
limxÑ0

[
´ 1

3 +
x2

5 ´ ¨ ¨ ¨
]

limxÑ0
[
´ 1

3! +
1
5! x

2 ´ ¨ ¨ ¨
]

=
´1/3

´1/3!

= 2

Example 3.6.17

3.6.5 §§ Optional — The Big O Notation

In Example 3.6.16 we used, without justification58, that, as x tends to zero, not only does
every term in

sin x
x

´ 1 = ´
1
3!

x2 +
1
5!

x4
´ ¨ ¨ ¨ =

8
ÿ

n=1

(´1)n 1
(2n + 1)!

x2n

converge to zero, but in fact the sum of all infinitely many terms also converges to zero.
We did something similar twice in Example 3.6.17; once in computing the limit of the
numerator and once in computing the limit of the denominator.

We’ll now develop some machinery that provides the justification. We start by recall-
ing, from equation (3.6.1), that if, for some natural number n, the function f (x) has n + 1
derivatives near the point a, then

f (x) = Tn(x) + En(x)

where
Tn(x) = f (a) + f 1(a) (x´ a) + ¨ ¨ ¨+ 1

n! f (n)(a) (x´ a)n

is the Taylor polynomial of degree n for the function f (x) and expansion point a and

En(x) = f (x)´ Tn(x) = 1
(n+1)! f (n+1)(c) (x´ a)n+1

is the error introduced when we approximate f (x) by the polynomial Tn(x). Here c is
some unknown number between a and x. As c is not known, we do not know exactly
what the error En(x) is. But that is usually not a problem.

58 Though there were a few comments in a footnote.
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In the present context59 we are interested in taking the limit as x Ñ a. So we are only
interested in x-values that are very close to a, and because c lies between x and a, c is also
very close to a. Now, as long as f (n+1)(x) is continuous at a, as x Ñ a, f (n+1)(c) must
approach f (n+1)(a) which is some finite value. This, in turn, means that there must be
constants M, D ą 0 such that

ˇ

ˇ f (n+1)(c)
ˇ

ˇ ď M for all c’s within a distance D of a. If so,
there is another constant C (namely M

(n+1)! ) such that

ˇ

ˇEn(x)
ˇ

ˇ ď C|x´ a|n+1 whenever |x´ a| ď D

There is some notation for this behavour.

Let a and m be real numbers. We say that the function “g(x) is of order |x´ a|m

near a” and we write g(x) = O
(
|x´ a|m

)
if there exist constants60 C, D ą 0 such

that

ˇ

ˇg(x)
ˇ

ˇ ď C|x´ a|m whenever |x´ a| ď D

Equation 3.6.19.

Whenever O
(
|x´ a|m

)
appears in an algebraic expression, it just stands for some

(unknown) function g(x) that obeys (3.6.19). This is called “big O” notation.

Definition3.6.18 (Big O).

How should we parse the big O notation when we see it? Consider the following

g(x) = O(|x´ 3|2)

First of all, we know from the definition that the notation only tells us something about
g(x) for x near the point a. The equation above contains “O(|x ´ 3|2)” which tells us
something about what the function looks like when x is close to 3. Further, because it is
“|x´ 3|” squared, it says that the graph of the function lies below a parabola y = C(x´ 3)2

and above a parabola y = ´C(x ´ 3)2 near x = 3. The notation doesn’t tell us anything
more than this — we don’t know, for example, that the graph of g(x) is concave up or
concave down. It also tells us that Taylor expansion of g(x) around x = 3 does not contain
any constant or linear term — the first non-zero term in the expansion is of degree at least
two. For example, all of the following functions are O(|x´ 3|2).

5(x´ 3)2 + 6(x´ 3)3, ´7(x´ 3)2
´ 8(x´ 3)4, (x´ 3)3, (x´ 3)5/2

In the next few examples we will rewrite a few of the Taylor polynomials that we know
using this big O notation.

59 It is worth pointing out that our Taylor series must be expanded about the point to which we are
limiting — i.e. a to work out a limit as x Ñ a we need Taylor series expanded about a and not some
other point.

60 To be precise, C and D do not depend on x, though they may, and usually do, depend on m.
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Example 3.6.20

Let f (x) = sin x and a = 0. Then

f (x) = sin x f 1(x) = cos x f 2(x) = ´ sin x f (3)(x) = ´ cos x f (4)(x) = sin x ¨ ¨ ¨

f (0) = 0 f 1(0) = 1 f 2(0) = 0 f (3)(0) = ´1 f (4)(0) = 0 ¨ ¨ ¨

and the pattern repeats. So every derivative is plus or minus either sine or cosine and, as
we saw in previous examples, this makes analysing the error term for the sine and cosine
series quite straightforward. In particular,

ˇ

ˇ f (n+1)(c)
ˇ

ˇ ď 1 for all real numbers c and all
natural numbers n. So the Taylor polynomial of, for example, degree 3 and its error term
are

sin x = x´ 1
3! x

3 + cos c
5! x5

= x´ 1
3! x

3 + O(|x|5)

under Definition 3.6.18, with C = 1
5! and any D ą 0. Similarly, for any natural number n,

sin x = x´ 1
3! x

3 + 1
5! x

5
´ ¨ ¨ ¨+ (´1)n 1

(2n+1)! x
2n+1 + O

(
|x|2n+3)

cos x = 1´ 1
2! x

2 + 1
4! x

4
´ ¨ ¨ ¨+ (´1)n 1

(2n)! x
2n + O

(
|x|2n+2)

Equation 3.6.21.

Example 3.6.20

When we studied the error in the expansion of the exponential function (way back in
optional Example 3.6.6), we had to go to some length to understand the behaviour of the
error term well enough to prove convergence for all numbers x. However, in the big O
notation, we are free to assume that x is close to 0. Furthermore we do not need to derive
an explicit bound on the size of the coefficient C. This makes it quite a bit easier to verify
that the big O notation is correct.

Example 3.6.22

Let n be any natural number. Since d
dx ex = ex, we know that dk

dxk texu = ex for every integer
k ě 0. Thus

ex = 1 + x + x2

2! +
x3

3! + ¨ ¨ ¨+
xn

n! +
ec

(n+1)! x
n+1

for some c between 0 and x. If, for example, |x| ď 1, then |ec| ď e, so that the error term

ˇ

ˇ

ec

(n+1)! x
n+1ˇ

ˇ ď C|x|n+1 with C = e
(n+1)! whenever |x| ď 1

So, under Definition 3.6.18, with C = e
(n+1)! and D = 1,
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ex = 1 + x + x2

2! +
x3

3! + ¨ ¨ ¨+
xn

n! + O
(
|x|n+1)

Equation 3.6.23.

You can see that, because we only have to consider x’s that are close to the expansion
point (in this example, 0) it is relatively easy to derive the bounds that are required to
justify the use of the big O notation.

Example 3.6.22

Example 3.6.24

Let f (x) = log(1 + x) and a = 0. Then

f 1(x) = 1
1+x f 2(x) = ´ 1

(1+x)2 f (3)(x) = 2
(1+x)3 f (4)(x) = ´ 2ˆ3

(1+x)4 f (5)(x) = 2ˆ3ˆ4
(1+x)5

f 1(0) = 1 f 2(0) = ´1 f (3)(0) = 2 f (4)(0) = ´3! f (5)(0) = 4!

We can see a pattern for f (n)(x) forming here — f (n)(x) is a sign times a ratio with

• the sign being + when n is odd and being ´when n is even. So the sign is (´1)n´1.
• The denominator is (1 + x)n.
• The numerator61 is the product 2ˆ 3ˆ 4ˆ ¨ ¨ ¨ ˆ (n´ 1) = (n´ 1)!.

Thus62, for any natural number n,

f (n)(x) = (´1)n´1 (n´1)!
(1+x)n which means that

1
n! f (n)(0) xn = (´1)n´1 (n´1)!

n! xn = (´1)n´1 xn

n

so
log(1 + x) = x´ x2

2 + x3

3 ´ ¨ ¨ ¨+ (´1)n´1 xn

n + En(x)

with
En(x) = 1

(n+1)! f (n+1)(c) (x´ a)n+1 = 1
n+1 ¨

(´1)n

(1+c)n+1 ¨ x
n+1

61 Remember that n! = 1ˆ 2ˆ 3ˆ ¨ ¨ ¨ ˆ n, and that we use the convention 0! = 1.
62 It is not too hard to make this rigorous using the principle of mathematical induction. The interested

reader should do a little search-engine-ing. Induction is a very standard technique for proving state-
ments of the form “For every natural number n,. . . ”. For example

For every natural number n,
n
ÿ

k=1

k =
n(n + 1)

2
or

For every natural number n,
dn

dxn tlog(1 + x)u = (´1)n´1 (n´ 1)!
(1 + x)n

It was also used by Polya (1887–1985) to give a very convincing (but subtly (and deliberately) flawed)
proof that all horses have the same colour.
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If we choose, for example D = 1
2 , then63 for any x obeying |x| ď D = 1

2 , we have |c| ď 1
2

and |1 + c| ě 1
2 so that

|En(x)| ď 1
(n+1)(1/2)n+1 |x|

n+1 = O
(
|x|n+1)

under Definition 3.6.18, with C = 2n+1

n+1 and D = 1
2 . Thus we may write

log(1 + x) = x´ x2

2 + x3

3 ´ ¨ ¨ ¨+ (´1)n´1 xn

n + O
(
|x|n+1)

Equation 3.6.25.

Example 3.6.24

Remark 3.6.26. The big O notation has a few properties that are useful in computations
and taking limits. All follow immediately from Definition 3.6.18.

(a) If p ą 0, then
lim
xÑ0

O(|x|p) = 0

(b) For any real numbers p and q,

O(|x|p) O(|x|q) = O(|x|p+q)

(This is just because C|x|p ˆ C1|x|q = (CC1)|x|p+q.) In particular,

axm O(|x|p) = O(|x|p+m)

for any constant a and any integer m.

(c) For any real numbers p and q,

O(|x|p) + O(|x|q) = O(|x|mintp,qu)

(For example, if p = 2 and q = 5, then C|x|2 + C1|x|5 =
(
C + C1|x|3

)
|x|2 ď (C + C1)|x|2

whenever |x| ď 1.)

(d) For any real numbers p and q with p ą q, any function which is O(|x|p) is also O(|x|q)
because C|x|p = C|x|p´q|x|q ď C|x|q whenever |x| ď 1.

(e) All of the above observations also hold for more general expressions with |x| replaced
by |x´ a|, i.e. for O(|x´ a|p). The only difference being in (a) where we must take the
limit as x Ñ a instead of x Ñ 0.

63 Since |c| ď 1
2 , ´ 1

2 ď c ď 1
2 . If we now add 1 to every term we get 1

2 ď 1 + c ď 3
2 and so |1 + c| ě 1

2 .
You can also do this with the triangle inequality which tells us that for any x, y we know that |x + y| ď
|x|+ |y|. Actually, you want the reverse triangle inequality (which is a simple corollary of the triangle
inequality) which says that for any x, y we have |x + y| ě

ˇ

ˇ|x| ´ |y|
ˇ

ˇ.
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3.6.6 §§ Optional — Evaluating Limits Using Taylor Expansions — More Ex-
amples

Example 3.6.27 (Example 3.6.16 revisited)

In this example, we’ll return to the limit

lim
xÑ0

sin x
x

of Example 3.6.16 and treat it more carefully. By Example 3.6.20,

sin x = x´
1
3!

x3 + O(|x|5)

That is, for small x, sin x is the same as x ´ 1
3! x

3, up to an error that is bounded by some
constant times |x|5. So, dividing by x, sin x

x is the same as 1´ 1
3! x

2, up to an error that is
bounded by some constant times x4 — see Remark 3.6.26(b). That is

sin x
x

= 1´
1
3!

x2 + O(x4)

But any function that is bounded by some constant times x4 (for all x smaller than some
constant D ą 0) necessarily tends to 0 as x Ñ 0 — see Remark 3.6.26(a). . Thus

lim
xÑ0

sin x
x

= lim
xÑ0

[
1´

1
3!

x2 + O(x4)
]
= lim

xÑ0

[
1´

1
3!

x2
]
= 1

Reviewing the above computation, we see that we did a little more work than we had
to. It wasn’t necessary to keep track of the ´ 1

3! x
3 contribution to sin x so carefully. We

could have just said that
sin x = x + O(|x|3)

so that

lim
xÑ0

sin x
x

= lim
xÑ0

x + O(|x|3)
x

= lim
xÑ0

[
1 + O(x2)

]
= 1

We’ll spend a little time in the later, more complicated, examples learning how to choose
the number of terms we keep in our Tayor expansions so as to make our computations as
efficient as possible.

Example 3.6.27

Example 3.6.28

In this example, we’ll use the Taylor polynomial of Example 3.6.24 to evaluate lim
xÑ0

log(1+x)
x

and lim
xÑ0

(1 + x)a/x. The Taylor expansion of equation (3.6.25) with n = 1 tells us that

log(1 + x) = x + O(|x|2)
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That is, for small x, log(1 + x) is the same as x, up to an error that is bounded by some
constant times x2. So, dividing by x, 1

x log(1 + x) is the same as 1, up to an error that is
bounded by some constant times |x|. That is

1
x

log(1 + x) = 1 + O(|x|)

But any function that is bounded by some constant times |x|, for all x smaller than some
constant D ą 0, necessarily tends to 0 as x Ñ 0. Thus

lim
xÑ0

log(1 + x)
x

= lim
xÑ0

x + O(|x|2)
x

= lim
xÑ0

[
1 + O(|x|)

]
= 1

We can now use this limit to evaluate

lim
xÑ0

(1 + x)a/x.

Now, we could either evaluate the limit of the logarithm of this expression, or we can
carefully rewrite the expression as e(something). Let us do the latter.

lim
xÑ0

(1 + x)a/x = lim
xÑ0

ea/x log(1+x)

= lim
xÑ0

e
a
x [x+O(|x|2)]

= lim
xÑ0

ea+O(|x|) = ea

Here we have used that if F(x) = O(|x|2) then a
x F(x) = O(x) — see Remark 3.6.26(b). We

have also used that the exponential is continuous — as x tends to zero, the exponent of
ea+O(|x|) tends to a so that ea+O(|x|) tends to ea — see Remark 3.6.26(a).

Example 3.6.28

Example 3.6.29

In this example, we’ll evaluate64 the harder limit

lim
xÑ0

cos x´ 1 + 1
2 x sin x

[log(1 + x)]4

The first thing to notice about this limit is that, as x tends to zero, the numerator

cos x´ 1 + 1
2 x sin x Ñ cos 0´ 1 + 1

2 ¨ 0 ¨ sin 0 = 0

and the denominator

[log(1 + x)]4 Ñ [log(1 + 0)]4 = 0

64 Use of l’Hôpital’s rule here could be characterised as a “courageous decision”. The interested reader
should search-engine their way to Sir Humphrey Appleby and ‘Yes Minister” to better understand this
reference (and the workings of government in the Westminster system). Discretion being the better part
of valour, we’ll stop and think a little before limiting (ha) our choices.
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too. So both the numerator and denominator tend to zero and we may not simply evaluate
the limit of the ratio by taking the limits of the numerator and denominator and dividing.

To find the limit, or show that it does not exist, we are going to have to exhibit a cancel-
lation between the numerator and the denominator. To develop a strategy for evaluating
this limit, let’s do a “little scratch work”, starting by taking a closer look at the denomina-
tor. By Example 3.6.24,

log(1 + x) = x + O(x2)

This tells us that log(1 + x) looks a lot like x for very small x. So the denominator [x +
O(x2)]4 looks a lot like x4 for very small x. Now, what about the numerator?

• If the numerator looks like some constant times xp with p ą 4, for very small x, then
the ratio will look like the constant times xp

x4 = xp´4 and, as p´ 4 ą 0, will tend to 0
as x tends to zero.

• If the numerator looks like some constant times xp with p ă 4, for very small x, then
the ratio will look like the constant times xp

x4 = xp´4 and will, as p´ 4 ă 0, tend to
infinity, and in particular diverge, as x tends to zero.

• If the numerator looks like Cx4, for very small x, then the ratio will look like Cx4

x4 = C
and will tend to C as x tends to zero.

The moral of the above “scratch work” is that we need to know the behaviour of the
numerator, for small x, up to order x4. Any contributions of order xp with p ą 4 may be
put into error terms O(|x|p).

Now we are ready to evaluate the limit. Because the expressions are a little involved,
we will simplify the numerator and denominator separately and then put things together.
Using the expansions we developed in Example 3.6.20, the numerator,

cos x´ 1 +
1
2

x sin x =

(
1´

1
2!

x2 +
1
4!

x4 + O(|x|6)
)

´ 1 +
x
2

(
x´

1
3!

x3 + O(|x|5)
)

expand

=

(
1

24
´

1
12

)
x4 + O(|x|6) +

x
2

O(|x|5)

= ´
1

24
x4 + O(|x|6) + O(|x|6) by Remark 3.6.26(b)

= ´
1

24
x4 + O(|x|6) by Remark 3.6.26(c)

Similarly, using the expansion that we developed in Example 3.6.24,

[log(1 + x)]4 =
[
x + O(|x|2)

]4

=
[
x + xO(|x|)

]4 by Remark 3.6.26(b)

= x4[1 + O(|x|)]4
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Now put these together and take the limit as x Ñ 0:

lim
xÑ0

cos x´ 1 + 1
2 x sin x

[log(1 + x)]4
= lim

xÑ0

´ 1
24 x4 + O(|x|6)

x4[1 + O(|x|)]4

= lim
xÑ0

´ 1
24 x4 + x4O(|x|2)
x4[1 + O(|x|)]4

by Remark 3.6.26(b)

= lim
xÑ0

´ 1
24 + O(|x|2)

[1 + O(|x|)]4

= ´
1
24

by Remark 3.6.26(a).

Example 3.6.29

The next two limts have much the same flavour as those above — expand the numera-
tor and denominator to high enough order, do some cancellations and then take the limit.
We have increased the difficulty a little by introducing “expansions of expansions”.

Example 3.6.30

In this example we’ll evaluate another harder limit, namely

lim
xÑ0

log
( sin x

x
)

x2

The first thing to notice about this limit is that, as x tends to zero, the denominator x2 tends
to 0. So, yet again, to find the limit, we are going to have to show that the numerator also
tends to 0 and we are going to have to exhibit a cancellation between the numerator and
the denominator.

Because the denominator is x2 any terms in the numerator, log
( sin x

x
)

that are of order

x3 or higher will contribute terms in the ratio log( sin x
x )

x2 that are of order x or higher. Those
terms in the ratio will converge to zero as x Ñ 0. The moral of this discussion is that we
need to compute log sin x

x to order x2 with errors of order x3. Now we saw, in Example
3.6.27, that

sin x
x

= 1´
1
3!

x2 + O(x4)

We also saw, in equation (3.6.25) with n = 1, that

log(1 + X) = X + O(X2)

Substituting65 X = ´ 1
3! x

2 +O(x4), and using that X2 = O(x4) (by Remark 3.6.26(b,c)), we
have that the numerator

log
(sin x

x

)
= log(1 + X) = X + O(X2) = ´

1
3!

x2 + O(x4)

65 In our derivation of log(1 + X) = X + O(X2) in Example 3.6.24, we required only that |X| ď 1
2 . So we

are free to substitute X = ´ 1
3! x2 + O(x4) for any x that is small enough that

ˇ

ˇ´ 1
3! x2 + O(x4)

ˇ

ˇ ă 1
2 .
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and the limit

lim
xÑ0

log
( sin x

x
)

x2 = lim
xÑ0

´ 1
3! x

2 + O(x4)

x2 = lim
xÑ0

[
´

1
3!

+ O(x2)
]
= ´

1
3!

= ´
1
6

Example 3.6.30

Example 3.6.31

Evaluate

lim
xÑ0

ex2
´ cos x

log(1 + x)´ sin x

Solution.

Step 1: Find the limit of the denominator.

lim
xÑ0

[
log(1 + x)´ sin x

]
= log(1 + 0)´ sin 0 = 0

This tells us that we can’t evaluate the limit just by finding the limits of the numerator and
denominator separately and then dividing.
Step 2: Determine the leading order behaviour of the denominator near x = 0. By equa-
tions (3.6.25) and (3.6.21),

log(1 + x) = x´ 1
2 x2 + 1

3 x3
´ ¨ ¨ ¨

sin x = x´ 1
3! x

3 + 1
5! x

5
´ ¨ ¨ ¨

Taking the difference of these expansions gives

log(1 + x)´ sin x = ´1
2 x2 +

(1
3 +

1
3!

)
x3 + ¨ ¨ ¨

This tells us that, for x near zero, the denominator is ´ x2

2 (that’s the leading order term)
plus contributions that are of order x3 and smaller. That is

log(1 + x)´ sin x = ´ x2

2 + O(|x|3)

Step 3: Determine the behaviour of the numerator near x = 0 to order x2 with errors of
order x3 and smaller (just like the denominator). By equation (3.6.23)

eX = 1 + X + O
(
X2)

Substituting X = x2

ex2
= 1 + x2 + O

(
x4)

cos x = 1´ 1
2 x2 + O

(
x4)

by equation (3.6.21). Subtracting, the numerator

ex2
´ cos x = 3

2 x2 + O
(
x4)

350



SEQUENCE AND SERIES 3.7 OPTIONAL — RATIONAL AND IRRATIONAL NUMBERS

Step 4: Evaluate the limit.

lim
xÑ0

ex2
´ cos x

log(1 + x)´ sin x
= lim

xÑ0

3
2 x2 + O(x4)

´ x2

2 + O(|x|3)
= lim

xÑ0

3/2 + O(x2)

´1/2 + O(|x|)
=

3/2

´1/2
= ´3

Example 3.6.31

3.7Ĳ Optional — Rational and irrational numbers

In this optional section we shall use series techniques to look a little at rationality and
irrationality of real numbers. We shall see the following results.

• A real number is rational (i.e. a ratio of two integers) if and only if its decimal
expansion is eventually periodic. “Eventually periodic” means that, if we denote
the nth decimal place by dn, then there are two positive integers k and p such that
dn+p = dn whenever n ą k. So the part of the decimal expansion after the decimal
point looks like

. a1a2a3 ¨ ¨ ¨ ak
looooomooooon

b1b2 ¨ ¨ ¨ bp
loooomoooon

b1b2 ¨ ¨ ¨ bp
loooomoooon

b1b2 ¨ ¨ ¨ bp
loooomoooon

¨ ¨ ¨

It is possible that a finite number of decimal places right after the decimal point do
not participate in the periodicity. It is also possible that p = 1 and b1 = 0, so that the
decimal expansion ends with an infinite string of zeros.
• e is irrational.
• π is irrational.

§§ Decimal expansions of rational numbers

We start by showing that a real number is rational if and only if its decimal expansion
is eventually periodic. We need only consider the expansions of numbers 0 ă x ă 1. If
a number is negative then we can just multiply it by ´1 and not change the expansion.
Similarly if the number is larger than 1 then we can just subtract off the integer part of the
number and leave the expansion unchanged.

§§§ Eventually periodic implies rational

Let us assume that a number 0 ă x ă 1 has a decimal expansion that is eventually peri-
odic. Hence we can write

x = 0. a1a2a3 ¨ ¨ ¨ ak
looooomooooon

b1b2 ¨ ¨ ¨ bp
loooomoooon

b1b2 ¨ ¨ ¨ bp
loooomoooon

b1b2 ¨ ¨ ¨ bp
loooomoooon

¨ ¨ ¨
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Let α = a1a2a3 ¨ ¨ ¨ ak and β = b1b2 ¨ ¨ ¨ bp. In particular, α has at most k digits and β has at
most p digits. Then we can (carefully) write

x =
α

10k +
β

10k+p +
β

10k+2p +
β

10k+3p + ¨ ¨ ¨

=
α

10k +
β

10k+p

8
ÿ

j=0

10´p

This sum is just a geometric series (see Example 3.2.4) and we can evaluate it:

=
α

10k +
β

10k+p ¨
1

1´ 10´p =
α

10k +
β

10k ¨
1

10p ´ 1

=
1

10k

(
α +

β

10p ´ 1

)
=

α(10p ´ 1) + β

10k(10p ´ 1)

This is a ratio of integers, so x is a rational number.

§§§ Rational implies eventually periodic

Let 0 ă x ă 1 be rational with x = a
b , where a and b are positive integers. We wish

to show that x’s decimal expansion is eventually periodic. Start by looking at the last
formula we derived in the “eventually periodic implies rational” subsection. If we can

express the denominator b in the form 10k(10p´1)
q with k, p and q integers, we will be in

business because a
b = aq

10k(10p´1) . From this we can generate the desired decimal expansion
by running the argument of the last subsection backwards. So we want to find integers k,
p, q such that 10k+p ´ 10k = b ¨ q. To do so consider the powers of 10 up to 10b:

1, 101, 102, 103, . . . , 10b

For each j = 0, 1, 2, . . . , b, find integers cj and 0 ď rj ă b so that

10j = b ¨ cj + rj

To do so, start with 10j and repeatedly subtract b from it until the remainder drops strictly
below b. The rj’s can take at most b different values, namely 0, 1, 2, ¨ ¨ ¨ , b´ 1, and we now
have b + 1 rj’s, namely r0, r1, ¨ ¨ ¨ , rb. So we must be able to find two powers of 10 which
give the same remainder66. That is there must be 0 ď k ă l ď b so that rk = rl. Hence

10l
´ 10k = (bcl + rl)´ (bck + rk)

= b(cl ´ ck) since rk = rl.

and we have

b =
10k(10p ´ 1)

q

66 This is an application of the pigeon hole principle — the very simple but surprisingly useful idea that
if you have n items which you have to put in m boxes, and if n ą m, then at least one box must contain
more than one item.
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where p = l ´ k and q = cl ´ ck are both strictly positive integers, since l ą k so that
10l ´ 10k ą 0. Thus we can write

a
b
=

aq
10k(10p ´ 1)

Next divide the numerator aq by 10p ´ 1 and compute the remainder. That is, write aq =
α(10p ´ 1) + β with 0 ď β ă 10p ´ 1. Notice that 0 ď α ă 10k, as otherwise x = a

b ě 1.
That is, α has at most k digits and β has at most p digits. This, finally, gives us

x =
a
b
=

α(10p ´ 1) + β

10k(10p ´ 1)

=
α

10k +
β

10k(10p ´ 1)

=
α

10k +
β

10k+p(1´ 10´p)

=
α

10k +
β

10k+p

8
ÿ

j=0

10´pj

which gives the required eventually periodic expansion.

§§ Irrationality of e

We will give 2 proofs that the number e is irrational, the first due to Fourier (1768–1830)
and the second due to Pennisi (1918–2010). Both are proofs by contradiction67 — we first
assume that e is rational and then show that this implies a contradiction. In both cases we
reach the contradiction by showing that a given quantity (related to the series expression
for e) must be both a positive integer and also strictly less than 1.

§§§ Proof 1

This proof is due to Fourier. Let us assume that the number e is rational so we can write it
as

e =
a
b

where a, b are positive integers. Using the Maclaurin series for ex we have

a
b
= e1 =

8
ÿ

n=0

1
n!

67 Proof by contradiction is a standard and very powerful method of proof in mathematics. It relies on
the law of the excluded middle which states that any given mathematical statement P is either true or
false. Because of this, if we can show that the statement P being false implies something contradictory
— like 1 = 0 or a ą a — then we can conclude that P must be true. The interested reader can certainly
find many examples (and a far more detailed explanation) using their favourite search engine.
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Now multiply both sides by b! to get

a
b!
b
=

8
ÿ

n=0

b!
n!

The left-hand side of this expression is an integer. We complete the proof by showing that
the right-hand side cannot be an integer (and hence that we have a contradiction).

First split the series on the right-hand side into two piece as follows

8
ÿ

n=0

b!
n!

=
b
ÿ

n=0

b!
n!

loomoon

=A

+
8
ÿ

n=b+1

b!
n!

looomooon

=B

The first sum, A, is finite sum of integers:

A =
b
ÿ

n=0

b!
n!

=
b
ÿ

n=0

(n + 1)(n + 2) ¨ ¨ ¨ (b´ 1)b.

Consequently A must be an integer. Notice that we simplified the ratio of factorials using
the fact that when b ě n we have

b!
n!

=
1 ¨ 2 ¨ ¨ ¨ n(n + 1)(n + 2) ¨ ¨ ¨ (b´ 1)b

1 ¨ 2 ¨ ¨ ¨ n
= (n + 1)(n + 2) ¨ ¨ ¨ (b´ 1)b.

Now we turn to the second sum. Since it is a sum of strictly positive terms we must
have

B ą 0

We complete the proof by showing that B ă 1. To do this we bound each term from above:

b!
n!

=
1

(b + 1)(b + 2) ¨ ¨ ¨ (n´ 1)n
loooooooooooooooomoooooooooooooooon

n´b factors

ď
1

(b + 1)(b + 1) ¨ ¨ ¨ (b + 1)(b + 1)
loooooooooooooooooooomoooooooooooooooooooon

n´b factors

=
1

(b + 1)n´b

Indeed the inequality is strict except when n = b + 1. Hence we have that

B ă
8
ÿ

n=b+1

1
(b + 1)n´b

=
1

(b + 1)
+

1
(b + 1)2 +

1
(b + 1)3 + ¨ ¨ ¨

This is just a geometric series (see Example 3.2.4) and equals

=
1

(b + 1)
1

1´ 1
b+1

=
1

b + 1´ 1
=

1
b
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And since b is a positive integer, we have shown that

0 ă B ă 1

and thus B cannot be an integer.
Thus we have that

a
b!
b

loomoon

integer

= A
loomoon

integer

+ B
loomoon

not integer

which gives a contradiction. Thus e cannot be rational.

§§§ Proof 2

This proof is due to Pennisi (1953). Let us (again) assume that the number e is rational.
Hence it can be written as

e =
a
b

,

where a, b are positive integers. This means that we can write

e´1 =
b
a

.

Using the Maclaurin series for ex we have

b
a
= e´1 =

8
ÿ

n=0

(´1)n

n!

Before we do anything else, we multiply both sides by (´1)a+1a! — this might seem a little
strange at this point, but the reason will become clear as we proceed through the proof.
The expression is now

(´1)a+1b
a!
a
=

8
ÿ

n=0

(´1)n+a+1a!
n!

The left-hand side of the expression is an integer. We again complete the proof by showing
that the right–hand side cannot be an integer.

We split the series on the right-hand side into two pieces:

8
ÿ

n=0

(´1)n+a+1a!
n!

=
a
ÿ

n=0

(´1)n+a+1a!
n!

looooooooomooooooooon

=A

+
8
ÿ

n=a+1

(´1)n+a+1a!
n!

looooooooooomooooooooooon

=B

We will show that A is an integer while 0 ă B ă 1; this gives the required contradiction.
Every term in the sum A is an integer. To see this we simplify the ratio of factorials as

we did in the previous proof:

A =
a
ÿ

n=0

(´1)n+a+1a!
n!

=
a
ÿ

n=0

(´1)n+a+1(n + 1)(n + 2) ¨ ¨ ¨ (a´ 1)a
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Let us now examine the series B. Again clean up the ratio of factorials:

B =
8
ÿ

n=a+1

(´1)n+a+1a!
n!

=
8
ÿ

n=a+1

(´1)n+a+1

(a + 1) ¨ (a + 2) ¨ ¨ ¨ (n´ 1) ¨ n

=
(´1)2a+2

a + 1
+

(´1)2a+3

(a + 1)(a + 2)
+

(´1)2a+4

(a + 1)(a + 2)(a + 3)
+ ¨ ¨ ¨

=
1

a + 1
´

1
(a + 1)(a + 2)

+
1

(a + 1)(a + 2)(a + 3)
´ ¨ ¨ ¨

Hence B is an alternating series of decreasing terms and by the alternating series test
(Theorem 3.3.14) it converges. Further, it must converge to a number between its first and
second partial sums (see the discussion before Theorem 3.3.14). Hence the right-hand side
lies between

1
a + 1

and
1

a + 1
´

1
(a + 1)(a + 2)

=
1

a + 2

Since a is a positive integer the above tells us that B converges to a real number strictly
greater than 0 and strictly less than 1. Hence it cannot be an integer.

This gives us a contradiction and hence e cannot be rational.

§§ Irrationality of π

This proof is due to Niven (1946) and doesn’t require any mathematics beyond the level
of this course. Much like the proofs above we will start by assuming that π is rational and
then reach a contradiction. Again this contradiction will be that a given quantity must be
an integer but at the same time must lie strictly between 0 and 1.

Assume that π is a rational number and so can be written as π = a
b with a, b positive

integers. Now let n be a positive integer and define the polynomial

f (x) =
xn(a´ bx)n

n!
.

It is certainly not immediately obvious why and how Niven chose this polynomial, but
you will see that it has been very carefully crafted to make the proof work. In particular
we will show — under our assumption that π is rational — that, if n is really big, then

In =

ż π

0
f (x) sin(x)dx

is an integer and it also lies strictly between 0 and 1, giving the required contradiction.

§§§ Bounding the integral

Consider again the polynomial

f (x) =
xn(a´ bx)n

n!
.
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Notice that

f (0) = 0
f (π) = f (a/b) = 0.

Furthermore, for 0 ď x ď π = a/b, we have x ď a
b and a´ bx ď a so that

0 ď x(a´ bx) ď a2/b.

We could work out a more precise68 upper bound, but this one is sufficient for the analysis
that follows. Hence

0 ď f (x) ď
(

a2

b

)n 1
n!

We also know that for 0 ď x ď π = a/b, 0 ď sin(x) ď 1. Thus

0 ď f (x) sin(x) ď
(

a2

b

)n 1
n!

for all 0 ď x ď 1. Using this inequality we bound

0 ă In =

ż π

0
f (x) sin(x)dx ă

(
a2

b

)n 1
n!

.

We will later show that, if n is really big, then
( a2

b
)n 1

n! ă 1. We’ll first show, starting now,
that In is an integer.

§§§ Integration by parts

In order to show that the value of this integral is an integer we will use integration by
parts. You have already practiced using integration by parts to integrate quantities like

ż

x2 sin(x)dx

and this integral isn’t much different. For the moment let us just use the fact that f (x) is
a polynomial of degree 2n. Using integration by parts with u = f (x), dv = sin(x) and
v = ´ cos(x) gives us

ż

f (x) sin(x)dx = ´ f (x) cos(x) +
ż

f 1(x) cos(x)dx

Use integration by parts again with u = f 1(x), dv = cos(x) and v = sin(x).

= ´ f (x) cos(x) + f 1(x) sin(x)´
ż

f 2(x) sin(x)dx

68 You got lots of practice finding the maximum and minimum values of continuous functions on closed
intervals when you took calculus last term.
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Use integration by parts yet again, with u = f 2(x), dv = sin(x) and v = ´ cos(x).

= ´ f (x) cos(x) + f 1(x) sin(x) + f 2(x) cos(x)´
ż

f3(x) cos(x)dx

And now we can see the pattern; we get alternating signs, and then derivatives multiplied
by sines and cosines:

ż

f (x) sin(x)dx = cos(x)
(
´ f (x) + f 2(x)´ f (4)(x) + f (6)(x)´ ¨ ¨ ¨

)

+ sin(x)
(

f 1(x)´ f3(x) + f (5)(x)´ f (7)(x) + ¨ ¨ ¨
)

This terminates at the 2nth derivative since f (x) is a polynomial of degree 2n. We can
check this computation by differentiating the terms on the right-hand side:

d
dx

(
cos(x)

(
´ f (x) + f 2(x)´ f (4)(x) + f (6)(x)´ ¨ ¨ ¨

))

= ´ sin(x)
(
´ f (x) + f 2(x)´ f (4)(x) + f (6)(x)´ ¨ ¨ ¨

)

+ cos(x)
(
´ f 1(x) + f3(x)´ f (5)(x) + f (7)(x)´ ¨ ¨ ¨

)

and similarly

d
dx

(
sin(x)

(
f 1(x)´ f3(x) + f (5)(x)´ f (7)(x) + ¨ ¨ ¨

))

= cos(x)
(

f 1(x)´ f3(x) + f (5)(x)´ f (7)(x) + ¨ ¨ ¨
)

+ sin(x)
(

f 2(x)´ f (4)(x) + f (6)(x)´ ¨ ¨ ¨
)

When we add these two expressions together all the terms cancel except f (x) sin(x), as
required.

Now when we take the definite integral from 0 to π , all the sine terms give 0 because
sin(0) = sin(π) = 0. Since cos(π) = ´1 and cos(0) = +1, we are just left with:

ż π

0
f (x) sin(x)dx =

(
f (0)´ f 2(0) + f (4)(0)´ f (6)(0) + ¨ ¨ ¨+ (´1)n f (2n)(0)

)

+
(

f (π)´ f 2(π) + f (4)(π)´ f (6)(π) + ¨ ¨ ¨+ (´1)n f (2n)(π)
)

So to show that In is an integer, it now suffices to show that f (j)(0) and f (j)(π) are integers.

§§ The derivatives are integers

Recall that

f (x) =
xn(a´ bx)n

n!
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and expand it:

f (x) =
c0

n!
x0 +

c1

n!
x1 + ¨ ¨ ¨+

cn

n!
xn + ¨ ¨ ¨+

c2n

n!
x2n

All the cj are integers, and clearly cj = 0 for all j = 0, 1, . . . , n´ 1, because of the factor xn

in f (x).
Now take the kth derivative and set x = 0. Note that, if j ă k, then dk

dxk xj = 0 for all x

and, if j ą k, then dk

dxk xj is some number times xj´k which evaluates to zero when we set
x = 0. So

f (k)(0) =
dk

dxk

( ck
k!

xk
)
=

k!ck
n!

If k ă n, then this is zero since ck = 0. If k ą n, this is an integer because ck is an integer
and k!/n! = (n + 1)(n + 2) ¨ ¨ ¨ (k´ 1)k is an integer. If k = n, then f (k)(0) = cn is again an
integer. Thus all the derivatives of f (x) evaluated at x = 0 are integers.

But what about the derivatives at π = a/b? To see this, we can make use of a handy
symmetry. Notice that

f (x) = f (π ´ x) = f (a/b´ x)

You can confirm this by just grinding through the algebra:

f (x) =
xn(a´ bx)n

n!
now replace x with a/b´ x

f (a/b´ x) =
(a/b´ x)n(a´ b(a/b´ x))n

n!
start cleaning this up:

=

(
a´bx

b

)n
(a´ a + bx)n

n!

=

(
a´bx

b

)n
(bx)n

n!

=
(a´ bx)nxn

n!
= f (x)

Using this symmetry (and the chain rule) we see that

f 1(x) = ´ f 1(π ´ x)

and if we keep differentiating

f (k)(x) = (´1)k f (k)(π ´ x)

Setting x = 0 in this tells us that

f (k)(0) = (´1)k f (k)(π)

So because all the derivatives at x = 0 are integers, we know that all the derivatives at
x = π are also integers.

Hence the integral we are interested in
ż π

0
f (x) sin(x)dx

must be an integer.
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§§§ Putting it together

Based on our assumption that π = a/b is rational, we have shown that the integral

In =

ż π

0

xn(a´ bx)
n!

sin(x)dx

satisfies

0 ă In ă

(
a2

b

)n 1
n!

and also that In is an integer.
We are, however, free to choose n to be any positive integer we want. If we take n to be

very large — in particular much much larger than a — then n! will be much much larger
than a2n (we showed this in Example 3.6.6), and consequently

0 ă In ă

(
a2

b

)n 1
n!
ă 1

Which means that the integral cannot be an integer. This gives the required contradiction,
showing that π is irrational.

360



HIGH SCHOOL MATERIAL

Appendix A

This chapter is really split into three parts.

• Sections A.1 to A.11 contains results that we expect you to understand and know.

• Then Section A.14 contains results that we don’t expect you to memorise, but that
we think you should be able to quickly derive from other results you know.

• The remaining sections contain some material (that may be new to you) that is re-
lated to topics covered in the main body of these notes.

A.1Ĳ Similar triangles

Two triangles T1, T2 are similar when

• (AAA — angle angle angle) The angles of T1 are the same as the angles of T2.

• (SSS — side side side) The ratios of the side lengths are the same. That is

A
a
=

B
b
=

C
c

• (SAS — side angle side) Two sides have lengths in the same ratio and the angle
between them is the same. For example

A
a
=

C
c

and angle β is same
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A.2Ĳ Pythagoras

For a right-angled triangle the length of the hypotenuse is related to the lengths of the
other two sides by

(adjacent)2 + (opposite)2 = (hypotenuse)2

A.3Ĳ Trigonometry — definitions

sin θ =
opposite

hypotenuse
csc θ =

1
sin θ

cos θ =
adjacent

hypotenuse
sec θ =

1
cos θ

tan θ =
opposite
adjacent

cot θ =
1

tan θ

A.4Ĳ Radians, arcs and sectors

For a circle of radius r and angle of θ radians:

• Arc length L(θ) = rθ.

• Area of sector A(θ) = θ
2r2.
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A.5Ĳ Trigonometry — graphs

sin θ cos θ tan θ

´π ´ π
2

π
2

π 3π
2

2π

´1

1

´π ´ π
2

π
2

π 3π
2

2π

´1

1

´π ´ π
2

π
2

π 3π
2

2π

A.6Ĳ Trigonometry — special triangles

From the above pair of special triangles we have

sin
π

4
=

1
?

2
sin

π

6
=

1
2

sin
π

3
=

?
3

2

cos
π

4
=

1
?

2
cos

π

6
=

?
3

2
cos

π

3
=

1
2

tan
π

4
= 1 tan

π

6
=

1
?

3
tan

π

3
=
?

3

A.7Ĳ Trigonometry — simple identities

• Periodicity

sin(θ + 2π) = sin(θ) cos(θ + 2π) = cos(θ)

• Reflection

sin(´θ) = ´ sin(θ) cos(´θ) = cos(θ)

• Reflection around π/4

sin
(

π
2 ´ θ

)
= cos θ cos

(
π
2 ´ θ

)
= sin θ
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• Reflection around π/2

sin (π ´ θ) = sin θ cos (π ´ θ) = ´ cos θ

• Rotation by π

sin (θ + π) = ´ sin θ cos (θ + π) = ´ cos θ

• Pythagoras

sin2 θ + cos2 θ = 1

A.8Ĳ Trigonometry — add and subtract angles

• Sine

sin(α˘ β) = sin(α) cos(β)˘ cos(α) sin(β)

• Cosine

cos(α˘ β) = cos(α) cos(β)¯ sin(α) sin(β)

A.9Ĳ Inverse trigonometric functions

Some of you may not have studied inverse trigonometric functions in highschool, how-
ever we still expect you to know them by the end of the course.

arcsin x arccos x arctan x

Domain: ´1 ď x ď 1 Domain: ´1 ď x ď 1 Domain: all real numbers

Range: ´π
2 ď arcsin x ď π

2 Range: 0 ď arccos x ď π Range: ´π
2 ă arctan x ă π

2

´1 1

´ π
2

π
2

´1 1

π
2

π

´ π
2

π
2

Since these functions are inverses of each other we have

arcsin(sin θ) = θ ´
π

2
ď θ ď

π

2
arccos(cos θ) = θ 0 ď θ ď π

arctan(tan θ) = θ ´
π

2
ď θ ď

π

2
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and also

sin(arcsin x) = x ´1 ď x ď 1
cos(arccos x) = x ´1 ď x ď 1
tan(arctan x) = x any real x

A.10Ĳ Areas

• Area of a rectangle

A = bh

• Area of a triangle

A =
1
2

bh =
1
2

ab sin θ

• Area of a circle

A = πr2

• Area of an ellipse

A = πab

A.11Ĳ Volumes

• Volume of a rectangular prism

V = lwh
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• Volume of a cylinder

V = πr2h

• Volume of a cone

V =
1
3

πr2h

• Volume of a sphere

V =
4
3

πr3

A.12Ĳ Powers

In the following, x and y are arbitrary real numbers, and q is an arbitrary constant that is
strictly bigger than zero.

• q0 = 1

• qx+y = qxqy, qx´y = qx

qy

• q´x = 1
qx

•
(
qx)y

= qxy

• lim
xÑ8

qx = 8, lim
xÑ´8

qx = 0 if q ą 1

• lim
xÑ8

qx = 0, lim
xÑ´8

qx = 8 if 0 ă q ă 1

• The graph of 2x is given below. The graph of qx, for any q ą 1, is similar.

x

y

1 2 3−1−2−3

1
2

4

6

y = 2x

366



HIGH SCHOOL MATERIAL A.13 LOGARITHMS

A.13Ĳ Logarithms

In the following, x and y are arbitrary real numbers that are strictly bigger than 0, and p
and q are arbitrary constants that are strictly bigger than one.

• qlogq x = x, logq
(
qx) = x

• logq x =
logp x
logp q

• logq 1 = 0, logq q = 1

• logq(xy) = logq x + logq y

• logq
( x

y
)
= logq x´ logq y

• logq
( 1

y
)
= ´ logq y,

• logq(xy) = y logq x

• lim
xÑ8

logq x = 8, lim
xÑ0

logq x = ´8

• The graph of log10 x is given below. The graph of logq x, for any q ą 1, is similar.

x

y

1 5 10 15

0.5

1.0

−0.5

−1.0

y = log10 x

A.14Ĳ Highschool material you should be able to derive

• Graphs of csc θ, sec θ and cot θ:

csc θ sec θ cot θ

´π ´ π
2

π
2

π 3π
2

2π
´1

1

´π ´ π
2

π
2

π 3π
2

2π
´1

1

´π ´ π
2

π
2

π 3π
2

2π
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• More Pythagoras

sin2 θ + cos2 θ = 1
divide by cos2 θ
ÞÝÝÝÝÝÝÝÝÝÝÑ tan2 θ + 1 = sec2 θ

sin2 θ + cos2 θ = 1
divide by sin2 θ
ÞÝÝÝÝÝÝÝÝÝÑ 1 + cot2 θ = csc2 θ

• Sine — double angle (set β = α in sine angle addition formula)

sin(2α) = 2 sin(α) cos(α)

• Cosine — double angle (set β = α in cosine angle addition formula)

cos(2α) = cos2(α)´ sin2(α)

= 2 cos2(α)´ 1 (use sin2(α) = 1´ cos2(α))

= 1´ 2 sin2(α) (use cos2(α) = 1´ sin2(α))

• Composition of trigonometric and inverse trigonometric functions:

cos(arcsin x) =
a

1´ x2 sec(arctan x) =
a

1 + x2

and similar expressions.

A.15Ĳ Cartesian Coordinates

Each point in two dimensions may be labeled by two coordinates (x, y) which specify the
position of the point in some units with respect to some axes as in the figure below.

x

y

x

y

(x, y)

The set of all points in two dimensions is denoted R2. Observe that

• the distance from the point (x, y) to the x–axis is |y|
• the distance from the point (x, y) to the y–axis is |x|
• the distance from the point (x, y) to the origin (0, 0) is

a

x2 + y2

Similarly, each point in three dimensions may be labeled by three coordinates (x, y, z),
as in the two figures below.
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(x, y, z)

x

y

z

x

y

z

(x, y, z)

x

y

z

x

y

z

The set of all points in three dimensions is denoted R3. The plane that contains, for exam-
ple, the x– and y–axes is called the xy–plane.

• The xy–plane is the set of all points (x, y, z) that obey z = 0.
• The xz–plane is the set of all points (x, y, z) that obey y = 0.
• The yz–plane is the set of all points (x, y, z) that obey x = 0.

More generally,

• The set of all points (x, y, z) that obey z = c is a plane that is parallel to the xy–plane
and is a distance |c| from it. If c ą 0, the plane z = c is above the xy–plane. If
c ă 0, the plane z = c is below the xy–plane. We say that the plane z = c is a signed
distance c from the xy–plane.
• The set of all points (x, y, z) that obey y = b is a plane that is parallel to the xz–plane

and is a signed distance b from it.
• The set of all points (x, y, z) that obey x = a is a plane that is parallel to the yz–plane

and is a signed distance a from it.

z = c

x

y

z

y = b

x

y

z

x = a

x

y

z

Observe that

• the distance from the point (x, y, z) to the xy–plane is |z|
• the distance from the point (x, y, z) to the xz–plane is |y|
• the distance from the point (x, y, z) to the yz–plane is |x|
• the distance from the point (x, y, z) to the origin (0, 0, 0) is

a

x2 + y2 + z2
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The distance from the point (x, y, z) to the point (x1, y1, z1) is
b

(x´ x1)2 + (y´ y1)2 + (z´ z1)2

so that the equation of the sphere centered on (1, 2, 3) with radius 4, that is, the set of all
points (x, y, z) whose distance from (1, 2, 3) is 4, is

(x´ 1)2 + (y´ 2)2 + (z´ 3)2 = 16

A.16Ĳ Roots of Polynomials

Being able to factor polynomials is a very important part of many of the computations in
this course. Related to this is the process of finding roots (or zeros) of polynomials. That
is, given a polynomial P(x), find all numbers r so that P(r) = 0.

In the case of a quadratic P(x) = ax2 + bx + c, we can use the formula

x =
´b˘

?
b2 ´ 4ac

2a

The corresponding formulas for cubics and quartics1 are extremely cumbersome, and no
such formula exists for polynomials of degree 5 and higher2.

Despite this there are many tricks3 for finding roots of polynomials that work well in
some situations but not all. Here we describe approaches that will help you find integer
and rational roots of polynomials that will work well on exams, quizzes and homework
assignments.

Consider the quadratic equation x2 ´ 5x + 6 = 0. We could4 solve this using the
quadratic formula

x =
5˘

?
25´ 4ˆ 1ˆ 6

2
=

5˘ 1
2

= 2, 3.

Hence x2 ´ 5x + 6 has roots x = 2, 3 and so it factors as (x ´ 3)(x ´ 2). Notice5 that the
numbers 2 and 3 divide the constant term of the polynomial, 6. This happens in general
and forms the basis of our first trick.

If r or ´r is an integer root of a polynomial P(x) = anxn + ¨ ¨ ¨ + a1x + a0 with
integer coefficients, then r is a factor of the constant term a0.

TrickA.16.1 (A very useful trick).

1 The method for cubics was developed in the 15th century by del Ferro, Cardano and Ferrari (Cardano’s
student). Ferrari then went on to discover a formula for the roots of a quartic. His formula requires the
solution of an associated cubic polynomial.

2 This is the famous Abel-Ruffini theorem.
3 There is actually a large body of mathematics devoted to developing methods for factoring polyno-

mials. Polynomial factorisation is a fundamental problem for most computer algebra systems. The
interested reader should make use of their favourite search engine to find out more.

4 We probably shouldn’t do it this way for such a simple polynomial, but for pedagogical purposes we
do here.

5 Many of you may have been taught this approach in highschool.
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Proof. If r is a root of the polynomial we know that P(r) = 0. Hence

an ¨ rn + ¨ ¨ ¨ + a1 ¨ r + a0 = 0

If we isolate a0 in this expression we get

a0 = ´
[
anrn + ¨ ¨ ¨ + a1r

]

We can see that r divides every term on the right-hand side. This means that the right-
hand side is an integer times r. Thus the left-hand side, being a0, is an integer times r, as
required. The argument for when ´r is a root is almost identical.

Let us put this observation to work.

Example A.16.1

Find the integer roots of P(x) = x3 ´ x2 + 2.

Solution.

• The constant term in this polynomial is 2.

• The only divisors of 2 are 1, 2. So the only candidates for integer roots are ˘1,˘2.

• Trying each in turn

P(1) = 2 P(´1) = 0
P(2) = 6 P(´2) = ´10

• Thus the only integer root is ´1.

Example A.16.1

Example A.16.2

Find the integer roots of P(x) = 3x3 + 8x2 ´ 5x´ 6.

Solution.

• The constant term is ´6.

• The divisors of 6 are 1, 2, 3, 6. So the only candidates for integer roots are˘1,˘2,˘3,˘6.

• We try each in turn (it is tedious but not difficult):

P(1) = 0 P(´1) = 4
P(2) = 40 P(´2) = 12
P(3) = 132 P(´3) = 0
P(6) = 900 P(´6) = ´336

• Thus the only integer roots are 1 and ´3.
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Example A.16.2

We can generalise this approach in order to find rational roots. Consider the polyno-
mial 6x2 ´ x´ 2. We can find its zeros using the quadratic formula:

x =
1˘

?
1 + 48

12
=

1˘ 7
12

= ´
1
2

,
2
3

.

Notice now that the numerators, 1 and 2, both divide the constant term of the polynomial
(being 2). Similarly, the denominators, 2 and 3, both divide the coefficient of the highest
power of x (being 6). This is quite general.

If b/d or ´b/d is a rational root in lowest terms (i.e. b and d are integers with
no common factors) of a polynomial Q(x) = anxn + ¨ ¨ ¨ + a1x + a0 with inte-
ger coefficients, then the numerator b is a factor of the constant term a0 and the
denominator d is a factor of an.

TrickA.16.2 (Another nice trick).

Proof. Since b/d is a root of P(x) we know that

an(b/d)n + ¨ ¨ ¨ + a1(b/d) + a0 = 0

Multiply this equation through by dn to get

anbn + ¨ ¨ ¨ + a1bdn´1 + a0dn = 0

Move terms around to isolate a0dn:

a0dn = ´
[
anbn + ¨ ¨ ¨ + a1bdn´1]

Now every term on the right-hand side is some integer times b. Thus the left-hand side
must also be an integer times b. We know that d does not contain any factors of b, hence
a0 must be some integer times b (as required).

Similarly we can isolate the term anbn:

anbn = ´
[
an´1bn´1d + ¨ ¨ ¨ + a1bdn´1 + a0dn]

Now every term on the right-hand side is some integer times d. Thus the left-hand side
must also be an integer times d. We know that b does not contain any factors of d, hence
an must be some integer times d (as required).

The argument when ´b/d is a root is nearly identical.

We should put this to work:

Example A.16.3

P(x) = 2x2 ´ x´ 3.

Solution.
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• The constant term in this polynomial is 3 = 1ˆ 3 and the coefficient of the highest
power of x is 2 = 1ˆ 2.

• Thus the only candidates for integer roots are ˘1, ˘3.

• By our newest trick, the only candidates for fractional roots are ˘1
2 , ˘3

2 .

• We try each in turn6

P(1) = ´2 P(´1) = 0
P(3) = 12 P(´3) = 18

P
(

1
2

)
= ´3 P

(
´1

2

)
= ´2

P
(3

2

)
= 0 P

(
´3

2

)
= 3

so the roots are ´1 and 3
2 .

Example A.16.3

The tricks above help us to find integer and rational roots of polynomials. With a little
extra work we can extend those methods to help us factor polynomials. Say we have a
polynomial P(x) of degree p and have established that r is one of its roots. That is, we
know P(r) = 0. Then we can factor (x´ r) out from P(x) — it is always possible to find a
polynomial Q(x) of degree p´ 1 so that

P(x) = (x´ r)Q(x)

In sufficiently simple cases, you can probably do this factoring by inspection. For
example, P(x) = x2 ´ 4 has r = 2 as a root because P(2) = 22 ´ 4 = 0. In this case,
P(x) = (x ´ 2)(x + 2) so that Q(x) = (x + 2). As another example, P(x) = x2 ´ 2x ´ 3
has r = ´1 as a root because P(´1) = (´1)2 ´ 2(´1)´ 3 = 1 + 2´ 3 = 0. In this case,
P(x) = (x + 1)(x´ 3) so that Q(x) = (x´ 3).

For higher degree polynomials we need to use something more systematic — long
divison.

Once you have found a root r of a polynomial, even if you cannot factor (x ´ r)
out of the polynomial by inspection, you can find Q(x) by dividing P(x) by x´ r,
using the long division algorithm you learned7 in school, but with 10 replaced
by x.

TrickA.16.3 (Long Division).

6 Again, this is a little tedious, but not difficult. Its actually pretty easy to code up for a computer to do.
Modern polynomial factoring algorithms do more sophisticated things, but these are a pretty good way
to start.
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Example A.16.4

Factor P(x) = x3 ´ x2 + 2.

Solution.
• We can go hunting for integer roots of the polynomial by looking at the divisors of

the constant term. This tells us to try x = ˘1,˘2.

• A quick computation shows that P(´1) = 0 while P(1), P(´2), P(2) ‰ 0. Hence
x = ´1 is a root of the polynomial and so x + 1 must be a factor.

• So we divide x3´x2+2
x+1 . The first term, x2, in the quotient is chosen so that when you

multiply it by the denominator, x2(x + 1) = x3 + x2, the leading term, x3, matches
the leading term in the numerator, x3 ´ x2 + 2, exactly.

x+ 1
x2

x3 − x2 + 2
x3 + x2 x2(x+ 1)

• When you subtract x2(x + 1) = x3 + x2 from the numerator x3 ´ x2 + 2 you get the
remainder´2x2 + 2. Just like in public school, the 2 is not normally “brought down”
until it is actually needed.

x+ 1
x2

x3 − x2 + 2
x3 + x2

−2x2

x2(x+ 1)

• The next term, ´2x, in the quotient is chosen so that when you multiply it by the
denominator, ´2x(x + 1) = ´2x2 ´ 2x, the leading term ´2x2 matches the leading
term in the remainder exactly.

x+ 1
x2 − 2x

x3 − x2 + 2
x3 + x2

−2x2

−2x2 − 2x

x2(x+ 1)

−2x(x+ 1)

And so on.

x+ 1
x2 − 2x + 2

x3 − x2 + 2
x3 + x2

−2x2

−2x2 − 2x

2x+2
2x+2

0

x2(x+ 1)

−2x(x+ 1)

2(x+ 1)

7 This is a standard part of most highschool mathematics curricula, but perhaps not all. You should revise
this carefully.
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• Note that we finally end up with a remainder 0. A nonzero remainder would have
signalled a computational error, since we know that the denominator x´ (´1) must
divide the numerator x3 ´ x2 + 2 exactly.

• We conclude that

(x + 1)(x2
´ 2x + 2) = x3

´ x2 + 2

To check this, just multiply out the left hand side explicitly.

• Applying the high school quadratic root formula ´b˘
?

b2´4ac
2a to x2 ´ 2x + 2 tells us

that it has no real roots and that we cannot factor it further8.

Example A.16.4

We finish by describing an alternative to long division. The approach is roughly equiv-
alent, but is perhaps more straightforward at the expense of requiring more algebra.

Example A.16.5

Factor P(x) = x3 ´ x2 + 2, again.

Solution. Let us do this again but avoid long division.

• From the previous example, we know that x3´x2+2
x+1 must be a polynomial (since ´1

is a root of the numerator) of degree 2. So write

x3 ´ x2 + 2
x + 1

= ax2 + bx + c

for some, as yet unknown, coefficients a, b and c.

• Cross multiplying and simplifying gives us

x3
´ x2 + 2 = (ax2 + bx + c)(x + 1)

= ax3 + (a + b)x2 + (b + c)x + c

• Now matching coefficients of the various powers of x on the left and right hand
sides

coefficient of x3: a = 1

coefficient of x2: a + b = ´1

coefficient of x1: b + c = 0

coefficient of x0: c = 2

• This gives us a system of equations that we can solve quite directly. Indeed it tells
us immediately that that a = 1 and c = 2. Subbing a = 1 into a + b = ´1 tells us
that 1 + b = ´1 and hence b = ´2.

8 Because we are not permitted to use complex numbers.
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• Thus

x3
´ x2 + 2 = (x + 1)(x2

´ 2x + 2).

Example A.16.5
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