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HOW TO USE THIS BOOK

Ĳ Introduction

First of all, welcome back to Calculus!

This book is written as a companion to the CLP notes.

§§ How to Work Questions

This book is organized into four sections: Questions, Hints, Answers, and Solutions. As
you are working problems, resist the temptation to prematurely peek at the back! It’s
important to allow yourself to struggle for a time with the material. Even professional
mathematicians don’t always know right away how to solve a problem. The art is in
gathering your thoughts and figuring out a strategy to use what you know to find out
what you don’t.

If you find yourself at a real impasse, go ahead and look for a hint in the Hints section.
Think about it for a while, and don’t be afraid to read back in the notes to look for a key
idea that will help you proceed. If you still can’t solve the problem, well, we included the
Solutions section for a reason! As you’re reading the solutions, try hard to understand
why we took the steps we did, instead of memorizing step-by-step how to solve that one
particular problem.

If you struggled with a question quite a lot, it’s probably a good idea to return to it in a few
days. That might have been enough time for you to internalize the necessary ideas, and
you might find it easily conquerable. Pat yourself on the back–sometimes math makes you
feel good! If you’re still having troubles, read over the solution again, with an emphasis
on understanding why each step makes sense.

One of the reasons so many students are required to study calculus is the hope that it will
improve their problem-solving skills. In this class, you will learn lots of concepts, and
be asked to apply them in a variety of situations. Often, this will involve answering one
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really big problem by breaking it up into manageable chunks, solving those chunks, then
putting the pieces back together. When you see a particularly long question, remain calm
and look for a way to break it into pieces you can handle.

§§ Working with Friends

Study buddies are fantastic! If you don’t already have friends in your class, you can ask
your neighbours in lecture to form a group. Often, a question that you might bang your
head against for an hour can be easily cleared up by a friend who sees what you’ve missed.
Regular study times make sure you don’t procrastinate too much, and friends help you
maintain a positive attitude when you might otherwise succumb to frustration. Struggle
in mathematics is desirable, but suffering is not.

When working in a group, make sure you try out problems on your own before coming
together to discuss with others. Learning is a process, and getting answers to questions
that you haven’t considered on your own can rob you of the practice you need to master
skills and concepts, and the tenacity you need to develop to become a competent problem-
solver.

§§ Types of Questions

Q[1]: Questions outlined in blue make up the representative question set. This set of
questions is intended to cover the most essential ideas in each section. These questions
are usually highly typical of what you’d see on an exam, although some of them are
atypical but carry an important moral. If you find yourself unconfident with the idea
behind one of these, it’s probably a good idea to practice similar questions.
This representative question set is our suggestion for a minimal selection of questions to
work on. You are highly encouraged to work on more.

Q[2](˚): In addition to original problems, this book contains problems pulled from quizzes
and exams given at UBC for Math 101 and 105 (second–semester calculus) and Math 121
(honours second–semester calculus). These problems are marked with a star. The authors
would like to acknowledge the contributions of the many people who collaborated to
produce these exams over the years.

The questions are organized into Stage 1, Stage 2, and Stage 3.

§§ Stage 1

The first category is meant to test and improve your understanding of basic underlying
concepts. These often do not involve much calculation. They range in difficulty from
very basic reviews of definitions to questions that require you to be thoughtful about the
concepts covered in the section.
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§§ Stage 2

Questions in this category are for practicing skills. It’s not enough to understand the philo-
sophical grounding of an idea: you have to be able to apply it in appropriate situations.
This takes practice!

§§ Stage 3

The last questions in each section go a little farther than Stage 2. Often they will combine
more than one idea, incorporate review material, or ask you to apply your understanding
of a concept to a new situation.

In exams, as in life, you will encounter questions of varying difficulty. A good skill to
practice is recognizing the level of difficulty a problem poses. Exams will have some easy
question, some standard questions, and some harder questions.
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INTEGRATION

Chapter 1

1.1Ĳ Definition of the Integral

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Let f be a function on the whole real line. Express
ż 7

´1
f (x)dx as a limit of Rie-

mann sums, using the right endpoints.

Q[2](˚):
4
ÿ

k=1

f (1 + k) ¨ 1 is a left Riemann sum for a function f (x) on the interval [a, b] with

n subintervals. Find the values of a, b and n.

Q[3](˚): Fill in the blanks with right, left, or midpoint; an interval; and a value of n.

3
ř

k=0
f (1.5 + k) ¨ 1 is a Riemann sum for f on the interval [ , ] with

n = .

§§ Stage 2

Q[4](˚): The value of the following limit is equal to the area below a graph of y = f (x),
integrated over the interval [0, b]:

lim
nÑ8

n
ÿ

i=1

4
n

[
sin
(

2 +
4i
n

)]2

3



INTEGRATION 1.1 DEFINITION OF THE INTEGRAL

Find f (x) and b.

Q[5](˚): For a certain function f (x), the following equation holds:

lim
nÑ8

n
ÿ

k=1

k
n2

c

1´
k2

n2 =

ż 1

0
f (x) dx

Find f (x).

Q[6](˚): Use sigma notation to write the midpoint Riemann sum for f (x) = x8 on [5, 15]
with n = 50. Do not evaluate the Riemann sum.

Q[7](˚): Estimate
ş5
´1 x3 dx using three approximating rectangles and left hand end points.

Q[8](˚): Express lim
nÑ8

n
ÿ

i=1

3
n

e´i/n cos(3i/n) as a definite integral.

Q[9](˚): Let Rn =
n
ÿ

i=1

iei/n

n2 . Express lim
nÑ8

Rn as a definite integral. Do not evaluate this

integral.

Q[10](˚): Express lim
nÑ8

( n
ÿ

i=1

e´1´2i/n
¨

2
n

)
as a integral in three different ways.

Q[11](˚): Use elementary geometry to calculate
ż 3

0
f (x)dx, where

f (x) =

#

x, if x ď 1,
1, if x ą 1.

Q[12](˚): Evaluate
ż 2

´1
|2x| dx.

Q[13](˚): A car’s gas pedal is applied at t = 0 seconds and the car accelerates
continuously until t = 2 seconds. The car’s speed at half-second intervals is given in the
table below. Find the best possible upper estimate for the distance that the car traveled
during these two seconds.

t (s) 0 0.5 1.0 1.5 2

v (m/s) 0 14 22 30 40

§§ Stage 3

Q[14](˚): (a) Express

lim
nÑ8

n
ÿ

i=1

2
n

d

4´
(
´2 +

2i
n

)2

4
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as a definite integal.

(b) Evaluate the integral of part (a).

Q[15](˚): Consider the integral:

ż 3

0
(7 + x3)dx. (˚)

(a) Approximate this integral using the left Riemann sum with n = 3 intervals.

(b) Write down the expression for the right Riemann sum with n intervals and calculate
the sum. Now take the limit n Ñ 8 in your expression for the Riemann sum, to
evaluate the integral (˚) exactly.

You may use the identity

n
ÿ

i=1

i3 =
n4 + 2n3 + n2

4

Q[16](˚): Using a limit of right–endpoint Riemann sums, evaluate
ş4

2 x2 dx. You may use

the formulas
n
ř

i=1
i = n(n + 1)/2 and

n
ř

i=1
i2 = n(n + 1)(2n + 1)/6.

Q[17](˚): Find
ż 2

0
(x3 + x)dx using the definition of the definite integral. You may use the

summation formulas
n
ř

i=1
i3 = n4+2n3+n2

4 and
n
ř

i=1
i = n2+n

2 .

Q[18](˚): Using a limit of right–endpoint Riemann sums, evaluate
ż 4

1
(2x ´ 1)dx. Do not

use anti-differentiation, except to check your answer. You may use the formula
n
ř

i=1
i =

n(n+1)
2 .

1.2Ĳ Basic properties of the definite integral

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Decide whether each of the following statements is true or false. If false, provide
a counterexample. If true provide a brief justification. (Assume that f (x) and g(x) are
continuous functions.)

5



INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

(a)
ż ´2

´3
f (x)dx = ´

ż 2

3
f (x)dx.

(b) If f (x) is an odd function, then
ż ´2

´3
f (x)dx =

ż 3

2
f (x)dx.

(c)
ż 1

0
f (x) ¨ g(x) dx =

ż 1

0
f (x) dx ¨

ż 1

0
g(x) dx.

§§ Stage 2

Q[2](˚): Suppose
ż 3

2
f (x)dx = ´1 and

ż 3

2
g(x)dx = 5. Evaluate

ż 3

2

(
6 f (x)´ 3g(x)

)
dx.

Q[3](˚): If
ż 2

0
f (x)dx = 3 and

ż 2

0
g(x)dx = ´4, calculate

ż 2

0

(
2 f (x) + 3g(x)

)
dx.

Q[4](˚): The functions f (x) and g(x) obey

ż ´1

0
f (x)dx = 1

ż 2

0
f (x)dx = 2

ż 0

´1
g(x)dx = 3

ż 2

0
g(x)dx = 4

Find
ş2
´1

[
3g(x)´ f (x)

]
dx.

Q[5](˚): Evaluate
ż 2

´1
|2x| dx.

§§ Stage 3

Q[6](˚): Evaluate
ş2
´2

(
5 +

?
4´ x2

)
dx.

Q[7](˚): Evaluate
ż +2012

´2012

sin x
log(3 + x2)

dx.

Q[8](˚): Evaluate
ż +2012

´2012
x1/3 cos x dx.

1.3Ĳ The Fundamental Theorem of Calculus

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.
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INTEGRATION 1.3 THE FUNDAMENTAL THEOREM OF CALCULUS

§§ Stage 1

Q[1](˚): Suppose that f (x) is a function and F(x) = e(x2´3) + 1 is an antiderivative of f (x).

Evaluate the definite integral
ż

?
5

1
f (x)dx.

Q[2](˚): For the function f (x) = x3 ´ sin 2x, find its antiderivative F(x) that satisfies
F(0) = 1.

Q[3](˚): Decide whether each of the following statements is true or false. Provide a brief
justification.

(a) If f (x) is continuous on [1, π] then
şπ

1 f 1(x)dx = f (π)´ f (1).

(b)
ş1
´1

1
x2 dx = 0.

(c) If f is continuous on [a, b] then
şb

a x f (x)dx = x
şb

a f (x)dx.

§§ Stage 2

Q[4](˚): Evaluate
ż 2

0

(
x3 + sin x)dx.

Q[5](˚): Evaluate
ż 2

1

x2 + 2
x2 dx.

Q[6](˚): If

F(x) =
ż x

0
log(2 + sin t)dt and G(y) =

ż 0

y
log(2 + sin t)dt

find F1
(

π
2

)
and G1

(
π
2

)
.

Q[7](˚): Let f (x) =
şx

1 100(t2 ´ 3t + 2)e´t2
dt. Find the interval(s) on which f is increasing.

Q[8](˚): If F(x) =
ż cos x

0

1
t3 + 6

dt, find F1(x).

Q[9](˚): Compute f 1(x) where f (x) =
ş1+x4

0 et2
dt.

Q[10](˚): Evaluate
d
dx

(
ż sin x

0
(t6 + 8)dt

)
.

Q[11](˚): Let F(x) =
şx3

0 e´t sin
(

πt
2

)
dt. Calculate F1(1).

Q[12](˚): Find
d
du

(
ż 0

cos u

dt
1 + t3

)
.

Q[13](˚): If x sin(πx) =
şx

0 f (t)dt where f is a continuous function, find f (4).

7
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Q[14](˚): Consider the function F(x) =
ż x2

0
e´t dt +

ż 0

´x
e´t2

dt.

(a) Find F1(x).

(b) Find the value of x for which F(x) takes its minimum value.

Q[15](˚): If F(x) is defined by F(x) =
ż x

x4´x3
esin t dt, find F1(x).

Q[16](˚): Evaluate
d
dx

[
ż ´x2

x5
cos

(
et)dt

]
.

Q[17](˚): Differentiate
ż ex

x

?
sin t dt.

§§ Stage 3

Q[18](˚): Evaluate
ż 5

1
f (x)dx, where f (x) =

#

3 if x ď 3
x if x ě 3

.

Q[19](˚): Find f (x) if x2 = 1 +
şx

1 f (t) dt.

Q[20](˚): If f 1(1) = 2 and f 1(2) = 3, find
ż 2

1
f 1(x) f 2(x)dx.

Q[21](˚): A car traveling at 30 m/s applies its brakes at time t = 0, its velocity (in m/s)
decreasing according to the formula v(t) = 30´ 10t. How far does the car go before it
stops?

Q[22](˚): Compute f 1(x) where f (x) =
ş2x´x2

0 log
(
1 + et)dt. Does f (x) have an absolute

maximum? Explain.

Q[23](˚): Find the minimum value of
şx2´2x

0
dt

1+t4 . Express your answer as an integral.

Q[24](˚): Define the function F(x) =
şx2

0 sin(
?

t)dt on the interval 0 ă x ă 4. On this
interval, where does F(x) have a maximum?

Q[25](˚): Evaluate lim
nÑ8

π
n

n
ř

j=1
sin
(

jπ/n
)

by interpreting it as a limit of Riemann sums.

Q[26](˚): Use Riemann sums to find the limit lim
nÑ8

1
n

n
ÿ

j=1

1

1 + j
n

.

Q[27](˚): Define f (x) = x3
ż x3+1

0
et3

dt.

(a) Find a formula for the derivative f 1(x).

(b) Find the equation of the tangent line to the graph of y = f (x) at x = ´1.
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INTEGRATION 1.4 SUBSTITUTION

1.4Ĳ Substitution

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted ln x.

§§ Stage 1

Q[1](˚): What is the integral which results when the substitution u = sin x is applied to

the integral
ż π/2

0
f (sin x)dx?

§§ Stage 2

Q[2](˚): Use substitution to evaluate
ż 1

0
xex2

cos(ex2
)dx.

Q[3](˚): Let f (t) be any function for which
ş8

1 f (t)dt = 1. Calculate the integral
ş2

1 x2 f (x3)dx.

Q[4](˚): Evaluate
ż

x2

(x3 + 1)101 dx.

Q[5](˚): Evaluate
ż e4

e

dx
x log x

.

Q[6](˚): Evaluate
ż π/2

0

cos x
1 + sin x

dx.

Q[7](˚): Evaluate
ż π/2

0
cos x ¨ (1 + sin2 x)dx.

Q[8](˚): Evaluate
ş3

1(2x´ 1)ex2´x dx.

Q[9](˚): Evaluate
ż

(x2 ´ 4)x
?

4´ x2
dx.

§§ Stage 3

Q[10](˚): Calculate
ż 2

´2
xex2

dx.

Q[11](˚): Calculate lim
nÑ8

n
ř

j=1

j
n2 sin

(
1 + j2

n2

)
.

9



INTEGRATION 1.5 AREA BETWEEN CURVES

Q[12](˚): Evaluate lim
nÑ8

n
ř

j=1

j
n2 cos

( j2

n2

)
.

Q[13](˚): Calculate lim
nÑ8

n
ř

j=1

j
n2

b

1 + j2
n2 .

1.5Ĳ Area between curves

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Write down a definite integral that represents the finite area bounded by the
curves y = x3 ´ x and y = x for x ě 0. Do not evaluate the integral explicitly.

Q[2](˚): Write down a definite integral that represents the area of the region bounded by
the line y = ´ x

2 and the parabola y2 = 6´ 5x
4 . Do not evaluate the integral explicitly.

Q[3](˚): Write down a definite integral that represents the area of the finite plane region
bounded by y2 = 4ax and x2 = 4ay, where a ą 0 is a constant. Do not evaluate the integral
explicitly.

Q[4](˚): Write down a definite integral that represents the area of the region bounded
between the line x + 12y + 5 = 0 and the curve x = 4y2. Do not evaluate the integral
explicitly.

§§ Stage 2

Q[5](˚): Find the area of the region bounded by the graph of f (x) = 1
(2x´4)2 and the x–axis

between x = 0 and x = 1.

Q[6](˚): Find the area between the curves: y = x and y = 3x´ x2, by first identifying the
points of intersection and then integrating.

Q[7](˚): Calculate the area of the region enclosed by y = 2x and y =
?

x + 1.

Q[8](˚): Find the area of the finite region bounded between the two curves y =
?

2 cos(πx/4)
and y = |x|.

Q[9](˚): Find the area of the finite region that is bounded by the graphs of f (x) = x2
?

x3 + 1
and g(x) = 3x2.

Q[10](˚): Find the area to the left of the y–axis and to the right of the curve x = y2 + y.

10



INTEGRATION 1.6 VOLUMES

§§ Stage 3

Q[11](˚): The graph below shows the region between y = 4 + π sin x and
y = 4 + 2π ´ 2x.

y

x
π
2

π 3π
2

2π

2

4

6

8

y = 4 + π sin(x)

y = 4 + 2π − 2x

Find the area of this region.

Q[12](˚): Compute the area of the finite region bounded by the curves x = 0, x = 3,
y = x + 2 and y = x2.

Q[13](˚): Find the total area between the curves y = x
?

25´ x2 and y = 3x, on the interval
0 ď x ď 4.

1.6Ĳ Volumes

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Write down definite integrals that represent the following quantities. Do not
evaluate the integrals explicitly.

(a) The volume of the solid obtained by rotating around the x–axis the region between
the x–axis and y =

?
x ex2

for 0 ď x ď 3.

(b) The volume of the solid obtained by revolving the region bounded by the curves
y = x2 and y = x + 2 about the line x = 3.

Q[2](˚): Write down definite integrals that represent the following quantities. Do not
evaluate the integrals explicitly.

(a) The volume of the solid obtained by rotating the finite plane region bounded by the
curves y = 1´ x2 and y = 4´ 4x2 about the line y = ´1.

(b) The volume of the solid obtained by rotating the finite plane region bounded by the
curve y = x2 ´ 1 and the line y = 0 about the line x = 5.

11



INTEGRATION 1.6 VOLUMES

Q[3](˚): Write down a definite integral that represents the volume of the solid obtained by
rotating around the line y = ´1 the region between the curves y = x2 and y = 8´ x2. Do
not evaluate the integrals explicitly.

Q[4](˚): Write definite integrals that represent the following quantities. Do not evaluate the
integrals.

(a) The area of the finite plane region bounded by y2 = 4ax and x2 = 4ay, where a ą 0 is
a constant.

(b) The volume of the solid obtained by rotating the finite plane region bounded by the
curves y = 1´ x2 and y = 4´ 4x2 about the line y = ´1.

(c) The volume of the solid obtained by rotating the finite plane region bounded by the
curve y = x2 ´ 1 and the line y = 0 about the line x = 5.

§§ Stage 2

Q[5](˚): Let a ą 0 be a constant. Let R be the finite region bounded by the graph of
y = 1 +

?
xex2

, the line y = 1, and the line x = a. Using vertical slices, find the volume
generated when R is rotated about the line y = 1.

Q[6](˚): Let R be the region between the curves T(x) =
?

xe3x and B(x) =
?

x(1 + 2x) on
the interval 0 ď x ď 3. (It is true that T(x) ě B(x) for all 0 ď x ď 3.) Compute the volume
of the solid formed by rotating R about the x-axis.

Q[7](˚): Find the volume of the solid generated by rotating the finite region bounded by
y = 1/x and 3x + 3y = 10 about the x–axis.

Q[8](˚): Let R be the region inside the circle x2 + (y´ 2)2 = 1. Let S be the solid obtained
by rotating R about the x-axis.

(a) Write down an integral representing the volume of S.

(b) Evaluate the integral you wrote down in part (a).

Q[9](˚): The region R is the portion of the first quadrant which is below the parabola
y2 = 8x and above the hyperbola y2 ´ x2 = 15.

(a) Sketch the region R.

(b) Find the volume of the solid obtained by revolving R about the x axis.

Q[10](˚): The region R is bounded by y = log x, y = 0, x = 1 and x = 2. (Recall that we
are using log x to denote the logarithm of x with base e. In other courses it is often
denoted log x.)

(a) Sketch the region R.

(b) Find the volume of the solid obtained by revolving this region about the y axis.

Q[11](˚): The finite region between the curves y = cos( x
2 ) and y = x2 ´ π2 is rotated

about the line y = ´π2. Using vertical slices (disks and/or washers), find the volume of
the resulting solid.

12



INTEGRATION 1.6 VOLUMES

Q[12](˚): The solid V is 2 meters high and has square horizontal cross sections. The length
of the side of the square cross section at height x meters above the base is 2

1+x m. Find the
volume of this solid.

Q[13](˚): Consider a solid whose base is the finite portion of the xy–plane bounded by the
curves y = x2 and y = 8´ x2. The cross–sections perpendicular to the x–axis are squares
with one side in the xy–plane. Compute the volume of this solid.

Q[14](˚): A frustrum of a right circular cone (as shown below) has height h. Its base is a
circular disc with radius 4 and its top is a circular disc with radius 2. Calculate the
volume of the frustrum.

h

2

4

§§ Stage 3

Q[15](˚): Let R be the bounded region that lies between the curve y = 4´ (x´ 1)2 and
the line y = x + 1.

(a) Sketch R and find its area.

(b) Write down a definite integral giving the volume of the region obtained by rotating R
about the line y = 5. Do not evaluate this integral.

Q[16](˚): LetR =
 

(x, y) : (x´ 1)2 + y2 ď 1 and x2 + (y´ 1)2 ď 1
(

.

(a) SketchR and find its area.

(b) IfR rotates around the y–axis, what volume is generated?

Q[17](˚): LetR be the plane region bounded by x = 0, x = 1, y = 0 and y = c
?

1 + x2,
where c is a positive constant.

(a) Find the volume V1 of the solid obtained by revolvingR about the x–axis.

(b) Find the volume V2 of the solid obtained by revolvingR about the y–axis.

(c) If V1 = V2, what is the value of c?

Q[18](˚): The region R is the portion of the first quadrant where 3 ď x ď 4 and
0 ď y ď 10?

25´x2
.

(a) Sketch the region R.

(b) Determine the volume of the solid obtained by revolving R around the x–axis.

(c) Determine the volume of the solid obtained by revolving R around the y–axis.
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INTEGRATION 1.7 INTEGRATION BY PARTS

Q[19](˚): The graph below shows the region between y = 4 + π sin x and
y = 4 + 2π ´ 2x.

y

x
π
2

π 3π
2

2π

2

4

6

8

y = 4 + π sin(x)

y = 4 + 2π − 2x

The region is rotated about the line y = ´1. Express in terms of definite integrals the
volume of the resulting solid. Do not evaluate the integrals.

1.7Ĳ Integration by parts

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

§§ Stage 2

Q[1](˚): Evaluate
ż

x log x dx.

Q[2](˚): Evaluate
ż

log x
x7 dx.

Q[3](˚): Evaluate
ż π

0
x sin x dx.

Q[4](˚): Evaluate
ż π

2

0
x cos x dx.

Q[5](˚): Evaluate
ż

cos´1 y dy.

§§ Stage 3

Q[6](˚): Evaluate
ż

4y arctan(2y)dy.

Q[7](˚): A reduction formula.

14



INTEGRATION 1.8 TRIGONOMETRIC INTEGRALS

(a) Derive the reduction formula
ş

sinn(x)dx = ´
sinn´1(x) cos(x)

n + n´1
n

ş

sinn´2(x)dx.

(b) Calculate
şπ/2

0 sin8(x)dx.

Q[8](˚): Let R be the part of the first quadrant that lies below the curve y = arctan x and
between the lines x = 0 and x = 1.

(a) Sketch the region R and determine its area.

(b) Find the volume of the solid obtained by rotating R about the y–axis.

Q[9](˚): Let f (0) = 1, f (2) = 3 and f 1(2) = 4. Calculate
ż 4

0
f 2
(?

x
)

dx.

1.8Ĳ Trigonometric Integrals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Evaluate
ż

cos3 x dx.

Q[2](˚): Evaluate
ż

sin36 t cos3 t dt.

§§ Stage 2

Q[3](˚): Evaluate
ż

tan3 x sec5 x dx.

Q[4](˚): Evaluate
ż

sec4 x tan46 x dx.

Q[5](˚): Evaluate
ż π

0
cos2 x dx.

§§ Stage 3

Q[6](˚): A reduction formula.

(a) Let n be a positive integer with n ě 2. Derive the reduction formula
ş

tann(x)dx = tann´1(x)
n´1 ´

ş

tann´2(x)dx.

(b) Calculate
şπ/4

0 tan6(x)dx.
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INTEGRATION 1.9 TRIGONOMETRIC SUBSTITUTION

1.9Ĳ Trigonometric Substitution

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted ln x.

§§ Stage 1

Q[1](˚): For each of the following integrals, choose the substitution that is most beneficial
for evaluating the integral.

(a)
ż

2x2
?

9x2 ´ 16
dx

(b)
ż

x4 ´ 3
?

1´ 4x2
dx

(c)
ż

(25 + x2)
´5/2

dx

§§ Stage 2

Q[2](˚): Evaluate
ż

1
(x2 + 4)3/2 dx.

Q[3](˚): Evaluate
ż 4

0

1

(4 + x2)3/2 dx. Your answer may not contain inverse trigonometric

functions.

Q[4](˚): Evaluate
ż

dx?
x2+25

. You may use that
ż

sec dx = log
ˇ

ˇ sec x + tan x
ˇ

ˇ+ C.

Q[5](˚): Evaluate
ż

dx
x2
?

x2+16
.

Q[6](˚): Evaluate
ż 5/2

0

dx?
25´x2

.

Q[7](˚): Evaluate
ż

dx
x2
?

x2 ´ 9
. Do not include any inverse trigonometric functions in

your answer.
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INTEGRATION 1.10 PARTIAL FRACTIONS

§§ Stage 3

Q[8](˚): Evaluate
ż

?
4´ x2 dx.

Q[9](˚): Evaluate
ż

dx
?

3´ 2x´ x2
.

Q[10](˚): (a) Show that
şπ/4

0 cos4 θ dθ = (8 + 3π)/32.

(b) Evaluate
ş1
´1

dx
(x2+1)3 .

Q[11](˚): Evaluate
ż ?

25x2´4
x dx.

1.10Ĳ Partial Fractions

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted ln x.

§§ Stage 1

Q[1](˚): Find the coefficient of
1

x´ 1
in the partial fraction expansion of

3x3 ´ 2x2 + 11
x2(x´ 1)(x2 + 3)

.

Q[2](˚): Write out the general form of the partial-fractions decomposition of
x3 + 3

(x2 ´ 1)2(x2 + 1)
.

You need not determine the values of any of the coefficients.

§§ Stage 2

Q[3](˚): Evaluate
ş2

1
dx

x+x2 .

Q[4](˚): Calculate
ż

1
x4 + x2 dx.

Q[5](˚): Calculate
ż

12x + 4
(x´ 3)(x2 + 1)

dx.

Q[6](˚): Evaluate the following indefinite integral using partial fractions:

F(x) =
ż

3x2 ´ 4
(x´ 2)(x2 + 4)

dx

17



INTEGRATION 1.11 NUMERICAL INTEGRATION

Q[7](˚): Evaluate
ż

x´ 13
x2 ´ x´ 6

dx.

Q[8](˚): Evaluate
ż

5x + 1
x2 + 5x + 6

dx.

§§ Stage 3

1.11Ĳ Numerical Integration

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted ln x.

§§ Stage 1

Q[1](˚): Decide whether the following statement is true or false. If false, provide a
counterexample. If true provide a brief justification.

When f (x) is positive and concave up, any Trapezoid Rule approximation for
ż b

a
f (x)dx will be an upper estimate for

ż b

a
f (x)dx.

§§ Stage 2

Q[2](˚): Find the midpoint rule approximation to
şπ

0 sin x dx with n = 3.

Q[3](˚): A 6 metre long cedar log has cross sections which are approximately circular.
The diameters of the log, measured at one metre intervals, are given below:

metres from left end of log 0 1 2 3 4 5 6
diameter in metres 1.2 1 0.8 0.8 1 1 1.2

Use Simpson’s Rule to estimate the volume of the log.

Q[4](˚): The solid V is 40 cm high and the horizontal cross sections are circular disks. The
table below gives the diameters of the cross sections in centimeters at 10 cm intervals.
Use the trapezoidal rule to estimate the volume of V.

height 0 10 20 30 40
diameter 24 16 10 6 4

Q[5](˚): The circumference of an 8 metre high tree at different heights above the ground
is given in the table below. Assume that all horizontal cross–sections of the tree are
circular disks.
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INTEGRATION 1.11 NUMERICAL INTEGRATION

height (metres) 0 2 4 6 8
circumference (metres) 1.2 1.1 1.3 0.9 0.2

Use Simpson’s rule to approximate the volume of the tree.

Q[6](˚): By measuring the areas enclosed by contours on a topographic map, a geologist
determines the cross sectional areas A in m2 of a 60 m high hill. The table below gives the
cross sectional area A(h) at various heights h. The volume of the hill is V =

ş60
0 A(h)dh.

h 0 10 20 30 40 50 60
A 10,200 9,200 8,000 7,100 4,500 2,400 100

(a) If the geologist uses the Trapezoidal Rule to estimate the volume of the hill, what will
be his estimate, to the nearest 1,000m3?

(b) What will be the geologist’s estimate of the volume of the hill if he uses Simpson’s
Rule instead of the Trapezoidal Rule?

Q[7](˚): The graph below applies to both parts (a) and (b).

x

y

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7

(a) Use the Trapezoidal Rule, with n = 4, to estimate the area under the graph between
x = 2 and x = 6. Simplify your answer completely.

(b) Use Simpson’s Rule, with n = 4, to estimate the area under the graph between x = 2
and x = 6.

Q[8](˚): The integral
ş1
´1 sin(x2)dx is estimated using the Midpoint Rule with 1000

points. Show that the error in this approximation is at most 2 ¨ 10´6 in absolute value.

You may use the fact that when approximating
şb

a f (x)dx with the Midpoint Rule using n
points, the absolute value of the error is at most K(b´ a)3/24n2 when | f 2(x)| ď K for all
x P [a, b].

Q[9](˚): The total error using the midpoint rule with n subintervals to approximate the
integral of f (x) over [a, b] is bounded by M(b´ a)3/(24n2), if | f 2(x)| ď M for all
a ď x ď b.
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INTEGRATION 1.11 NUMERICAL INTEGRATION

If the integral
ş1
´2 2x4 dx is approximated using the midpoint rule with 60 subintervals,

what is the largest possible error between the approximation M60 and the true value of
the integral?

Q[10](˚): Both parts of this question concern the integral I =
ş2

0(x´ 3)5 dx.

(a) Write down the Simpson’s Rule approximation to I with n = 6. Leave your answer in
calculator-ready form.

(b) Which method of approximating I results in a smaller error bound: the Midpoint
Rule with n = 100 intervals, or Simpson’s Rule with n = 10 intervals? You may use
the formulas

|EM| ď
K(b´ a)3

24n2 and |ES| ď
L(b´ a)5

180n4 ,

where K is an upper bound for | f 2(x)| and L is an upper bound for | f (4)(x)|.

Q[11](˚): Consider the Trapezoid Rule for making numerical approximations to
şb

a f (x) dx.

The error for the Trapezoid Rule satisfies |ET| ď
K(b´a)3

12n2 , where | f 2(x)| ď K for a ď x ď b.
If ´2 ă f 2(x) ă 0 for 1 ď x ď 4, find a value of n to guarantee the Trapezoid Rule will
give an approximation for

ş4
1 f (x) dx with absolute error, |ET|, less than 0.001.

Q[12](˚): Find a bound for the error in approximating
ş5

1
1
x dx using Simpson’s rule with

n = 4. Do not write down the Simpson’s rule approximation S4.

In general the error in approximating
şb

a f (x) dx using Simpson’s rule with n steps is
bounded by K(b´a)

180 (∆x)4 where ∆x = b´a
n and K ě | f (4)(x)| for all a ď x ď b.

Q[13](˚): Find a bound for the error in approximating

ż 1

0

[
e´2x + 3x3]dx

using Simpson’s rule with n = 6. Do not write down the Simpson’s rule approximation
Sn.

In general the error in approximating
şb

a f (x) dx using Simpson’s rule with n steps is
bounded by K(b´a)

180 (∆x)4 where ∆x = b´a
n and K ě | f (4)(x)| for all a ď x ď b.

Q[14](˚): Let I =
ş2

1(1/x)dx.

(a) Write down the trapezoidal approximation T4 for I. You do not need to simplify your
answer.

(b) Write down the Simpson’s approximation S4 for I. You do not need to simplify your
answer.

(c) Without computing I, find an upper bound for |I ´ S4|. You may use the fact that if
ˇ

ˇ f (4)(x)
ˇ

ˇ ď K on the interval [a, b], then the error in using Sn to approximate
şb

a f (x)dx has absolute value less than or equal to K(b´ a)5/180n4.
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INTEGRATION 1.11 NUMERICAL INTEGRATION

Q[15](˚): A function s(x) satisfies s(0) = 1.00664, s(2) = 1.00543, s(4) = 1.00435,
s(6) = 1.00331, s(8) = 1.00233. Also, it is known to satisfy

ˇ

ˇs(k)(x)
ˇ

ˇ ď k
1000 for 0 ď x ď 8

and all positive integers k.

(a) Find the best Trapezoidal Rule and Simpson’s Rule approximations that you can for
I =

ş8
0 s(x) dx.

(b) Determine the maximum possible sizes of errors in the approximations you gave in
part (a). Recall that if a function f (x) satisfies

ˇ

ˇ f (k)(x)
ˇ

ˇ ď Kk on [a, b], then

ˇ

ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Tn

ˇ

ˇ

ˇ

ˇ

ď
K2(b´ a)3

12n2 and
ˇ

ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Sn

ˇ

ˇ

ˇ

ˇ

ď
K4(b´ a)5

180n4

§§ Stage 3

Q[16](˚): A swimming pool has the shape shown in the figure below. The vertical
cross–sections of the pool are semi–circular disks. The distances in feet across the pool
are given in the figure at 2 foot intervals along the sixteen foot length of the pool. Use
Simpson’s Rule to estimate the volume of the pool.

10’
12’

10’
8’

6’
8’

10’

2’

Q[17](˚): A piece of wire 1m long with radius 1mm is made in such a way that the
density varies in its cross–section, but is radially symmetric (that is, the local density g(r)
in kg/m3 depends only on the distance r in mm from the centre of the wire). Take as
given that the total mass M of the wire in kg is given by

M = 2π10´6
ż 1

0
rg(r)dr

Data from the manufacturer is given below:

r 0 1/4 1/2 3/4 1
g(r) 8051 8100 8144 8170 8190

(a) Find the best Trapezoidal Rule approximation that you can for M based on the data
in the table.
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(b) Suppose that it is known that |g1(r)| ă 200 and |g2(r)| ă 150 for all values of r.
Determine the maximum possible size of the error in the approximation you gave in
part (a). Recall that if a function f (x) satisfies | f 2(x)| ď K on [a, b], then

|I ´ Tn| ď
K(b´ a)3

12n2

where I =
şb

a f (x)dx and Tn is the Trapezoidal Rule approximation to I using n
subintervals.

Q[18](˚): Simpson’s rule can be used to approximate log 2, since log 2 =
ş2

1
1
x dx.

(a) Use Simpson’s rule with 6 subintervals to approximate log 2.

(b) How many subintervals are required in order to guarantee that the absolute error is
less than 0.00001?

Note that if En is the error using n subintervals, then |En| ď
K(b´a)5

180n4 where K is the
maximum absolute value of the fourth derivative of the function being integrated
and a and b are the end points of the interval.

Q[19](˚): Let I =
ż 2

0
cos(x2) dx and let Sn be the Simpson’s rule approximation to I using

n subintervals.

(a) Estimate the maximum absolute error in using S8 to approximate I.

(b) How large should n be in order to insure that |I ´ Sn| ď 0.0001?

Note: The graph of f4(x), where f (x) = cos(x2) is shown below. The absolute error in

the Simpson’s rule approximation is bounded by K(b´a)5

180n4 when | f4(x)| ď K on the
interval [a, b].

0.5 1.0 1.5 2.0

−300

−200

−100

0

100

x

Q[20](˚): Define a function f (x) and an integral I by

f (x) =
ż x2

0
sin(

?
t)dt, I =

ż 1

0
f (t)dt

Estimate how many subdivisions are needed to calculate I to five decimal places of
accuracy using the trapezoidal rule.
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Note that if En is the error using n subintervals, then |En| ď
M(b´a)3

12n2 where M is the
maximum absolute value of the second derivative of the function being integrated and a
and b are the end points of the interval of integration.

Q[21](˚):

A piece of wire 1m long with radius 1mm is made in such a way that the density varies
in its cross–section, but is radially symmetric (that is, the local density g(r) in kg/m3

depends only on the distance r in mm from the centre of the wire). Take as given that the
total mass M of the wire in kg is given by

M = 2π10´6
ż 1

0
rg(r)dr

Data from the manufacturer is given below:

r 0 1/4 1/2 3/4 1
g(r) 8051 8100 8144 8170 8190

(a) Find the best Trapezoidal Rule approximation that you can for M based on the data in
the table.

(b) Suppose that it is known that |g1(r)| ă 200 and |g2(r)| ă 150 for all values of r. Deter-
mine the maximum possible size of the error in the approximation you gave in part
(a). Recall that if a function f (x) satisfies | f 2(x)| ď K on [a, b], then

|I ´ Tn| ď
K(b´ a)3

12n2

where I =
şb

a f (x)dx and Tn is the Trapezoidal Rule approximation to I using n subin-
tervals.

1.12Ĳ Improper Integrals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Decide whether the following statement is true or false. If false, provide a
counterexample. If true provide a brief justification. (Assume that f (x) and g(x) are
continuous functions.)

If
ż 8

1
f (x)dx converges and g(x) ě f (x) ě 0 for all x, then

ż 8

1
g(x)dx converges.

Q[2](˚): What is the largest value of q for which the integral
ż 8

1

1
x5q dx diverges?
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§§ Stage 2

Q[3](˚): Evaluate the integral
ż 1

0

x4

x5 ´ 1
dx or state that it diverges.

Q[4](˚): Determine whether the integral
ż 2

´2

1
(x + 1)4/3 dx is convergent or divergent. If it

is convergent, find its value.

Q[5](˚): Does the improper integral
ş8

1
1?

4x2´x
dx converge? Justify your answer.

Q[6](˚): Does the integral
ş8

0
dx

x2+
?

x converge or diverge? Justify your claim.

Q[7](˚): Determine (with justication!) whether the integral
ş+8
´8

x
x2+1dx converges abso-

lutely, converges but not absolutely, or diverges.

Q[8](˚): Decide whether I =
ş8

0
| sin x|

x3/2+x1/2 dx converges or diverges. Justify.

Q[9](˚): Does the integral
ż 8

0

x + 1
x1/3(x2 + x + 1)

dx converge or diverge?

§§ Stage 3

Q[10](˚): Is the integral
ş8

0
sin4 x

x2 dx convergent or divergent? Explain why.

Q[11](˚): Let Mn,t be the Midpoint Rule approximation for
şt

0
e´x

1+x dx with n equal
subintervals. Find a value of t and a value of n such that Mn,t differs from

ş8

0
e´x

1+x dx by at
most 10´4. Recall that the error En introduced when the Midpoint Rule is used with n
subintervals obeys

|En| ď
M(b´ a)3

24n2

where M is the maximum absolute value of the second derivative of the integrand and a
and b are the end points of the interval of integration.

1.13Ĳ More Integration Examples

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 2

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted log x.
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Q[1](˚): Evaluate
ş x

x2´3dx

Q[2](˚): Evaluate the following integrals.

(a)
ş4

0
x?

9+x2 dx

(b)
şπ/2

0 cos3 x sin2 x dx

(c)
şe

1 x3 log x dx

Q[3](˚): Evaluate the following integrals.

(a)
şπ/2

0 x sin x dx

(b)
şπ/2

0 cos5 x dx

Q[4](˚): Evaluate the following integrals.

(a)
ş2

0 xex dx

(b)
ş1

0
1?

1+x2 dx

(c)
ş5

3
4x

(x2´1)(x2+1) dx

Q[5](˚): Calculate the following integrals.

(a)
şπ/2

0 cos5(x)dx

(b)
ş3

0

?
9´ x2 dx

(c)
ş1

0 log(1 + x2)dx

(d)
ş8

3
x

(x´1)2(x´2) dx

Q[6](˚): Evaluate the following integrals. Show your work.

(a)
ş

π
4

0 sin2(2x) cos3(2x) dx

(b)
ş (

9 + x2)´ 3
2 dx

(c)
ş dx
(x´1)(x2+1)

(d)
ş

x tan´1 x dx

Q[7](˚): Evaluate the following integrals.

(a)
ż π/4

0
sin5(2x) cos(2x) dx

(b)
ż

a

4´ x2 dx

(c)
ż

log(1 + x2) dx
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(d)
ż

x + 1
x2(x´ 1)

dx

Q[8](˚): Calculate the following integrals.

(a)
ş8

0 e´x sin(2x)dx

(b)
ş

?
2

0
1

(2+x2)3/2 dx

(c)
ş1

0 x log(1 + x2)dx

(d)
ş8

3
1

(x´1)2(x´2) dx

Q[9](˚): Evaluate the following integrals.

(a)
ş

x log x dx

(b)
ş (x´1)dx

x2+4x+5

(c)
ş dx

x2´4x+3

(d)
ş x2 dx

1+x6

Q[10](˚): Evaluate the following integrals.

(a)
ş1

0 tan´1 x dx.

(b)
ş 2x´1

x2´2x+5 dx.

Q[11](˚):

(a) Evaluate
ş

x log x dx.

(b) Evaluate
ż

x2

(x3 + 1)101 dx.

(c) Evaluate
ş

cos3x sin4x dx.

(d) Evaluate
ş
?

4´ x2 dx.

Q[12](˚): Evaluate the following integrals.

(a)
ş ex

(ex+1)(ex´3)dx.

(b)
ş4

2
x2´4x+4?
12+4x´x2

dx.

Q[13](˚): Evaluate these integrals.

(a)
ż

sin3 x
cos3 x

dx

(b)
ż 2

´2

x4

x10 + 16
dx

(c)
ż 1

0
log(1 + x2) dx
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Q[14](˚): Evaluate (with justification)

(a)
ż 3

0
(x + 1)

a

9´ x2 dx

(b)
ż

4x + 8
(x´ 2)(x2 + 4)

dx

(c)
ż +8

´8

1
ex + e´x dx

Q[15](˚): Evaluate these integrals.

(a)
ż

sin(log x) dx

(b)
ż 1

0

1
x2 ´ 5x + 6

dx
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APPLICATIONS OF INTEGRATION

Chapter 2

2.1Ĳ Work

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Find the work (in joules) required to stretch a string 10 cm beyond equilibrium, if
its spring constant is k = 50 N/m.

§§ Stage 2

Q[2](˚): A variable force F(x) = a?
x Newtons moves an object along a straight line when

it is a distance of x meters from the origin. If the work done in moving the object from
x = 1 meters to x = 16 meters is 18 Joules, what is the value of a? Don’t worry about the
units of a.

Q[3](˚): A force of 10N (newtons) is required to hold a spring stretched 5cm beyond its
natural length. How much work, in joules (J), is done in stretching the spring from its
natural length to 50cm beyond its natural length?

Q[4](˚): A 5-meter-long cable of mass 8 kg is used to lift a bucket off the ground. How
much work is needed to raise the entire cable to height 5 m? Ignore the weight of the
bucket and its contents. Use g = 9.8 m/s2 for the acceleration due to gravity.

Q[5](˚): A spherical tank of radius 3 metres is half–full of water. It has a spout of length 1
metre sticking up from the top of the tank. Find the work required to pump all of the
water in the tank out the spout. The density of water is 1000 kilograms per cubic metre.
The acceleration due to gravity is 9.8 metres per second squared.

29



APPLICATIONS OF INTEGRATION 2.2 AVERAGES

1m

3m

Q[6](˚): A sculpture, shaped like a pyramid 3m high sitting on the ground, has been
made by stacking smaller and smaller (very thin) iron plates on top of one another. The
iron plate at height zm above ground level is a square whose side length is (3´ z)m. All
of the iron plates started on the floor of a basement 2 m below ground level.

Write down an integral that represents the work, in joules, it took to move all of the iron
from its starting position to its present position. Do not evaluate the integral. (You can
use 9.8 m/s2 for the force of gravity and 8000 kg/m3 for the density of iron.)

§§ Stage 3

2.2Ĳ Averages

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Recall that we are using log x to denote the logarithm of x with base e. In other courses it
is often denoted ln x.

§§ Stage 1

§§ Stage 2

Q[1](˚): Find the average value of f (x) = sin(5x) + 1 over the interval ´π/2 ď x ď π/2.

Q[2](˚): Find the average value of the function y = x2 log x on the interval 1 ď x ď e.

Q[3](˚): Find the average value of the function f (x) = 3 cos3 x + 2 cos2 x on the interval
0 ď x ď π

2 .

Q[4](˚): Let k be a positive constant. Find the average value of the function f (x) = sin(kx)
on the interval 0 ď x ď π/k.
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Q[5](˚): The temperature in Celsius in a 3 m long rod at a point x metres from the left end
of the rod is given by the function T(x) = 80

16´x2 . Determine the average temperature in
the rod.

Q[6](˚): What is the average value of the function f (x) = log x
x on the interval [1, e]?

Q[7](˚): Find the average value of f (x) = cos2(x) over 0 ď x ď 2π.

§§ Stage 3

Q[8](˚):

A car travels two hours without stopping. The driver records the car’s speed every 20
minutes, as indicated in the table below:

time in hours 0 1/3 2/3 1 4/3 5/3 2
speed in km/hr 50 70 80 55 60 80 40

(a) Use the trapezoidal rule to estimate the total distance traveled in the two hours.

(b) Use the answer to part (a) to estimate the average speed of the car during this period.

2.3Ĳ Centre of Mass and Torque

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Express the x–coordinate of the centroid of the triangle with vertices (´1,´3),
(´1, 3), and (0, 0) in terms of a definite integral. Do not evaluate the integral.

§§ Stage 2

Q[2](˚): Find the y-coordinate of the centroid of the region bounded by the curves y = 1,
y = ´ex, x = 0 and x = 1. You may use the fact that the area of this region equals e.

Q[3](˚): Find the y-coordinate of the centre of mass of the (infinite) region lying to the right
of the line x = 1, above the x–axis, and below the graph of y = 8/x3.

Q[4](˚): Consider the region bounded by y = 1?
16´x2

, y = 0, x = 0 and x = 2.

(a) Sketch this region.

(b) Find the y–coordinate of the centroid of this region.
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Q[5](˚): Find the centroid of the finite region bounded by y = sin(x), y = cos(x), x = 0,
and x = π/4.

Q[6](˚): Let A denote the area of the plane region bounded by x = 0, x = 1, y = 0 and
y = k?

1+x2 , where k is a positive constant.

(a) Find the coordinates of the centroid of this region in terms of k and A.

(b) For what value of k is the centroid on the line y = x?

Q[7](˚): The region R is the portion of the plane which is above the curve y = x2 ´ 3x and
below the curve y = x´ x2.

(a) Sketch the region R

(b) Find the area of R.

(c) Find the x coordinate of the centroid of R.

Q[8](˚): Let R be the region where 0 ď x ď 1 and 0 ď y ď 1
1+x2 . Find the x–coordinate of

the centroid of R.

Q[9](˚): Find the centroid of the region below, which consists of a semicircle of radius 3
on top of a rectangle of width 6 and height 2.

y

x

−2

−1

1

2

3

321−1−2−3

Q[10](˚): Let D be the region below the graph of the curve y =
?

9´ 4x2 and above the
x-axis.

(a) Using an appropriate integral, find the area of the region D; simplify your answer
completely.

(b) Find the centre of mass of the region D; simplify your answer completely. (Assume it
has constant density ρ.)

§§ Stage 3

Q[11](˚): Let A be the region to the right of the y-axis that is bounded by the graphs of
y = x2 and y = 6´ x.

(a) Find the centroid of A, assuming it has constant density ρ = 1. The area of A is 22
3

(you don’t have to show this).
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(b) Write down an expression, using horizontal slices (disks), for the volume obtained
when the region A is rotated around the y-axis. Do not evaluate any integrals; simply
write down an expression for the volume.

Q[12](˚): (a) Find the y–coordinate of the centroid of the region bounded by y = ex ,
x = 0, x = 1, and y = ´1.

(b) Calculate the volume of the solid generated by rotating the region from part (a) about
the line y = ´1.

2.4Ĳ Separable Differential Equations

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

§§ Stage 2

Q[1](˚): Find the solution to the separable initial value problem:

dy
dx

=
2x
ey , y(0) = log 2

Express your solution explicitly as y = y(x).

Q[2](˚): Find the solution y(x) of dy
dx = xy

x2+1 , y(0) = 3.

Q[3](˚): Solve the differential equation y1(t) = e
y
3 cos t. You should express the solution

y(t) in terms of t explicitly.

Q[4](˚): Solve the differential equation

dy
dx

= xex2´log(y2)

Q[5](˚): Let y = y(x). Find the general solution of the differential equation y1 = xey.

Q[6](˚): Find the solution to the differential equation
yy1

ex ´ 2x
=

1
y

that satisfies y(0) = 3.

Solve completely for y as a function of x.

Q[7](˚): Find the function y = f (x) that satisfies

dy
dx

= ´xy3 and f (0) = ´
1
4
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Q[8](˚): Find the function y = y(x) that satisfies y(1) = 4 and

dy
dx

=
15x2 + 4x + 3

y

Q[9](˚): Find the solution y(x) of y1 = x3y with y(0) = 1.

Q[10](˚): Find the solution of the differential equation

x
dy
dx

+ y = y2

that satisfies y(1) = ´1.

Q[11](˚): A function f (x) is always positive, has f (0) = e and satisfies f 1(x) = x f (x) for
all x. Find this function.

Q[12](˚): Solve the following initial value problem:

dy
dx

=
1

(x2 + x)y
y(1) = 2

Q[13](˚): Find the solution of the differential equation
1 +

a

y2 ´ 4
tan x

y1 =
sec x

y
that satisfies

y(0) = 2. You don’t have to solve for y in terms of x.

Q[14](˚): The fish population in a lake is attacked by a disease at time t = 0, with the
result that the size P(t) of the population at time t ě 0 satisfies

dP
dt

= ´k
?

P

where k is a positive constant. If there were initially 90,000 fish in the lake and 40,000 were
left after 6 weeks, when will the fish population be reduced to 10,000?

Q[15](˚): An object of mass m is projected straight upward at time t = 0 with initial speed
v0. While it is going up, the only forces acting on it are gravity (assumed constant) and a
drag force proportional to the square of the object’s speed v(t). It follows that the
differential equation of motion is

m
dv
dt

= ´(mg + kv2)

where g and k are positive constants. At what time does the object reach its highest point?

Q[16](˚): A motor boat is traveling with a velocity of 40 ft/sec when its motor shuts off at
time t = 0. Thereafter, its deceleration due to water resistance is given by

dv
dt

= ´k v2

where k is a positive constant. After 10 seconds, the boat’s velocity is 20 ft/sec.
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(a) What is the value of k?

(b) When will the boat’s velocity be 5 ft/sec?

Q[17](˚): Consider the initial value problem dx
dt = k(3´ x)(2´ x), x(0) = 1, where k is a

positive constant. (This kind of problem occurs in the analysis of certain chemical
reactions.)

(a) Solve the initial value problem. That is, find x as a function of t.

(b) What value will x(t) approach as t approaches +8.

Q[18](˚): The quantity P = P(t), which is a function of time t, satisfies the differential
equation

dP
dt

= 4P´ P2

and the initial condition P(0) = 2.

(a) Solve this equation for P(t).

(b) What is P when t = 0.5? What is the limiting value of P as t becomes large?

Q[19](˚): An object moving in a fluid has an initial velocity v of 400 m/min. The velocity
is decreasing at a rate proportional to the square of the velocity. After 1 minute the
velocity is 200 m/min.

(a) Give a differential equation for the velocity v = v(t) where t is time.

(b) Solve this differential equation.

(c) When will the object be moving at 50 m/min?

§§ Stage 3

Q[20](˚): An investor places some money in a mutual fund where the interest is
compounded continuously and where the interest rate fluctuates between 4% and 8%,
Assume that the amount of money B = B(t) in the account in dollars after t years
satisfies the differential equation

dB
dt

=
(
0.06 + 0.02 sin t

)
B

(a) Solve this differential equation for B as a function of t.

(b) If the initial investment is $1000, what will the balance be at the end of two years?

Q[21](˚): An endowment is an investment account in which the balance ideally remains
constant and withdrawals are made on the interest earned by the account. Such an
account may be modeled by the initial value problem B1(t) = aB´m for t ě 0, with
B(0) = B0 . The constant a reflects the annual interest rate, m is the annual rate of
withdrawal, and B0 is the initial balance in the account.
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(a) Solve the initial value problem with a = 0.02 and B(0) = B0 = $30, 000. Note that
your answer depends on the constant m.

(b) If a = 0.02 and B(0) = B0 = $30, 000, what is the annual withdrawal rate m that
ensures a constant balance in the account?

Q[22](˚): A certain continuous function y = y(x) satisfies the integral equation

y(x) = 3 +
ż x

0

(
y(t)2

´ 3y(t) + 2
)

sin t dt (˚)

for all x in some open interval containing 0. Find y(x) and the largest interval for which
(˚) holds.

Q[23](˚): A cylindrical water tank, of radius 3 meters and height 6 meters, is full of water
when its bottom is punctured. Water drains out through a hole of radius 1 centimeter. If

• h(t) is the height of the water in the tank at time t (in meters) and
• v(t) is the velocity of the escaping water at time t (in meters per second) then
• Torricelli’s law states that v(t) =

a

2gh(t) where g = 9.8 m/sec2. Determine how
long it takes for the tank to empty.

Q[24](˚): A spherical tank of radius 6 feet is full of mercury when a circular hole of radius
1 inch is opened in the bottom. How long will it take for all of the mercury to drain from
the tank?

Use the value g = 32 feet/sec2. Also use Torricelli’s law, which states when the height of
mercury in the tank is h, the speed of the mercury escaping from the tank is v =

a

2gh.

Q[25](˚): Consider the equation

f (x) = 3 +
ż x

0

(
f (t)´ 1

)(
f (t)´ 2

)
dt

(a) What is f (0)?

(b) Find the differential equation satisfied by f (x).

(c) Solve the initial value problem determined in (a) and (b).

Q[26](˚):

A tank 2m tall is to be made with circular cross–sections with radius r = yp. Here y
measures the vertical distance from the bottom of the tank and p is a positive constant to
be determined. You may assume that when the tank drains, it obeys Torricelli’s law, that
is

A(y)
dy
dt

= ´c
?

y

for some constant c where A(y) is the cross–sectional area of the tank at height y. It is
desired that the tank be constructed so that the top half (y = 2 to y = 1) takes exactly the
same amount of time to drain as the bottom half (y = 1 to y = 0). Determine the value of
p so that the tank has this property. Note: it is not possible or necessary to find c for this
question.
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SEQUENCES AND SERIES

Chapter 3

3.1Ĳ Sequences

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

§§ Stage 2

Q[1](˚): Find the limit, if it exists, of the sequence
 

ak
(

, where

ak =
k! sin3 k
(k + 1)!

Q[2](˚): Consider the sequence
!

(´1)n sin
( 1

n
))

. State whether this sequence converges or
diverges, and if it converges give its limit.

Q[3](˚): Evaluate lim
nÑ8

[6n2 + 5n
n2 + 1

+ 3 cos(1/n2)
]
.

§§ Stage 3

Q[4](˚): Find the limit of the sequence
!

log
(

sin
1
n

)
+ log(2n)

)

.

Q[5](˚): A sequence
 

an
(8

n=0 Ă R satisfies the recursion relation an+1 =
?

3 + sin an for
n ě 0.
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(a) Show that the equation x =
?

3 + sin x has a solution.

(b) Show that lim
nÑ8

an = L, where L is a solution to equation above.

(c) Show that the equation x =
?

3 + sin x has a unique solution.

3.2Ĳ Series

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Evaluate
8
ÿ

k=7

1
8k

Q[2](˚): To what value does the series 1 +
1
3
+

1
9
+

1
27

+
1

81
+

1
243

+ ¨ ¨ ¨ converge?

Q[3](˚): Show that the series
8
ÿ

k=1

(
6
k2 ´

6
(k + 1)2

)
converges and find its limit.

Q[4](˚): Find the sum of the convergent series
8
ÿ

n=3

(
cos

(π

n

)
´ cos

( π

n + 1

))
.

Q[5](˚): The nth partial sum of a series
8
ÿ

n=1

an is known to have the formula sn =
1 + 3n
5 + 4n

.

(a) Find an expression for an, valid for n ě 2.

(b) Show that the series
8
ÿ

n=1

an converges and find its value.

§§ Stage 2

Q[6](˚): Find the sum of the series
8
ř

n=2

3¨4n+1

8¨5n . Simplify your answer completely.

Q[7](˚): Relate the number 0.23̄ = 0.233333 . . . to the sum of a geometric series, and use
that to represent it as a rational number (a fraction or combination of fractions, with no
decimals).

Q[8](˚): Express 2.656565 . . . as a rational number, i.e. in the form p/q where p and q are
integers.
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Q[9](˚): Express the decimal 0.321 = 0.321321321 . . . as a fraction.

Q[10](˚): Find the value of the convergent series

8
ÿ

n=2

(
2n+1

3n +
1

2n´ 1
´

1
2n + 1

)

Simplify your answer completely.

Q[11](˚): Evaluate

8
ÿ

n=1

[(1
3

)n
+
(
´

2
5

)n´1]

Q[12](˚): Find the sum of the series
8
ÿ

n=0

1 + 3n+1

4n .

§§ Stage 3

3.3Ĳ Convergence Tests

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Does the series
8
ÿ

n=2

n2

3n2 +
?

n
converge?

Q[2](˚): Suppose that you want to use the Limit Comparison Test on the series
ř8

n=0 an

where an = 2n+n
3n+1 . Write down a sequence tbnu such that lim

nÑ8
an
bn

exists and is nonzero.
(You don’t have to carry out the Limit Comparison Test)

Q[3](˚): Decide whether each of the following statements is true or false. If false, provide
a counterexample. If true provide a brief justification.

(a) If lim
nÑ8

an = 0, then
8
ř

n=1
an converges.

(b) If lim
nÑ8

an = 0, then
8
ř

n=1
(´1)nan converges.

(c) If 0 ď an ď bn and
8
ř

n=1
bn diverges, then

8
ř

n=1
an diverges.
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§§ Stage 2

Q[4](˚): Determine, with explanation, whether the series
8
ÿ

n=1

5k

4k + 3k converges or di-

verges.

Q[5](˚): Determine whether the series
8
ÿ

n=0

1
n + 1

2

is convergent or divergent. If it is conver-

gent, find its value.

Q[6](˚): Show that the series
8
ÿ

n=3

5
n(log n)3/2 converges.

Q[7](˚): Find the values of p for which the series
8
ÿ

n=2

1
n(log n)p converges.

Q[8](˚): Does
8
ÿ

n=1

e´
?

n
?

n
converge or diverge?

Q[9](˚): Use the comparison test (not the limit comparison test) to show whether the series
8
ÿ

n=2

?
3n2 ´ 7

n3 converges or diverges.

Q[10](˚): Determine whether the series
8
ÿ

k=1

3
?

k4 + 1
?

k5 + 9
concerges.

Q[11](˚): Does
8
ÿ

n=1

n42n/3

(2n + 7)4 converge or diverge?

Q[12](˚): Determine (with justication!) whether the series
ř8

n=1
n2´sin n
n6+n2 converges abso-

lutely, converges but not absolutely, or diverges.

Q[13](˚): Determine (with justication!) whether the series
ř8

n=0
(´1)n(2n)!
(n2+1)(n!)2 converges ab-

solutely, converges but not absolutely, or diverges.

Q[14](˚): Determine (with justication!) whether the series
ř8

n=2
(´1)n

n(log n)101 converges abso-
lutely, converges but not absolutely, or diverges.

Q[15](˚): Determine, with explanation, whether each of the following series converge or
diverge.

(a)
8
ÿ

n=1

1
?

n2 + 1

(b)
8
ÿ

n=1

n cos(nπ)

2n
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Q[16](˚): Determine whether the series

8
ÿ

k=1

k4 ´ 2k3 + 2
k5 + k2 + k

converges or diverges.

Q[17](˚): Determine whether each of the following series converge or diverge.

(a)
8
ÿ

n=2

n2 + n + 1
n5 ´ n

(b)
8
ÿ

m=1

3m + sin
?

m
m2

Q[18](˚): Determine whether the series
8
ÿ

n=2

6
7n is convergent or divergent. If it is conver-

gent, find its value.

Q[19](˚): Determine, with explanation, whether each of the following series converge or
diverge.

(a) 1 + 1
3 +

1
5 +

1
7 +

1
9 + ¨ ¨ ¨ .

(b)
8
ÿ

n=1

2n + 1
22n+1

Q[20](˚): Determine, with explanation, whether each of the following series converges or
diverges.

(a)
8
ÿ

k=2

3
?

k
k2 ´ k

.

(b)
8
ÿ

k=1

k1010k(k!)2

(2k)!
.

(c)
8
ÿ

k=3

1
k(log k)(log log k)

.

Q[21](˚): Determine whether the series
8
ÿ

n=1

n3 ´ 4
2n5 ´ 6n

is convergent or divergent.

Q[22](˚): What is the smallest value of N such that the partial sum
N
ÿ

n=1

(´1)n

n ¨ 10n approxi-

mates
8
ÿ

n=1

(´1)n

n ¨ 10n within an accuracy of 10´6?
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Q[23](˚): It is known that
ř8

n=1
(´1)n´1

n2 = π2

12 (you don’t have to show this). Find N so that

SN, the Nth partial sum of the series, satisfies |π
2

12 ´ SN| ď 10´6. Be sure to say why your
method can be applied to this particular series.

Q[24](˚): The series
8
ÿ

n=1

(´1)n+1

(2n + 1)2 converges to some number S (you don’t have to prove

this). According to the Alternating Series Estimation Theorem, what is the smallest value
of n for which the nth partial sum of the series is at most 1

100 away from S? For this value
of n, write out the nth partial sum of the series.

§§ Stage 3

Q[25](˚): Determine, with explanation, whether the following series converge or diverge.

(a)
8
ÿ

n=1

nn

9nn!

(b)
8
ÿ

n=1

1
nlog n

Q[26](˚): (a) Prove that
ş8

2
x+sin x

1+x2 dx diverges.

(b) Explain why you cannot conclude that
8
ř

n=1

n+sin n
1+n2 diverges from part (a) and the

Integral Test.

(c) Determine, with explanation, whether
8
ř

n=1

n+sin n
1+n2 converges or diverges.

Q[27](˚): Show that
8
ř

n=1

e´
?

n
?

n converges and find an interval of length 0.05 or less that

contains its exact value.

Q[28](˚): Suppose that the series
8
ř

n=1
an converges and that 1 ą an ě 0 for all n. Prove that

the series
8
ř

n=1

an
1´an

also converges.

Q[29](˚): Suppose that the series
8
ř

n=0
(1´ an) converges, where an ą 0 for n = 0, 1, 2, 3, ¨ ¨ ¨ .

Determine whether the series
8
ř

n=0
2nan converges or diverges.

Q[30](˚): Assume that the series
8
ÿ

n=1

nan ´ 2n + 1
n + 1

converges, where an ą 0 for
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n = 1, 2, ¨ ¨ ¨ . Is the following series

´ log a1 +
8
ÿ

n=1

log
( an

an+1

)

convergent? If your answer is NO, justify your answer. If your answer is YES, evaluate

the sum of the series ´ log a1 +
8
ř

n=1
log
( an

an+1

)
.

Q[31](˚): Prove that if an ě 0 for all n and if the series
ř8

n=1 an converges, then the series
ř8

n=1 a2
n also converges.

3.4Ĳ Absolute and Conditional Convergence

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Decide whether the following statement is true or false. If false, provide a
counterexample. If true provide a brief justification.

If
8
ÿ

n=1

(´1)n+1bn converges, then
8
ÿ

n=1

bn also converges.

§§ Stage 2

Q[2](˚): Determine whether the series
8
ÿ

n=1

(´1)n

9n + 5
is absolutely convergent, conditionally

convergent, or divergent; justify your answer.

Q[3](˚): Determine whether the series
8
ÿ

n=1

(´1)2n+1

1 + n
is absolutely convergent, condition-

ally convergent, or divergent.

Q[4](˚): The series
8
ÿ

n=1

(´1)n´1 1 + 4n

3 + 22n either: converges absolutely; converges

conditionally; diverges; or none of the above. Determine which is correct.

Q[5](˚): Does the series
8
ÿ

n=5

?
n cos n

n2 ´ 1
converge conditionally, converge absolutely, or di-

verge?
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§§ Stage 3

Q[6](˚): Both parts of this question concern the series S =
8
ÿ

n=1

(´1)n´124n2e´n3
.

(a) Show that the series S converges absolutely.

(b) Suppose that you approximate the series S by its fifth partial sum S5. Give an upper
bound for the error resulting from this approximation.

3.5Ĳ Power Series

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

§§ Stage 2

Q[1](˚): (a) Find the radius of convergence of the series

8
ÿ

k=0

(´1)k2k+1xk

(b) You are given the formula for the sum of a geometric series, namely:

1 + r + r2 + ¨ ¨ ¨ =
1

1´ r
, |r| ă 1

Use this fact to evaluate the series in part (a).

Q[2](˚): Find the radius of convergence for the power series
8
ÿ

k=0

xk

10k+1(k + 1)!

Q[3](˚): Find the radius of convergence for the power series
8
ÿ

n=0

(x´ 2)n

n2 + 1

Q[4](˚): Consider the power series
8
ř

n=1

(´1)n(x+2)n
?

n , where x is a real number. Find the

interval of convergence of this series.

Q[5](˚): Find the radius of convergence and interval of convergence of the series

8
ÿ

n=0

(´1)n

n + 1

(
x + 1

3

)n
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Q[6](˚): Find the interval of convergence for the power series

8
ÿ

n=1

(x´ 2)n

n4/5(5n ´ 4)
.

Q[7](˚): Find all values x for which the series
8
ÿ

n=1

(x + 2)n

n2 converges.

Q[8](˚): Find the interval of convergence for
8
ÿ

n=1

4n

n
(x´ 1)n.

Q[9](˚): Find, with explanation, the radius of convergence and the interval of
convergence of the power series

8
ÿ

n=0

(´1)n (x´ 1)n

2n(n + 2)

Q[10](˚): Find the interval of convergence for the series
8
ÿ

n=1

(´1)nn2(x ´ a)2n where a is a

constant.

Q[11](˚): Find the interval of convergence of the following series:

(a)
8
ÿ

k=1

(x + 1)k

k29k .

(b)
8
ÿ

k=1

ak(x´ 1)k, where ak ą 0 for k = 1, 2, ¨ ¨ ¨ and
8
ÿ

k=1

( ak
ak+1

´
ak+1

ak+2

)
=

a1

a2
.

Q[12](˚): Find a power series representation for x3

1´x .

§§ Stage 3

Q[13](˚): Determine the values of x for which the series

8
ÿ

n=2

xn

32n log n

converges absolutely, converges conditionally, or diverges.

Q[14](˚): (a) Find the power–series representation for
ş 1

1+x3 dx centred at 0 (i.e. in
powers of x).

(b) The power series above is used to approximate
ş1/4

0
1

1+x3 dx. How many terms are
required to guarantee that the resulting approximation is within 10´5 of the exact value?
Justify your answer.
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Q[15](˚): (a) Show that
8
ÿ

n=0

nxn =
x

(1´ x)2 for ´1 ă x ă 1.

(b) Express
8
ÿ

n=0

n2xn as a ratio of polynomials. For which x does this series converge?

Q[16](˚): Suppose that you have a sequence tbnu such that the series
ř8

n=0(1´ bn) con-
verges. Using the tests we’ve learned in class, prove that the radius of convergence of the

power series
8
ÿ

n=0

bnxn is equal to 1.

Q[17](˚): Assume
 

an
(

is a sequence such that nan decreases to C as n Ñ 8 for some real
number C ą 0

(a) Find the radius of convergence of
8
ř

n=1
anxn . Justify your answer carefully.

(b) Find the interval of convergence of the above power series, that is, find all x for which
the power series in (a) converges. Justify your answer carefully.

3.6Ĳ Taylor Series

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

§§ Stage 2

Q[1](˚): Find the coefficient c5 of the fifth degree term in the Maclaurin series
8
ÿ

n=0

cnxn for

e3x.

Q[2](˚): The first two terms in the Maclaurin series for x2 sin(x3) are ax5 + bx11 , where a
and b are constants. Find the values of a and b.

Q[3](˚): Find the Maclaurin series for f (x) = 1
2x´1 .

Q[4](˚): Let
8
ř

n=0
bnxn be the Maclaurin series for f (x) = 3

x+1 ´
1

2x´1 , i.e.
8
ř

n=0
bnxn = 3

x+1 ´

1
2x´1 . Find bn.

Q[5](˚): Give the first two nonzero terms in the Maclaurin series for
ż

e´x2
´ 1

x
dx.
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Q[6](˚): Find the Maclaurin series for
ż

x4 arctan(2x)dx.

Q[7](˚): Express the Taylor series of the function

f (x) = log(1 + 2x)

about x = 0 in summation notation.

Q[8](˚): The Maclaurin series for arctan x is given by

arctan x =
8
ÿ

n=0

(´1)n x2n+1

2n + 1

which has radius of convergence equal to 1. Use this fact to compute the exact value of
the series below:

8
ÿ

n=0

(´1)n

(2n + 1)3n

Q[9](˚): Evaluate
8
ÿ

n=0

(´1)n

n!
.

Q[10](˚): Evaluate
8
ÿ

k=0

1
ekk!

.

Q[11](˚): Evaluate the sum of the convergent series
8
ÿ

k=1

1
πkk!

.

Q[12](˚): Evaluate
8
ÿ

n=1

(´1)n´1

n 2n .

Q[13](˚): Evaluate
8
ÿ

n=1

n + 2
n!

en .

Q[14](˚): Suppose that d f
dx = x

1+3x3 and f (0) = 1. Find the Maclaurin series for f (x).

§§ Stage 3

Q[15](˚): Let I(x) =
şx

0
1

1+t4 dt.

(a) Find the Maclaurin series for I(x).

(b) Approximate I(1/2) to within ˘0.0001.

(c) Is your approximation in (b) larger or smaller than the true value of I(1/2)? Explain.

Q[16](˚): Using a Maclaurin series, the number a = 1/5´ 1/7 + 1/18 is found to be an
approximation for I =

ş1
0 x4e´x2

dx. Give the best upper bound you can for |I ´ a|.
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Q[17](˚): Find an interval of length 0.0002 or less that contains the number

I =
ż 1

2

0
x2e´x2

dx

Q[18](˚): Find the Taylor series for f (x) = log(x) centred at a = 2. Find the interval of
convergence for this series.

Q[19](˚): Let I(x) =
şx

0
e´t´1

t dt.

(a) Find the Maclaurin series for I(x).

(b) Approximate I(1) to within ˘0.01.

(c) Explain why your answer to part (b) has the desired accuracy.

Q[20](˚): The function Σ(x) is defined by Σ(x) =
şx

0
sin t

t dt.

(a) Find the Maclaurin series for Σ(x).

(b) It can be shown that Σ(x) has an absolute maximum which occurs at its smallest
positive critical point (see the graph of Σ(x) below). Find this critical point.

(c) Use the previous information to find the maximum value of Σ(x) to within ˘0.01.

x

y

Q[21](˚): Let I(x) =
şx

0
cos t´1

t2 dt.

(a) Find the Maclaurin series for I(x).

(b) Use this series to approximate I(1) to within ˘0.01

(c) Is your estimate in (b) greater than I(1)? Explain.

Q[22](˚): Let I(x) =
şx

0
cos t+t sin t´1

t2 dt

(a) Find the Maclaurin series for I(x).

(b) Use this series to approximate I(1) to within ˘0.001

(c) Is your estimate in (b) greater than or less than I(1)?

Q[23](˚): Define f (x) =
ż x

0

1´ e´t

t
dt.

(a) Show that the Maclaurin series for f (x) is
8
ÿ

n=1

(´1)n´1

n ¨ n!
xn.
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(b) Use the ratio test to determine the values of x for which the Maclaurin series
8
ÿ

n=1

(´1)n´1

n ¨ n!
xn converges.

Q[24](˚): Show that
ş1

0
x3

ex´1 dx ď 1
3 .

Q[25](˚): Use series to evaluate lim
xÑ0

1´cos x
1+x´ex .

Q[26](˚): Evaluate lim
xÑ0

sin x´x+ x3
6

x5 .

Q[27](˚): Use power series to evaluate

ż 1

0

1´ x2 ´ cos x
x5/2 dx

with an error less than 0.001.

Q[28](˚): (a) Show that the power series
8
ÿ

n=0

x2n

(2n)!
converges absolutely for all real

numbers x.

(b) Evaluate
8
ÿ

n=0

1
(2n)!

.

Q[29](˚): Let cosh(x) = ex+e´x

2 .

(a) Find the power series expansion of cosh(x) about x0 = 0 and determine its interval
of convergence.

(b) Show that 32
3 ď cosh(2) ď 32

3 + 0.1.

(c) Show that cosh(t) ď e
1
2 t2

for all t.
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Hints for Exercises 1.1. — Jump to TABLE OF CONTENTS.

H-2: Write out the general formula for the left Riemann sum (with the sum symbol being
n
ř

k=1
) and choose a, b and n to make it match the given sum.

H-3: Write out the given sum explicitly without using summation notation. Also write
out the first few terms in the sums in the three bullets of Definition 1.1.11 in the CLP 101
notes. Then try to identify b´ a, and n, followed by “right”, “left” or “midpoint” and a.

H-4: The main step is to express the given sum as the right Riemann sum
řn

i=1 f (a + i∆x)∆x. Don’t be afraid to guess ∆x, a and f (x) (review Definition 1.1.11 in
the CLP 101 notes). Then write out explicitly

řn
i=1 f (a + i∆x)∆x with your guess

substituted in, and compare the result with the given sum. Adjust your guess if they
don’t match.

H-5: The main step is to express the given sum as the right Riemann sum
n
ř

k=1
f (a + k∆x)∆x. Don’t be afraid to guess ∆x, a and f (x) (review Definition 1.1.11 in the

CLP 101 notes). Then write out explicitly
n
ř

k=1
f (a + k∆x)∆x with your guess substituted

in, and compare the result with the given sum. Adjust your guess if they don’t match.

H-6: Review Definition 1.1.11 in the CLP 101 notes.

H-8: The main step is to express the given sum in the form
řn

i=1 f (xi)∆x. Don’t be afraid
to guess ∆x, xi (for either a left or a right or a midpoint sum — review Definition 1.1.11 in
the CLP 101 notes) and f (x). Then write out explicitly

řn
i=1 f (xi)∆x with your guess

substituted in, and compare the result with the given sum. Adjust your guess if they
don’t match.

H-9: The main step is to express the given sum in the form
řn

i=1 f (xi)∆x. Don’t be afraid
to guess ∆x, xi (probably, based on the symbol Rn, for a right Riemann sum — review
Definition 1.1.11 in the CLP 101 notes) and f (x). Then write out explicitly

řn
i=1 f (xi)∆x

with your guess substituted in, and compare the result with the given sum. Adjust your
guess if they don’t match.

H-10: Try several different choices of ∆x and xi.

H-11: Sketch the graph of f (x).

H-12: Draw a picture. See Example 1.1.15 in the CLP 101 notes.

H-13: At which time in the interval, for example, 0 ď t ď 0.5, is the car moving the
fastest?

H-14: Sure looks like a Riemann sum.

H-15: For part (b): don’t panic!. Just take it one step at a time. The first step is to write
down the Riemann sum. The second step is to evaluate the sum, using the given identity.
The third step is to evaluate the limit n Ñ 8.
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H-16: Don’t panic!. Just take it one step at a time. The first step is to write down the
Riemann sum. The second step is to evaluate the sum, using the given formulas. The
third step is to evaluate the limit n Ñ 8.

H-17: Don’t panic!. Just take it one step at a time. The first step is to write down the
Riemann sum. The second step is to evaluate the sum, using the given formulas. The
third step is to evaluate the limit n Ñ 8.

H-18: You’ve probably seen this hint before. It is worth repeating. Don’t panic!. Just take
it one step at a time. The first step is to write down the Riemann sum. The second step is
to evaluate the sum, using the given formula. The third step is to evaluate the limit
n Ñ 8.

Hints for Exercises 1.2. — Jump to TABLE OF CONTENTS.

H-2: Split the “target integral” up into pieces that can be evaluated using the given
integrals.

H-3: Split the “target integral” up into pieces that can be evaluated using the given
integrals.

H-4: Split the “target integral” up into pieces that can be evaluated using the given
integrals.

H-5: The evaluation of this integral was also the subject of question 5 in Section 1.1. This
time try using the method of Example 1.2.6 in the CLP 101 notes.

H-6: Split the integral into a sum of two integrals. Interpret each geometrically.

H-7: Hmmmm. Looks like a complicated integral. It’s probably a trick question. Check
for symmetries.

H-8: Check for symmetries again.

Hints for Exercises 1.3. — Jump to TABLE OF CONTENTS.

H-2: First find the general antiderivative by guessing and checking.

H-3: Be careful. Two of these make no sense at all.

H-4: Guess a function whose derivative is the integrand.

H-5: Split the given integral up into two integrals. Guess, for each of the two integrals, a
function whose derivative is the integrand.

H-7: There is a good way to test where a function is increasing, decreasing, or constant,
that also has something to do with topic of this section.

H-8: See Example 1.3.5 in the CLP 101 notes.

H-9: See Example 1.3.5 in the CLP 101 notes.

H-10: See Example 1.3.5 in the CLP 101 notes.
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H-11: See Example 1.3.5 in the CLP 101 notes.

H-12: See Example 1.3.6 in the CLP 101 notes.

H-13: What is the title of this section?

H-14: See Example 1.3.6 in the CLP 101 notes.

H-15: See Example 1.3.6 in the CLP 101 notes.

H-16: See Example 1.3.6 in the CLP 101 notes.

H-17: See Example 1.3.6 in the CLP 101 notes.

H-18: Split up the domain of integration.

H-19: Apply d
dx to both sides.

H-20: It is possible to guess an antiderivative for f 1(x) f 2(x) that is expressed in terms of
f 1(x).

H-21: When does the car stop? What is the relation between velocity and distance
travelled?

H-22: See Example 1.3.5 in the CLP 101 notes. For the absolute maximum part of the
question, study the sign of f 1(x).

H-23: See Example 1.3.5 in the CLP 101 notes. For the “minimum value” part of the
question, study the sign of f 1(x).

H-24: See Example 1.3.5 in the CLP 101 notes. For the “maximum” part of the question,
study the sign of F1(x).

H-25: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP 101 notes.

H-26: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP 101 notes.

H-27: In general, the equation of the tangent line to the graph of y = f (x) at x = a is
y = f (a) + f 1(a) (x´ a).

Hints for Exercises 1.4. — Jump to TABLE OF CONTENTS.

H-2: What is the derivative of the argument of the cosine?

H-3: What is the title of the current section?

H-4: What is the derivative of x3 + 1?

H-5: What is the derivative of log x?

H-6: What is the derivative of 1 + sin x?

H-7: cos x is the derivative of what?

H-8: What is the derivative of the exponent?
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H-9: What is the derivative of the argument of the square root?

H-10: There is a short slightly sneaky method — guess an antiderivative — and a really
short still more sneaky method.

H-11: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP 101 notes.

H-12: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP 101 notes.

H-13: Review the definition of the definite integral and in particular Definitions 1.1.9 and
1.1.11 in the CLP 101 notes.

Hints for Exercises 1.5. — Jump to TABLE OF CONTENTS.

H-1: Draw a sketch first.

H-2: Draw a sketch first.

H-3: Draw a sketch first.

H-4: Draw a sketch first.

H-5: See Example 1.5.2 in the CLP 101 notes.

H-6: Part of the job is to determine whether y = x lies above or below y = 3x´ x2.

H-7: Guess the intersection points by trying small integers.

H-8: Draw a sketch first. You can also exploit a symmetry of the region to simplify your
solution.

H-9: Figure out where the two curves cross. To determine which curve is above the other,
try evaluating f (x) and g(x) for some simple value of x. Alternatively, consider x very
close to zero.

H-10: Think about whether it will easier to use vertical strips or horizontal strips.

H-11: You are asked for the area, not the signed area. Be very careful about signs.

H-12: You are asked for the area, not the signed area. Draw a sketch of the region and be
very careful about signs.

H-13: You have to determine whether

• the curve y = f (x) = x
?

25´ x2 lies above the line y = g(x) = 3x for all 0 ď x ď 4
or

• the curve y = f (x) lies below the line y = g(x) for all 0 ď x ď 4 or

• y = f (x) and y = g(x) cross somewhere between x = 0 and x = 4.

One way to do so is to study the sign of f (x)´ g(x) = x
(?

25´ x2 ´ 3
)
.
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Hints for Exercises 1.6. — Jump to TABLE OF CONTENTS.

H-1: Draw sketchs. The mechanically easiest way to answer part (b) uses the method of
cylindrical shells, which we have not covered. The method of washers, which we do
know about also works, but requires you have more patience and also to have a good
idea what the specified region looks like. Look at your sketch very careful when
identifying the ends of your horizontal strips.

H-2: Draw sketchs.

H-3: Draw a sketch.

H-4: (a) Draw a sketch. (b) Draw a sketch. (c) Draw a sketch. See a pattern?

H-5: Sketch the region.

H-7: Sketch the region first.

H-8: You can save yourself quite a bit of work by interpretting the integral as the area of
a known geometric figure.

H-9: See Example 1.6.3 in the CLP 101 notes.

H-10: See Example 1.6.5 in the CLP 101 notes.

H-11: Sketch the region. To find where the curves intersect, look at where cos( x
2 ) and

x2 ´ π2 both vanish.

H-12: See Example 1.6.6 in the CLP 101 notes.

H-13: See Example 1.6.6 in the CLP 101 notes.

H-14: See Example 1.6.1 in the CLP 101 notes.

H-17: The mechanically easiest way to answer part (b) uses the method of cylindrical
shells, which we have not covered. The method of washers, which we do know about
also works, but requires you have enough patience and also to have a good idea whatR
looks like. So it is crucial to first sketchR. Then be very careful in identifying the left end
of your horizontal strips.

H-18: The mechanically easiest way to answer part (c) uses the method of cylindrical
shells, which we have not covered. The method of washers, which we do know about
also works, but requires you have enough patience and also to have a good idea what R
looks like. So look at the sketch in part (a) very careful when identifying the left end of
your horizontal strips.

H-19: Note that the curves cross. Be very careful. The area of this region was found in
Problem 11 of Section 1.5. It would be useful to review that problem.

Hints for Exercises 1.7. — Jump to TABLE OF CONTENTS.

H-1: What is the title of this section?

H-2: See Example 1.7.7 in the CLP 101 notes.
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H-3: See Example 1.7.5 in the CLP 101 notes.

H-4: See Example 1.7.5 in the CLP 101 notes.

H-5: You know, or can easily look up, the derivative of arccos. You also know the title of
this section.

H-6: See Example 1.7.9 in the CLP 101 notes.

H-7: What is the title of the current section?

H-8: See Examples 1.7.9 and 1.6.5 in the CLP 101 notes.

H-9: Think, first, about how to get rid of the square root in the argument of f 2, and,
second, how to convert f 2 into f 1. Note that you are told that f 1(2) = 4 and f (0) = 1,
f (2) = 3.

Hints for Exercises 1.8. — Jump to TABLE OF CONTENTS.

H-1: See Example 1.8.6 in the CLP 101 notes.

H-2: See Example 1.8.6 in the CLP 101 notes.

H-3: For practice, try doing this in two ways, with different substitutions.

H-4: See Example 1.8.14 in the CLP 101 notes.

H-5: See Example 1.8.7 in the CLP 101 notes.

H-6: See Example 1.8.16 in the CLP 101 notes.

Hints for Exercises 1.9. — Jump to TABLE OF CONTENTS.

H-1: What is this section about?

H-2: Do question 1 in this section first.

H-4: Do question 1 in this section first.

H-5: Do question 1 in this section first.

H-6: Do question 1 in this section first.

H-7: Do question 1 in this section first.

H-8: See Example 1.9.3 in the CLP 101 notes.

H-9: Complete the square.

H-10: In part (a) you are asked to integrate an even power of cos x. For part (b) you can
use a trigonometric substitution to reduce the integral of part (b) almost to the integral of
part (a).

H-11: Do question 1 in this section first.
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Hints for Exercises 1.10. — Jump to TABLE OF CONTENTS.

H-1: Review Example 1.10.1 in the CLP 101 notes. Is the “Algebraic Method” or the
“Sneaky Method” going to be easier?

H-2: Review (1.10.7) through (1.10.11) of the CLP 101 notes. Be careful to fully factor the
denominator.

H-3: What is the title of this section?

H-4: You can save yourself some work in developing your partial fraction expansion by
renaming x2 to y.

H-5: Review Steps 3 (particularly the “Sneaky Method”) and 4 of Example 1.10.3 in the
CLP 101 notes.

H-6: Review Steps 3 (particularly the “Sneaky Method”) and 4 of Example 1.10.3 in the
CLP 101 notes.

H-7: Fill in the blank: the integrand is a function.

H-8: The integrand is yet another function.

Hints for Exercises 1.11. — Jump to TABLE OF CONTENTS.

H-1: Draw a sketch.

H-2: See §1.11.1 in the CLP 101 notes.

H-3: See §1.11.3 in the CLP 101 notes.

H-4: See §1.11.2 in the CLP 101 notes. To set up the volume integral, see Example 1.6.6 in
the CLP 101 notes.

H-5: See §1.11.3 in the CLP 101 notes. To set up the volume integral, see Example 1.6.6 in
the CLP 101 notes.

H-8: The main step is to find an allowed K. It is not necessary to find the smallest possible
allowed K.

H-9: The main step is to find M. This question is unusual in that its wording requires you
to find the smallest possible allowed M.

H-10: The main steps in part (b) are to find the smallest possible values of K and L.

H-16: See §1.11.3 in the CLP 101 notes. To set up the volume integral, see Example 1.6.2
in the CLP 101 notes.

H-17: See Example 1.11.13 in the CLP 101 notes.

H-18: See Example 1.11.15 in the CLP 101 notes.

H-19: See Example 1.11.15 in the CLP 101 notes.

H-20: See Example 1.11.14 in the CLP 101 notes. You may also want to review the
fundamental theorem of calculus and, in particular, Example 1.3.5 in the CLP 101 notes.
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H-21: See Example 1.11.14 in the CLP 101 notes.

Hints for Exercises 1.12. — Jump to TABLE OF CONTENTS.

H-1: Read both the question and Theorem 1.12.17 in the CLP 101 notes very carefully.

H-2: Review Example 1.12.8 in the CLP 101 notes.

H-3: First: is the integrand unbounded, and if so, where? Second: when evaluating
integrals, always check to see if you can use a simple substitution, before trying a
complicated procedure, like partial fractions.

H-4: Is the integrand bounded?

H-5: See Example 1.12.21 in the CLP 101 notes.

H-6: Which of the two terms in the denominator is more important when x « 0? Which
one is more important when x is very large?

H-7: Which of the two terms in the denominator is more important when x is very large?

H-8: Which of the two terms in the denominator is more important when x « 0? Which
one is more important when x is very large?

H-9: What are the “problem x’s” for this integral? Get a simple approximation to the
integrand near each.

H-10: What is the limit of the integrand when x Ñ 0?

H-11: First find a t so that the error introduced by approximating
ş8

0
e´x

1+x dx by
şt

0
e´x

1+x dx
is at most 1

210´4

Hints for Exercises 1.13. — Jump to TABLE OF CONTENTS.

H-1: The integrand is a rational function. So it is possible to use partial fractions. But
there is a much easier way!

H-2: You should prepare your own personal internal list of integration techniques
ordered from easiest to hardest. You should have associated to each technique your own
personal list of signals that you use to decide when the technique is likely to be useful.

H-3: You should prepare your own personal internal list of integration techniques
ordered from easiest to hardest. You should have associated to each technique your own
personal list of signals that you use to decide when the technique is likely to be useful.

H-4: For the integral of secant, see See §1.8.3 or Example 1.10.5 in the CLP 101 notes.

H-5: Part (b) can be done by inspection – use a little highschool geometry! Part (d) is an
improper integral.

H-6: Note that in part (d), tan´1 x means the arctangent of x, not 1 divided by tan x. This
is standard notation.

60



H-8: For part (a), see Example 1.7.11 in the CLP 101 notes. For part (d), see Example
1.10.4 in the CLP 101 notes.

H-9: For part (b), first complete the square in the denominator. For part (d) use a simple
substitution.

H-10: For part (b), complete the square in the denominator. You can save some work by
first comparing the derivative of the denominator with the numerator.

H-11: For part (b), the numerator is the derivative of a function that appears in the
denominator.

H-12: For part (a), can you convert this into a partial fractions integral? For part (b), start
by completing the square inside the square root.

H-13: For part (b), the numerator is the derivative of a function that is embedded in the
denominator.

H-14: For part (a), split the integral in two. One part may be evaluated just by
interpretting it appropriately, without doing any integration at all. For part (c), multiply
both the numerator and denominator by ex and then make a substitution.

H-15: For part (a), the substitution u = log x goves an integral that you have seen before.

Hints for Exercises 2.1. — Jump to TABLE OF CONTENTS.

H-1: See Example 2.1.2 in the CLP 101 notes.

H-2: Review Definition 2.1.1 in the CLP 101 notes.

H-3: Be careful about the units.

H-4: Suppose that the bucket is a distance y above the ground. How much work is
required to raise it an additional height dy.

H-5: See Example 2.1.4 in the CLP 101 notes.

Hints for Exercises 2.2. — Jump to TABLE OF CONTENTS.

H-1: Review the definition of “average value” in §2.2 of the CLP 101 notes.

H-5: Review the definition of “average value” in §2.2 of the CLP 101 notes.

H-6: Review the definition of “average value” in §2.2 of the CLP 101 notes.

H-7:

H-8: Review the definition of “average value” in §2.2 of the CLP 101 notes, and the
trapezoidal rule in §1.11.2 of the CLP 101 notes

Hints for Exercises 2.3. — Jump to TABLE OF CONTENTS.
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H-1: Which method involves more work: horizontal strips or vertical strips?

H-2: Review (2.3.1) and (2.3.2) in the CLP 101 notes.

H-3: Review (2.3.1) and (2.3.2) in the CLP 101 notes. For practice, do the computation
twice — once with horizontal strips and once with vertical strips. Watch for improper
integrals.

H-4: See Example 2.3.2 in the CLP 101 notes.

H-5: See Example 2.3.1 in the CLP 101 notes.

H-6: See Example 2.3.2 in the CLP 101 notes.

H-7: See Example 2.3.2 in the CLP 101 notes.

H-8: See Example 2.3.1 in the CLP 101 notes.

H-9: You can save quite a bit of work by, firstly, exploiting symmetry and, secondly,
thinking about whether it is more efficient to use vertical strips or horizontal strips.

H-10: Sketch the region. You can save quite a bit of work by exploiting symmetry.

H-11: Draw a sketch. In part (b) be careful about the equation of the right hand boundary
of A.

H-12: Draw a sketch.

Hints for Exercises 2.4. — Jump to TABLE OF CONTENTS.

H-4: Simplify the equation.

H-5: Be careful with the arbitrary constant.

H-7: Be careful about signs.

H-8: Be careful about signs.

H-10: Move the y from the left hand side to the right hand side. Be careful about the
signs. Remember that we need y = ´1 when x = 1.

H-11: The unknown function f (x) satisfies an equation that involves the derivative of f .

H-12: Try guessing the partial fractions expansion of 1
x(x+1) .

H-14: The general solution to the differential equation will contain the constant k and one
other constant. They are determined by the data given in the question.

H-15: What is the velocity of the mass at its highest point? The answer will depend on
the (unspecified) constants v0, m, g and k.

H-16: The general solution to the differential equation will contain the constant k and one
other constant. They are determined by the data given in the question.

H-17: Review the method of integration by partial fractions and in particular Example
1.10.5 in the CLP 101 notes.
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H-18: Review the method of integration by partial fractions and in particular Example
1.10.5 in the CLP 101 notes. Be careful about signs.

H-19: The general solution to the differential equation will contain a constant of
proportionality and one other constant. They are determined by the data given in the
question.

H-20: You do not need to know anything about investing or continuous compounding to
do this problem. You are given the differential equation explicitly. The whole first
sentence is just window dressing.

H-21: Again, you do not need to know anything about investing to do this problem. You
are given the differential equation explicitly.

H-22: Differentiate the given integral equation.

H-23: Suppose that in a very short time interval dt, the height of water in the tank
changes by dh (which is negative). Express in two different ways the volume of water
that has escaped during this time interval. Equating the two gives the needed differential
equation.

H-24: Sketch the mercury in the tank at time t, when it has height h, and also at time
t + dt, when it has height h + dh (with dh ă 0). The difference between those two
volumes is the volume of (essentially) a disk of thickness ´dh. Figure out the radius and
then the volume of that disk. This volume has to be the same as the volume of mercury
that left through the hole in the bottom of the sphere. Toricelli’s law tells you what the
volume is. Setting the two volumes equal to each other gives the differential equation
which determines h(t).

H-25: The fundamental theorem of calculus will be useful in part (b).

H-26: For any p ą 0, determine first y(t) and then the times at which y = 2, y = 1 and
y = 0. The condition that “the top half takes exactly the same amount of time to drain as
the bottom half” then gives an equation that determines p.

Hints for Exercises 3.1. — Jump to TABLE OF CONTENTS.

H-1: Simplify ak. Also note that you are asked about the sequence
 

ak
(

, not about the
series

ř8
k=1 ak.

H-2: What happens to 1
n as n gets very big?

H-3: What happens to 1
n as n gets very big?

H-4: This is trickier than it looks. Write 1
n = x and look at the limit as x Ñ 0.

H-5: Consider an ´ L.

Hints for Exercises 3.2. — Jump to TABLE OF CONTENTS.

H-1: You should recognize this series.
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H-2: You should recognize this series.

H-3: When you see
ÿ

k

(
¨ ¨ ¨ k ¨ ¨ ¨ ´ ¨ ¨ ¨ k + 1 ¨ ¨ ¨

)
, you should immediately think

“telescoping series”.

H-4: When you see
ÿ

k

(
¨ ¨ ¨ n ¨ ¨ ¨ ´ ¨ ¨ ¨ n + 1 ¨ ¨ ¨

)
, you should immediately think

“telescoping series”. But be careful not to jump to conclusions — evaluate the nth partial
sum explicitly.

H-5: Review Definition 3.2.3 in the CLP 101 notes.

H-6: This is a special case of a general series whose sum we know.

H-7: Review Example 3.2.5 in the CLP 101 notes.

H-8: Review Example 3.2.5 in the CLP 101 notes.

H-9: Review Example 3.2.5 in the CLP 101 notes.

H-10: Split the series into two parts.

H-11: Split the series into two parts.

H-12: Split the series into two parts.

Hints for Exercises 3.3. — Jump to TABLE OF CONTENTS.

H-1: Always try the divergence test first (in your head).

H-2: Review Theorem 3.3.11 and Example 3.3.12 in the CLP 101 notes.

H-3: Don’t jump to conclusions about properties of the an’s.

H-4: Which test should you always try first (in your head)?

H-5: Review the integral test, which is Theorem 3.3.5 in the CLP 101 notes.

H-6: Review the integral test, which is Theorem 3.3.5 in the CLP 101 notes.

H-7: Review the integral test.

H-8: Try the integral test.

H-9: Review Example 3.3.9 in the CLP 101 notes.

H-10: What does the summand look like when k is very large?

H-11: What does the summand look like when n is very large?

H-12: What does the summand look like when n is very large?

H-13: This is a trick question. Be sure to verify all of the hypotheses of any convergence
test you apply.

H-14: See Example 3.3.7 in the CLP101 notes.
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H-15: cos(nπ) is a sneaky way to write (´1)n.

H-16: What is the behaviour for large k?

H-17: What is the behaviour for large n/m?

H-18: You should recognize this series.

H-19: Build up your own personal list of convergence tests ordered from easiest to
hardest. With each test you should also build up a list of signals that you can use to guess
whether or not it is useful to apply that test.

H-21: What does the summand look like when n is very large?

H-22: Review the alternating series test, which is given in Theorem 3.3.14 in the CLP 101
notes.

H-23: Review the alternating series test, which is given in Theorem 3.3.14 in the CLP 101
notes.

H-24: Review the alternating series test, which is given in Theorem 3.3.14 in the CLP 101
notes.

H-26: For part (a), see Example 1.12.23 in the CLP 101 notes.

For part (b), review Theorem 3.3.5 in the CLP 101 notes.

For part (c), see Example 3.3.12 in the CLP 101 notes.

H-27: Review the integral test, which is Theorem 3.3.5 in the CLP 101 notes.

H-28: What does the fact that the series
8
ř

n=0
an converges guarantee about the behavior of

an for large n?

H-29: What does the fact that the series
8
ř

n=0
(1´ an) converges guarantee about the

behavior of an for large n?

H-30: What does the fact that the series
8
ÿ

n=1

nan ´ 2n + 1
n + 1

converges guarantee about the

behavior of an for large n?

H-31: What does the fact that the series
ř8

n=1 an converges guarantee about the behavior
of an for large n? When is x2 ď x?

Hints for Exercises 3.4. — Jump to TABLE OF CONTENTS.

H-1: What is this section about?

H-3: Be careful about the signs.

H-4: Does the alternating series test really apply?

H-5: What does the summand look like when n is very large?
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H-6: For part (a), replace n by x in the absolute value of the summand. Can you integrate
the resulting function?

Hints for Exercises 3.5. — Jump to TABLE OF CONTENTS.

H-1: Review the discussion immediately following Definition 3.5.1 in the CLP 101 notes.

H-2: Review the discussion immediately following Definition 3.5.1 in the CLP 101 notes.

H-3: Review the discussion immediately following Definition 3.5.1 in the CLP 101 notes.

H-4: See Example 3.5.11 in the CLP 101 notes.

H-5: See Example 3.5.11 in the CLP 101 notes.

H-11: Start part (b) by computing the partial sums of
8
ÿ

k=1

( ak
ak+1

´
ak+1

ak+2

)

H-12: You should know a power series representation for 1
1´x . Use it.

H-13: n ě log n for all n ě 1.

H-14: See Example 3.5.21 in the CLP 101 notes. For part (b), review §3.3.4 in the CLP 101
notes.

H-15: You know the geometric series expansion of 1
1´x . What (calculus) operation(s) can

you apply to that geometric series to convert it into the given series?

H-16: First show that the fact that the series
ř8

n=0(1´ bn) converges guarantees that
limnÑ8 bn = 1.

H-17: What does an look like for large n?

Hints for Exercises 3.6. — Jump to TABLE OF CONTENTS.

H-1: You should know the Maclaurin series for ex. Use it.

H-2: You should know the Maclaurin series for sin x. Use it.

H-3: You should know the Maclaurin series for 1
1´x . Use it.

H-4: You should know the Maclaurin series for 1
1´x . Use it.

H-5: You should know the Maclaurin series for ex. Use it.

H-6: You should know the Maclaurin series for arctan(x). Use it.

H-7: Review Example 3.5.20 in the CLP 101 notes.

H-8: π
2
?

3

H-9: There is an important Taylor series, one of the series in Theorem 3.6.5 of the CLP 101
notes, that looks a lot like the given series.
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H-10: There is an important Taylor series, one of the series in Theorem 3.6.5 of the CLP
101 notes, that looks a lot like the given series.

H-11: There is an important Taylor series, one of the series in Theorem 3.6.5 of the CLP
101 notes, that looks a lot like the given series. Be careful about the limits of summation.

H-12: There is an important Taylor series, one of the series in Theorem 3.6.5 of the CLP
101 notes, that looks a lot like the given series.

H-13: Split the series into a sum of two series. There is an important Taylor series, one of
the series in Theorem 3.6.5 of the CLP 101 notes, that looks a lot like each of the two
series.

H-14: You should know the Maclaurin series for 1
1´x . Use it.

H-15: See Example 3.5.21 in the CLP 101 notes. For parts (b) and (c), review §3.3.4 in the
CLP 101 notes.

H-16: Look at the signs of successive terms in the series.

H-17: The magic word is “series”.

H-18: You know the Maclaurin series for log(1+ y). Use it! Remember that you are asked
for a series expansion in powers of x´ 2. So you want y to be some constant times x´ 2.

H-19: See Example 3.6.10 in the CLP 101 notes. For parts (b) and (c), review §3.3.4 in the
CLP 101 notes.

H-20: See Example 3.6.10 in the CLP 101 notes. For part (b), review the fundamental
theorem of calculus in §1.3 of the CLP 101 notes. For part (c), review §3.3.4 in the CLP 101
notes.

H-21: See Example 3.6.10 in the CLP 101 notes. For parts (b) and (c), review §3.3.4 in the
CLP 101 notes.

H-22: See Example 3.6.10 in the CLP 101 notes. For parts (b) and (c), review §3.3.4 in the
CLP 101 notes.

H-24: Use the Maclaurin series for ex.

H-25: See Example 3.6.17 in the CLP 101 notes

H-26: See Example 3.6.17 in the CLP 101 notes

H-28: Can you think of a way to eliminate the odd terms from ex =
8
ÿ

n=0

xn

n!
?
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ANSWERS TO PROBLEMS

Part III
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Answers to Exercises 1.1 — Jump to TABLE OF CONTENTS

A-1:
ş7
´1 f (x)dx = limnÑ8

řn
i=1 f

(
´1 + 8i

n

)
8
n

A-2: n = 4, a = 2 and b = 6

A-3: It is a midpoint Riemann sum for f on the interval [1, 5] with n = 4. It is also a left
Riemann sum for f on the interval [1.5, 5.5] with n = 4. It is also a right Riemann sum for
f on the interval [0.5, 4.5] with n = 4.

A-4: f (x) = sin2(2 + x) and b = 4

A-5: f (x) = x
?

1´ x2

A-6:
50
ř

i=1

(
5 +

(
i´ 1/2

)1
5

)8
1
5

A-7: 54

A-8:
ş3

0 e´x/3 cos(x)dx

A-9:
ş1

0 xex dx

A-10: Here are three ways:
ş2

0 e´1´x dx,
ş3

1 e´x dx, 2
ş1

0 e´1´2x dx.

A-11:
ş3

0 f (x)dx = 2.5

A-12: 5

A-13: 53m

A-14: (a) There are many possible answers. Two are
ş0
´2

?
4´ x2 dx and

ş2
0

a

4´ (´2 + x)2 dx. (b) π

A-15: (a) 30 (b) 411
4

A-16: 56
3

A-17: 6

A-18: 12

Answers to Exercises 1.2 — Jump to TABLE OF CONTENTS

A-1: (a) False. For example, the function

f (x) =

#

0 for x ă 0
1 for x ě 0

provides a counterexample.

(b) False. For example, the functions f (x) = g(x) = x provide a counterexample.
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(c) False. For example, the functions f (x) = g(x) = x provide a counterexample.

A-2: ´21

A-3: ´6

A-4: 20

A-5: 5

A-6: 20 + 2π

A-7: 0

A-8: 0

Answers to Exercises 1.3 — Jump to TABLE OF CONTENTS

A-1: e2 ´ e´2

A-2: F(x) = x4

4 + 1
2 cos 2x + 1

2 .

A-3: (a) True (b) False (c) False, unless
şb

a f (x)dx =
şb

a x f (x)dx = 0.

A-4: 5´ cos 2

A-5: 2

A-6: F1(x) = log(3) G1(x) = ´ log(3)

A-7: f (x) is increasing when ´8 ă x ă 1 and when 2 ă x ă 8.

A-8: F1(x) = ´ sin x
cos3 x+6

A-9: 4x3e(1+x4)2

A-10:
(

sin6 x + 8) cos x

A-11: F1(1) = 3e´1

A-12:
sin u

1 + cos3 u

A-13: f (4) = 4π

A-14: (a) (2x + 1)e´x2
(b) x = ´1/2

A-15: esin x ´ esin(x4´x3)
(
4x3 ´ 3x2)

A-16: ´2x cos
(
e´x2)

´ 5x4 cos
(
ex5)

A-17: ex
a

sin(ex)´
a

sin(x)

A-18: 14

A-19: f (x) = 2x

A-20: 5
2
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A-21: 45 m

A-22: f 1(x) = (2´ 2x) log
(
1 + e2x´x2)

and f (x) achieves its absolute maximum at x = 1,
because f (x) is increasing for x ă 1 and decreasing for x ą 1.

A-23: The minimum is
ş´1

0
dt

1+t4 . As x runs from ´8 to8, the function g(x) =
şx

0
dt

1+t4

decreases until x reaches 1 and then increases all x ą 1. So the minimum is achieved for
x = 1. At x = 1, x2 ´ 2x = ´1.

A-24: F achieves its maximum value at x = π.

A-25: 2

A-26: log 2

A-27: (a) 3x2 şx3+1
0 et3

dt + 3x5e(x3+1)3
(b) y = ´3(x + 1)

Answers to Exercises 1.4 — Jump to TABLE OF CONTENTS

A-1:
ş1

0
f (u)?
1´u2

du

A-2: 1
2

(
sin(e)´ sin(1)

)

A-3: 1
3

A-4: ´ 1
300(x3+1)100 + C

A-5: log 4

A-6: log 2

A-7: 4/3

A-8: e6 ´ 1

A-9: 1
3(4´ x2)3/2 + C

A-10: 0

A-11: 1
2 [cos 1´ cos 2] « 0.478

A-12: 1
2 sin 1

A-13: 1
3 [2
?

2´ 1] « 0.609

Answers to Exercises 1.5 — Jump to TABLE OF CONTENTS

A-1:
ş

?
2

0

[
x´ (x3 ´ x)

]
dx

A-2:
ş4
´3/2

[
4
5(6´ y2) + 2y

]
dy

A-3:
ş4a

0

[?
4ax´ x2

4a
]

dx
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A-4:
ş25

1

[
´ 1

12(x + 5) + 1
2
?

x
]

dx

A-5: 1
8

A-6: 4
3

A-7: 5
3 ´

1
log 2

A-8: 2
[ 4

π ´
1
2

]

A-9: 20
9

A-10: 1
6

A-11: 2
[
π ´ 1

4 π2
]

A-12: 31
6 = 5.16̇

A-13: 26
3

Answers to Exercises 1.6 — Jump to TABLE OF CONTENTS

A-1: (a) π
ş3

0 xe2x2
dx

(b)
ş1

0 π
[(

3 +
?y
)2
´
(
3´

?y
)2]dy +

ş4
1 π
[(

5´ y
)2
´
(
3´

?y
)2]dy

A-2: (a)
ş1
´1 π

[
(5´ 4x2)

2
´ (2´ x2)

2]dx (b)
ş0
´1 π

[(
5+

a

y + 1
)2
´
(
5´

a

y + 1
)2]dy

A-3: π
ş2
´2

[
(9´ x2)

2
´ (x2 + 1)2] dx

A-4: (a)
ş4a

0

[?
4ax´ x2

4a
]

dx (b)
ş1
´1 π

[
(5´ 4x2)

2
´ (2´ x2)

2] dx

(c)
ş0
´1 π

[
(5 +

a

y + 1)2
´ (5´

a

y + 1)2] dy =
ş0
´1 20π

a

y + 1 dy

A-5:
π

4

(
e2a2

´ 1
)

A-6: π

(
17e18´4373

36

)

A-7: π
[

38
3 ´

514
34

]
= π 512

81

A-8: (a) 8π
ş1
´1

?
1´ x2 dx (b) 4π2

A-9: (a) The region R is the region between the blue and red curves, with 3 ď x ď 5, in
the figures below.
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(3,
√
24)

(5,
√
40)

R

y2 = 8x
y2 = x2 + 15

x

y

(3,
√
24)

(5,
√
40)

R

(b) 4
3 π « 4.19

A-10: (a) The region R is sketched below.

x

y

y = log x
x = 2

(b) π
[
4 log 2´ 3

2

]
« 3.998

A-11: π2 + 8π3 + 8π6

5

A-12: 8
3

A-13: 256ˆ8
15 = 136.53̇

A-14: 28
3 πh

A-15: (a) 9
2 (b) π

ş2
´1

[(
4´ x

)2
´
(
1 + (x´ 1)2)2]dx

A-16: (a) π
2 ´ 1 (b) π2

2 ´ π « 1.793

A-17: (a) V1 = 4
3 πc2 (b) V2 = π c

3

[
4
?

2´ 2
]

(c) c = 0 or c = 1
2 [2

3/2 ´ 1]

A-18: (a) The region R is

3 4

y = 10√
25−x2

x

y

(b) 10π log 9
4 = 20π log 3

2 (c) 20π

A-19:
şπ

π/2 π
[
(5 + π sin x)2 ´ (5 + 2π ´ 2x)2] dx +

ş3π/2
π π

[
(5 + 2π ´ 2x)2 ´ (5 + π sin x)2] dx
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Answers to Exercises 1.7 — Jump to TABLE OF CONTENTS

A-1: x2 log x
2 ´ x2

4 + C

A-2: ´ log x
6x6 ´

1
36x6 + C

A-3: π

A-4: π
2 ´ 1

A-5: y cos´1 y´
a

1´ y2 + C

A-6: 2y2 arctan(2y)´ y + 1
2 arctan(2y) + C

A-7: (a) See the solution for the derivation. (b) 35
256 π « 0.4295

A-8: (a) π
4 ´

ln 2
2

x = 1

y = tan−1 x

x

y

(b) π2

2 ´ π

A-9: 12

Answers to Exercises 1.8 — Jump to TABLE OF CONTENTS

A-1: sin x´ sin3 x
3 + C

A-2: sin37 t
37 ´ sin39 t

39 + C

A-3: 1
7 sec7 x´ 1

5 sec5 x + C

A-4:
tan49 x

49
+

tan47 x
47

+ C

A-5: π
2

A-6: (a) See the solution for the derivation. (b) 13
15 ´

π
4 « 0.0813

Answers to Exercises 1.9 — Jump to TABLE OF CONTENTS

A-1: (a) x = 4
3 sec θ (b) x = 1

2 sin θ (c) x = 5 tan θ

A-2: 1
4

x?
x2+4

+ C

A-3: 1
2
?

5
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A-4: log
ˇ

ˇ

ˇ

b

1 + x2

25 +
x
5

ˇ

ˇ

ˇ
+ C

A-5: ´ 1
16

b

1 + 16
x2 + C

A-6: π
6

A-7:
?

x2´9
9x + C = 1

9

d

1´
(

3
x

)2

+ C

A-8: 2 arcsin x
2 + x

b

1´ x2

4 + C

A-9: arcsin x+1
2 + C

A-10: (a) See the solution. (b) 8+3π
16

A-11:
?

25x2 ´ 4´ 2 arcsec 5x
2 + C

Answers to Exercises 1.10 — Jump to TABLE OF CONTENTS

A-1: 3

A-2: A
x´1 +

B
(x´1)2 +

C
x+1 +

D
(x+1)2 +

Ex+F
x2+1

A-3: log 4
3

A-4: ´ 1
x ´ arctan x + C

A-5: 4 log |x´ 3| ´ 2 log(x2 + 1) + C

A-6: F(x) = log |x´ 2|+ log |x2 + 4|+ 2 arctan(x/2) + D

A-7: ´2 log |x´ 3|+ 3 log |x + 2|+ C

A-8: ´9 log |x + 2|+ 14 log |x + 3|+ C

Answers to Exercises 1.11 — Jump to TABLE OF CONTENTS

A-1: True. Because f (x) is positive and concave up, the graph of f (x) is always below the
top of the trapezoids used in the trapezoidal rule.

A-2: 2π
3

A-3: 4.377 m3

A-4: 5403.5 cm3

A-5: 0.6865 m3

A-6: (a) 363,500 (b) 367,000

A-7: (a) 49
2 (b) 77

3
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A-8: See the solution.

A-9: 3
100

A-10: (a) 1/3
3

(
(´3)5 + 4

(
1
3 ´ 3

)5
+ 2
(

2
3 ´ 3

)5
+ 4(´2)5 + 2

(
4
3 ´ 3

)5
+ 4
(

5
3 ´ 3

)5
+ (´1)5

)

(b) Simpson’s Rule results in a smaller error bound.

A-11: Any n ě 68 works.

A-12: 8
15

A-13: 1
180ˆ34 = 1

14580

A-14: (a) T4 = 1
8

[
1 + 2ˆ 4

5 + 2ˆ 4
6 + 2ˆ 4

7 +
1
2

]
,

(b) S4 = 1
12

[
1 + 4ˆ 4

5 + 2ˆ 4
6 + 4ˆ 4

7 +
1
2

]

(c)
ˇ

ˇ

ˇ
I ´ S4

ˇ

ˇ

ˇ
ď 24

180ˆ44 = 3
5760

A-15: (a) T4 = 8.03515, S4 = 8.03509

(b)
ˇ

ˇ

ˇ

şb
a f (x) dx´ Tn

ˇ

ˇ

ˇ
ď 2

1000
83

12(4)2 = 0.00533,
ˇ

ˇ

ˇ

şb
a f (x) dx´ Sn

ˇ

ˇ

ˇ
ď 4

1000
85

180(4)4 = 0.00284

A-16: 494 ft3

A-17: (a) 0.025635 (b) error ď 1.8ˆ 10´5

A-18: (a) 0.6931698 (b) n ě 12 with n even

A-19: (a) 0.01345 (b) n ě 28 with n even

A-20: n ě 259

A-21: (a) 0.025635 (b) 1.8ˆ 10´5

Answers to Exercises 1.12 — Jump to TABLE OF CONTENTS

A-1: False. For example, the functions f (x) = e´x and g(x) = 1 provide a
counterexample.

A-2: q = 1
5

A-3: The integral diverges.

A-4: The integral diverges.

A-5: The integral does not converge.

A-6: The integral converges.

A-7: The integral diverges.

A-8: The integral converges.

A-9: The integral converges.
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A-10: The integral converges.

A-11: t = 10 and n = 2042 will do the job. There are many other correct answers.

Answers to Exercises 1.13 — Jump to TABLE OF CONTENTS

A-1: 1
2 log

ˇ

ˇx2 ´ 3
ˇ

ˇ+ C

A-2: (a) 2 (b) 2
15 (c) 3e4

16 + 1
16

A-3: (a) 1 (b) 8
15

A-4: (a) e2 + 1 (b) log(
?

2 + 1) (c) log 15
13 « 0.1431

A-5: (a) 8
15 « 0.53333 (b) 9

4 π (c) log 2´ 2 + π
2 « 0.264 (d) 2 log 2´ 1

2 « 0.886

A-6: (a) 1
15 (b) 1

9
x?

x2+9
+ C (c) 1

2 log |x´ 1| ´ 1
4 log(x2 + 1)´ 1

2 tan´1 x + C

(d) 1
2

[
x2 tan´1 x´ x + tan´1 x

]
+ C

A-7: (a) 1
12 (b) 2 sin´1 x

2 + x
b

1´ x2

4 + C (c) x log(1 + x2)´ 2x + 2 tan´1 x + C

(d) ´2 log |x|+ 1
x + 2 log |x´ 1|+ C

A-8: (a)
ş8

0 e´x sin(2x)dx = 2
5 (b) 1

2
?

2
(c) log 2´ 1

2 « 0.193

(d) log 2´ 1
2 « 0.193

A-9: (a) 1
2 x2 log x´ 1

4 x2 + C (b) 1
2 log[(x + 2)2 + 1]´ 3 arctan(x + 2) + C

(c) 1
2 log |x´ 3| ´ 1

2 log |x´ 1|+ C (d) 1
3 arctan x3 + C

A-10: (a) π
4 ´

1
2 log 2 (b) log |x2 ´ 2x + 5|+ 1

2 tan´1 x´1
2 + C

A-11: (a) x2

2 log x´ x2

4 + C (b) ´ 1
300(x3+1)100 + C (c) sin5x

5 ´ sin7x
7 + C

(d) 2 arcsin x
2 + x

2

?
4´ x2 + C

A-12: (a) ´1
4 log |ex + 1|+ 1

4 log |ex ´ 3|+ C (b) 4π
3 ´ 2

?
3

A-13: (a) 1
2 sec2 x + log | cos x|+ C (b) 1

10 tan´1 8 « 0.1446 (c)
log 2´ 2 + π

2 « 0.2639

A-14: (a) 9
4 π + 9 (b) 2 log |x´ 2| ´ log(x2 + 4) + C (c) π

2

A-15: (a) 1
2 x
[

sin(log x)´ cos(log x)
]
+ C (b) log |x´ 3| ´ log |x´ 2|+ C

Answers to Exercises 2.1 — Jump to TABLE OF CONTENTS

A-1: 1
4 J

A-2: a = 3
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A-3: 25

A-4: 196 J

A-5: 904,050π joules

A-6:
ş3

0 9.8ˆ 8000(2 + z)(3´ z)2 dz joules

Answers to Exercises 2.2 — Jump to TABLE OF CONTENTS

A-1: 1

A-2: 1
e´1

[
2
9 e3 + 1

9

]

A-3: 4
π + 1

A-4: 2
π

A-5: 10
3 log 7

A-6: 1
2(e´1)

A-7: 1
2

A-8: (a) 130 km (b) 65 km/hr

Answers to Exercises 2.3 — Jump to TABLE OF CONTENTS

A-1: x̄ = ´1
3

ş0
´1 6x2 dx

A-2: ȳ = 3
4e ´

e
4

A-3: ȳ = 8
5

A-4: (a)

x = 2

y = 1√
16−x2

x

y

(b) 3 log 3
8π

A-5: x̄ =
π
4

?
2´1

?
2´1

and ȳ = 1
4(
?

2´1)

A-6: (a) x̄ = k
A
[?

2´ 1
]
, ȳ = k2π

8A (b) k = 8
π

[?
2´ 1

]
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A-7: (a) The sketch is the figure below.

y=x−x2

y=x2−3x

x
y

(2,−2)

(b) 8
3 (c) 1

A-8: 2
π log 2 « 0.44127

A-9: x̄ = 0 and ȳ = 12
24+9π

A-10: (a) 9
4 π (b) x̄ = 0 and ȳ = 4

π

A-11: (a) x̄ = 8
11 , ȳ = 166

55 (b) π
ş4

0 y dy + π
ş6

4(6´ y)2 dy

A-12: (a) ȳ = e
4 ´

3
4e (b) π

( e2

2 + 2e´ 3
2

)

Answers to Exercises 2.4 — Jump to TABLE OF CONTENTS

A-1: y = log(x2 + 2)

A-2: y(x) = 3
?

1 + x2

A-3: y(t) = 3 log ´3
C+sin t .

A-4: y = 3
b

3
2 ex2 + C.

A-5: y = ´ log
(
C´ x2

2

)
. The solution only exists for C´ x2

2 ą 0, i.e. for C ą 0 and
|x| ă

?
2C.

A-6: y = (3ex ´ 3x2 + 24)1/3

A-7: y = f (x) = ´ 1?
x2+16

A-8: y =
?

10x3 + 4x2 + 6x´ 4

A-9: y(x) = ex4/4

A-10: y = 1
1´2x

A-11: f (x) = e1+x2/2

A-12: y(x) =
b

4 + 2 log 2x
x+1 . Note that, to satisfy y(1) = 2, we need the positive square

root.

A-13: y2

2 + 1
3

[
y2 ´ 4

]3/2
= sec x + 1

A-14: 12 weeks
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A-15: t =
b

m
kg tan´1 (b k

mg v0
)

A-16: (a) k = 1
400 (b) t = 70sec

A-17: (a) x(t) = 3´4ekt

1´2ekt (b) As t Ñ 8, x Ñ 2.

A-18: (a) P = 4
1+e´4t (b) At t = 1

2 , P = 3.523. As t Ñ 8, P Ñ 4.

A-19: (a) dv
dt = ´kv2 (b) v = 400

t+1 (c) t = 7

A-20: (a) B(t) = C e0.06t´0.02 cos t with the arbitrary constant C ě 0. (b) $1159.89

A-21: (a) B(t) = t30000´ 50mu et/50 + 50m (b) $600

A-22: y(x) = 4´e1´cos x

2´e1´cos x . The largest allowed interval is

´ cos´1(1´ log 2) ă x ă cos´1(1´ log 2) « 1.259

A-23: 180, 000
b

3
g « 99, 591sec « 27.66hr

A-24: t = 4ˆ144
15

b

125

2g « 2, 394 sec « 0.665 hr

A-25: (a) 3 (b) y1 = (y´ 1)(y´ 2) (c) f (x) = 4´ex

2´ex

A-26: p = 1
4

Answers to Exercises 3.1 — Jump to TABLE OF CONTENTS

A-1: lim
kÑ8

ak = 0.

A-2: The sequence converges to 0.

A-3: 9

A-4: log 2

A-5: See the solution.

Answers to Exercises 3.2 — Jump to TABLE OF CONTENTS

A-1: 1
7ˆ86

A-2: 3
2

A-3: 6

A-4: cos
(

π
3

)
´ cos(0) = ´1

2

A-5: (a) an
11

16n2+24n+5 (b) 3
4

A-6: 24
5
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A-7: 7
30

A-8: 263
99

A-9: 321
999 = 107

333

A-10: 3

A-11: 1
2 +

5
7 = 17

14

A-12: 40
3 = 131

3

Answers to Exercises 3.3 — Jump to TABLE OF CONTENTS

A-1: No. It diverges.

A-2: bn =
2n

3n

A-3: (a) In general false. The harmonic series
8
ř

n=1

1
n provides a counterexample.

(b) In general false. If an = (´1)n 1
n , then

8
ř

n=1
(´1)nan is again the harmonic series

8
ř

n=1

1
n ,

which diverges.

(c) In general false. Take, for example, an = 0 and bn = 1.

A-4: It diverges.

A-5: The series diverges.

A-6: See the solution.

A-7: p ą 1

A-8: It converges.

A-9: It converges.

A-10: The series converges.

A-11: It diverges.

A-12: It converges absolutely.

A-13: It diverges.

A-14: It converges absolutely.

A-15: (a) diverges (b) converges

A-16: diverges

A-17: (a) converges (b) diverges

A-18: 1
7
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A-19: (a) diverges by comparison with the harmonic series

(b) converges by the ratio test

A-20: (a) Converges by the limiting comparison test with b = 1
k5/3 .

(b) Diverges by the ratio test.

(c) Diverges by the integral test.

A-21: It converges.

A-22: N = 5

A-23: N ě 999

A-24: We need n = 4 and then S4 = 1
32 ´

1
52 +

1
72 ´

1
92

A-25: (a) converges (b) converges

A-26: (a) See the solution.

(b) f (x) = x+sin x
1+x2 is not a decreasing function.

(c) See the solution.

A-27: The sum is between 0.9035 and 0.9535.

A-28: See the solution.

A-29: It diverges.

A-30: It converges to ´ log 2 = log 1
2 ,

A-31: See the solution.

Answers to Exercises 3.4 — Jump to TABLE OF CONTENTS

A-1: False. For example, bn = 1
n provides a counterexample.

A-2: conditionally convergent

A-3: The series diverges.

A-4: It diverges.

A-5: It converges absolutely.

A-6: (a) See the solution. (b) |S´ S5| ď 24ˆ 36e´63

Answers to Exercises 3.5 — Jump to TABLE OF CONTENTS

A-1: (a) R = 1
2 (b) 2

1+2x for all |x| ă 1
2

A-2: R = 8

A-3: 1
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A-4: The interval of convergence is ´1 ă x + 2 ď 1 or (´3,´1].

A-5: The interval of convergence is ´4 ă x ď 2, or simply (´4, 2].

A-6: ´3 ď x ă 7 or [´3, 7)

A-7: The given series converges if and only if ´3 ď x ď ´1. Equivalently, the series has
interval of convergence [´3,´1].

A-8: The interval of convergence is 3
4 ď x ă 5

4 , or
[3

4 , 5
4

)
.

A-9: The radius of convergence is 2. The interval of convergence is ´1 ă x ď 3, or(
´ 1, 3

]
.

A-10: The interval of convergence is a´ 1 ă x ă a + 1, or
(
a´ 1, a + 1

)
.

A-11: (a) |x + 1| ď 9 or ´10 ď x ď 8 or [´10, 8] (b) This series converges only for
x = 1.

A-12:
8
ř

n=0
xn+3 =

8
ř

n=3
xn

A-13: The series converges absolutely for |x| ă 9, converges conditionally for x = ´9 and
diverges otherwise.

A-14: (a)
8
ř

n=0
(´1)n x3n+1

3n+1 + C (b) We need to keep two terms (the n = 0 and n = 1 terms).

A-15: (a) See the solution.

(b)
8
ř

n=0
n2xn = x(1+x)

(1´x)3 . The series converges for ´1 ă x ă 1.

A-16: See the solution.

A-17: (a) 1. (b) The series converges for ´1 ď x ă 1, i.e. for the interval [´1, 1)

Answers to Exercises 3.6 — Jump to TABLE OF CONTENTS

A-1: c5 = 35

5!

A-2: a = 1, b = ´ 1
3! = ´1

6 .

A-3: ´
8
ř

n=0
2nxn

A-4: bn = 3(´1)n + 2n

A-5:
ş e´x2

´1
x dx = C´ x2

2 + x4

8 + ¨ ¨ ¨ . It is not clear from the wording of the question
whether or not the arbitrary constant C is to be counted as one of the “first two nonzero
terms”.

A-6:
8
ř

n=0
(´1)n 22n+1x2n+6

(2n+1)(2n+6) + C =
8
ř

n=0
(´1)n 22nx2n+6

(2n+1)(n+3) + C
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A-7:
8
ÿ

n=0

(´1)n 2n+1xn+1

n + 1
for all |x| ă 1

2

A-8:

A-9: 1
e

A-10: e1/e

A-11: e1/π ´ 1

A-12: log(3/2)

A-13: (e + 2)ee ´ 2

A-14: f (x) = 1 +
8
ř

n=0
(´1)n 3n

3n+2 x3n+2

A-15: (a)
8
ř

n=0
(´1)n x4n+1

4n+1 (b) 0.493967

(c) The approximate value of part (b) is larger than the true value of I(1/2)

A-16: 1
66

A-17: Any interval of length 0.0002 that contains 0.03592 and 0.03600 is fine.

A-18: log(x) = log 2 +
8
ř

n=1

(´1)n´1

n 2n (x´ 2)n. It converges when 0 ă x ď 4.

A-19: (a)
8
ř

n=1
(´1)n xn

n n! (b) ´0.80 (c) See the solution.

A-20: (a) Σ(x) =
8
ř

n=0
(´1)n x2n+1

(2n+1)(2n+1)! (b) x = π (c) 1.8525

A-21: (a) I(x) =
8
ř

n=1
(´1)n x2n´1

(2n)!(2n´1) (b) I(1) = ´1
2 +

1
4!3 ˘

1
6!5 = ´0.486˘ 0.001

(c) I(1) ă ´1
2 +

1
4!3

A-22: (a) 1
2! x´

1
4! x

3 + 1
6! x

5 ´ 1
8! x

8 + ¨ ¨ ¨ (b) 0.460 (c) I(1) ă 1
2! ´

1
4! +

1
6! ă 0.460

A-23: (a) See the solution. (b) The series converges for all x.

A-24: See the solution.

A-25: ´1

A-26: 1
5! =

1
120

A-27: ´61
60

A-28: (a) See the solution. (b) 1
2

(
e + 1

e
)

A-29: (a) cosh(x) =
8
ř

n=0
n even

xn

n! =
8
ř

n=0

x2n

(2n)! for all x.
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SOLUTIONS TO PROBLEMS

Part IV
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Solutions to Exercises 1.1 — Jump to TABLE OF CONTENTS

S-1: In the given integral, the domain of integration runs from a = ´1 to b = 7. So we
have ∆x = (b´ a)/n = (7´ (´1))/n = 8/n. The left hand end of the first subinterval is
at x0 = a = ´1. So the right hand end of the ith interval is at xi = ´1 + 8i/n. So

ż 7

´1
f (x)dx = lim

nÑ8

n
ÿ

i=1

f
(
´1 +

8i
n

)
8
n

S-2: In general the left Riemann sum for the integral
şb

a f (x)dx is of the form

n
ÿ

k=1

f
(

a + (k´ 1)
b´ a

n

)
b´ a

n

So

• To get the limits of summation to match the given sum, we need n = 4.

• Then to get the factor multiplying f to match that in the given sum, we need
b´a

n = 1 or b´ a = 4.

• , Finally, to get the argument of f to match that in the given sum, we need

a + (k´ 1)
b´ a

n
= a´

b´ a
n

+ k
b´ a

n
= 1 + k

Subbing in n = 4 and b´ a = 4, gives a´ 1 + k = 1 + k, so a = 2 and b = 6.

S-3:
3
ř

k=0
f (1.5 + k) ¨ 1 is a midpoint Riemann sum for f on the interval [1, 5] with n = 4. It

is also a left Riemann sum for f on the interval [1.5, 5.5] with n = 4. It is also a right
Riemann sum for f on the interval [0.5, 4.5] with n = 4.

S-4: We identify the given sum as the right Riemann sum
řn

i=1 f (a + i∆x)∆x, with a = 0
(that’s specified in the statement of the question), interval ∆x = 4/n, xi = a + i∆x = 4i/n
and f (x) = sin2(2 + x). So b = a + n∆x = 4.

S-5: The given sum is of the form

lim
nÑ8

n
ÿ

k=1

k
n2

c

1´
k2

n2 = lim
nÑ8

n
ÿ

k=1

k
n

c

1´
k2

n2
1
n
= lim

nÑ8

n
ÿ

k=1

f (x˚k )∆x

with ∆x = 1
n , a = 0, x˚k = k

n = a + k∆x and f (x) = x
?

1´ x2. Since x˚0 = 0 and x˚n = 1, the
right hand side is the definition (using the right Riemann sum) of

ş1
0 f (x)dx.
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S-6: In general the midpoint Riemann sum is
n
ÿ

i=1

f
(

a +
(
i´ 1/2

)
∆x
)

∆x ∆x =
b´ a

n

In this problem we are told that f (x) = x8, a = 5, b = 15 and n = 50, so that
∆x = b´a

n = 1
5 and the desired Riemann sum is

50
ÿ

i=1

(
5 +

(
i´ 1/2

)1
5

)8 1
5

S-7: The given integral has interval of integration going from a = ´1 to b = 5. So when
we use three approximating rectangles, all of the same width, the common width is
∆x = b´a

n = 2. The first rectangle has left hand end point x0 = a = ´1, the second has left
hand endpoint x1 = a + ∆x = 1, and the third has left hand end point x2 = a + 2∆x = 3.
So

ż 5

´1
x3 dx «

[
f (x0) + f (x1) + f (x2)

]
∆x =

[
(´1)3 + 13 + 33]

ˆ 2 = 54

S-8: As i ranges from 1 to n, 3i/n range from 3/n to 3 with jumps of ∆x = 3/n, so this is

lim
nÑ8

n
ÿ

i=1

3
n

e´i/n cos(3i/n) = lim
nÑ8

n
ÿ

i=1

f (xi)∆x =

ż b

a
f (x)dx

where xi = 3i/n, f (x) = e´x/3 cos(x), a = x0 = 0 and b = xn = 3. Thus

lim
nÑ8

n
ÿ

i=1

3
n

e´i/n cos(3i/n) =
ż 3

0
e´x/3 cos(x)dx

S-9: As i ranges from 1 to n, the exponent i/n range from 1/n to 1 with jumps of
∆x = 1/n. So let’s try xi = i/n, ∆x = 1

n . Then

Rn =
n
ÿ

i=1

iei/n

n2 =
n
ÿ

i=1

i
n

ei/n 1
n
=

n
ÿ

i=1

xiexi ∆x =
n
ÿ

i=1

f (xi)∆x

with f (x) = xex, and the limit

lim
nÑ8

Rn = lim
nÑ8

n
ÿ

i=1

f (xi)∆x =

ż b

a
f (x)dx

where a = x0 = 0 and b = xn = 1. Thus

lim
nÑ8

Rn =

ż 1

0
xex dx
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S-10: choice #1: If we set ∆x = 2
n and xi =

2i
n , i.e. xi = a + i∆x with a = 0, then

lim
nÑ8

( n
ÿ

i=1

e´1´2i/n
¨

2
n

)
= lim

nÑ8

( n
ÿ

i=1

e´1´xi ∆x
)

= lim
nÑ8

( n
ÿ

i=1

f (xi)∆x
)

with f (x) = e´1´x

=

ż b

a
f (x)dx with a = x0 = 0 and b = xn = 2

=

ż 2

0
e´1´x dx

choice #2: If we set ∆x = 2
n and xi = 1 + 2i

n , i.e. xi = a + i∆x with a = 1, then

lim
nÑ8

( n
ÿ

i=1

e´1´2i/n
¨

2
n

)
= lim

nÑ8

( n
ÿ

i=1

e´xi ∆x
)

= lim
nÑ8

( n
ÿ

i=1

f (xi)∆x
)

with f (x) = e´x

=

ż b

a
f (x)dx with a = x0 = 1 and b = xn = 3

=

ż 3

1
e´x dx

choice #3: If we set ∆x = 1
n and xi =

i
n , i.e. xi = a + i∆x with a = 0, then

lim
nÑ8

( n
ÿ

i=1

e´1´2i/n
¨

2
n

)
= lim

nÑ8

( n
ÿ

i=1

e´1´2xi 2∆x
)

= lim
nÑ8

( n
ÿ

i=1

f (xi)∆x
)

with f (x) = 2e´1´2x

=

ż b

a
f (x)dx with a = x0 = 0 and b = xn = 1

= 2
ż 1

0
e´1´2x dx

S-11: Here is a sketch the graph of f (x).

x

y

1 3

1 y = f(x)
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There a linear increase from x = 0 to x = 1, followed by a constant. Using the
interpretation of

ş3
0 f (x)dx as the area between y = f (x) and the x–axis with x between 0

and 3, we can break this area into:

•
ş1

0 f (x)dx: a right-angled triangle of height 1 and base 1 and hence area 0.5.

•
ş3

1 f (x)dx: a rectangle of height 1 and base 2 and hence area 2.

Summing up:
ş3

0 f (x)dx = 2.5.

S-12: Recall that

|x| =

#

´x if x ď 0
x if x ě 0

so that

|2x| =

#

´2x if x ď 0
2x if x ě 0

To picture the geometric figure whose area the integral represents observe that

• at the left hand end of the domain of integration x = ´1 and the integrand
|2x| = | ´ 2| = 2 and
• as x increases from ´1 towards 0, the integrand |2x| = ´2x decreases linearly, until
• when x hits 0 the integrand hits |2x| = |0| = 0 and then
• as x increases from 0, the integrand |2x| = 2x increases linearly, until
• when x hits +2, the right hand end of the domain of integration, the integrand hits
|2x| = |4| = 4.

So the integral
ş2
´1 |2x| dx is the area of the union of the two shaded triangles (one of base

1 and of height 2 and the other of base 2 and height 4) in the figure on the right below and

ż 2

´1
|2x| dx =

1
2
ˆ 1ˆ 2 +

1
2
ˆ 2ˆ 4 = 5

x

y

−1 2

2

4

S-13: The car’s speed increases with time. So its highest speed on any time interval
occurs at the right hand end of the interval and the best possible upper estimate for the
distance traveled is given by the right Riemann sum with ∆x = 0.5, which is

[
v(0.5) + v(1.0) + v(1.5) + v(2.0)

]
ˆ 0.5 =

[
14 + 22 + 30 + 40

]
ˆ 0.5 = 53 m
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S-14: (a, solution #1) Set xi = ´2 + 2i
n . Then a = x0 = ´2 and b = xn = 0 and ∆x = 2

n . So

lim
nÑ8

n
ÿ

i=1

2
n

d

4´
(
´2 +

2i
n

)2

= lim
nÑ8

n
ÿ

i=1

f (xi)∆x with f (x) =
a

4´ x2 and ∆x =
2
n

=

ż 0

´2

a

4´ x2 dx

(a, solution #2) Set xi =
2i
n . Then a = x0 = 0 and b = xn = 2 and ∆x = 2

n . So

lim
nÑ8

n
ÿ

i=1

2
n

d

4´
(
´2 +

2i
n

)2

= lim
nÑ8

n
ÿ

i=1

f (xi)∆x with f (x) =
b

4´ (´2 + x)2, ∆x =
2
n

=

ż 2

0

b

4´ (´2 + x)2 dx

(b) For the integral
ş0
´2

?
4´ x2 dx, y =

?
4´ x2 is equivalent to x2 + y2 = 4, y ě 0. So the

integral represents the area between the upper half of the circle x2 + y2 = 4 (which has
radius 2) and the x-axis with ´2 ď x ď 0, which is a quarter circle with area 1

4 π22 = π.

S-15: (a) The left Riemann sum is defined as

Ln =
n
ÿ

i=1

f (xi´1)∆x with xi = a + i∆x

We subdivide into n = 3 intervals, so that ∆x = b´a
n = 3´0

3 = 1, x0 = 0, x1 = 1 and
x2 = 2. The function f (x) = 7 + x3 has the values f (x0) = 7 + 03 = 7,
f (x1) = 7 + 13 = 8, and f (x2) = 7 + 23 = 15, from which we evaluate

L3 =
[

f (x0) + f (x1) + f (x2)
]
∆x =

[
7 + 8 + 15

]
ˆ 1 = 30

(b) We divide into n intervals so that ∆x = b´a
n = 3

n and xi = a + i∆x = 3i
n . The right

Riemann sum is therefore:

Rn =
n
ÿ

i=1

f (xi)∆x =
n
ÿ

i=1

[
7 +

(3i)3

n3

]
3
n
=

n
ÿ

i=1

[
21
n

+
81 i3

n4

]

To calculate the sum:

Rn =

(
21
n

n
ÿ

i=1

1

)
+

(
81
n4

n
ÿ

i=1

i3

)

=
21
n
ˆ n +

81
n4 ˆ

n4 + 2n3 + n2

4
= 21 +

81
4
(1 + 2/n + 1/n2)

To evaluate the limit exactly, we take n Ñ 8. The expressions involving 1/n vanish
leaving:

ż 3

0
(7 + x3)dx = lim

nÑ8
Rn = 21 +

81
4

= 41
1
4
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S-16: In general, the n slice, the right–endpoint Riemann sum approximation to the
integral

şb
a f (x)dx is

n
ÿ

i=1

f (a + i∆x)∆x

where ∆x = b´a
n . In this problem, a = 2, b = 4, and f (x) = x2, so that ∆x = 2

n and the n
slice, the right–endpoint Riemann sum approximation becomes

n
ÿ

i=1

(
2 +

2i
n

)2 2
n
=

n
ÿ

i=1

8
n
+

n
ÿ

i=1

16i
n2 +

n
ÿ

i=1

8i2

n3

=
8
n

n +
16
n2

n(n + 1)
2

+
8
n3 n

(n + 1)(2n + 1)
6

= 8 + 8
(

1 +
1
n

)
+

4
3

(
1 +

1
n

)(
2 +

1
n

)

So
ż 4

2
x2 dx = lim

nÑ8

[
8 + 8

(
1 +

1
n

)
+

4
3

(
1 +

1
n

)(
2 +

1
n

)]
= 8 + 8 +

4
3
ˆ 2 =

56
3

S-17: We’ll use right Riemann sums with a = 0 and b = 2. When there are n strips
∆x = b´a

n = 2
n and xi = a + i∆x = 2i/n. So we need to evaluate

lim
nÑ8

n
ÿ

i=1

(
x3

i + xi

)
∆x = lim

nÑ8

n
ÿ

i=1

((
2i
n

)3

+
2i
n

)
2
n

= lim
nÑ8

2
n

n
ÿ

i=1

(
8i3

n3 +
2i
n

)

= lim
nÑ8

(
16
n4

n
ÿ

i=1

i3 +
4
n2

n
ÿ

i=1

i

)

= lim
nÑ8

(
16(n4 + 2n3 + n2)

n4 ¨ 4
+

4(n2 + n)
n2 ¨ 2

)

= lim
nÑ8

(
16
4

(
1 +

2
n
+

1
n2

)
+

4
2

(
1 +

1
n

))

=
16
4

+
4
2
= 6.

S-18: We’ll use right Riemann sums with a = 1, b = 4 and f (x) = 2x´ 1. When there are
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n strips ∆x = b´a
n = 3

n and xi = a + i∆x = 1 + 3i/n. So we need to evaluate

lim
nÑ8

n
ÿ

i=1

f (xi)∆x = lim
nÑ8

n
ÿ

i=1

(2xi ´ 1)∆x = lim
nÑ8

n
ÿ

i=1

(
2 +

6i
n
´ 1
)

3
n

= lim
nÑ8

3
n

n
ÿ

i=1

(
6i
n
+ 1
)

= lim
nÑ8

(
18
n2

n
ÿ

i=1

i +
3
n

n
ÿ

i=1

1

)

= lim
nÑ8

(
18 ¨ n(n + 1)

n2 ¨ 2
+

3
n

n
)

= lim
nÑ8

(
9
(

1 +
1
n

)
+ 3
)

= 9 + 3 = 12.

Solutions to Exercises 1.2 — Jump to TABLE OF CONTENTS

S-1: (a) False. For example if

f (x) =

#

0 for x ă 0
1 for x ě 0

then
ş´2
´3 f (x)dx = 0 and

ş2
3 f (x)dx = 1.

(b) False. For example, if f (x) = g(x) = x, then
ż ´2

´3
f (x)dx =

ż ´2

´3
x dx =

[
x2

2

]´2

´3
=

4
2
´

9
2
= ´

5
2

while
ż 3

2
f (x)dx =

ż 3

2
x dx =

[
x2

2

]3

2
=

9
2
´

4
2
=

5
2

(c) False. For example, if f (x) = g(x) = x, then
ş1

0 f (x) ¨ g(x) dx =
ş1

0 x2 dx = 1
3 and

ş1
0 f (x) dx ¨

ş1
0 g(x) dx =

ş1
0 x dx ¨

ş1
0 x dx = 1

2 ¨
1
2 .

S-2: The operation of integration is linear (that’s part (d) of the “arithmetic of
integration” Theorem 1.2.1 in the CLP 101 notes), so that:

ż 3

2
[6 f (x)´ 3g(x)]dx =

ż 3

2
6 f (x)dx´

ż 3

2
3g(x)dx

= 6
ż 3

2
f (x)dx´ 3

ż 3

2
g(x)dx = (6ˆ (´1))´ (3ˆ 5) = ´21
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S-3: The operation of integration is linear (that’s part (d) of the “arithmetic of
integration” Theorem 1.2.1 in the CLP 101 notes), so that:

ż 2

0
[2 f (x) + 3g(x)]dx =

ż 2

0
2 f (x)dx +

ż 2

0
3g(x)dx

= 2
ż 2

0
f (x)dx + 3

ż 2

0
g(x)dx = (2ˆ 3) + (3ˆ (´4)) = ´6

S-4: Using part (d) of the “arithmetic of integration” Theorem 1.2.1, followed by parts (c)
and (b) of the “arithmetic for the domain of integration” Theorem 1.2.3 in the CLP 101
notes,

ż 2

´1

[
3g(x)´ f (x)

]
dx = 3

ż 2

´1
g(x)dx´

ż 2

´1
f (x)dx

= 3
ż 0

´1
g(x)dx + 3

ż 2

0
g(x)dx´

ż 0

´1
f (x)dx´

ż 2

0
f (x)dx

= 3
ż 0

´1
g(x)dx + 3

ż 2

0
g(x)dx +

ż ´1

0
f (x)dx´

ż 2

0
f (x)dx

= 3ˆ 3 + 3ˆ 4 + 1´ 2 = 20

S-5: Recall that

|x| =

#

´x if x ď 0
x if x ě 0

so that

|2x| =

#

´2x if x ď 0
2x if x ě 0

Also recall, from Example 1.2.5 in the CLP 101 notes that

ż b

a
x dx =

b2 ´ a2

2

So
ż 2

´1
|2x| dx =

ż 0

´1
|2x| dx +

ż 2

0
|2x| dx =

ż 0

´1
(´2x) dx +

ż 2

0
2x dx

= ´2
ż 0

´1
x dx + 2

ż 2

0
x dx = ´2

02 ´ (´1)2

2
+

22 ´ 02

2
= 1 + 4 = 5
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S-6: We first use additivity:

ż 2

´2

(
5 +

a

4´ x2
)

dx =

ż 2

´2
5 dx +

ż 2

´2

a

4´ x2 dx

The first integral represents the area of a rectangle of height 5 and width 4 and so equals
20. The second integral represents the area above the x–axis and below the curve
y =

?
4´ x2 or x2 + y2 = 4. That is a semicircle of radius 2, which has area 1

2 π22. So

ż 2

´2

(
5 +

a

4´ x2
)

dx = 20 + 2π

S-7: Note that the integrand f (x) = sin x
log(3+x2)

is an odd function because

f (´x) =
sin(´x)

log(3 + (´x)2)
=

´ sin x
log(3 + x2)

= ´ f (x)

The domain of integration ´2012 ď x ď 2012 is symmetric about x = 0. So, by Theorem
1.2.11 of the CLP notes,

ż +2012

´2012

sin x
log(3 + x2)

dx = 0

S-8: Note that the integrand f (x) = x1/3 cos x is an odd function because

f (´x) = (´x)1/3 cos(´x) = ´x1/3 cos x = ´ f (x)

The domain of integration ´2012 ď x ď 2012 is symmetric about x = 0. So, by Theorem
1.2.11 of the CLP notes,

ż +2012

´2012
x1/3 cos x dx = 0

Solutions to Exercises 1.3 — Jump to TABLE OF CONTENTS

S-1: The fundamental theorem of calculus tells us that

ż

?
5

1
f (x)dx = F(

?
5)´ F(1)

=
(
e(
?

52
´3 + 1

)
´
(
e(1

2´3) + 1
)

= e5´3
´ e1´3 = e2

´ e´2
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S-2: One function with derivative x3 is x4

4 . One function with derivative sin 2x is
´1

2 cos 2x. So the general antiderivative of f (x) is x4

4 + 1
2 cos 2x + C. To satisfy F(0) = 1,

we need1

[x4

4
+

1
2

cos 2x + C
]

x=0
= 1 ðñ

1
2
+ C = 1 ðñ C =

1
2

So F(x) = x4

4 + 1
2 cos 2x + 1

2 .

S-3: (a) This is true, by part 2 of the fundamental theorem of calculus, Thereom 1.3.1 in
the CLP 101 notes, with G(x) = f (x) and f (x) replaced by f 1(x).

(b) This is not only false, but it makes no sense at all. The integrand is strictly positive so
the integral has to be strictly positive. In fact it’s +8. The fundamental theorem of
calculus does not apply because the integrand has a singularity at x = 0.

(c) This is not only false, but it makes no sense at all, unless
şb

a f (x)dx =
şb

a x f (x)dx = 0.
The left hand side is a number. The right hand side is a number times x. For example, if
a = 0, b = 1 and f (x) = 1, then the left hand side is

ş1
0 x dx = 1

2 and the right hand side is
x
ş1

0 dx = x.

S-4: By the fundamental theorem of calculus,
ż 2

0

(
x3 + sin x)dx =

(
x4

4
´ cos x

)ˇ
ˇ

ˇ

ˇ

2

0
=

24

4
´ cos 2 + cos 0 = 4´ cos 2 + 1 = 5´ cos 2.

S-5: By part (d) of our “Arithmetic of Integration” theorem, Theorem 1.2.1 in the CLP 101
notes,

ż 2

1

x2 + 2
x2 dx =

ż 2

1

[
1 +

2
x2

]
dx =

ż 2

1
dx + 2

ż 2

1

1
x2 dx

Then by the fundamental theorem of calculus,
ż 2

1
dx + 2

ż 2

1

1
x2 dx =

[
x
]2

1
+ 2
[
´

1
x

]2

1
=
[
2´ 1

]
+ 2
[
´

1
2
+ 1
]
= 2

S-6: By the fundamental theorem of calculus,

F1(x) =
d
dx

ż x

0
log(2 + sin t)dt = log(2 + sin x)

G1(y) =
d
dy

[
´

ż y

0
log(2 + sin t)dt

]
= ´ log(2 + sin y)

1 The symbol ðñ is read “if and only if”. This is used in mathematics to express the logical equivalence
of two statements. To be more precise, the statement P ðñ Q tells us that P is true whenever Q is
true and Q is true whenever P is true.
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So
F1
(π

2

)
= log 3 G1

(π

2

)
= ´ log(3)

S-7: By the fundamental theorem of calculus,

f 1(x) = 100(x2
´ 3x + 2)e´x2

= 100(x´ 1)(x´ 2)e´x2

As f (x) is increasing whenever f 1(x) ą 0 and 100e´x2
is always strictly bigger than 0, we

have f (x) increasing if and only if (x´ 1)(x´ 2) ą 0, which is the case if and only if
(x´ 1) and (x´ 2) are of the same sign. Both are positive when x ą 2 and both are
negative when x ă 1. So f (x) is increasing when ´8 ă x ă 1 and when 2 ă x ă 8.

S-8: Write G(x) =
ż x

0

1
t3 + 6

dt. By the fundamental theorem of calculus, G1(x) = 1
x3+6 .

Since F(x) = G(cos x), the chain rule gives

F1(x) = G1(cos x) ¨ (´ sin x) = ´
sin x

cos3 x + 6

S-9: Define g(x) =
şx

0 et2
dt. By the fundamental theorem of calculus, g1(x) = ex2

. As
f (x) = g(1 + x4) the chain rule gives

f 1(x) = 4x3g1(1 + x4) = 4x3e(1+x4)2

S-10: Define g(x) =
şx

0(t
6 + 8)dt. By the fundamental theorem of calculus, g1(x) = x6 + 8.

We are to compute the derivative of f (x) = g(sin x). The chain rule gives

d
dx

(
ż sin x

0
(t6 + 8)dt

)
= g1(sin x) cos x =

(
sin6 x + 8

)
cos x

S-11: Let G(x) =
şx

0 e´t sin
(

πt
2

)
dt. By the fundamental theorem of calculus,

G1(x) = e´x sin
(

πx
2

)
and, since F(x) = G(x3), F1(x) = 3x2G1(x3) = 3x2e´x3

sin
(

πx3

2

)
and

F1(1) = 3e´1 sin
(

π
2

)
= 3e´1.

S-12: Define g(x) =
ż 0

x

dt
1 + t3 = ´

ż x

0

1
1 + t3 dt, so that g1(x) = ´

1
1 + x3 by the

fundamental theorem of calculus. Then by the chain rule,

d
du

(
ż 0

cos u

dt
1 + t3

)
=

d
du

g(cos u) = g1(cos u) ¨
d
du

cos u = ´
1

1 + cos3 u
¨ (´ sin u).
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S-13: Apply d
dx to both sides of x sin(πx) =

şx
0 f (t)dt. Then, by the fundamental theorem

of calculus

d
dx

 

x sin(πx)
(

=
d
dx

ż x

0
f (t)dt = f (x) ùñ f (x) =

d
dx

 

x sin(πx)
(

= sin(πx) + πx cos(πx)

ùñ f (4) = sin(4π) + 4π cos(4π) = 4π

S-14: (a) Write

F(x) = G(x2)´ H(´x) with G(y) =
ż y

0
e´t dt, H(y) =

ż y

0
e´t2

dt

By the Fundamental Theorem of Calculus,

G1(y) = e´y H1(y) = e´y2

Hence, by the chain rule,

F1(x) = 2xG1(x2)´ (´1)H1(´x) = 2xe´(x2) + e´(´x)2
= (2x + 1)e´x2

(b) Observe that F1(x) ă 0 for x ă ´1/2 and F1(x) ą 0 for x ą ´1/2. Hence F(x) is
decreasing for x ă ´1/2 and increasing for x ą ´1/2, and F(x) must take its minimum
value when x = ´1/2.

S-15: Write

F(x) =
ż x

0
esin t dt +

ż 0

x4´x3
esin t dt =

ż x

0
esin t dt´

ż x4´x3

0
esin t dt

= G(x)´ G(x4
´ x3)

with

G(y) =
ż y

0
esin t dt

By the Fundamental Theorem of Calculus,

G1(y) = esin y

Hence, by the chain rule,

F1(x) = G1(x)´ G1(x4
´ x3)

d
dx
(
x4
´ x3)

= G1(x)´ G1(x4
´ x3) (4x3

´ 3x2)

= esin x
´ esin(x4´x3)

(
4x3

´ 3x2)
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S-16: Write

F(x) =
ż ´x2

x5
cos

(
et)dt =

ż ´x2

0
cos

(
et)dt +

ż 0

x5
cos

(
et)dt

=

ż ´x2

0
cos

(
et)dt´

ż x5

0
cos

(
et)dt

= G(´x2)´ G(x5)

with

G(y) =
ż y

0
cos

(
et)dt

By the Fundamental Theorem of Calculus,

G1(y) = cos
(
ey)

Hence, by the chain rule,

F1(x) = G1(´x2)
d
dx
(
´ x2)

´ G1(x5)
d
dx
(
x5)

= G1(´x2) (´2x)´ G1(x5) (5x4)

= ´2x cos
(
e´x2)

´ 5x4 cos
(
ex5)

S-17: Write

F(x) =
ż ex

x

?
sin t dt

=

ż ex

0

?
sin t dt +

ż 0

x

?
sin t dt =

ż ex

0

?
sin t dt´

ż x

0

?
sin t dt

= G(ex)´ G(x)

with

G(y) =
ż y

0

?
sin t dt

By the Fundamental Theorem of Calculus,

G1(y) =
a

sin y

Hence, by the chain rule,

F1(x) = G1(ex)
d
dx
(
ex)

´ G1(x)

= exG1(ex)´ G1(x)

= ex
b

sin(ex)´
b

sin(x)
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S-18: Splitting up the domain of integration

ż 5

1
f (x) dx =

ż 3

1
f (x)dx +

ż 5

3
f (x)dx

=

ż 3

1
3 dx +

ż 5

3
x dx

= 3x
ˇ

ˇ

ˇ

ˇ

x=3

x=1
+

x2

2

ˇ

ˇ

ˇ

ˇ

x=5

x=3

= 14

S-19: Applying d
dx to both sides of x2 = 1 +

şx
1 f (t) dt gives, by the Fundamental Theorem

of Calculus, 2x = f (x).

S-20: By the chain rule

d
dx
(

f 1(x)
)2

= 2 f 1(x) f 2(x)

so 1
2 f 1(x)2 is an antiderivative for f 1(x) f 2(x) and, by the fundamental theorem of

calculus,

ż 2

1
f 1(x) f 2(x)dx =

1
2

f 1(x)2
ˇ

ˇ

ˇ

ˇ

x=2

x=1
=

1
2

f 1(2)2
´

1
2

f 1(1)2 =
5
2

S-21: The car stops when v(t) = 30´ 10t = 0, which occurs at time t = 3. The distance
covered up to that time is

ż 3

0
v(t)dt = (30t´ 5t2)

ˇ

ˇ

ˇ

3

0
= (90´ 45)´ 0 = 45 m.

S-22: Define g(x) =
şx

0 log
(
1 + et)dt. By the fundamental theorem of calculus,

g1(x) = log
(
1 + ex). But f (x) = g(2x´ x2), so, by the chain rule,

f 1(x) = g1(2x´ x2) ¨
d
dx

(2x´ x2) = (2´ 2x) ¨ log
(
1 + e2x´x2)

Observe that e2x´x2
ą 0 for all x so that 1 + e2x´x2

ą 1 for all x and log
(
1 + e2x´x2)

ą 0
for all x. Since 2´ 2x is positive for x ă 1 and negative for x ą 1, f 1(x) is also positive for
x ă 1 and negative for x ą 1. That is, f (x) is increasing for x ă 1 and decreasing for
x ą 1. So f (x) achieves its absolute maximum at x = 1.
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S-23: Let f (x) =
şx2´2x

0
dt

1+t4 and g(x) =
şx

0
dt

1+t4 . Then g1(x) = 1
1+x4 and, since

f (x) = g(x2 ´ 2x), f 1(x) = (2x´ 2)g1(x2 ´ 2x) = 2 x´1
1+(x2´2x)4 . This is zero for x = 1,

negative for x ă 1 and positive for x ą 1. Thus as x runs from ´8 to8, f (x) decreases
until x reaches 1 and then increases all x ą 1. So the minimum of f (x) is achieved for
x = 1. At x = 1, x2 ´ 2x = ´1 and f (1) =

ş´1
0

dt
1+t4 .

S-24: Define G(x) =
şx

0 sin(
?

t)dt. By the fundamental theorem of calculus
G1(x) = sin(

?
x). Since F(x) = G(x2) we have F1(x) = 2xG1(x2) = 2x sin x. Thus F

increases as x runs from to 0 to π (since F1(x) ą 0 there) and decreases as x runs from π
to 4 ă 2π (since F1(x) ă 0 there). Thus F achieves its maximum value at x = π.

S-25: The given sum is of the form

lim
nÑ8

n
ÿ

j=1

π

n
sin
( jπ

n

)
= lim

nÑ8

n
ÿ

j=1

f (x˚j )∆x

with ∆x = π
n , x˚j = jπ

n and f (x) = sin(x). Since x˚0 = 0 and x˚n = π, the right hand side is
the definition (using the right Riemann sum) of

ż π

0
f (x)dx =

ż π

0
sin(x)dx = ´ cos(x)

ˇ

ˇ

π

0 = 2

S-26: The given sum is of the form

lim
nÑ8

1
n

n
ÿ

j=1

1

1 + j
n

= lim
nÑ8

n
ÿ

j=1

f (xj)∆x

with ∆x = 1
n , xj =

j
n and f (x) = 1

1+x . The right hand side is the definition (using the
right Riemann sum) of

ż 1

0
f (x) dx =

ż 1

0

1
1 + x

dx = log |1 + x|
ˇ

ˇ

ˇ

1

0
= log 2

S-27: (a) Using the product rule, followed by the chain rule, followed by the fundamental
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theorem of calculus,

f 1(x) = 3x2
ż x3+1

0
et3

dt + x3 d
dx

ż x3+1

0
et3

dt

= 3x2
ż x3+1

0
et3

dt + x3 [3x2]
[

d
dy

ż y

0
et3

dt

]

y=x3+1

= 3x2
ż x3+1

0
et3

dt + x3 [3x2][ey3
]

y=x3+1

= 3x2
ż x3+1

0
et3

dt + x3 [3x2]e(x3+1)3

= 3x2
ż x3+1

0
et3

dt + 3x5e(x3+1)3

(b) In general, the equation of the tangent line to the graph of y = f (x) at x = a is

y = f (a) + f 1(a) (x´ a)

Substituting in the given f (x) and

a = ´1 a3 + 1 = (´1)3 + 1 = 0

f (´1) = (´1)3
ż 0

0
et3

dt = 0 f 1(´1) = 3(´1)2
ˆ 0 + 3(´1)5e03

= ´3

the equation of the tangent line is y = ´3(x + 1)

Solutions to Exercises 1.4 — Jump to TABLE OF CONTENTS

S-1: We substitute u = sin x, du = cos x dx, cos x =
a

1´ sin2 x =
?

1´ u2,
dx = du

cos x = du?
1´u2

. When x = 0 we have u = sin 0 = 0 and when x = π
2 we have

u = sin π
2 = 1 so that

ż x=π/2

x=0
f (sin x)dx =

ż u=1

u=0
f (u)

du
?

1´ u2

S-2: We write u(x) = ex2
and find du = u1(x)dx = 2xex2

dx. Note that u(1) = e12
= e

when x = 1, and u(0) = e02
= 1 when x = 0. Therefore:

ż 1

0
xex2

cos(ex2
)dx =

1
2

ż x=1

x=0
cos(u(x))u1(x)dx

=
1
2

ż u=e

u=1
cos(u)du

=
1
2

sin(u)
ˇ

ˇ

e
1 =

1
2
(

sin(e)´ sin(1)
)
.
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S-3: Substituting y = x3, dy = 3x2

ż 2

1
x2 f (x3)dx =

1
3

ż 8

1
f (y)dy =

1
3

S-4: Setting u = x3 + 1, we have du = 3x2 dx and so
ż

x2 dx

(x3 + 1)101 =

ż

du/3
u101 = ´

1
3ˆ 100u100 + C = ´

1

300(x3 + 1)100 + C

S-5: Setting u = log x, we have du = 1
x dx and so

ż e4

e

dx
x log x

=

ż x=e4

x=e

1
log x

¨
1
x

dx =

ż u=4

u=1

1
u

du,

since u = log(e) = 1 when x = e and u = log(e4) = 4 when x = e4. Then, by the
fundamental theorem of calculus,

ż 4

1

1
u

du = (log |u|)
ˇ

ˇ

ˇ

4

1
= log 4´ log 1 = log 4.

S-6: Setting u = 1 + sin x, we have du = cos x dx and so
ż π/2

0

cos x
1 + sin x

dx =

ż x=π/2

x=0

1
1 + sin x

cos x dx =

ż u=2

u=1

du
u

since u = 1 + sin 0 = 1 when x = 0 and u = 1 + sin(π/2) = 2 when x = π/2. Then, by
the fundamental theorem of calculus,

ż u=2

u=1

du
u

= log |u|
ˇ

ˇ

ˇ

2

1
= log 2

S-7: Setting u = sin x, we have du = cos x dx and so
ż π/2

0
cos x ¨ (1 + sin2 x)dx =

ż x=π/2

x=0
(1 + sin2 x) ¨ cos x dx =

ż u=1

u=0
(1 + u2)du,

since u = sin 0 = 0 when x = 0 and u = sin(π/2) = 1 when x = π/2. Then, by the
fundamental theorem of calculus,

ż 1

0
(1 + u2)du = (u + u3/3)

ˇ

ˇ

ˇ

1

0
= (1 + 1/3)´ 0 = 4/3.
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S-8: Substituting t = x2 ´ x, dt = (2x´ 1)dx and noting that t = 0 when x = 1 and t = 6
when x = 3,

ż 3

1
(2x´ 1)ex2´x dx =

ż 6

0
et dt =

[
et]6

0 = e6
´ 1

S-9: We use the substitution u = 4´ x2, for which du = ´2x dx,:
ż

x2 ´ 4
?

4´ x2
x dx =

ż

1
2

4´ x2
?

4´ x2
(´2x)dx

=
1
2

ż

u
?

u
du

=
1
2

ż

?
u du

=
1
2

u3/2

3/2
+ C

=
1
3
(4´ x2)3/2 + C

S-10: The slightly sneaky method: We note that d
dx ex2

= 2x ex2
, so that 1

2 ex2
is a

antiderivative for the integrand xex2
. So

ż 2

´2
xex2

dx =

[
1
2

ex2
]2

´2
=

1
2

e4
´

1
2

e4 = 0

The really sneaky method: The integrand f (x) = xex2
is an odd function (meaning that

f (´x) = ´ f (x)). So by Theorem 1.2.11 in the CLP 101 notes every integral of the form
şa
´a xex2

dx is zero.

S-11: The given sum is of the form

lim
nÑ8

n
ÿ

j=1

j
n2 sin

(
1 +

j2

n2

)
= lim

nÑ8

n
ÿ

j=1

f (x˚j )∆x

with ∆x = 1
n , x˚j = j

n and f (x) = x sin(1 + x2). Since x˚0 = 0 and x˚n = 1, the right hand
side is the definition (using the right Riemann sum) of

ż 1

0
f (x)dx =

ż 1

0
x sin(1 + x2)dx

=
1
2

ż 2

1
sin(y)dy with y = 1 + x2, dy = 2x dx

=
1
2
[
´ cos(y)

]2
1

=
1
2
[cos 1´ cos 2] « 0.478
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S-12: The given sum is of the form

lim
nÑ8

n
ÿ

j=1

j
n2 cos

( j2

n2

)
= lim

nÑ8

n
ÿ

j=1

f (x˚j )∆x

with ∆x = 1
n , x˚j = j

n and f (x) = x cos(x2). Since x˚0 = 0 and x˚n = 1, the right hand side
is the definition (using the right Riemann sum) of

ż 1

0
f (x)dx =

ż 1

0
x cos(x2)dx

=
1
2

ż 1

0
cos(y)dy with y = x2, dy = 2x dx

=
1
2

[
sin(y)

]1

0

=
1
2

sin 1

S-13: The given sum is of the form

lim
nÑ8

n
ÿ

j=1

j
n2

c

1 +
j2

n2 = lim
nÑ8

n
ÿ

j=1

f (x˚j )∆x

with ∆x = 1
n , x˚j = j

n and f (x) = x
?

1 + x2. Since x˚0 = 0 and x˚n = 1, the right hand side
is the definition (using the right Riemann sum) of

ż 1

0
f (x)dx =

ż 1

0
x
a

1 + x2 dx

=
1
2

ż 2

1

?
y dy with y = 1 + x2, dy = 2x dx

=
1
2

[y3/2

3/2

]2

1

=
1
3
[2
?

2´ 1] « 0.609

Solutions to Exercises 1.5 — Jump to TABLE OF CONTENTS

S-1: The curves intersect when y = x and y = x3 ´ x so that x = x3 ´ x or x(x2 ´ 2) = 0.
For x ě 0, the curves intersect at (0, 0) and (

?
2,
?

2). Using vertical strips as in the sketch
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x

y

y = x3 − x

y = x

(
√
2,
√
2)

the top and bottom boundaries of the specified region are y = T(x) = x and
y = B(x) = x3 ´ x, respectively. So

Area =

ż

?
2

0

[
T(x)´ B(x)

]
dx =

ż

?
2

0

[
x´ (x3

´ x)
]

dx

S-2: The curves intersect at (´8, 4) and (3,´3
2). Using horizontal strips as in the sketch

x

y

y = −x/2 or x = −2y y2 = 6− 5
4
x or x = 4

5
(6− y2)

(−8, 4)

(3,−3/2)

we have

Area =

ż 4

´3/2

[4
5
(6´ y2) + 2y

]
dy

S-3: The curves intersect at (0, 0) and (4a, 4a). Using vertical strips as in the sketch

x

y

x2 = 4ay

y2 = 4ax
(4a, 4a)

we have

Area =

ż 4a

0

[?
4ax´

x2

4a

]
dx
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S-4: The curves intersect when x = 4y2 and 0 = 4y2 + 12y + 5 = (2y + 5)(2y + 1). So the
curves intersect at (1,´1

2) and (25,´5
2). Using vertical strips as in the sketch

x

y
x+ 12y + 5 = 0 or y = − 1

12
(x+ 5)

x = 4y2 or y = ±√
x/2

(25,−5
2
)

(1,−1
2
)

we have

Area =

ż 25

1

[
´

1
12

(x + 5) +
1
2
?

x
]

dx

S-5: We are asked for the area between the top curve y = T(x) = 1
(2x´4)2 and the bottom

curve y = B(x) = 0 with x running from a = 0 to b = 1. So, by (1.5.1) in the CLP 101
notes, the area is

ż b

a

[
T(x)´ B(x)

]
dx =

ż 1

0

dx
(2x´ 4)2 =

[
´

1
2
¨

1
2x´ 4

]1

0
=
[1

4
´

1
8

]
=

1
8

S-6: The two curves y = f (x) = x and y = g(x) = 3x´ x2, intersect when

f (x) = g(x) ðñ x = 3x´ x2
ðñ 2x´ x2 = 0 ðñ x(2´ x) = 0

ðñ x = 0, 2

Furthermore g(x)´ f (x) = 2x´ x2 = x(2´ x) is positive for all 0 ď x ď 2. That is, the
curve y = 3x´ x2 lies above the line y = x for all 0 ď x ď 2. We therefore evaluate the
integral:

ż 2

0

[
(3x´ x2)´ x

]
dx =

ż 2

0
[2x´ x2]dx =

[
x2
´

x3

3

]2

0
=

[
4´

8
3

]
´ 0 =

4
3

S-7: The two curves cross when x = 0 (y = 1 for both curves) and x = 1 (y = 2 for both
curves). Since 2x = (elog 2)

x
= ex log 2, the area is

Area =

ż 1

0

[
(1 +

?
x)´ ex log 2]dx =

[
x +

2
3

x3/2
´

1
log 2

2x
]1

0

= 1 +
2
3
´

1
log 2

[2´ 1] =
5
3
´

1
log 2
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S-8: Here is a sketch of the specified region.

y =
√
2 cos(πx/4)

y = |x|y = |x|

(1, 1)(−1, 1)

x

y

It is symmetric about the y–axis. So we will compute the area of the part with x ě 0 and
multiply by 2. The curves y =

?
2 cos(πx/4) and y = x intersect when x =

?
2 cos(πx/4)

or cos(πx/4) = x?
2
, which is the case2 when x = 1. So, using vertical strips as in the

figure above, the area (including the multiplication by 2) is

2
ż 1

0

[?
2 cos(πx/4)´ x

]
dx = 2

[
?

2
4
π

sin(πx/4)´
x2

2

]1

0
= 2

[
4
π
´

1
2

]

S-9: For our computation, we will need an antiderivative of x2
?

x3 + 1, which can be
found using the substitution u = x3 + 1, du = 3x2 dx:

ż

x2
a

x3 + 1 dx =

ż

?
u ¨

1
3

du =
1
3

ż

u1/2 du =
1
3

u3/2

3/2
+ C =

2
9
(x3 + 1)3/2 + C.

The two functions f (x) and g(x) are clearly equal at x = 0. If x ‰ 0, then the functions
are equal when

3x2 = x2
a

x3 + 1

3 =
a

x3 + 1

9 = x3 + 1

8 = x3

2 = x.

The function g(x) = 3x2 is the larger of the two on the interval [0, 2], as can be seen by
plugging in x = 1, say, or by observing that when x is very small f (x) = x2

?
x3 + 1 « x2

and g(x) = 3x2.

2 The solution x = 1 was found by guessing. To guess a solution to cos(πx/4) = x?
2

just ask yourself

what simple angle has a cosine that involves
?

2. This guessing strategy is essentially useless in the real
world, but works great on problem sets and exams.
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x

y

y = 3x2

y = x2
√
x3 + 1

(2, 12)

The area in question is therefore
ż 2

0

(
3x2

´ x2
a

x3 + 1
)

dx =

(
x3
´

2
9
(x3 + 1)3/2

)ˇ
ˇ

ˇ

ˇ

2

0

=

(
23
´

2
9
(23 + 1)3/2

)
´

(
03
´

2
9
(03 + 1)3/2

)

=

(
8´ 6

)
´

(
0´

2
9

)
=

20
9

.

S-10: A point (x, y) on the curve x = y2 + y = y(y + 1) has x = 0 for y = ´1, 0, has x ă 0
for ´1 ă y ă 0 (the factors y and y + 1 have opposite signs) and has x ą 0 for y ă ´1 and
y ą 0 (the factors y and y + 1 are either both positive or both negative). This leads to the
figure below. So, using horizontal slices,

area =

ż 0

´1

(
0´ (y2 + y)

)
dy = ´

[
y3

3
+

y2

2

]0

´1
= ´

1
3
+

1
2
=

1
6

(0, 0)

(0,−1)

x

y

x = y + y2

S-11: We will compute the area by using thin vertical strips as in the sketch
y

x
π
2

π 3π
2

2π

2

4

6

8

y = 4 + π sin(x)

y = 4 + 2π − 2x

The line y = 4 + 2π ´ 2x intersects the curve y = 4 + π sin x when

4 + 2π ´ 2x = 4 + π sin x ðñ sin x = 2´
2
π

x ðñ x =
π

2
, π,

3π

2
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These solutions were guessed by looking at the sketch above, but then verified by
substituting them back into the equation. From the sketch we see that

• when π
2 ď x ď π, the top of the strip is at y = 4 + π sin x and the bottom of the strip

is at y = 4 + 2π ´ 2x. So the strip has height
[
(4 + π sin x)´ (4 + 2π ´ 2x)

]
and

width dx and hence area
[
(4 + π sin x)´ (4 + 2π ´ 2x)

]
dx.

• when π ď x ď 3π
2 , the top of the strip is at y = 4 + 2π ´ 2x and the bottom of the

strip is at y = 4 + π sin x. So the strip has height
[
(4 + 2π´ 2x)´ (4 + π sin x)

]
and

width dx and hence area
[
(4 + 2π ´ 2x)´ (4 + π sin x)

]
dx.

So the total

Area =

ż π

π/2

[
(4 + π sin x)´ (4 + 2π ´ 2x)

]
dx +

ż 3π/2

π

[
(4 + 2π ´ 2x)´ (4 + π sin x)

]
dx

=

ż π

π/2

[
π sin x´ 2π + 2x

]
dx +

ż 3π/2

π

[
2π ´ 2x´ π sin x

]
dx

=
[
´ π cos x´ 2πx + x2]π

π/2 +
[
2πx´ x2 + π cos x

]3π/2
π

=
[
π ´ π2 +

3
4

π2]+
[
π2
´

5
4

π2 + π
]

= 2
[
π ´

1
4

π2
]

S-12: First, here is a sketch of the region. We are not asked for it, but it is still a crucial for
understanding the question.

2 3
x

y

y = x+ 2

y = x2

The two curves y = x + 2 and y = x2 cross at x = 2, y = 4. The area of the part between
them with 0 ď x ď 2 is

ż 2

0

[
x + 2´ x2]dx =

[
1
2 x2 + 2x´

1
3

x3
]2

0
= 2 + 4´

8
3
=

10
3

The area of the part between them with 2 ď x ď 3 is

ż 3

2

[
x2
´ (x + 2)

]
dx =

[1
3

x3
´ 1

2 x2
´ 2x

]3

2
= 9´

9
2
´ 6´

8
3
+ 2 + 4 =

11
6
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The total area is 10
3 + 11

6 = 31
6 = 5.16̇.

S-13: The curve y = f (x) = x
?

25´ x2 lies above the line y = g(x) = 3x at all values of x
for which f (x) ě g(x), i.e. f (x)´ g(x) ě 0. Now

f (x)´ g(x) = x
a

25´ x2 ´ 3x = x
(a

25´ x2 ´ 3
)

The first factor is positive for all x ě 0. The second factor is positive whenever

a

25´ x2 ´ 3 ě 0 ðñ

a

25´ x2 ě 3 ðñ 25´ x2
ě 9 ðñ x2

ď 16
ðñ |x| ď 4

So y = f (x) = x
?

25´ x2 lies above y = g(x) = 3x for all 0 ď x ď 4. The area we need to
calculate is therefore:

A =

ż 4

0
[x
a

25´ x2 ´ 3x]dx =

ż 4

0
x
a

25´ x2 dx´
ż 4

0
3x dx = A1 ´ A2.

To evaluate A1, we use the substitution u(x) = 25´ x2, for which
du = u1(x)dx = ´2x dx; and u(4) = 25´ 42 = 9 when x = 4, while u(0) = 25´ 02 = 25
when x = 0. Therefore

A1 =

ż x=4

x=0
x
a

25´ x2 dx = ´
1
2

ż u=9

u=25

?
u du = ´

1
3

u3/2
ˇ

ˇ

ˇ

ˇ

9

25
=

125´ 27
3

=
98
3

For A2 we use the antiderivative directly:

A2 =

ż 4

0
3x dx =

3x2

2

ˇ

ˇ

ˇ

ˇ

4

0
= 24

Therefore the total area is:

A =
98
3
´ 24 =

26
3

Solutions to Exercises 1.6 — Jump to TABLE OF CONTENTS

S-1: (a) When the strip shown in the figure

x3

y y =
√
x ex

2
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is rotated about the x–axis, it forms a thin disk of radius
?

xex2
and thickness dx and

hence of cross sectional area πxe2x2
and volume πxe2x2

dx So the volume of the solid is

π

ż 3

0
xe2x2

dx

(b) The curves intersect at (´1, 1) and (2, 4).

x

y

y = x2 or x = ±√
y

y = x+ 2 or x = y − 2

x = 3

y = 1
(−1, 1)

(2, 4)

We’ll use horizontal washers as in Example 1.6.5 of the CLP 101 notes.

• We use thin horizontal strips of width dy as in the figure above.

• When we rotate about the line x = 3, each strip sweeps out a thin washer

– whose inner radius is rin = 3´
?y, and

– whose outer radius is rout = 3´ (y´ 2) = 5´ y when y ě 1 (see the red strip
in the figure on the right above), and whose outer radius is
rout = 3´ (´

?y) = 3 +
?y when y ď 1 (see the blue strip in the figure on the

right above) and

– whose thickness is dy and hence

– whose volume is π(r2
out ´ r2

in)dy = π
[(

5´ y
)2
´
(
3´

?y
)2]dy when y ě 1 and

whose volume is π(r2
out ´ r2

in)dy = π
[(

3 +
?y
)2
´
(
3´

?y
)2]dy when y ď 1

and

• As our bottommost strip is at y = 0 and our topmost strip is at y = 4, the total
volume is

ż 1

0
π
[(

3 +
?

y
)2
´
(
3´

?
y
)2]dy +

ż 4

1
π
[(

5´ y
)2
´
(
3´

?
y
)2]dy

S-2: (a) The curves intersect at (1, 0) and (´1, 0). When the strip shown in the figure
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x
y = −1

y

y = 4− 4x2

y = 1− x2

(−1, 0) (1, 0)

is rotated about the line y = ´1, it forms a thin washer of

• inner radius (1´ x2)´ (´1) = 2´ x2,

• outer radius (4´ 4x2)´ (´1) = 5´ 4x2 and

• thickness dx and hence of

• cross sectional area π
[
(5´ 4x2)

2
´ (2´ x2)

2] and

• volume π
[
(5´ 4x2)

2
´ (2´ x2)

2]dx.

So the volume of the solid is
ż 1

´1
π
[
(5´ 4x2)

2
´ (2´ x2)

2]
dx

(b) The curve y = x2 ´ 1 intersects y = 0 at (1, 0) and (´1, 0).

x

y

y = x2 − 1 or x = ±√
y + 1

x = 5

(−1, 0) (1, 0)

(0,−1)

We’ll use horizontal washers.

• We use thin horizontal strips of width dy as in the figure above.

• When we rotate about the line x = 5, each strip sweeps out a thin washer

– whose inner radius is rin = 5´
a

y + 1, and

– whose outer radius is rout = 5´ (´
a

y + 1) = 5 +
a

y + 1 and

– whose thickness is dy and hence

– whose volume is π(r2
out ´ r2

in)dy = π
[(

5 +
a

y + 1
)2
´
(
5´

a

y + 1
)2]dy
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• As our topmost strip is at y = 0 and our bottommost strip is at y = ´1 (when
x = 0), the total volume is

ż 0

´1
π
[(

5 +
a

y + 1
)2
´
(
5´

a

y + 1
)2]dy

S-3: (a) The curves intersect at (´2, 4) and (2, 4). When the strip shown in the figure

x

yy = x2

y = 8− x2
y = −1

(−2, 4) (2, 4)

is rotated about the line y = ´1, it forms a thin washer (punctured disc) of

• inner radius x2 + 1,

• outer radius 9´ x2 and

• thickness dx and hence of

• cross sectional area π
[
(9´ x2)

2
´ (x2 + 1)2] and

• volume π
[
(9´ x2)

2
´ (x2 + 1)2]dx.

So the volume of the solid is

π

ż 2

´2

[
(9´ x2)

2
´ (x2 + 1)

2]
dx

S-4: (a) The curves intersect at points (x, y) which satisfy both y2 = 4ax and x2 = 4ay.
Substituting y = x2

4a (from the second equation) into the first equation gives

x4

42a2 = 4ax ðñ x4 = 43a3x ðñ x(x3
´ 43a3) = 0

This has two solutions: x = 0 and x = 4a. The corresponding values of y are y = 0 and
y = 4a. So the curves intesect at (0, 0) and (4a, 4a). The strip shown in the figure

(4a, 4a)

x

y

x2 = 4ay

y2 = 4ax
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runs from y = B(x) = x2

4a (gotten by solving x2 = 4ay for y) to y = T(x) =
?

4ax (gotten
by solving y2 = 4ax for y) and hence has height T(x)´ B(x) =

?
4ax´ x2

4a and width dx.
So the desired

Area =

ż 4a

0

[?
4ax´

x2

4a

]
dx

(b) The curves intersect at points (x, y) which satisfy both y = 1´ x2 and y = 4(1´ x2).
That is, where

1´ x2 = 4(1´ x2) ðñ 3(1´ x2) = 0 ðñ x = ˘1

Thus the curves intersect at (1, 0) and (´1, 0). When the strip shown in the figure

(−1, 0) (1, 0)
x

y

y = 4− 4x2

y = 1− x2

y = −1

is rotated about the line y = ´1, it forms a thin washer (punctured disc) of

• inner radius (1´ x2)´ (´1) = 2´ x2,

• outer radius (4´ 4x2)´ (´1) = 5´ 4x2 and

• thickness dx and hence of

• cross sectional area π
[
(5´ 4x2)

2
´ (2´ x2)

2] and

• volume π
[
5´ 4x2)

2
´ (2´ x2)

2]dx.

So the volume of the solid is
ż 1

´1
π
[
(5´ 4x2)

2
´ (2´ x2)

2]
dx

(c) Note that solving y = x2 ´ 1 for x gives x = ˘
a

y + 1. When the strip shown in the
figure

(0,−1)

x

y

y = x2 − 1

x = 5

is rotated about the line x = 5, it forms a thin washer (punctured disc) of

• inner radius 5´
a

y + 1,

• outer radius 5 +
a

y + 1 and
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• thickness dy and hence of

• cross sectional area π
[
(5 +

a

y + 1)2
´ (5´

a

y + 1)2]
= 20π

a

y + 1 and

• volume π
[
(5 +

a

y + 1)2
´ (5´

a

y + 1)2]dy = 20π
a

y + 1 dy.

So the volume of the solid is
ż 0

´1
π
[
(5 +

a

y + 1)
2
´ (5´

a

y + 1)
2]

dy =

ż 0

´1
20π

a

y + 1 dy

S-5: Let f (x) = 1 +
?

xex2
. On the vertical slice a distance x from the y-axis, sketched in

the figure below, y runs from 1 to f (x). Upon rotation about the line y = 1, this thin slice
sweeps out a cylinder of thickess dx and radius f (x)´ 1 and hence of volume
π[ f (x)´ 1]2 dx. The full volume generated (for any fixed a ą 0) is

ż a

0
π[ f (x)´ 1]2 dx = π

ż a

0
xe2x2

dx.

Using the substitution u = 2x2, so that du = 4x dx:

Volume = π

ż 2a2

0
eu du

4
=

π

4
eu
ˇ

ˇ

ˇ

2a2

0
=

π

4

(
e2a2

´ 1
)

xx = a

y y = 1 +
√
xex

2

y = 1

S-6: For a fixed value of x, if we rotate about the x-axis, we form a washer of inner radius
B(x) and outer radius T(x) and hence of area π[T(x)2 ´ B(x)2]. We integrate this
function from x = 0 to x = 3 to find the total volume V:

V =

ż 3

0
π[T(x)2

´ B(x)2]dx

= π

ż 3

0
(
?

xe3x)2
´ (
?

x(1 + 2x))2 dx

= π

ż 3

0

(
xe6x

´ (x + 4x2 + 4x3)
)

dx

= π

ż 3

0
xe6x dx´ π

[x2

2
+

4x3

3
+ x4

]3

0

= π

ż 3

0
xe6x dx´ π

[32

2
+

4 ¨ 33

3
+ 34

]

For the first integral, we use integration by parts with u(x) = x, dv = e6xdx, so that
du = dx and v(x) = 1

6 e6x:
ż 3

0
xe6x dx =

xe6x

6

ˇ

ˇ

ˇ

ˇ

3

0
´

ż 3

0

1
6

e6x dx

=
3e18

6
´ 0´

1
36

e6x
ˇ

ˇ

ˇ

ˇ

3

0
=

e18

2
´

(
e18

36
´

1
36

)
.
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Therefore, the total volume is

V = π

[
e18

2
´

(
e18

36
´

1
36

)]
´ π

[
32

2
+

4 ¨ 33

3
+ 34

]
= π

(
17e18 ´ 4373

36

)
.

S-7:

The curves y = 1/x and 3x + 3y = 10, i.e. y = 10
3 ´ x intersect when

1
x
=

10
3
´ x ðñ 3 = 10x´ 3x2

ðñ 3x2
´ 10x + 3 = 0

ðñ (3x´ 1)(x´ 3) = 0

ðñ x = 3 ,
1
3

y = 0

y

(3, 1/3)

(1/3, 3)

y = T (x)

y = B(x)

When the region is rotated about the x–axis, the vertical strip in the figure above sweeps
out a washer with thickness dx, outer radius T(x) = 10

3 ´ x and inner radius B(x) = 1
x .

This washer has volume

π
(
T(x)2

´ B(x)2)dx = π
(100

9
´

20
3

x + x2
´

1
x2

)
dx

Hence the volume of the solid is

π

ż 3

1/3

(100
9
´

20
3

x + x2
´

1
x2

)
dx = π

[100x
9

´
10
3

x2 +
1
3

x3 +
1
x

]3

1/3

= π
[38

3
´

514
34

]
= π

512
81

S-8: (a) The top and the bottom of the circle have equations y = T(x) = 2 +
?

1´ x2 and
y = B(x) = 2´

?
1´ x2, respectively.
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y = 0

x = −1 x = 1

y = T (x)

y = B(x)

When R is rotated about the x–axis, the vertical strip of R in the figure above sweeps out
a washer with thickness dx, outer radius T(x) and inner radius B(x). This washer has
volume

π
(
T(x)2

´ B(x)2)dx = π
(
T(x) + B(x)

)(
T(x)´ B(x)

)
dx = π ˆ 4ˆ 2

a

1´ x2 dx

Hence the volume of the solid is

8π

ż 1

´1

a

1´ x2 dx

(b) Since y =
?

1´ x2 is equivalent to x2 + y2 = 1, y ě 0, the integral is 8π times the area
of the upper half of the circle x2 + y2 = 1 and hence is 8π ˆ 1

2 π12 = 4π2.

S-9: (a) The two curves intersect when x obeys 8x = x2 + 15 or
x2 ´ 8x + 15 = (x´ 5)(x´ 3) = 0. The points of intersection, in the first quadrant, are
(3,
?

24) and (5,
?

40). The region R is the region between the blue and red curves, with
3 ď x ď 5, in the figures below.

(3,
√
24)

(5,
√
40)

R

y2 = 8x
y2 = x2 + 15

x

y

(3,
√
24)

(5,
√
40)

R

(b) The part of the solid with x coordinate between x and x + dx is a “washer” shaped
region with inner radius

?
x2 + 15, outer radius

?
8x and thickness dx. The surface area

of the washer is π(
?

8x)2 ´ π(
?

x2 + 15)2 = π(8x´ x2 ´ 15) and its volume is
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π(8x´ x2 ´ 15)dx. The total volume is
ż 5

3
π(8x´ x2

´ 15)dx = π
[
4x2

´
1
3

x3
´ 15x

]5

3
= π

[
100´

125
3
´ 75´ 36 + 9 + 45

]

=
4
3

π « 4.19

S-10: (a) The region R is sketched in the figure on the left below.

x

y

y = log x
x = 2

x

y

x = ey x = 2

(b) We’ll use horizontal washers as in Example 1.6.5 of the CLP 101 notes.

• We cut R into thin horizontal strips of width dy as in the figure on the right above.

• When we rotate R about the y–axis, i.e. about the line x = 0, each strip sweeps out a
thin washer

– whose inner radius is rin = ey and outer radius is rout = 2, and

– whose thickness is dy and hence

– whose volume π(r2
out ´ r2

in)dy = π
(
4´ e2y)dy.

• As our bottommost strip is at y = 0 and our topmost strip is at y = log 2 (since at
the top x = 2 and x = ey), the total

Volume =

ż log 2

0
π
(
4´ e2y) dy = π

[
4y´ e2y/2

]log 2
0 = π

[
4 log 2´ 2 +

1
2

]

= π
[
4 log 2´

3
2

]
« 3.998

S-11: Here is a sketch of the curves y = cos( x
2 ) and y = x2 ´ π2.

y

y = −π2

(−π, 0) (π, 0)

y = cos(x
2
)

y = x2 − π2

The curves meet at x = ˘π where both cos( x
2 ) and x2 ´ π2 take the value zero. We’ll use

vertical washers as specified in the question.
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• We cut the specified region into thin vertical strips of width dx as in the figure
above.

• When we rotate about the line y = ´π2, each strip sweeps out a thin washer

– whose inner radius is rin = (x2 ´ π2)´ (´π2) = x2 and outer radius is
rout = cos( x

2 )´ (´π2) = cos( x
2 ) + π2, and

– whose thickness is dx and hence

– whose volume π(r2
out ´ r2

in)dx = π
(
(cos( x

2 ) + π2)
2
´ (x2)

2)dx.

• As our leftmost strip is at x = ´π and our rightmost strip is at x = π,

the total volume is

π

ż π

´π

(
cos2( x

2 ) + 2π2 cos( x
2 ) + π4

´ x4
)

dx

= π

ż π

´π

(
1 + cos(x)

2
+ 2π2 cos( x

2 ) + π4
´ x4

)
dx

= 2π

ż π

0

(
1 + cos(x)

2
+ 2π2 cos( x

2 ) + π4
´ x4

)
dx

= 2π

[
1
2

x +
1
2

sin(x) + 4π2 sin( x
2 ) + π4x´

1
5

x5
]π

0

= 2π

[
π

2
+ 0 + 4π2 + π5

´
π5

5

]

= π2 + 8π3 +
8π6

5

In the middle line, we used the fact that the integrand is an even function and the
interval of integration [´π, π] is symmetric, but one can also compute directly.

S-12: As in Example 1.6.6 of the CLP 101 notes, we slice V into thin horizontal “square
pancakes”.

• We are told that the pancake at height x is a square of side 2
1+x and so

• has cross-sectional area
( 2

1+x
)2 and thickness dx and hence

• has volume
( 2

1+x
)2dx.

Hence the volume of V is

ż 2

0

[ 2
1 + x

]2
dx =

ż 3

1

4
u2 du = 4

u´1

´1

ˇ

ˇ

ˇ

ˇ

3

1
= ´4

[1
3
´ 1
]
=

8
3

We made the change of variables u = 1 + x, du = dx.

S-13: Here is a sketch of the base region.
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x

y

y = 8− x2

y = x2

Consider the thin vertical cross–section resting on the heavy red line in the figure above.
It has thickness dx. Its face is a square whose side runs from y = x2 to y = 8´ x2, a
distance of 8´ 2x2. So the face has area (8´ 2x2)

2 and the slice has volume (8´ 2x2)
2 dx.

The two curves cross when x2 = 8´ x2, i.e. when x2 = 4 or x = ˘2. So x runs from ´2 to
2 and the total volume is

ż 2

´2
(8´ 2x2)

2
dx = 2

ż 2

0
4(4´ x2)

2
dx = 8

ż 2

0

[
16´ 8x2 + x4]dx

= 8
[
16ˆ 2´

8
3

23 +
1
5

25
]
=

256ˆ 8
15

= 136.53̇

S-14: Slice the frustrum into horizontal discs. When the disc is a distance t from the top of
the frustrum it has radius 2 + 2t/h. Note that as t runs from 0 (the top of the frustrum) to
t = h (the bottom of the frustrum) the radius 2 + 2t/h increases linearly from 2 to 4.

h

2

4

t

Thus the disk has volume π
(
2 + 2t/h

)2dt. The total volume of the frustrum is

π

ż h

0

(
2 + 2t/h

)2dt = 4π

ż h

0

(
1 + t/h

)2dt = 4π
(1 + t/h)3

3/h

ˇ

ˇ

ˇ

ˇ

h

0
=

4
3

πhˆ 7 =
28
3

πh

S-15: (a) The curve y = 4´ (x´ 1)2 is an “upside down parabola” and line y = x + 1 has
slope 1. They intersect at points (x, y) which satisfy both y = x + 1 and y = 4´ (x´ 1)2.
That is, when x obeys

x + 1 = 4´ (x´ 1)2
ðñ x + 1 = 4´ x2 + 2x´ 1 ðñ x2

´ x´ 2 = 0
ðñ (x´ 2)(x + 1) = 0 ðñ x = ´1, 2

Thus the intersection points are (´1, 0) and (2, 3). Here is a sketch of R

123



y

x
(−1, 0)

(2, 3)

y = 4− (x− 1)2

y = x+ 1

The red strip in the sketch above runs from y = x + 1 to y = 4´ (x´ 1)2 and so has area
[4´ (x´ 1)2 ´ (x + 1)]dx = [2 + x´ x2]dx. All together R has

Area =

ż 2

´1

[
2 + x´ x2] dx

=

[
2x +

x2

2
´

x3

3

]2

´1

= 6 +
3
2
´

9
3
=

9
2

(b) We’ll use vertical washers as in Example 1.6.3 of the CLP 101 notes.
y

x

y = 5

(−1, 0)

(2, 3)

y = 4− (x− 1)2

y = x+ 1

• We cut R into thin vertical strips of width dx like the red strip in the figure above.

• When we rotate R about the horizontal line y = 5, each strip sweeps out a thin
washer

– whose inner radius is rin = 5´ [4´ (x´ 1)2] = 1 + (x´ 1)2, and

– whose outer radius is rout = 5´ [x + 1] = 4´ x and

– whose thickness is dx and hence

– whose volume is π
[
r2

out ´ r2
in
]

dx = π
[(

4´ x
)2
´
(
1 + (x´ 1)2)2]dx

• As our leftmost strip is at x = ´1 and our rightmost strip is at x = 2, the total

Volume = π

ż 2

´1

[(
4´ x

)2
´
(
1 + (x´ 1)2)2]

dx
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S-16: (a) The curves (x´ 1)2 + y2 = 1 and x2 + (y´ 1)2 = 1 are circles of radius 1
centered on (1, 0) and (0, 1) respectively. Both circles pass through (0, 0) and (1, 1). They
are sketched below.

x

y

y = x

(1, 1)
x2 + (y − 1)2 = 1

(x− 1)2 + y2 = 1

The regionR is symmetric about the line y = x, so the area ofR is twice the area of the
part ofR to the left of the line y = x. The red strip in the sketch above runs from
x = 1´

a

1´ y2 to x = y

Area = 2
ż 1

0

[
y´

(
1´

b

1´ y2
)]

dy

= 2
![y2

2
´ y
]1

0
+

ż 1

0

b

1´ y2 dy
)

=
π

2
´ 1

Here the integral
ş1

0

a

1´ y2 dy was evaluated simply as the area of one quarter of a
cicular disk of radius 1. It can also be evaluated by substituting y = sin θ.

(b) We’ll use horizontal washers as in Example 1.6.5 of the CLP 101 notes.

• We cutR into thin horizontal strips of width dy like the blue strip in the figure
above.

• When we rotateR about the y–axis, each strip sweeps out a thin washer

– whose inner radius is rin = 1´
a

1´ y2, and

– whose outer radius is rout =
a

1´ (y´ 1)2 and

– whose thickness is dy and hence

– whose volume is π
[(a

1´ (y´ 1)2
)2
´
(
1´

a

1´ y2
)2]

dy
= 2π

[a
1´ y2 + y´ 1

]
dy
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• As our bottommost strip is at y = 0 and our topmost strip is at y = 1, the total

Volume = 2π

ż 1

0

[b
1´ y2 + y´ 1

]
dy = 2π

[π

4
+

1
2
´ 1
]

=
π2

2
´ π « 1.793

Here, we again used that
ş1

0

a

1´ y2 dy is the area of a quarter circle of radius one.

S-17: (a) Let V1 be the solid obtained by revolvingR about the x–axis. The portion of V1
with x–coordinate between x and x + dx is obtained by rotating the red vertical strip in
the figure on the left below about the x–axis. That portion is a disk of radius c

?
1 + x2

and thickness dx. The volume of this disk is π(c
?

1 + x2)2dx = πc2(1 + x2)dx. So the
total volume of V1 is

V1 =

ż 1

0
πc2(1 + x2)dx = πc2

[
x +

x3

3

]1

0
=

4
3

πc2

x = 1

y = c
√
1 + x2

x

y

c

x = 1

x =
√

y2

c2
− 1

x

y

c

(b) We’ll use horizontal washers as in Example 1.6.5 of the CLP 101 notes.

• We cutR into thin horizontal strips of width dy as in the figure on the right above.

• When we rotateR about the y–axis, i.e. about the line x = 0, each strip sweeps out
a thin washer

– whose outer radius is rout = 1, and

– whose inner radius is rin =
b

y2

c2 ´ 1 when y ě c
?

1 + 02 = c (see the red strip
in the figure on the right above), and whose inner radius is rin = 0 when y ď c
(see the blue strip in the figure on the right above) and

– whose thickness is dy and hence

– whose volume is π(r2
out ´ r2

in)dy = π
(
2´ y2

c2

)
dy when y ě c and whose

volume is π(r2
out ´ r2

in)dy = π dy when y ď c and

• As our bottommost strip is at y = 0 and our topmost strip is at y =
?

2 c (since at
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the top x = 1 and y = c
?

1 + x2), the total

V2 =

ż

?
2 c

c
π
(

2´
y2

c2

)
dy +

ż c

0
π dy

= π
[
2y´

y3

3c2

]
?

2 c

c
+ πc

= π c
[4
?

2
3
´

5
3

]
+ πc

=
π c
3
[
4
?

2´ 2
]
=

2π c
3
[
23/2

´ 1
]

(c) We have V1 = V2 if and only if

4
3

πc2 =
2
3

πc[23/2
´ 1] ðñ c = 0 or c = 1

2 [2
3/2
´ 1]

S-18: (a) The region R is

3 4

y = 10√
25−x2

x

y

(b) Let V1 be the solid obtained by revolving R about the x–axis. The portion of V1 with
x–coordinate between x and x + dx is obtained by rotating the red vertical strip in the
figure on the left below about the x–axis. That portion is a disk of radius 10?

25´x2
and

thickness dx. The volume of this disk is π
( 10?

25´x2

)2 dx. So the total volume of V1 is

ż 4

3
π
( 10
?

25´ x2

)2
dx = 100π

ż 4

3

1
25´ x2 dx = 100π

ż 4

3

1
(5´ x)(5 + x)

dx

= 10π

ż 4

3

[ 1
5´ x

+
1

5 + x

]
dx = 10π

[
´ log(5´ x) + log(5 + x)

]4

3

= 10π
[
´ log 1 + log 9 + log 2´ log 8

]
= 10π log

9
4
= 20π log

3
2

3 4

y = 10√
25−x2

x

y

3 4

5
2

x =
√
25− 100

y2

x

y
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(c) We’ll use horizontal washers as in Example 1.6.5 of the CLP 101 notes.

• We cutR into thin horizontal strips of width dy as in the figure on the right above.

• When we rotateR about the y–axis, each strip sweeps out a thin washer

– whose outer radius is rout = 4, and

– whose inner radius is rin =
b

25´ 100
y2 when y ě 10?

25´32
= 10

4 = 5
2 (see the red

strip in the figure on the right above), and whose inner radius is rin = 3 when
y ď 5

2 (see the blue strip in the figure on the right above) and

– whose thickness is dy and hence

– whose volume is π(r2
out ´ r2

in)dy = π
(100

y2 ´ 9
)
dy when y ě 5

2 and whose

volume is π(r2
out ´ r2

in)dy = 7π dy when y ď 5
2 and

• As our bottommost strip is at y = 0 and our topmost strip is at y = 10
3 (since at the

top x = 4 and y = 10?
25´x2

= 10?
25´42

= 10
3 ), the volume is

ż 10/3

5/2
π
(100

y2 ´ 9
)

dy +

ż 5/2

0
7π dy

= π
[
´

100
y
´ 9y

]10/3

5/2
+

35
2

π

= π
[
´ 30 + 40´ 30 +

45
2

]
+

35
2

π

= 20π

S-19: We will compute the volume by rotating thin vertical strips as in the sketch
y

x
π
2

π 3π
2

2π

2

4

6

8

y = 4 + π sin(x)

y = 4 + 2π − 2x

about the line y = ´1 to generate thin washers. The line y = 4 + 2π ´ 2x intersects the
curve y = 4 + π sin x when

4 + 2π ´ 2x = 4 + π sin x ðñ sin x = 2´
2
π

x ðñ x =
π

2
, π,

3π

2

These solutions were guessed by looking at the sketch above, but then verified by
substituting them back into the equation. From the sketch we see that

128



• when π
2 ď x ď π, the top of the strip is at y = 4 + π sin x and the bottom of the strip

is at y = 4 + 2π ´ 2x. So when the strip is rotated we get a thin washer with outer
and inner radii R(x) = 1 + 4 + π sin x = 5 + π sin x and
r(x) = 1 + 4 + 2π ´ 2x = 5 + 2π ´ 2x, respectively.

• when π ď x ď 3π
2 , the top of the strip is at y = 4 + 2π ´ 2x and the bottom of the

strip is at y = 4 + π sin x. So when the strip is rotated we get a thin washer with
R(x) = 1 + 4 + 2π ´ 2x = 5 + 2π ´ 2x and r(x) = 1 + 4 + π sin x = 5 + π sin x,
respectively.

So the total

Volume =

ż π

π/2
π
[
R(x)2

´ r(x)2] dx +

ż 3π/2

π
π
[
R(x)2

´ r(x)2] dx

=

ż π

π/2
π
[
(5 + π sin x)2

´ (5 + 2π ´ 2x)2] dx

+

ż 3π/2

π
π
[
(5 + 2π ´ 2x)2

´ (5 + π sin x)2] dx

Solutions to Exercises 1.7 — Jump to TABLE OF CONTENTS

S-1: By integration by parts with u = log x and dv = x dx, so that du = dx
x and v = x2

2 ,

ż

x log x dx =
x2 log x

2
´

ż

x2

2
dx
x

=
x2 log x

2
´

1
2

ż

x dx

=
x2 log x

2
´

x2

4
+ C

S-2: By integration by parts with u = log x and dv = x´7 dx, so that du = dx
x and

v = ´ x´6

6 ,

ż

log x
x7 dx = ´ log x

x´6

6
+

ż

x´6

6
dx
x

= ´
log x
6x6 +

1
6

ż

x´7 dx

= ´
log x
6x6 ´

1
36x6 + C

S-3: We integrate by parts, using u = x, dv = sin x dx so that v = ´ cos x and du = dx:
ż π

0
x sin x dx = ´x cos x

ˇ

ˇ

ˇ

π

0
´

ż π

0
(´ cos x)dx =

[
´ x cos x + sin x

]π

0
= ´π(´1) = π
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S-4: We integrate by parts, using u = x, dv = cos x dx so that v = sin x and du = dx:

ż π
2

0
x cos x dx = x sin x

ˇ

ˇ

ˇ

π
2

0
´

ż π
2

0
sin x dx =

[
x sin x + cos x

] π
2

0
=

π

2
´ 1

S-5: We integrate by parts, using u = cos´1 y, dv = dy so that v = y and du = ´
dy?
1´y2 :

ż

cos´1 y dy = y cos´1 y +

ż

y
a

1´ y2
dy

= y cos´1 y´
b

1´ y2 + C

S-6: We integrate by parts, using u = arctan(2y), dv = 4y dy so that v = 2y2 and
du = 2 dy

1+(2y)2 :

ż

4y arctan(2y)dy = 2y2 arctan(2y)´
ż

4y2

(2y)2 + 1
dy

We now notice that 4y2

4y2+1 = 4y2+1
4y2+1 ´

1
4y2+1 . We therefore have

ż

4y2

4y2 + 1
dy =

ż
(

1´
1

4y2 + 1

)
dy = y´

1
2

arctan(2y) + C

The final answer is then
ż

4y arctan(2y)dy = 2y2 arctan(2y)´ y +
1
2

arctan(2y) + C

S-7: (a) Integrate by parts with u = sinn´1 x and dv = sin x dx, so that
du = (n´ 1) sinn´2 x cos x and v = ´ cos x.

ż

sinn x dx = ´ sinn´1 x cos x + (n´ 1)
ż

cos2 x sinn´2 x dx

= ´ sinn´1 x cos x + (n´ 1)
ż

(1´ sin2 x) sinn´2 x dx

= ´ sinn´1 x cos x + (n´ 1)
ż

sinn´2 x dx´ (n´ 1)
ż

sinn x dx

Moving the last term on the right hand side to the left hand side gives

n
ż

sinn x dx = ´ sinn´1 x cos x + (n´ 1)
ż

sinn´2 x dx
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Dividing across by n gives the desired reduction formula.

(b) By the reduction formula of part (a)

ż π/2

0
sinn(x)dx =

n´ 1
n

ż π/2

0
sinn´2(x)dx

for all integers n ě 2, since sin 0 = cos π
2 = 0. Applying this reduction formula, with

n = 8, 6, 4, 2,
ż π/2

0
sin8(x)dx =

7
8

ż π/2

0
sin6(x)dx =

7
8

5
6

ż π/2

0
sin4(x)dx =

7
8

5
6

3
4

ż π/2

0
sin2(x)dx

=
7
8

5
6

3
4

1
2

ż π/2

0
dx =

7
8

5
6

3
4

1
2

π

2
=

35
256

π « 0.4295

S-8: (a) The sketch is the figure on the left below. By integration by parts with
u = tan´1 x, dv = dx, v = x and du = 1

1+x2 dx,

A =

ż 1

0
tan´1 x dx = x tan´1 x

ˇ

ˇ

ˇ

1

0
´

ż 1

0

x
1 + x2 dx = tan´1 1´ 1

2 ln(1 + x2)
ˇ

ˇ

ˇ

1

0

=
π

4
´

ln 2
2

x = 1

y = tan−1 x

x

y

x = 1

x = tan y

x

y

(b) We’ll use horizontal washers as in Example 1.6.5 of the CLP 101 notes.

• We cut R into thin horizontal strips of width dy as in the figure on the right above.

• When we rotate R about the y–axis, each strip sweeps out a thin washer

– whose inner radius is rin = tan y and outer radius is rout = 1, and

– whose thickness is dy and hence

– whose volume π(r2
out ´ r2

in)dy = π(1´ tan2 y)dy.

• As our bottommost strip is at y = 0 and our topmost strip is at y = π
4 (since at the

top x = 1 and x = tan y), the total

Volume =

ż π/4

0
π(1´ tan2 y) dy =

ż π/4

0
π(2´ sec2 y) dy = π

[
2y´ tan y

]π/4

0

=
π2

2
´ π
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S-9: To get rid of the square root in the argument of f 2, we make the change of variables
x = t2, dx = 2t dt.

ż 4

0
f 2
(?

x
)

dx = 2
ż 2

0
t f 2(t)dt

Then, to convert f 2 into f 1 ,we integration by parts with u = t, dv = f 2(t)dt, v = f 1(t).

ż 4

0
f 2
(?

x
)

dx = 2
"

t f 1(t)
ˇ

ˇ

ˇ

2

0
´

ż 2

0
f 1(t)dt

*

= 2
[
t f 1(t)´ f (t)

]2

0

= 2
[
2 f 1(2)´ f (2) + f (0)

]
= 2

[
2ˆ 4´ 3 + 1

]

= 12

Solutions to Exercises 1.8 — Jump to TABLE OF CONTENTS

S-1: Make the substitution u = sin x, so that du = cos x dx and
cos2 x = 1´ sin2 x = 1´ u2:

ż

cos3 x dx =

ż

(1´ sin2 x) cos x dx =

ż

(1´ u2)du

= u´
u3

3
+ C = sin x´

sin3 x
3

+ C

S-2: Make the substitution u = sin t, so that du = cos t dt and cos2 t = 1´ sin2 t = 1´ u2:
ż

sin36 t cos3 t dt =
ż

sin36 t (1´ sin2 t) cos t dt =
ż

u36(1´ u2)du

=
u37

37
´

u39

39
+ C =

sin37 t
37

´
sin39 t

39
+ C

S-3: First solution: Substituting u = cos x, du = ´ sin x dx, sin2 x = 1´ cos2 x = 1´ u2,
gives

ż

tan3 x sec5 x dx =

ż

sin3 x
cos8 x

dx =

ż

(1´ cos2 x) sin x
cos8 x

dx = ´

ż

1´ u2

u8 du

= ´

[u´7

´7
´

u´5

´5

]
+ C =

1
7

sec7 x´
1
5

sec5 x + C

132



Second solution: Alternatively, substituting u = sec x, du = sec x tan x dx,
tan2 x = sec2 x´ 1 = u2 ´ 1, gives

ż

tan3 x sec5 x dx =

ż

tan2 x sec4 x (tan x sec x)dx =

ż

(u2
´ 1)u4 du

=
[u7

7
´

u5

5

]
+ C =

1
7

sec7 x´
1
5

sec5 x + C

S-4: Use the substitution u = tan x, so that du = sec2 x dx:
ż

sec4 x tan46 x dx =

ż

(tan2 x + 1) tan46 x sec2 x dx =

ż

(u2 + 1)u46 du

=
u49

49
+

u47

47
+ C =

tan49 x
49

+
tan47 x

47
+ C

S-5: Using the trig identity cos2 x = 1+cos(2x)
2 , we have

ż

cos2 xdx =
1
2

ż π

0

[
1 + cos(2x)

]
dx=

1
2

[
x +

1
2

sin(2x)
]π

0
=

π

2

S-6: (a) Using the trig identity tan2 x = sec2 x´ 1 and the substitution y = tan x,
dy = sec2 x dx,

ż

tann x dx =

ż

tann´2 x tan2 x dx =

ż

tann´2 x sec2 x dx´
ż

tann´2 x dx

=

ż

yn´2 dy´
ż

tann´2 x dx =
yn´1

n´ 1
´

ż

tann´2 x dx

=
tann´1 x

n´ 1
´

ż

tann´2 x dx

(b) By the reduction formula of part (a)
ż π/4

0
tann(x)dx =

1
n´ 1

´

ż π/4

0
tann´2(x)dx

for all integers n ě 2, since tan 0 = 0 and tan π
4 = 1. Applying this reduction formula,

with n = 6, 4, 2,
ż π/4

0
tan6(x)dx =

1
5
´

ż π/4

0
tan4(x)dx =

1
5
´

1
3
+

ż π/4

0
tan2(x)dx =

1
5
´

1
3
+ 1´

ż π/4

0
dx

=
1
5
´

1
3
+ 1´

π

4
=

13
15
´

π

4
« 0.0813

Solutions to Exercises 1.9 — Jump to TABLE OF CONTENTS
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S-1: (a) The substitution x = 4
3 sec θ, combined with sec2 θ ´ 1 = tan2 θ eliminates the

square root
?

9x2 ´ 16.

(b) The substitution x = 1
2 sin θ, combined with 1´ sin2 θ = cos2 θ eliminates the square

root
?

1´ 4x2.

(c) The substitution x = 5 tan θ, combined with 1 + tan2 θ = sec2 θ eliminates the square
root

?
25 + x2.

S-2: Let x = 2 tan θ, so that x2 + 4 = 4 tan2 θ + 4 = 4 sec2 θ and dx = 2 sec2 θ dθ. Then
ż

1
(x2 + 4)3/2 dx =

ż

1
(4 sec2 θ)3/2 ¨ 2 sec2 θ dθ

=

ż

2 sec2 θ

8 sec3 θ
dθ

=
1
4

ż

cos θ dθ

=
1
4

sin θ + C =
1
4

x
?

x2 + 4
+ C 2

x? x2 +
4

θ

The fact that sin θ = x?
x2+4

when tan θ = x
2 can be read off of the right angled triangle

above. In that triangle, we have chosen the lengths of the right hand and bottom sides so
that tan θ = x

2 and then we determined the length of the hypotheneuse by using
Pythagorous.

S-3: Substitute x = 2 tan u, so that dx = 2 sec2 u du. Note that when x = 4 we have
4 = 2 tan u, so that tan u = 2.

ż 4

0

1

(4 + x2)3/2 dx =

ż arctan 2

0

1

(4 + 4 tan2 u)3/2 2 sec2 u du

=
1
4

ż arctan 2

0

sec2 u
sec3 u

du

=
1
4

ż arctan 2

0
cos u du

u
1

2

√
5

=
1
4

sin u
ˇ

ˇ

ˇ

ˇ

arctan 2

0

=
1
4
(

sin(arctan 2)´ 0
)
=

1
2
?

5

That the sin of arctan 2 is 2?
5

has been read off of the triangle above. The lengths of the
right hand side and bottom of the triangle were first chosen so that tan u = 2. Then the
hypotenuse was determined by using Pythagorous.
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S-4: Substitute x = 5 tan u, so that dx = 5 sec2 u du.
ż

1
?

x2 + 25
dx =

ż

1
a

25 tan2 u + 25
5 sec2 u du

=

ż

sec2 u
sec u

du =

ż

sec u du

= log
ˇ

ˇ sec u + tan u
ˇ

ˇ+ C 5

x? x2 +
25

u

= log
ˇ

ˇ

ˇ

c

1 +
x2

25
+

x
5

ˇ

ˇ

ˇ
+ C

The fact that sec u =
b

1 + x2

25 when tan u = x
5 can be read off of the right angled triangle

above. In that triangle, we have chosen the lengths of the right hand and bottom sides so
that tan u = x

5 and then we determined the length of the hypotheneuse by using
Pythagorous.

S-5: Substitute x = 4 tan u, so that dx = 4 sec2 u du.
ż

1
x2
?

x2 + 16
dx =

ż

1

16 tan2 u
a

16 tan2 u + 16
4 sec2 u du

=

ż

sec2 u
16 tan2 u sec u

du =
1

16

ż

sec u
tan2 u

du

=
1

16

ż

cos u
sin2 u

du

To finish off the integral, we’ll substitute v = sin u, dv = cos u du.
ż

1
x2
?

x2 + 16
dx =

1
16

ż

cos u
sin2 u

du =
1

16

ż

dv
v2 = ´

1
16v

+ C

= ´
1

16 sin u
+ C = ´

1
16

c

1 +
16
x2 + C 4

x? x2 +
16

u

The fact that sin u = x?
x2+16

when tan u = x
4 can be read off of the right angled triangle

above. In that triangle, we have chosen the lengths of the right hand and bottom sides so
that tan u = x

4 and then we determined the length of the hypotheneuse by using
Pythagorous.

S-6: Make the change of variables x = 5 sin θ, dx = 5 cos θ dθ. Since x = 0 corresponds to
θ = 0 and x = 5

2 correponds to sin θ = 1
2 or θ = π

6 ,

ż 5/2

0

dx
?

25´ x2
=

ż π/6

0

5 cos θ dθ
a

25´ 25 sin2 θ
=

ż π/6

0
dθ =

π

6
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S-7: Substituting x = 3 sec u, so that dx = 3 sec u tan u du and
x2 ´ 9 = 9 sec2 u´ 9 = 9 tan2 u, gives

ż

dx
x2
?

x2 ´ 9
=

ż

3 sec u tan u du
9 sec2 u

?
9 sec2 u´ 9

=

ż

3 sec u tan u du
9 sec2 u

?
9 tan2 u

=
1
9

ż

du
sec u

u
3

√
x2 − 9

x

=
1
9

ż

cos u du =
1
9

sin u + C.

The bottom and hypotenuse of the right-angled triangle above have been chosen so that

sec u = x
3 . By Pythagorous the right hand side is

?
x2 ´ 9. So sin u =

?
x2´9
x and

ż

dx
x2
?

x2 ´ 9
=

?
x2 ´ 9
9x

+ C.

There are of course equivalent ways to write this answer—for example,

1
9

d

1´
(

3
x

)2

+ C

S-8: Substitute x = 2 sin u, so that dx = 2 cos u du.
ż

a

4´ x2 dx =

ż

a

4´ 4 sin2 u 2 cos u du

=

ż

4 cos2 u du = 2
ż [

1 + cos(2u)
]

du

= 2u + sin(2u) + C
= 2u + 2 sin u cos u + C

= 2 arcsin x
2 + x

b

1´ x2

4 + C
?

4´ x2

x2
u

The fact that cos u =
b

1´ x2

4 when sin u = x
2 can be read off of the right angled triangle

above. In that triangle, we have chosen the lengths of the right hand side and of the
hypotheneuse so that sin u = x

2 and then we determined the length of the bottom side by
Pythagorous.

S-9: This integrand looks very different from those above. But it is only slightly
disguised. If we complete the square

ż

dx
?

3´ 2x´ x2
=

ż

dx
a

4´ (x + 1)2
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and then make the substitution y = x + 1, dy = dx
ż

dx
?

3´ 2x´ x2
=

ż

dx
a

4´ (x + 1)2
=

ż

dy
a

4´ y2

we get a typical trig substitution integral. So we substitute y = 2 sin θ, dy = 2 cos θ dθ to
get

ż

dx
?

3´ 2x´ x2
=

ż

dy
a

4´ y2
=

ż

2 cos θ dθ
a

4´ 4 sin2 θ
=

ż

dθ = θ + C = arcsin
y
2
+ C

= arcsin
x + 1

2
+ C

An experienced integrator would probably substitute x + 1 = 2 sin θ directly, without
going through y.

S-10: We’ll use the trig identity cos 2θ = 2 cos2 θ ´ 1. It implies that

cos2 θ =
cos 2θ + 1

2
ùñ cos4 θ =

1
4
[

cos2 2θ + 2 cos 2θ + 1
]
=

1
4

[cos 4θ + 1
2

+ 2 cos 2θ + 1
]

=
cos 4θ

8
+

cos 2θ

2
+

3
8

So
ż π/4

0
cos4 θ dθ =

ż π/4

0

[cos 4θ

8
+

cos 2θ

2
+

3
8

]
dθ

=
[sin 4θ

32
+

sin 2θ

4
+

3
8

θ
]π/4

0

=
1
4
+

3
8

π

4

=
8 + 3π

32
as required.

(b) We’ll use the trig substitution x = tan θ, dx = sec2 θ dθ. Note that when θ = ˘π
4 , we

have x = ˘1. Also note that dividing the trig identity sin2 θ + cos2 θ = 1 by cos2 θ gives
the trig identity tan2 θ + 1 = sec2 θ. So

ż 1

´1

dx

(x2 + 1)3 = 2
ż 1

0

dx

(x2 + 1)3

= 2
ż π/4

0

sec2 θ dθ

(tan2 θ + 1)3

= 2
ż π/4

0

sec2 θ dθ

(sec2 θ)3

= 2
ż π/4

0
cos4 θ dθ

=
8 + 3π

16
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by part (a).

S-11: Substitute x = 2
5 sec u, so that dx = 2

5 sec u tan u du and
25x2 ´ 4 = 4(sec2 u´ 1) = 4 tan2 u.

ż

?
25x2 ´ 4

x
dx =

ż

2 tan u
2
5 sec u

2
5

sec u tan u du

= 2
ż

tan2 u du = 2
ż [

sec2 u´ 1
]

du

= 2 tan u´ 2u + C

=
a

25x2 ´ 4´ 2 arcsec 5x
2 + C 2

?
25x2 ´ 45x

u

The fact that tan u = 1
2

?
25x2 ´ 4 when sec u = 5x

2 can be read off of the right angled
triangle above. In that triangle, we have chosen the lengths of the bottom side and of the
hypotheneuse so that sec u = 5x

2 , i.e. cos u = 2
5x , and then we determined the length of

the right hand side by Pythagorous.

Solutions to Exercises 1.10 — Jump to TABLE OF CONTENTS

S-1: The partial fraction expansion has the form

3x3 ´ 2x2 + 11
x2(x´ 1)(x2 + 3)

=
A

x´ 1
+ various terms

When we multiply through by the original denominator, this becomes

3x3
´ 2x2 + 11 = x2(x2 + 3)A + (x´ 1)(other terms).

Evaluating both sides at x = 1 yields 3 ¨ 13 ´ 2 ¨ 12 + 11 = 12(12 + 3)A + 0, or A = 3.

S-2:

x3 + 3
(x2 ´ 1)2(x2 + 1)

=
x3 + 3

(x´ 1)2(x + 1)2(x2 + 1)

=
A

x´ 1
+

B
(x´ 1)2 +

C
x + 1

+
D

(x + 1)2 +
Ex + F
x2 + 1

S-3: This is a section on partial fractions. So of course we are going to use partial
fractions. We start by expressing the integrand, i.e. the fraction 1

x+x2 = 1
x(1+x) , as a linear

combination of the simpler fractions 1
x and 1

x+1 (which we already know how to
integrate). We will have

1
x + x2 =

1
x(1 + x)

=
a
x
+

b
x + 1

=
a(x + 1) + bx

x(1 + x)
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The fraction on the left hand side is the same as the fraction on the right hand side if and
only if the numerator on the left hand side, which is 1 = 0x + 1, is equal to the numerator
on the right hand side, which is a(x + 1) + bx = (a + b)x + a. This in turn is the case if
and only of a = 1 (i.e. the constant terms are the same in the two numerators) and
a + b = 0 (i.e. the coefficients of x are the same in the two numerators). So a = 1 and
b = ´1. Now we can easily do the integral
ż 2

1

dx
x + x2 =

ż 2

1

dx
x(x + 1)

=

ż 2

1

[1
x
´

1
x + 1

]
dx =

[
log x´ log(x + 1)

]2

1
= log 2´ log

3
2

= log
4
3

S-4: We’ll first do a partial fractions expansion. The sneaky way is to temporarily rename
x2 to y. Then x4 + x2 = y2 + y and

1
x4 + x2 =

1
y(y + 1)

=
1
y
´

1
y + 1

Now we restore y to x2 giving
ż

1
x4 + x2 dx =

ż [ 1
x2 ´

1
x2 + 1

]
dx = ´

1
x
´ arctan x + C

S-5: The integrand is of the form N(x)/D(x) with D(x) already factored and N(x) of
lower degree. We immediately look for a partial fractions decomposition:

12x + 4
(x´ 3)(x2 + 1)

=
A

x´ 3
+

Bx + C
x2 + 1

.

Multiplying through by the denominator yields

12x + 4 = A(x2 + 1) + (Bx + C)(x´ 3) (˚)

Setting x = 3 we find:

36 + 4 = A(9 + 1) + 0 ùñ 40 = 10A ùñ A = 4

Substituting A = 4 in (˚) gives

12x + 4 = 4(x2 + 1) + (Bx + C)(x´ 3) ùñ ´4x2 + 12x = (x´ 3)(Bx + C)
ùñ (´4x)(x´ 3) = (Bx + C)(x´ 3)
ùñ B = ´4, C = 0

So we have found that A = 4, B = ´4, and C = 0. Therefore
ż

12x + 4
(x´ 3)(x2 + 1)

dx =

ż
(

4
x´ 3

´
4x

x2 + 1

)
dx

= 4 log |x´ 3| ´ 2 log(x2 + 1) + C

Here the second integral was found just by guessing an antiderivative. Alternatively, one
could use the substitution u = x2 + 1, du = 2x dx.
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S-6: The integrand is of the form N(x)/D(x) with D(x) already factored and N(x) of
lower degree. We immediately look for a partial fractions decomposition:

3x2 ´ 4
(x´ 2)(x2 + 4)

=
A

x´ 2
+

Bx + C
x2 + 4

Multiplying through by the denominator gives

3x2
´ 4 = A(x2 + 4) + (Bx + C)(x´ 2) (˚)

Setting x = 2 we find:

12´ 4 = A(4 + 4) + 0 ùñ 8 = 8A ùñ A = 1

Substituting A = 1 in (˚) gives

3x2
´ 4 = (x2 + 4) + (x´ 2)(Bx + C) ùñ 2x2

´ 8 = (x´ 2)(Bx + C)
ùñ (x´ 2)(2x + 4) = (x´ 2)(Bx + C)
ùñ B = 2, C = 4

Thus, we have:

3x2 ´ 4
(x´ 2)(x2 + 4)

=
1

x´ 2
+

2x + 4
x2 + 4

=
1

x´ 2
+

2x
x2 + 4

+
4

x2 + 4

The first two of these are directly integrable:

F(x) = log |x´ 2|+ log |x2 + 4|+
ż

4
x2 + 4

dx

(The second integral was found just by guessing an antiderivative. Alternatively, one
could use the substitution u = x2 + 4, du = 2x dx.) For the final integral, we substitute:
x = 2y, dx = 2dy, and see that:

ż

4
x2 + 4

dx = 2
ż

1
y2 + 1

dy = 2 arctan y + D = 2 arctan(x/2) + D

for any constant D. All together we have:

F(x) = log |x´ 2|+ log |x2 + 4|+ 2 arctan(x/2) + D

S-7: This sure looks like a partial fractions problem. So let’s go through our protocol.

• The degree of the numerator x´ 13 is one, which is strictly smaller than the dergee
of the denominator x2 ´ x´ 6, which is two. So we do not long divide to pull out a
polynomial.

• Next we factor the denominator.

x2
´ x´ 6 = (x´ 3)(x + 2)
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• Next we find the partial fractions expansion of the integrand. It is of the form

x´ 13
(x´ 3)(x + 2)

=
A

x´ 3
+

B
x + 2

To find A and B, using the sneaky method, we cross multiply by the denominator.

x´ 13 = A(x + 2) + B(x´ 3)

Now we can find A by evaluating at x = 3

3´ 13 = A(3 + 2) + B(3´ 3) ùñ A = ´2

and find B by evaluating at x = ´2.

´2´ 13 = A(´2 + 2) + B(´2´ 3) ùñ B = 3

(Hmmm. A and B are nice round numbers. Sure looks like a rigged exam or
problem set problem.) So our partial fraction expansion is

x´ 13
(x´ 3)(x + 2)

=
´2

x´ 3
+

3
x + 2

As a check, we recombine the right hand side and make sure that it matches the left
hand side

´2
x´ 3

+
3

x + 2
=
´2(x + 2) + 3(x´ 3)

(x´ 3)(x + 2)
=

x´ 13
(x´ 3)(x + 2)

• Finally, we do the integral
ż

x´ 13
x2 ´ x´ 6

dx =

ż
[
´2

x´ 3
+

3
x + 2

]
dx = ´2 log |x´ 3|+ 3 log |x + 2|+ C

S-8: Again, this sure looks like a partial fractions problem. So let’s go through our
protocol.

• The degree of the numerator 5x + 1 is one, which is strictly smaller than the dergee
of the denominator x2 + 5x + 6, which is two. So we do not long divide to pull out
a polynomial.

• Next we factor the denominator.

x2 + 5x + 6 = (x + 2)(x + 3)

• Next we find the partial fractions expansion of the integrand. It is of the form

5x + 1
(x + 2)(x + 3)

=
A

x + 2
+

B
x + 3
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To find A and B, using the sneaky method, we cross multiply by the denominator.

5x + 1 = A(x + 3) + B(x + 2)

Now we can find A by evaluating at x = ´2

´10 + 1 = A(´2 + 3) + B(´2 + 2) ùñ A = ´9

and find B by evaluating at x = ´3.

´15 + 1 = A(´3 + 3) + B(´3 + 2) ùñ B = 14

So our partial fraction expansion is

5x + 1
(x + 2)(x + 3)

=
´9

x + 2
+

14
x + 3

As a check, we recombine the right hand side and make sure that it matches the left
hand side

´9
x + 2

+
14

x + 3
=
´9(x + 3) + 14(x + 2)

(x + 2)(x + 3)
=

5x + 1
(x + 2)(x + 3)

• Finally, we do the integral
ż

5x + 1
x2 + 5x + 6

dx =

ż
[
´9

x + 2
+

14
x + 3

]
dx = ´9 log |x + 2|+ 14 log |x + 3|+ C

Solutions to Exercises 1.11 — Jump to TABLE OF CONTENTS

S-1: True. Because f (x) is positive and concave up, the graph of f (x) is always below the
top of the trapezoids used in the trapezoidal rule.

S-2: By (1.11.2) in the CLP 101 notes, the midpoint rule approximation to
şb

a f (x) dx with
n = 3 is

ż b

a
f (x)dx «

[
f (x̄1) + f (x̄2) + f (x̄3)

]
∆x

where ∆x = b´a
3 and

x0 = a x1 = a + ∆x x2 = a + 2∆x x3 = b

x̄1 = x0+x1
2 x̄2 = x1+x2

2 x̄3 = x2+x3
2

For this problem, a = 0, b = π and f (x) = sin x, so that ∆x = π
3 and

x0 = 0 x1 = π
3 x2 = 2π

3 x3 = π

x̄1 = π
6 x̄2 = π

2 x̄3 = 5π
6

and
ż π

0
sin x dx «

[
sin π

6 + sin π
2 + sin 5π

6

]
π
3 =

[1
2 + 1 + 1

2

]
π
3 = 2π

3
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S-3: Let f (x) be the diameter a distance x from the left end of the log. The cross sectional
area a distance x from the left end of the log is then π

( f (x)
2

)2
= π

4 f (x)2. The volume is

V =

ż 6

0

π

4
f (x)2 dx «

π

4
1
3

[
f (0)2 + 4 f (1)2 + 2 f (2)2 + 4 f (3)2 + 2 f (4)2 + 4 f (5)2 + f (6)2

]

=
π

12

[
1.22 + 4(1)2 + 2(0.8)2 + 4(0.8)2 + 2(1)2 + 4(1)2 + 1.22

]

= 4.377 m3

where we have approximated the integral using Simpson’s Rule with ∆x = 1.

S-4: Let f (x) denote the diameter at height x. As in Example 1.6.6 of the CLP 101 notes,
we slice V into thin horizontal “pancakes”, which in this case are circular.

• We are told that the pancake at height x is a circular disk of diameter f (x) and so

• has cross-sectional area π
( f (x)

2

)2 and thickness dx and hence

• has volume π
( f (x)

2

)2dx.

Hence the volume of V is
ż 2

0
π
[

f (x)
2

]2
dx «

π

4
10
[

1
2 f (0)2 + f (10)2 + f (20)2 + f (30)2 + 1

2 f (40)2
]

=
π

4
10
[

1
2242 + 162 + 102 + 62 + 1

242
]

= 688ˆ 2.5π = 1720π = 5403.5

where we have approximated the integral using the trapezoidal rule with ∆x = 10.

S-5: Call the circumference at height x, c(x). The corresponding radius is c(x)
2π and the

corresponding cross–sectional area is π
( c(x)

2π

)2
= c(x)2

4π . Hence the total volume is
ż 8

0

c(x)2

4π
dx «

1
4π

2
3

[
c(0)2 + 4c(2)2 + 2c(4)2 + 4c(6)2 + c(8)2

]

=
1

4π

2
3

[
1.22 + 4(1.1)2 + 2(1.3)2 + 4(0.9)2 + 0.22

]
= 0.6865

S-6: (a) The Trapezoidal Rule gives

V =

ż 60

0
A(h)dh « 10

[
1
2 A(0) + A(10) + A(20) + A(30) + A(40) + A(50) + 1

2 A(60)
]

= 363,500

(b) Simpson’s Rule gives

V =

ż 60

0
A(h)dh «

20
6

[
A(0) + 4A(10) + 2A(20) + 4A(30) + 2A(40) + 4A(50) + A(60)

]

= 367,000
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S-7: Call the curve in the graph y = f (x). It looks like

f (2) = 3 f (3) = 8 f (4) = 7 f (5) = 6 f (6) = 4

(a) The Trapezoidal Rule gives

T4 = 1
2

 

3 + 2ˆ 8 + 2ˆ 7 + 2ˆ 6 + 4
(

ˆ 1 =
49
2

(b) Simpson’s Rule gives

S4 =
1
3
 

3 + 4ˆ 8 + 2ˆ 7 + 4ˆ 6 + 4
(

ˆ 1 =
77
3

S-8: Let f (x) = sin(x2). Then f 1(x) = 2x cos(x2) and

f 2(x) = 2 cos(x2)´ 4x2 sin(x2).

Since |x2| ď 1 when |x| ď 1, and |sin θ| ď 1 and |cos θ| ď 1 for all θ, we have
ˇ

ˇ

ˇ
2 cos(x2)´ 4x2 sin(x2)

ˇ

ˇ

ˇ
ď 2| cos(x2)|+ 4x2

| sin(x2)| ď 2ˆ 1 + 4ˆ 1ˆ 1 = 2 + 4 = 6

We can therefore choose K = 6, and it follows that the error is at most

K[b´ a]3

24n2 ď
6 ¨ [1´ (´1)]3

24 ¨ 10002 =
2

106 = 2 ¨ 10´6

S-9: Setting f (x) = 2x4 and b´ a = 1´ (´2) = 3, we compute f 2(x) = 24x2. The largest
value of 24x2 on the interval [´2, 1] occurs at x = ´2, so we can take M = 24 ¨ (´2)2 = 96.
Thus the total error for the midpoint rule with n = 60 points is bounded by

M(b´ a)3

24n2 =
96ˆ 33

24ˆ 60ˆ 60
=

3
100

S-10: (a) Since a = 0, b = 2 and n = 6, we have ∆x = b´a
n = 2´0

6 = 1
3 , and so x0 = 0,

x1 = 1
3 , x2 = 2

3 , x3 = 1, x4 = 4
3 , x5 = 5

3 , and x6 = 2. Since Simpson’s Rule with n = 6 in
general is

∆x
3
[

f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + 4 f (x5) + f (x6)
]
,

the desired approximation is

1/3
3

(
(´3)5 + 4

(1
3
´ 3
)5

+ 2
(2

3
´ 3
)5

+ 4(´2)5 + 2
(4

3
´ 3
)5

+ 4
(5

3
´ 3
)5

+ (´1)5
)
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(b) Here f (x) = (x´ 3)5, which has derivatives

f 1(x) = 5(x´ 3)4 f 2(x) = 20(x´ 3)3

f (3)(x) = 60(x´ 3)2 f (4)(x) = 120(x´ 3).

For 0 ď x ď 2, (x´ 3) runs from ´3 to ´1, so the maximum absolute values are found at
x = 0, giving K = 20 ¨ |0´ 3|3 = 540 and L = 120 ¨ |0´ 3| = 360. Consequently, for the
Midpoint Rule with n = 100,

|EM| ď
K(b´ a)3

24n2 =
540ˆ 23

24ˆ 104 =
180
104 ;

whereas for Simpson’s Rule with n = 10,

|ES| ď
360ˆ 25

180ˆ 104 =
64
104 .

Since 64 ă 180, Simpson’s Rule results in a smaller error bound.

S-11: In this case, a = 1, b = 4 and we may take K = 2. So we need n to obey

2(4´ 1)3

12n2 ď 0.001 ðñ n2
ě

2(3)3

12
1000 =

27000
6

=
9000

2
= 4500

One obvious allowed n is 100. Any n ě 68 works.

S-12: In general the error in approximating
şb

a f (x) dx using Simpson’s rule with n steps
is bounded by K(b´a)

180 (∆x)4 where ∆x = b´a
n and K ě | f (4)(x)| for all a ď x ď b. In this

case, a = 1, b = 5, n = 4 and f (x) = 1
x . So

f 1(x) = ´
1
x2 f 2(x) =

2
x3 f (3)(x) = ´

6
x4 f (4)(x) =

24
x5

and
ˇ

ˇ f (4)(x)
ˇ

ˇ ď 24 for all x ě 1

So we may take K = 24 and ∆x = 5´1
4 = 1 and

Error ď
24(5´ 1)

180
(1)4 =

24
45

=
8

15

S-13: In general the error in approximating
şb

a f (x) dx using Simpson’s rule with n steps
is bounded by K(b´a)

180 (∆x)4 where ∆x = b´a
n and K ě | f (4)(x)| for all a ď x ď b. In this

case, a = 0, b = 1, n = 6 and f (x) = e´2x + 3x3. So

f 1(x) = ´2e´2x + 9x2 f 2(x) = 4e´2x + 18x f (3)(x) = ´8e´2x + 18 f (4)(x) = 16e´2x
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and
ˇ

ˇ f (4)(x)
ˇ

ˇ ď 16 for all x ě 0

So we may take K = 16 and ∆x = 1´0
6 = 1

6 and

Error ď
16(1´ 0)

180
(1/6)4 =

16
180ˆ 64 =

1
180ˆ 34 =

1
14580

S-14: Set a = 1, b = 2, n = 4, f (x) = 1
x and h = b´a

n = 1
4 . Then

(a)

T4 =
h
2
[

f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + f (x4)
]

=
h
2
[

f (1) + 2 f (5/4) + 2 f (6/4) + 2 f (7/4) + f (2)
]

=
1
8

[
1 + 2ˆ

4
5
+ 2ˆ

4
6
+ 2ˆ

4
7
+

1
2

]

(b)

S4 =
h
3
[

f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)
]

=
h
3
[

f (1) + 4 f (5/4) + 2 f (6/4) + 4 f (7/4) + f (2)
]

=
1

12

[
1 + 4ˆ

4
5
+ 2ˆ

4
6
+ 4ˆ

4
7
+

1
2

]

(c) In this case, a = 1, b = 2, n = 4 and f (x) = 1
x . So

f 1(x) = ´
1
x2 f 2(x) =

2
x3 f (3)(x) = ´

6
x4 f (4)(x) =

24
x5

and
ˇ

ˇ f (4)(x)
ˇ

ˇ ď 24 for all x ě 1

So we may take K = 24 and

Error ď
K(b´ a)5

180ˆ n4 ď
24(2´ 1)5

180ˆ 44 =
24

180ˆ 44 =
3

5760

S-15: Set a = 0, b = 8, n = 4, f (x) = s(x) and h = b´a
n = 2. Then
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(a)

T4 =
h
2
[

f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + f (x4)
]

= 1.00664 + 2ˆ 1.00543 + 2ˆ 1.00435 + 2ˆ 1.00331 + 1.00233
= 8.03515

S4 =
h
3
[

f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)
]

=
2
3
[
1.00664 + 4ˆ 1.00543 + 2ˆ 1.00435 + 4ˆ 1.00331 + 1.00233

]

= 8.03509

(b)

ˇ

ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Tn

ˇ

ˇ

ˇ

ˇ

ď
K2(b´ a)3

12n2 ď
2

1000
83

12(4)2 = 0.00533
ˇ

ˇ

ˇ

ˇ

ż b

a
f (x) dx´ Sn

ˇ

ˇ

ˇ

ˇ

ď
K4(b´ a)5

180n4 ď
4

1000
85

180(4)4= 0.00284

S-16: Denote by f (x) the width of the pool a distance x from the left hand end. Thus
f (0) = 0, f (2) = 10, f (4) = 12, f (6) = 10, f (8) = 8, f (10) = 6, f (12) = 8, f (14) = 10
and f (16) = 0. The volume of the part of the pool with x–coordinate running from x to
x + dx is 1

2 π
( f (x)

2

)2 dx. So the total volume is

V =
π

8

ż 16

0
f (x)2 dx

«
π

8
∆x
3

[
f (0)2 + 4 f (2)2 + 2 f (4)2 + 4 f (6)2 + 2 f (8)2 + 4 f (10)2 + 2 f (12)2 + 4 f (14)2+ f (16)2

]

=
π

8
2
3

[
0 + 4(10)2 + 2(12)2 + 4(10)2 + 2(8)2 + 4(6)2 + 2(8)2 + 4(10)2 + 0

]

« 494 ft3

S-17: (a) The Trapezoidal Rule gives

M = 2π10´6
ż 1

0
rg(r)dr « 2π10´6 1

4

[1
2

0g(0) +
1
4

g
(1

4
)
+

1
2

g
(1

2
)
+

3
4

g
(3

4
)
+

1
2

g(1)
]

= 0.025635

(b) In this case, the integrand f (r) = 2π10´6rg(r) obeys

f 2(r) = 2π10´6 d
dr
[
g(r) + rg1(r)

]
= 2π10´6[2g1(r) + rg2(r)

]

147



and hence, for 0 ď r ď 1,
ˇ

ˇ f 2(r)
ˇ

ˇ ď 2π10´6[2ˆ 200 + 1ˆ 150
]
= 1.1π10´3

So we may take K = 1.1π10´3 and, as a = 0, b = 1, and n = 4,

error ď
1.1π10´3(1´ 0)3

12(4)2 ď 1.8ˆ 10´5

S-18: (a) Let f (x) = 1
x , a = 1, b = 2 and ∆x = b´a

6 = 1
6 . By Simpson’s rule

ż 2

1

1
x

dx «
∆x
3

[
f (1) + 4 f

(7
6

)
+ 2 f

(8
6

)
+ 4 f

(9
6

)
+ 2 f

(10
6

)
+ 4 f

(11
6

)
+ f (2)

]

=
1

18

[
1 +

24
7

+
12
8

+
24
9

+
12
10

+
24
11

+
1
2

]
= 0.6931698

(b) The integrand is f (x) = 1
x . The first four derivatives of f (x) are f 1(x) = ´ 1

x2 ,
f 2(x) = 2

x3 , f (3)(x) = ´ 6
x4 , f (4)(x) = 24

x5 . On the interval 1 ď x ď 2, the fourth derivative
is never bigger in magnitude than K = 24. So

|En| ď
K(b´ a)5

180n4 =
24(2´ 1)5

180n4 =
4

30n4

This is no more than 0.00001 = 10´5 if n4 ě 4
30105 or n ě 4

b

4
30105 = 10.75 or n ě 12

(since n must be even for Simpson’s Rule).

S-19: (a) From the figure, we see that the magnitude of f4(x) never exceeds 310 for
0 ď x ď 2. So the error is bounded by

310(2´ 0)5

180ˆ 84 = 0.01345

(b) We need to choose n so that

310(2´ 0)5

180ˆ n4 ď 10´4
ðñ n4

ě
310ˆ 25

180
104

ðñ n ě 10 4

c

310ˆ 32
180

= 27.2

For Simpson’s rule, n must be even so choose an even integer obeying n = 28.

S-20: Let g(x) =
şx

0 sin(
?

t)dt. Since g1(x) = sin(
?

x) and f (x) = g(x2),

f 1(x) = 2xg1(x2) = 2x sin x f 2(x) = 2 sin x + 2x cos x

Since | sin x|, | cos x| ď 1, we have | f 2(x)| ď 2 + 2|x| and, for 0 ď t ď 1, | f 2(t)| ď 4. When
the trapezoidal rule with n subintervals is applied, the resulting error En obeys

En ď
4(1´ 0)3

12n2 ď 0.000005 ðñ n2
ě

4
12ˆ 0.000005

ðñ n ě 259

148



S-21: The Trapezoidal Rule gives

M = 2π10´6
ż 1

0
rg(r)dr « 2π10´6 1

4

[1
2

0g(0) +
1
4

g
(1

4

)
+

1
2

g
(1

2

)
+

3
4

g
(3

4

)
+

1
2

g(1)
]

= 0.025635

(b) In this case, the integrand f (r) = 2π10´6rg(r) obeys

f 2(r) = 2π10´6 d
dr
[
g(r) + rg1(r)

]
= 2π10´6[2g1(r) + rg2(r)

]

and hence, for 0 ď r ď 1,
ˇ

ˇ f 2(r)
ˇ

ˇ ď 2π10´6[2ˆ 200 + 1ˆ 150
]
= 1.1π10´3

So

error ď
1.1π10´3(1´ 0)3

12(4)2 ď 1.8ˆ 10´5

Solutions to Exercises 1.12 — Jump to TABLE OF CONTENTS

S-1: False. For example if f (x) = e´x and g(x) = 1 then
ş8

1 f (x)dx converges but
ş8

1 g(x)dx diverges.

S-2: Notice that

ż t

1

1
x5q dx =

$

’

&

’

%

1
1´5q (t

1´5q ´ 1) with 1´ 5q ą 0, if q ă 1
5 ,

log t, if q = 1
5 ,

1
5q´1(1´

1
t5q´1 ) with 5q´ 1 ą 0, if q ą 1

5 .

Therefore

ż 8

1

1
x5q dx = lim

tÑ8

(
ż t

1

1
x5q dx

)
=

$

’

&

’

%

1
1´5q (limtÑ8 t1´5q ´ 1) = 8, if q ă 1

5 ,

limtÑ8 log t = 8, if q = 1
5 ,

1
5q´1(1´ limtÑ8

1
t5q´1 ) =

1
5q´1 , if q ą 1

5 ;

The first two cases are divergent, and so the largest such value is q = 1
5 . (Alternatively,

we might recognize this as a “p-integral” with p = 5q, and recall that the p-integral
diverges precisely when p ď 1.)

S-3: The denominator is zero when x = 1, so the integrand has a singularity at x = 1. So

ż 1

0

x4

x5 ´ 1
dx = lim

tÑ1´

ż t

0

x4

x5 ´ 1
dx
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To evaluate this integral we use the substitution u = x5, du = 5x4dx. When x = 0 we
have u = 0 and when x = t, we have u = t5, so

ż x=t

x=0

x4

x5 ´ 1
dx =

ż u=t5

u=0

1
5(u´ 1)

du =
1
5

log |u´ 1|
ˇ

ˇ

ˇ

t5

0
=

1
5

log |t5
´ 1|

This diverges as t Ñ 1´, so the integral diverges.

S-4: The integrand has a singularity at x = ´1. So
ż 2

´2

1
(x + 1)4/3 dx = lim

tÑ´1´

ż t

´2

1
(x + 1)4/3 dx + lim

tÑ´1+

ż 2

t

1
(x + 1)4/3 dx

Since
ż t

´2

1
(x + 1)4/3 dx = ´

3
(x + 1)1/3

ˇ

ˇ

ˇ

t

´2
= ´

3
(t + 1)1/3 +

3
(´1)1/3

diverges as t Ñ ´1´, the integral diverges. (A similar argument shows that the second
integral diverges, which is also enough to conclude that the original integral diverges.)

S-5: For all x ě 1,
?

4x2 ´ x ď
?

4x2 = 2x so
ż 8

1

1
?

4x2 ´ x
dx = lim

tÑ8

ż t

1

1
?

4x2 ´ x
dx ě lim

tÑ8

ż t

1

1
2x

dx = lim
tÑ8

1
2

ln x
ˇ

ˇ

t
1 = lim

tÑ8

1
2

ln t = 8

So the integral does not converge.

S-6: The integrand is positive everywhere. So either the integral converges to some finite
number or it is infinite. Since

1
x2 +

?
x
ď

1
?

x
and the integral

ż 1

0

dx
?

x
converges by Example 1.12.9

1
x2 +

?
x
ď

1
x2 and the integral

ż 8

1

dx
x2 converges by Example 1.12.8

the integral converges by the comparison test. (The examples are in the CLP 101 notes.)

S-7: You might think that, because the integrand is odd, the integral converges to 0. But
you would be wrong. There are two “sources of impropriety”, namely x « +8 and
x « ´8. So we split the integral in two

ż +8

´8

x
x2 + 1

dx =

ż 0

´8

x
x2 + 1

dx +

ż +8

0

x
x2 + 1

dx

and treat the two halves separately
ż +8

0

x
x2 + 1

dx = lim
RÑ8

ż R

0

x
x2 + 1

dx = lim
RÑ8

1
2

log(x2 + 1)
ˇ

ˇ

ˇ

R

0
= lim

RÑ8

1
2

log(R2 + 1) = +8

ż 0

´8

x
x2 + 1

dx = lim
RÑ8

ż 0

´R

x
x2 + 1

dx = lim
RÑ8

1
2

log(x2 + 1)
ˇ

ˇ

ˇ

0

´R
= lim

RÑ8
´

1
2

log(R2 + 1) = ´8
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Both halves diverge, so the whole integral diverges. Don’t make the mistake of thinking
that8´8 = 0. That can get you into big trouble. 8 is not a normal number. For
example 28 = 8. So if8were a normal number we would have both8´8 = 0 and
8´8 = 28´8 = 8.

S-8: Since

| sin x|
x3/2 + x1/2 ď

1
x1/2 and the integral

ż 1

0

dx
x1/2 converges by Example 1.12.9

| sin x|
x3/2 + x1/2 ď

1
x3/2 and the integral

ż 8

1

dx
x3/2 converges by Example 1.12.8

the integral converges by the comparison test. (The examples are in the CLP 101 notes.)

S-9: The integrand is positive everywhere. So either the integral converges to some finite
number or it is infinite. There are two potential “sources of impropriety” — a possible
singularity at x = 0 and the fact that the domain of integration extends to8. So we split
up the integral.

ż 8

0

x + 1
x1/3(x2 + x + 1)

dx =

ż 1

0

x + 1
x1/3(x2 + x + 1)

dx +

ż 8

1

x + 1
x1/3(x2 + x + 1)

dx

When x « 0, the integrand

x + 1
x1/3(x2 + x + 1)

«
1

x1/3(1)
=

1
x1/3

When x is very large
x + 1

x1/3(x2 + x + 1)
«

x
x1/3(x2)

=
1

x4/3

In fact

ż 1

0

x + 1
x1/3(x2 + x + 1)

dx ď
ż 1

0

2
x1/3 dx = 2

x2/3

2/3

ˇ

ˇ

ˇ

ˇ

1

0
=

2
2/3

= 3

ż 8

1

x + 1
x1/3[x2 + x + 1]

dx = lim
RÑ8

ż R

1

x + 1
x1/3[x2 + x + 1]

dx ď lim
RÑ8

ż R

1

x + 1
x1/3[x(x + 1)]

dx

= lim
RÑ8

ż R

1

1
x4/3 dx = lim

RÑ8

x´1/3

´1/3

ˇ

ˇ

ˇ

ˇ

R

1
=

1
1/3

= 3

ùñ

ż 8

0

x + 1
x1/3(x2 + x + 1)

dx ď 6

So the integral converges.

S-10: The integrand is positive everywhere. So either the integral converges to some
finite number or it is infinite. There are two potential “sources of impropriety” — a
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possible singularity at x = 0 and the fact that the domain of integration extends to8. So
we split up the integral.

ż 8

0

sin4 x
x2 dx =

ż 1

0

sin4 x
x2 dx +

ż 8

1

sin4 x
x2 dx

We’ll treat the first integral first. By l’Hôpital’s rule (or recall Example ?? in the CLP100
notes)

lim
xÑ0

sin x
x

= lim
xÑ0

cos x
1

= cos 0 = 1

Consequently

lim
xÑ0

sin4 x
x2 =

(
lim
xÑ0

sin2 x
)(

lim
xÑ0

sin x
x

)(
lim
xÑ0

sin x
x

)
= 0ˆ 1ˆ 1 = 0

and the first integral is not even improper.

Now for the second integral. Since | sin x| ď 1
ż 8

1

sin4 x
x2 dx ď

ż 8

1

dx
x2 =

x´1

´1

ˇ

ˇ

ˇ

8

1
= 1

and second integral converges by the comparison test. So the original integral converges
too.

S-11: Let’s first find a t such that
ş8

t
e´x

1+x dx ď 1
210´4. For all x ě 0, 0 ă e´x

1+x ď e´x, so
ż 8

t

e´x

1 + x
dx ď

ż 8

t
e´x dx = e´t

ď
1
2

10´4 if t ě ´ log
(1

2
10´4

)
= 9.90

Choose, for example, t = 10.

f (x) =
e´x

1 + x
ùñ f 1(x) = ´

e´x

1 + x
´

e´x

(1 + x)2 ùñ f 2(x) =
e´x

1 + x
+ 2

e´x

(1 + x)2 + 2
e´x

(1 + x)3

Since f 2(x) is positive and decreases as x increases

| f 2(x)| ď f 2(0) = 5 ùñ |En| ď
5(10´ 0)3

24n2 =
5000
24n2 =

625
3n2

and |En| ď
1
210´4 if

625
3n2 ď

1
2

10´4
ðñ n2

ě
1250ˆ 104

3
ðñ n ě

c

1.25ˆ 107

3
= 2041.2

So t = 10 and n = 2042 will do the job. There are many other correct answers.

Solutions to Exercises 1.13 — Jump to TABLE OF CONTENTS
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S-1: Substitute u = x2 ´ 3, du = 2x dx. This gives
ż

x
x2 ´ 3

dx =

ż

du/2
u

=
1
2

log |u|+ C =
1
2

log
ˇ

ˇx2
´ 3

ˇ

ˇ+ C

S-2: (a) Substituting y = 9 + x2, dy = 2xdx, xdx = dy
2 , y(0) = 9, y(4) = 25

ż 4

0

x
?

9 + x2
dx =

ż 25

9

1
?y

dy
2

=
1
2

?y
1/2

ˇ

ˇ

ˇ

25

9
= 5´ 3

= 2

(b) Substituting y = sin x, dy = cos x dx, y(0) = 0, y(π/2) = 1, cos2 x = 1´ y2

ż π/2

0
cos3 x sin2 x dx =

ż π/2

0
cos2 x sin2 x cos x dx =

ż 1

0
(1´ y2)y2 dy =

ż 1

0
(y2

´ y4)dy

=

[
y3

3
´

y5

5

]1

0
=

1
3
´

1
5

=
2

15

(c) Integrate by parts with u(x) = log x and dv = x3 dx so that du = 1
x dx and v = x4/4.

Then
ż e

1
x3 log x dx =

x4

4
log x

ˇ

ˇ

ˇ

ˇ

e

1
´

ż e

1

x4

4
1
x

dx =
e4

4
´

ż e

1

x3

4
dx =

e4

4
´

x4

16

ˇ

ˇ

ˇ

ˇ

e

1

=
3e4

16
+

1
16

S-3: (a) Integrate by parts with u = x and dv = sin x dx so that du = dx and v = ´ cos x.
Then

ż

x sin x dx = ´x cos x´
ż

(´ cos x)dx = ´x cos x + sin x + C

so that
ż π/2

0
x sin x dx =

[
´ x cos x + sin x

]π/2

0
= 1

(b) Make the substitution u = sin x, du = cos x dx.
ż π/2

0
cos5 x dx =

ż π/2

0

(
1´ sin2 x

)2 cos x dx =

ż 1

0

(
1´ u2)2 du =

ż 1

0

(
1´ 2u2 + u4)du

=
[
u´

2
3

u3 +
1
5

u5
]1

0
= 1´

2
3
+

1
5
=

8
15
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S-4: (a) By integration by parts, with u = x and dv = ex dx, so that du = dx and v = ex,
ż 2

0
xex dx = xex

ˇ

ˇ

ˇ

2

0
´

ż 2

0
ex dx = 2e2

´ ex
ˇ

ˇ

ˇ

2

0
= e2 + 1

(b) Substitute x = tan y, dx = sec2 y dy. When x = 0, tan y = 0 so y = 0. When x = 1,

tan y = 1 so y = π
4 . Also

?
1 + x2 =

b

1 + tan2 y =
a

sec2 y = sec y, since sec y ě 0 for all
0 ď y ď π

4 .
ż 1

0

1
?

1 + x2
dx =

ż π/4

0

sec2 y dy
sec y

=

ż π/4

0
sec y dy = log | sec y + tan y|

ˇ

ˇ

π/4
0

Since sec π
4 =

?
2, tan π

4 = 1, sec 0 = 1, tan 0 = 0, the top evaluation
log | sec π

4 + tan π
4 | = log(

?
2 + 1), the bottom evaluation log | sec 0 + tan 0| = log 1 = 0

and
ż 1

0

1
?

1 + x2
dx = log(

?
2 + 1)

(c) We use partial fractions.

4x
(x2 ´ 1)(x2 + 1)

=
4x

(x´ 1)(x + 1)(x2 + 1)
=

a
x´ 1

+
b

x + 1
+

cx + d
x2 + 1

=
a(x + 1)(x2 + 1) + b(x´ 1)(x2 + 1) + (cx + d)(x´ 1)(x + 1)

(x´ 1)(x + 1)(x2 + 1)

provided a(x + 1)(x2 + 1) + b(x´ 1)(x2 + 1) + (cx + d)(x´ 1)(x + 1) = 4x. Setting
x = 1 gives 4a = 4 or a = 1. Setting x = ´1 gives ´4b = ´4 or b = 1. Substituting in
a = b = 1 gives

(x + 1)(x2 + 1) + (x´ 1)(x2 + 1) + (cx + d)(x´ 1)(x + 1) = 4x

ðñ 2x(x2 + 1) + (cx + d)(x´ 1)(x + 1) = 4x

ðñ (cx + d)(x2
´ 1) = ´2x3 + 2x = ´2x(x2

´ 1)
ðñ (cx + d) = ´2x ðñ c = ´2, d = 0

So
ż 5

3

4x
(x2 ´ 1)(x2 + 1)

dx =

ż 5

3

[ 1
x´ 1

+
1

x + 1
´

2x
x2 + 1

]
dx

=
[

log |x´ 1|+ log |x + 1| ´ log(x2 + 1)
]5

3

= log 4 + log 6´ log 26´ log 2´ log 4 + log 10

= log
6ˆ 10
26ˆ 2

= log
15
13
« 0.1431
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S-5: (a) Make the substitution y = sin x, dy = cos x dx and use the trig identity
cos2 x = 1´ sin2 x = 1´ y2.

ż π/2

0
cos5(x)dx =

ż π/2

0
cos4(x) cos(x)dx =

ż 1

0
(1´ y2)

2
dy =

ż 1

0

[
y4
´ 2y2 + 1

]
dy

=
[y5

5
´ 2

y3

3
+ y
]1

0
=

1
5
´

2
3
+ 1 =

8
15
« 0.53333

(b)
ş3

0

?
9´ x2 dx is the area of the portion of the disk x2 + y2 ď 9 that lies in the first

quadrant. It is 1
4 π33 =

9
4

π . Alternatively, you could also evaluate this integral using the

substitution x = 3 sin y, dx = 3 cos y dy.

ż 3

0

a

9´ x2 dx =

ż π/2

0

b

9´ 9 sin2 y (3 cos y)dy = 9
ż π/2

0
cos2 y dy

=
9
2

ż π/2

0
[1 + cos(2y)]dy =

9
2

[
y +

sin(2y)
2

]π/2

0

=
9
4

π

(c) Integrate by parts, using u = log(1 + x2) and dv = dx, so that du = 2x
1+x2 , v = x.

ż 1

0
log(1 + x2)dx = x log(1 + x2)

ˇ

ˇ

ˇ

1

0
´

ż 1

0
x

2x
1 + x2 dx = log 2´ 2

ż 1

0

x2

1 + x2 dx

= log 2´ 2
ż 1

0

[
1´

1
1 + x2

]
dx = log 2´ 2

[
x´ arctan x

]1
0

= log 2´ 2 +
π

2
« 0.264

(d) Use partial fractions.

x
(x´ 1)2(x´ 2)

=
a

(x´ 1)2 +
b

x´ 1
+

c
x´ 2

=
a(x´ 2) + b(x´ 1)(x´ 2) + c(x´ 1)2

(x´ 1)2(x´ 2)
ðñ a(x´ 2) + b(x´ 1)(x´ 2) + c(x´ 1)2 = x

Setting x = 1 gives ´a = 1. Setting x = 2 gives c = 2. Substituting in a = ´1 and c = 2
gives

b(x´ 1)(x´ 2) = x + (x´ 2)´ 2(x´ 1)2 = ´2x2 + 6x´ 4 = ´2(x´ 1)(x´ 2)
ùñ b = ´2
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Hence
ż 8

3

x
(x´ 1)2(x´ 2)

dx = lim
MÑ8

ż M

3

[
´

1
(x´ 1)2 ´

2
x´ 1

+
2

x´ 2

]
dx

= lim
MÑ8

[ 1
x´ 1

´ 2 log |x´ 1|+ 2 log |x´ 2|
]M

3

= lim
MÑ8

[
1

x´ 1
+ 2 log

ˇ

ˇ

ˇ

ˇ

x´ 2
x´ 1

ˇ

ˇ

ˇ

ˇ

]M

3

= lim
MÑ8

[
1

M´ 1
+ 2 log

ˇ

ˇ

ˇ

ˇ

M´ 2
M´ 1

ˇ

ˇ

ˇ

ˇ

]
´

[
1

3´ 1
+ 2 log

ˇ

ˇ

ˇ

ˇ

3´ 2
3´ 1

ˇ

ˇ

ˇ

ˇ

]

= 2 log 2´
1
2
« 0.886

since

lim
MÑ8

log
M´ 2
M´ 1

= lim
MÑ8

log
1´ 2/M
1´ 1/M

= log 1 = 0

S-6: (a) Make the substitution u = sin(2x), du = 2 cos(2x)dx.

ż π
4

0
sin2(2x) cos3(2x) dx =

ż π
4

0
sin2(2x)

[
1´ sin2(2x)

]
cos(2x) dx =

1
2

ż 1

0
u2[1´ u2] du

=
1
2

ż 1

0

(
u2
´ u4) du =

1
2

[1
3

u3
´

1
5

u5
]1

0
=

1
15

(b) Make the substitution x = 3 tan t, dx = 3 sec2 t dt and use the trig identity
9 + 9 tan2 t = 9 sec2 t.

ż (
9 + x2)´ 3

2 dx =

ż (
9 + 9 tan2 t

)´ 3
2 3 sec2 t dt =

ż (
3 sec t

)´3 3 sec2 t dt

=
1
9

ż

cos t dt =
1
9

sin t + C =
1
9

x
?

x2 + 9
+ C

To convert back to x, in the last step, we used the triangle below, which is rigged to have
tan t = x

3 .

t
3

x
√
x2 + 9

(c) We use partial fractions.

1
(x´ 1)(x2 + 1)

=
a

x´ 1
+

bx + c
x2 + 1

=
a(x2 + 1) + (bx + c)(x´ 1)

(x´ 1)(x2 + 1)
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provided a(x2 + 1) + (bx + c)(x´ 1) = 1 for all x. Setting x = 1 gives 2a = 1 or a = 1
2 .

Substituting in a = 1
2 gives

1
2
(x2 + 1) + (bx + c)(x´ 1) = 1

ðñ (bx + c)(x´ 1) =
1
2
(1´ x2) = ´

1
2
(x´ 1)(x + 1)

ðñ (bx + c) = ´
1
2
(x + 1) ðñ b = c = ´

1
2

So
ż

dx
(x´ 1)(x2 + 1)

=

ż [1
2

1
x´ 1

´
1
2

x + 1
x2 + 1

]
dx =

ż [1
2

1
x´ 1

´
1
4

2x
x2 + 1

´
1
2

1
x2 + 1

]
dx

=
1
2

log |x´ 1| ´
1
4

log(x2 + 1)´
1
2

tan´1 x + C

(d) Integrate by parts with u = tan´1 x and dv = x dx so that du = 1
1+x2 dx and v = 1

2 x2.
Then

ż

x tan´1 x dx =
1
2

x2 tan´1 x´
1
2

ż

x2

1 + x2 dx

=
1
2

x2 tan´1 x´
1
2

ż

1 + x2

1 + x2 dx +
1
2

ż

1
1 + x2 dx

=
1
2
[
x2 tan´1 x´ x + tan´1 x

]
+ C

S-7: (a) Substituting y = sin(2x), dy = 2 cos(2x) dx, y(x = 0) = 0 and y
(
x = π

4

)
= 1,

ż π/4

0
sin5(2x) cos(2x) dx =

ż 1

0
y5 dy

2
=

1
2

1
6

y6
ˇ

ˇ

ˇ

ˇ

1

0
=

1
12

(b) Substituting x = 2 sin y, dx = 2 cos y dy,
ż

a

4´ x2 dx =

ż

b

4´ 4 sin2 y 2 cos y dy = 4
ż

cos2 y dy = 2
ż [

1 + cos(2y)
]

dy

= 2y + sin(2y) + C = 2y + 2 sin y cos y + C

= 2 sin´1 x
2
+ x

c

1´
x2

4
+ C

since sin y = x
2 and cos y =

b

1´ sin2 y =
b

1´ x2

4 .

(c) Integrate by parts, using u = log(1 + x2), dv = dx, v = x and du = 2x
1+x2 dx

ż

log(1 + x2) dx = x log(1 + x2)´

ż

2x2

1 + x2 dx = x log(1 + x2)´

ż[
2´

2
1 + x2

]
dx

= x log(1 + x2)´ 2x + 2 tan´1 x + C
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(d) The partial fractions expansion

x + 1
x2(x´ 1)

=
A
x
+

B
x2 +

C
x´ 1

=
Ax(x´ 1) + B(x´ 1) + Cx2

x2(x´ 1)

is true provided
Ax(x´ 1) + B(x´ 1) + Cx2 = x + 1

for all x. Setting x = 1, gives the requirement C = 2. Setting x = 0, gives the requirement
B = ´1. As well, the net coefficient of x2 on the left hand side, namely A + C, must be
the same as the net coefficient of x2 on the right hand side, namely 0. So A + C = 0 and
A = ´2. Checking,

´2x(x´ 1)´ (x´ 1) + 2x2 = ´2x2 + 2x´ x + 1 + 2x2 = x + 1

as desired. Thus
ż

x + 1
x2(x´ 1)

dx =

ż [
´

2
x
´

1
x2 +

2
x´ 1

]
dx = ´2 log |x|+

1
x
+ 2 log |x´ 1|+ C

S-8: (a) Define

I1 =

ż 8

0
e´x sin(2x)dx I2 =

ż 8

0
e´x cos(2x)dx

Integrating by parts, with u = sin(2x) or cos(2x) and dv = e´x dx. That is, v = ´e´x.

I1 =

ż 8

0
e´x sin(2x)dx = lim

RÑ8

ż R

0
e´x sin(2x)dx

= lim
RÑ8

[
´ e´x sin(2x)

ˇ

ˇ

ˇ

R

0
+ 2

ż R

0
e´x cos(2x)dx

]
= 2I2

I2 =

ż 8

0
e´x cos(2x)dx = lim

RÑ8

ż R

0
e´x cos(2x)dx

= lim
RÑ8

[
´ e´x cos(2x)

ˇ

ˇ

ˇ

8

0
´ 2

ż 8

0
e´x sin(2x)dx

]
= 1´ 2I1

Substituting I2 = 1
2 I1 into I2 = 1´ 2I1 gives 5

2 I1 = 1 or
ş8

0 e´x sin(2x)dx = 2
5 .

(b) Subsitute x =
?

2 tan y, dx =
?

2 sec2 y dy.
ż

?
2

0

1
(2 + x2)3/2 dx =

?
2
ż π/4

0

sec2 y
(2 + 2 tan2 y)3/2 dy =

1
2

ż π/4

0
cos y dy =

1
2

sin y
ˇ

ˇ

ˇ

ˇ

π/4

0
=

1
2
?

2

(c) Integrate by parts, using u = log(1 + x2) and dv = x dx, so that du = 2x
1+x2 , v = x2

2 .

ż 1

0
x log(1 + x2)dx =

1
2

x2 log(1 + x2)
ˇ

ˇ

ˇ

1

0
´

ż 1

0

x3

1 + x2 dy =
1
2

log 2´
ż 1

0

[
x´

x
1 + x2

]
dx

=
1
2

log 2´
[x2

2
´

1
2

log(1 + x2)
]1

0
= log 2´

1
2
« 0.193
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(c) (Second solution) First substitute y = 1 + x2, dy = 2x dx.
ż 1

0
x log(1 + x2)dx =

1
2

ż 2

1
log y dy

Then integrate by parts, using u = log y and dv = dy, so that du = 1
y , v = y.

ż 1

0
x log(1 + x2)dx =

1
2

ż 2

1
log y dy =

1
2

y log y
ˇ

ˇ

ˇ

2

1
´

1
2

ż 2

1
y

1
y

dy = log 2´
1
2
« 0.193

(d) Use partial fractions.

1
(x´ 1)2(x´ 2)

=
a

(x´ 1)2 +
b

x´ 1
+

c
x´ 2

=
a(x´ 2) + b(x´ 1)(x´ 2) + c(x´ 1)2

(x´ 1)2(x´ 2)
ðñ a(x´ 2) + b(x´ 1)(x´ 2) + c(x´ 1)2 = 1

Setting x = 1 gives ´a = 1. Setting x = 2 gives c = 1. Substituting in a = ´1 and c = 1
gives

b(x´ 1)(x´ 2) = 1 + (x´ 2)´ (x´ 1)2 = ´x2 + 3x´ 2 = ´(x´ 1)(x´ 2) ùñ b = ´1

Hence
ż 8

3

x
(x´ 1)2(x´ 2)

dx = lim
MÑ8

ż M

3

[
´

1
(x´ 1)2 ´

1
x´ 1

+
1

x´ 2

]
dx

= lim
MÑ8

[ 1
x´ 1

´ log(x´ 1) + log(x´ 2)
]M

3

= lim
MÑ8

[ 1
M´ 1

+ log
M´ 2
M´ 1

]
´

[ 1
3´ 1

+ log
3´ 2
3´ 1

]

= log 2´
1
2
« 0.193

since

lim
MÑ8

log
M´ 2
M´ 1

= lim
MÑ8

log
1´ 2/M
1´ 1/M

= log 1 = 0

S-9: (a) Integrate by parts with u = log x and dv = x dx, so that du = dx
x and v = 1

2 x2.
ż

x log x dx =
1
2

x2 log x´
1
2

ż

x2 1
x

dx =
1
2

x2 log x´
1
4

x2 + C

(b)
ż

(x´ 1)dx
x2 + 4x + 5

=

ż

x´ 1
(x + 2)2 + 1

dx =

ż

x + 2
(x + 2)2 + 1

dx´ 3
ż

1
(x + 2)2 + 1

dx

=
1
2

log[(x + 2)2 + 1]´ 3 arctan(x + 2) + C
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(c) We use partial fractions.

1
x2 ´ 4x + 3

=
1

(x´ 3)(x´ 1)
=

a
x´ 3

+
b

x´ 1
=

a(x´ 1) + b(x´ 3)
(x´ 3)(x´ 1)

provided a(x´ 1) + b(x´ 3) = 1. Setting x = 3 gives a = 1
2 . Setting x = 1 gives b = ´1

2 .
So

ż

dx
x2 ´ 4x + 3

=

ż [1
2

1
x´ 3

´
1
2

1
x´ 1

]
dx =

1
2

log |x´ 3| ´
1
2

log |x´ 1|+ C

(d) Substitute y = x3, dy = 3x2 dx.
ż

x2 dx
1 + x6 =

1
3

ż

dy
1 + y2 =

1
3

arctan y + C =
1
3

arctan x3 + C

S-10: (a) Integrate by parts with u = tan´1 x, dv = dx, du = dx
1+x2 and v = x. This gives

ż 1

0
tan´1 x dx = x tan´1 x

ˇ

ˇ

1
0 ´

ż 1

0

x
1 + x2 dx = tan´1 1´

[1
2

log(1 + x2)
]1

0
=

π

4
´

1
2

log 2

(b) Note that the derivative of the denominator is 2x´ 2, which differs from the
numerator only by 1. So

ż

2x´ 1
x2 ´ 2x + 5

dx =

ż

2x´ 2
x2 ´ 2x + 5

dx +

ż

1
x2 ´ 2x + 5

dx

=

ż

2x´ 2
x2 ´ 2x + 5

dx +

ż

1
(x´ 1)2 + 4

dx

= log |x2
´ 2x + 5|+

1
2

tan´1 x´ 1
2

+ C

S-11: (a) Integrating by parts with u = log x, dv = x dx, du = dx
x and v = x2

2
ż

x log x dx = uv´
ż

v du =
x2

2
log x´

ż

x
2

dx =
x2

2
log x´

x2

4
+ C

(b) Substituting u = x3 + 1, du = 3x2 dx
ż

x2

(x3 + 1)101 dx =

ż

1
u101

du
3

=
u´100

´100
1
3
+ C = ´

1
300(x3 + 1)100 + C

(c) Substituting du = cos x dx, u = sin x, cos2 x = 1´ sin2 x = 1´ u2,
ż

cos3x sin4x dx =

ż

cos2x sin4x cos x dx =

ż

(1´ u2)u4 du =
u5

5
´

u7

7
+ C

=
sin5x

5
´

sin7x
7

+ C
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(d) Substituting x = 2 sin u, dx = 2 cos u du,
ż

a

4´ x2 dx =

ż

a

4´ 4 sin2 u 2 cos u du = 4
ż

cos2u du = 4
ż

1 + cos(2u)
2

du

= 2
[
u +

1
2

sin(2u)
]
+ C = 2

[
u + sin u cos u

]
+ C

We still need to express our answer as a function of x. Recall that sin u = x
2 . So

u = arcsin x
2 . Our answer also contains cos u, so we also need to express it as a function

of x. We can do this either by using the trig identity

cos u =
a

1´ sin2 u =

c

1´
x2

4

or by reading cos u off of the triangle below, which has u as an angle and whose sides
have been chosen so that sin u = x

2 .

u√
4− x2

x2

So
ż

a

4´ x2 dx = 2 arcsin
x
2
+

x
2

a

4´ x2 + C

S-12: (a) If the integrand had x’s instead of ex’s it would be a rational function, ripe for
the application of partial fractions. So let’s start by making the substitution u = ex,
du = ex dx:

ż

ex

(ex + 1)(ex ´ 3)
dx =

ż

du
(u + 1)(u´ 3)

Now, we follow the partial fractions protocol, starting with expressing

1
(u + 1)(u´ 3)

=
A

u + 1
+

B
u´ 3

To find A and B, the sneaky way, we cross multiply by the denominator

1 = A(u´ 3) + B(u + 1)

and find A and B by evaluating at u = ´1 and u = 3, respectively.

1 = A(´1´ 3) + B(´1 + 1) ðñ A = ´
1
4

1 = A(3´ 3) + B(3 + 1) ðñ B =
1
4
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Finally, we can do the integral:
ż

ex

(ex + 1)(ex ´ 3)
dx =

ż

du
(u + 1)(u´ 3)

=

ż [
´1/4
u + 1

+
1/4

u´ 3

]
du

= ´
1
4

log |u + 1|+
1
4

log |u´ 3|+ C

= ´
1
4

log |ex + 1|+
1
4

log |ex
´ 3|+ C

(b) The argument of the square root is

12 + 4x´ x2 = 12´ (x´ 2)2 + 4 = 16´ (x´ 2)2

Hmmm. The numerator is x2 ´ 4x + 4 = (x´ 2)2. So let’s make the integral look
somewhat simpler by substituting u = x´ 2, du = dx. When x = 2 we have u = 0, and
when x = 4 we have u = 2 so

ż x=4

x=2

x2 ´ 4x + 4
?

12 + 4x´ x2
dx =

ż u=2

u=0

u2
?

16´ u2
du

This is perfect for the trig substitution u = 4 sin θ, du = 4 cos(θ)dθ. When u = 0 we have
4 sin θ = 0 and hence θ = 0. When u = 2 we have 4 sin θ = 2 and hence θ = π

6 . So
ż u=2

u=0

u2
?

16´ u2
du =

ż θ=π/6

θ=0

16 sin2 θ
a

16´ 16 sin2 θ
4 cos θdθ

= 16
ż π/6

0
sin2 θ dθ

= 8
ż π/6

0

[
1´ cos(2θ)

]
dθ

= 8
[

θ ´
1
2

sin(2θ)

]π/6

0
= 8

[
π

6
´

1
2

?
3

2

]

=
4π

3
´ 2
?

3

S-13: (a) Substituting y = cos x, dy = ´ sin x dx, sin2 x = 1´ cos2 x = 1´ y2

ż

sin3 x
cos3 x

dx =

ż

sin2 x
cos3 x

sin x dx =

ż

1´ y2

y3 (´dy) = ´

ż (
y´3

´ y´1) dy

= ´
y´2

´2
+ log |y|+ C =

1
2

sec2 x + log | cos x|+ C

(b) Substituting x5 = 4y, 5x4 dx = 4 dy, and using that x = 2 ùñ 25 = 4y ùñ y = 8,
ż 2

´2

x4

x10 + 16
dx = 2

ż 2

0

x4

x10 + 16
dx = 2

4
5

ż 8

0

1
16y2 + 16

dy =
1

10

ż 8

0

1
y2 + 1

dy

=
1

10
tan´1 8 « 0.1446
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(c) Integrate by parts, using u = log(1 + x2), dv = dx, v = x and du = 2x
1+x2 dx

ż 1

0
log(1 + x2) dx = x log(1 + x2)

ˇ

ˇ

ˇ

1

0
´

ż 1

0

2x2

1 + x2 dx

= log 2´
ż 1

0

[
2´

2
1 + x2

]
dx

= log 2´
[
2x´ 2 tan´1 x

]1

0

= log 2´ 2 +
π

2
« 0.2639

S-14: (a) Split the specified integral into

ż 3

0
(x + 1)

a

9´ x2 dx =

ż 3

0

a

9´ x2 dx +

ż 3

0
x
a

9´ x2 dx

The first piece represents the area above the x–axis and below the curve y =
?

9´ x2, i.e.
x2 + y2 = 9, with 0 ď x ď 3. That’s the area of one quadrant of a disk of radius 3. So

ż 3

0

a

9´ x2 dx =
1
4

π32 =
9
4

π

For the second part we substitute u = 9´ x2, du = ´2x dx, u(x = 0) = 9 and
u(x = 3) = 0. So

ż 3

0
x
a

9´ x2 dx =

ż 0

9

?
u

du
´2

= ´
1
2

[u3/2

3/2

]0

9
= ´

1
2

[
´

27
3/2

]
= 9

All together
ż 3

0
(x + 1)

a

9´ x2 dx =
9
4

π + 9

(b) The integrand is of the form N(x)/D(x) with D(x) already factored and N(x) of
lower degree. We immediately look for a partial fractions decomposition:

4x + 8
(x´ 2)(x2 + 4)

=
A

x´ 2
+

Bx + C
x2 + 4

.

Multiplying through by the denominator yields

4x + 8 = A(x2 + 4) + (Bx + C)(x´ 2) (˚)

Setting x = 2 we find:

8 + 8 = A(4 + 4) + 0 ùñ 16 = 8A ùñ A = 2
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Substituting A = 2 in (˚) gives

4x + 8 = A(x2 + 4) + (Bx + C)(x´ 2)

ùñ ´2x2 + 4x = (x´ 2)(Bx + C)
ùñ (´2x)(x´ 2) = (Bx + C)(x´ 2)
ùñ B = ´2, C = 0

So we have found that A = 2, B = ´2, and C = 0. Therefore
ż

4x + 8
(x´ 2)(x2 + 4)

dx =

ż
(

2
x´ 2

´
2x

x2 + 4

)
dx

= 2 log |x´ 2| ´ log(x2 + 4) + C

Here the second integral was found just by guessing an antiderivative. Alternatively, one
could use the substitution u = x2 + 4, du = 2x dx.

(c) The given integral is improper and so is

ż +8

´8

1
ex + e´x dx = lim

R,R1Ñ8

ż R1

´R

1
ex + e´x dx = lim

R,R1Ñ8

ż R1

´R

ex dx
e2x + 1

We substitute u = ex, du = ex dx, giving

ż +8

´8

1
ex + e´x dx = lim

R,R1Ñ8

ż eR1

e´R

du
u2 + 1

= lim
R,R1Ñ8

[
arctan u

]eR1

e´R =
π

2

S-15: (a) Substituting u = log x, du = 1
x dx, dx = x du = eu du

ż

sin(log x) dx =

ż

sin(u) eu du

We have already seen, in Example 1.7.11 of the CLP 101 notes, that
ż

sin(u) eu du =
1
2

eu( sin u´ cos u
)
+ C

So
ż

sin(log x) dx =
1
2

x
[

sin(log x)´ cos(log x)
]
+ C

(b) The integrand is of the form N(x)/D(x) with N(x) of lower degree than D(x). So we
factor D(x) = (x´ 2)(x´ 3) and look for a partial fractions decomposition:

1
(x´ 2)(x´ 3)

=
A

x´ 2
+

B
x´ 3

.

Multiplying through by the denominator yields

1 = A(x´ 3) + B(x´ 2)
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Setting x = 2 we find:

1 = A(2´ 3) + 0 ùñ A = ´1

Setting x = 3 we find:

1 = 0 + B(3´ 2) ùñ B = 1

So we have found that A = ´1 and B = 1. Therefore
ż

1
(x´ 2)(x´ 3)

dx =

ż
(

1
x´ 3

´
1

x´ 2

)
dx

= log |x´ 3| ´ log |x´ 2|+ C

Solutions to Exercises 2.1 — Jump to TABLE OF CONTENTS

S-1: By Hooke’s Law, the force exerted by the spring at displacement x m from its natural
length is F = kx, where k is the spring constant. Measuring distance in meters and force
in newtons, the total work is

ż 0.1 m

0
kx dx =

1
2

kx2
ˇ

ˇ

ˇ

ˇ

0.1 m

0
=

1
2
¨ 50 ¨ (0.1)2 J =

1
4

J.

S-2: By definition, the work done in moving the object from x = 1 meters to x = 16
meters by the force F(x) is

W =

ż 16

1
F(x) dx =

ż 16

1

a
?

x
dx = 2a

?
x
ˇ

ˇ

ˇ

x=16

x=1
= 6a

To have W = 18, we need a = 3.

As a side remark, F(x) = a?
x has to have units Newtons. As x, a distance, has units

meters, a has to have the bizarre units Newtonsˆ
?

meters.

S-3: First note that Newtons and Joules are MKS units, so we should measure distances
in meters rather than centimeters. Next recall that a (linear) spring with spring constant k
exerts a force F(x) = kx when the spring is stretched xm beyond its natural length. So in
this case 0.05k = 10, or k = 200. The work done is

ż 0.5

0
F(x) dx =

ż 0.5

0
200x dx =

[
100x2

]0.5

0
= 25
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S-4: Note that the cable has mass density 8
5 kg/m. When the bucket is at height y, the

cable that remains to be lifted has length (5´ y) m and mass 8
5(5´ y) = 8

(
1´ y

5

)
kg. So,

at height y, the cable is subject to a downward gravitational force of 8
(
1´ y

5

)
¨ 9.8; to raise

the cable we need to apply a compensating upward force of 8
(
1´ y

5

)
¨ 9.8. So the work

required is

ż 5

0
8
(

1´
y
5

)
¨ 9.8 dy = 8

(
y´

y2

10

)
¨ 9.8

ˇ

ˇ

ˇ

ˇ

5

0
= 8 ¨ 2.5 ¨ 9.8 = 196 J.

Alternatively, the cable has linear density 8 kg/5 m = 1.6 kg/m, and so the work
required to lift a small piece of the cable (of length ∆y) from height y m to height 5 m is
1.6∆y ¨ 9.8(5´ y). The total work required is therefore

ż 5

0
1.6 ¨ 9.8(5´ y)dy = 1.6 ¨ 9.8 ¨ 12.5 = 196 J

as before.

S-5: Imagine slicing the water into horizontal pancakes as in the sketch

1m

3mx

Denote by x the distance of a pancake below the surface of the water. So x runs from 0 to
3. Each pancake

˝ has radius
?

32 ´ x2 (by Pythagorous) and hence

˝ has cross–sectional area π(9´ x2) and hence

˝ has volume π(9´ x2)dx and hence

˝ has mass 1000π(9´ x2)dx and hence

˝ is subject to a gravitational force of 9.8ˆ 1000π(9´ x2)dx and hence

˝ requires work 9800π(9´ x2)(x + 4)dx to raise it to the spout. (It has to be raised
xm to bring it to the height of the centre of the sphere, then 3m more to bring it to
the top of the sphere, and then 1m more to bring it to the spout.)
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So the total work is
ż 3

0
9800π(9´ x2)(x + 4)dx =

ż 3

0
9800π

(
36 + 9x´ 4x2

´ x3)dx

= 9800π
[
36x +

9
2

x2
´

4
3

x3
´

1
4

x4
]3

0

= 9800
369
4

π = 904,050π joules

S-6: The plate at height z has

˝ has side length 3´ z and hence

˝ has area (3´ z)2 and hence

˝ has volume (3´ z)2 dz and hence

˝ has mass 8000(3´ z)2 dz and hence

˝ is subject to a gravitational force of 9.8ˆ 8000(3´ z)2 dz and hence

˝ requires work 9.8ˆ 8000(2 + z)(3´ z)2 dz to raise it from 2m below ground level to
zm above ground level.

So the total work is
ż 3

0
9.8ˆ 8000(2 + z)(3´ z)2 dz joules

Solutions to Exercises 2.2 — Jump to TABLE OF CONTENTS

S-1: By definition, the average value is

1
π

ż π/2

´π/2

(
sin(5x) + 1

)
dx

We now observe that sin(5x) is an odd function, and hence its integral over the
symmetric interval [´π

2 , π
2 ] equals zero. So the average value of f (x) on this interval is 1.

Alternatively, the average equals, by the fundamental theorem of calculus,

1
π

[
´ cos(5x)

5
+ x
]π/2

´π/2
=

1
π

"[
´ cos(5π/2)

5
+

π

2

]
´

[
´ cos(´5π/2)

5
+
´π

2

]*
=

π

π
= 1

S-2: By definition, the average is

1
e´ 1

ż e

1
x2 log x dx =

1
e´ 1

[
x3

3
log x´

x3

9

]x=e

x=1
=

1
e´ 1

[
e3

3
´

e3

9
+

1
9

]

=
1

e´ 1

[
2
9

e3 +
1
9

]
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The indefinite integral
ş

x2 log x dx = x3

3 log x´ x3

9 + C was guessed and then verified by
checking that d

dx
[ x3

3 log x´ x3

9

]
= x2 log x. The same indefinite integral can be found by

using integration by parts with u = log x, dv = x2 dx, v = x3

3 .

S-3: By definition, the average value in question equals

1
π/2´ 0

ż π/2

0
(3 cos3 x + 2 cos2 x)dx =

2
π

(
ż π/2

0
3 cos3 x dx +

ż π/2

0
2 cos2 x dx

)

For the first integral we use the substitution u = sin x, du = cos x dx,
cos2 x = 1´ sin2 x = 1´ u2. Note that the endpoints x = 0 and x = π

2 become u = 0 and
u = 1, respectively.

ż π/2

0
3 cos3 x dx =

ż π/2

0
3 cos2 x cos x dx

=

ż 1

0
3(1´ u2)du

= (3u´ u3)
ˇ

ˇ

ˇ

1

0
= 2.

For the second integral we use the trigonometric identity cos2 x dx = 1+cos(2x)
2 .

2
ż π/2

0
cos2 x dx =

ż π/2

0

(
1 + cos(2x)

)
dx

=

[
x +

1
2

sin(2x)
]π/2

0
=

π

2

Therefore the average value in question is

2
π

(
ż π/2

0
3 cos3 x dx +

ż π/2

0
2 cos2 x dx

)
=

2
π

(
2 +

π

2

)
=

4
π
+ 1.

S-4: By definition, the average value in question equals

Ave =
1

π/k´ 0

ż π/k

0
sin(kx)dx

To evaluate the integral, we use the substitution u = kx, du = k dx. Note that the
endpoints x = 0 and x = π/k become u = 0 and u = π, respectively. So

Ave =
k
π

ż π

0
sin(u)

du
k

=
1
π

[
´ cos(u)

]π

0
=

2
π
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S-5: By definition, the average temperature is

1
3

ż 3

0
T(x)dx =

1
3

ż 3

0

80
16´ x2 dx =

1
3

ż 3

0

80
(4´ x)(4 + x)

dx =
1
3

ż 3

0

[ 10
4´ x

+
10

4 + x

]
dx

=
1
3

ż 3

0

[
´

10
x´ 4

+
10

4 + x

]
dx =

10
3

[
´ log |x´ 4|+ log |x + 4|

]3

0

=
10
3

log
ˇ

ˇ

ˇ

x + 4
x´ 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3

0
=

10
3
[log 7´ log 1]

=
10
3

log 7

S-6: By definition, the average value is

1
e´ 1

ż e

1

log x
x

dx =
1

e´ 1

ż 1

0
u du =

1
e´ 1

u2

2

ˇ

ˇ

ˇ

ˇ

1

0
=

1
2(e´ 1)

where we made the change of variables u = log x, du = 1
x dx.

S-7: By definition, the average value is

1
2π

ż 2π

0
cos2 x dx =

1
2π

1
2

ż 2π

0

[
cos(2x) + 1

]
dx =

1
2π

1
2

[sin(2x)
2

+ x
]2π

0
=

1
2π

1
2

2π =
1
2

S-8: (a) a) Let v(t) be the speed of the car at time t. Then, by the trapezoidal rule with
a = 0, b = 2, ∆t = 1/3, the distance traveled is

ż 2

0
v(t) dt « ∆t

[
1
2 v(0) + v(1/3) + v(2/3) + v(3/3) + v(4/3) + v(5/3) + 1

2 v(2)
]

=
1
3

[
1
250 + 70 + 80 + 55 + 60 + 80 + 1

240
]
= 130 km

(b) The average speed is 1
2

ş2
0 v(t) dt « 65 km/hr.

Solutions to Exercises 2.3 — Jump to TABLE OF CONTENTS

S-1: We use vertical strips, as in the sketch below. (To use horizontal strips we would
have to split the domain of integration in two: ´3 ď y ď 0 and 0 ď y ď 3.)

(−1,−3)

(−1, 3)

(0, 0)

y = −3x

y = 3x
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The equations of the top and bottom of the triangle are

y = T(x) = ´3x and y = B(x) = 3x.

The area of the triangle is A = 1
2(6)(1) = 3. Using vertical slices,

x̄ =
1
A

ż 0

´1
x
[
T(x)´ B(x)

]
dx =

1
3

ż 0

´1
x
[
(´3x)´ (3x)

]
dx = ´

1
3

ż 0

´1
6x2 dx

S-2: The equation of the top of the region is y = T(x) = 1, the equation of the bottom of
the region is y = B(x) = ´ex and x rus from a = 0 to b = 1. So the y-coordinate of the
centre of mass is

ȳ =
1

2A

ż 1

0

[
T(x)2

´ B(x)2]dx =
1
2e

ż 1

0

(
1´ e2x

)
dx =

1
2e

[
x´

1
2

e2x
]1

0

=
1
2e

[
1´

e2

2
´ 0 +

1
2

]
=

3
4e
´

e
4

S-3: The area of the region is

A =

ż 8

1

8
x3 dx = lim

tÑ8

(
ż t

1

8
x3 dx

)
= lim

tÑ8

[
´

4
x2

]t

1
= lim

tÑ8

[
´

4
t2 +

4
12

]
= 0 + 4

We’ll now compute ȳ twice, once with vertical strips, as in the figure in the left below,
and once with horizontal strips as in the figure on the right below.

(1, 8)

y = 8
x3

x

y

1

(1, 8)

x = 2
y1/3

x

y

1

Vertical strips: The equation of the top of the region is y = T(x) = 8
x3 and the equation of

the bottom of the region is y = B(x) = 0. So, using vertical strips, as in the figure on the
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left above, the y-coordinate of the centre of mass is

ȳ =
1

2A

ż 8

1

[
T(x)2

´ B(x)2]dx

=
1
8

ż 8

1

(
8
x3

)2

dx

= lim
tÑ8

(
ż t

1

8
x6 dx

)

= lim
tÑ8

[
´

8
5x5

]t

1

= lim
tÑ8

[
´

8
5t5 +

8
5ˆ 15

]
=

8
5

Vertical strips: Since y = 8
x3 is equivalent to x = 3

b

8
y , the equation of the right hand side

of the region is x = R(y) = 2
y1/3 and the equation of the left hand side of the region is

x = L(y) = 1. The x– and y–coordinates of the point at the top of the region obeys both
x = 1 and y = 8

x3 = 8. Thus y runs from 0 to 8. So, using horizontal strips, as in the figure
on the right above, the y-coordinate of the centre of mass is

ȳ =
1
A

ż 8

0
y
[
R(y)´ L(y)

]
dy

=
1
4

ż 8

0
y
[
2y´1/3

´ 1
]

dy

=
1
4

ż 8

0

[
2y2/3

´ y
]

dy

=
1
4

[
6
5

y5/3
´

y2

2

]8

0

=
1
4

[
6ˆ 32

5
´

8ˆ 8
2

]
= 8

[
6
5
´ 1
]
=

8
5

S-4: (a) The sketch is the figure on the left below.

x = 2

y = 1√
16−x2

x

y

x = 2

y = 1√
16−x2

x

y

(b) The part of the region with x coordinate between x and x + dx is a strip of width dx
running from y = 0 to y = 1?

16´x2
. It is illustrated in red in the figure on the right above.
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So the area of the region is

A =

ż 2

0

1
?

16´ x2
dx =

ż sin´1 1/2

0

1
4 cos t

4 cos t dt = sin´1 1
2
=

π

6

where we made the substitution x = 4 sin t, dx = 4 cos tdt,
?

16´ x2 = 4 cos t. On the
(red) strip with x coordinate between x and x + dx, the average value of y is 1/2?

16´x2
. The

y–coordinate of the centroid is the weighted average of 1/2?
16´x2

with the strip counted as

having weight 1?
16´x2

dx.

ȳ =
1
A

ż 2

0

1/2
?

16´ x2

1
?

16´ x2
dx =

1
2A

ż 2

0

1
16´ x2 dx =

1
2A

ż 2

0

1
(4´ x)(4 + x)

dx

=
1

2A

ż 2

0

[ 1/8
4 + x

+
1/8

4´ x

]
dx =

1
16A

ż 2

0

[ 1
x + 4

´
1

x´ 4

]
dx

=
1

16A

[
log |x + 4| ´ log |x´ 4|

]2

0
=

6
16π

[
log 6´ log 2´ log 4 + log 4

]

=
3 log 3

8π

S-5: The top of the region is y = T(x) = cos(x) and the bottom of the region is
y = B(x) = sin(x). So the area of the region is

A =

ż π/4

0

(
T(x)´ B(x)

)
dx =

ż π/4

0

(
cos(x)´ sin(x)

)
dx =

[
sin(x) + cos(x)

]π/4

0

=
?

2´ 1

and region has centroid (x̄, ȳ) with

x̄ =
1
A

ż π/4

0
x
(
T(x)´ B(x)

)
dx =

1
A

ż π/4

0
x
(

cos(x)´ sin(x)
)

dx

=
1
A

[
x sin(x) + cos x + x cos(x)´ sin x

]π/4

0
=

π
4

?
2´ 1

?
2´ 1

ȳ =
1

2A

ż π/4

0

(
T(x)2

´ B(x)2)dx =
1

2A

ż π/4

0

(
cos2(x)´ sin2(x)

)
dx

=
1

2A

ż π/4

0
cos(2x)dx =

1
2A

[1
2

sin(2x)
]π/4

0
=

1
4(
?

2´ 1)

S-6: (a) Imagine that the plane region is a metal plate of density one unit per unit area.
Then the part of the plate with x–coordinate between x and x + dx has width dx and
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x = 1

y = k√
1+x2

x

y

height k?
1+x2 . So it has area, and hence weight, k?

1+x2 dx. The x–coordinate of the
centroid is the weighted average of x or

x̄ =
1
A

ż 1

0
x

k
?

1 + x2
dx =

1
A

ż 2

1

k
?

u
du
2

=
k

2A

[?u
1/2

]2

1
=

k
A
[?

2´ 1
]

We made the substitution u = 1 + x2, du = 2xdx. The average value of y on the part of
the plate with x–coordinate between x and x + dx is k

2
?

1+x2 . The y–coordinate of the

centroid is the weighted average of k
2
?

1+x2 or

ȳ =
1
A

ż 1

0

k
2
?

1 + x2

k
?

1 + x2
dx =

k2

2A

ż 1

0

1
1 + x2 dx =

k2

2A

[
arctan 1´ arctan 0

]
=

k2

2A
π

4
=

k2π

8A

(b) We have x̄ = ȳ if and only if

k
A
[?

2´ 1
]
=

k2π

8A
ùñ k =

8
π

[?
2´ 1

]

S-7: (a) The sketch is the figure on the left below.

y=x−x2

y=x2−3x

x
y

(2,−2)

y=x−x2

y=x2−3x

x
y

(2,−2)

(b) The curves cross when x2 ´ 3x = x´ x2 ùñ 2x2 = 4x ùñ x = 0, x = 2. The
corresponding values of y are y = 0 and y = 2´ 22 = ´2. Using vertical strips, as in the
figure on the right above, the area is

ż 2

0

[
(x´ x2)´ (x2

´ 3x)
]

dx =

ż 2

0

[
4x´ 2x2]dx =

[
2x2

´
2
3

x3]2
0 = 8´

16
3

=
8
3

(c) The x–coordinate of the centroid of R, i.e. the weighted average of x over R, is

x̄ =
3
8

ż 2

0
x
[
(x´x2)´ (x2

´3x)
]

dx =
3
8

ż 2

0

[
4x2

´ 2x3]dx =
3
8

[4
3

x3
´ 1

2 x4
]2

0
=

3
8

[32
3
´ 8
]

= 1
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S-8: By definition the x–coordinate of the centroid is

x̄ =

ş1
0 x 1

1+x2 dx
ş1

0
1

1+x2 dx
=

1
2 log(1 + x2)

ˇ

ˇ

1
0

tan´1 x
ˇ

ˇ

1
0

=
1
2 log 2
π/4

=
2
π

log 2 « 0.44127

S-9: By symmetry, the centroid lies on the y–axis, so x̄ = 0. We’ll use vertical strips as in
the sketch

y

x

−2

−1

1

2

3

321−1−2−3

y =
√
32 − x2

y = −2

to compute the y–coordinate of the centroid. The strip with x–coordinate x has y running
from ´2 to

?
32 ´ x2. So the average value of y on the strip is 1

2 [
?

32 ´ x2 + (´2)]. The
stripe has “weight” (area) [

?
32 ´ x2 ´ (´2)] dx. Thus, as the area of the region is

1
2 π32 + 2ˆ 6 = 12 + 9π/2, the y–coordinate of the centroid is

ȳ =
1

12 + 9π/2

ż 3

´3

1
2
[
a

32 ´ x2 ´ 2] [
a

32 ´ x2 + 2] dx

=
1

24 + 9π

ż 3

´3
[(32

´ x2)´ 4] dx =
1

24 + 9π

ż 3

´3
[5´ x2] dx

=
2

24 + 9π

ż 3

0
[5´ x2] dx =

2
24 + 9π

[
5x´

x3

3

]3

0

=
2

24 + 9π

[
15´ 9

]
=

12
24 + 9π

S-10: (a) Notice that when x = 0, y = 3 and as x2 increases, y decreases until y hits zero at
x2 = 9

4 , i.e. at x = ˘3
2 . For x2 ą 9

4 , y is not even defined. So, on D, x runs from ´3
2 to +3

2
and, for each x, y runs from0 to

?
9´ 4x2. Here is a sketch of D.

y =
√
9− 4x2

(−3/2, 0) (3/2, 0)
x

y
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As an aside, we can rewrite y =
?

9´ 4x2 as 4x2 + y2 = 9, y ě 0, which is the top half of
the ellipse which passes through (˘a, 0) and (0,˘b) with a = 3

2 and b = 3. The area of
the full ellipse is πab = 9

2 π. The area of D is half of that, which is 9
4 π. But we are told to

use an integral, so we will do so.

The area is

Area =

ż 3/2

´3/2

a

9´ 4x2 dx

We can evaluate this integral by substituting x = 3
2 sin θ, dx = 3

2 cos θ dθ and using

x = ˘
3
2
ðñ sin θ = ˘1

So ´π
2 ď θ ď π

2 and

Area =

ż π/2

´π/2

b

9´ 4
(3

2 sin θ
)2 3

2
cos θ dθ =

ż π/2

´π/2

a

9´ 9 sin2 θ
3
2

cos θ dθ

=
9
2

ż π/2

´π/2
cos2 θ dθ =

9
2

ż π/2

´π/2

cos(2θ) + 1
2

dθ

=
9
4

[sin(2θ)

2
+ θ
]π/2

´π/2
=

9
4

π

(b) The region D is symmetric about the y axis. So the centre of mass lies on the y axis.
That is, x̄ = 0. Since D has area A = 9

4 π, top equation y = T(x) =
?

9´ 4x2 and bottom
equation y = B(x) = 0, with x running from a = ´3

2 to b = 3
2 ,

ȳ =
1

2A

ż b

a

[
T(x)2

´ B(x)2] dx =
2

9π

ż 3/2

´3/2

[
9´ 4x2] dx =

4
9π

ż 3/2

0

[
9´ 4x2] dx

=
4

9π

[
9x´

4
3

x3
]3/2

0
=

4
9π

[
9

3
2
´

4
3

33

23

]
=

4
9π

[
9

3
2
´ 9

1
2

]

=
4
π

S-11: (a) The two curves cross at points (x, y) that satisfy both y = x2 and y = 6´ x, and
hence

x2 = 6´ x ðñ x2 + x´ 6 = 0 ðñ (x + 3)(x´ 2)

So we see that the two curves intersect at x = 2 (as well as x = ´3, which is to the left of
the y-axis and therefore irrelevant). Here is a sketch of A.

(2, 4)

y = x2

y = 6− x

x

y

A
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The top of A has equation y = T(x) = 6´ x, the bottom has equation y = B(x) = x2 and
x runs from 0 to 2. So, using vertical strips,

x̄ =
1

area

ż 2

0
x
[
T(x)´ B(x)

]
dx

=
1

22/3

ż 2

0
x
[
(6´ x)´ x2]dx =

3
22

ż 2

0
(6x´ x2

´ x3)dx

=
3
22

[
3x2

´
x3

3
´

x4

4

]2

0

=
3

22

[
12´

8
3
´ 4
]
=

3
22

16
3

=
8
11

and

ȳ =
1

2(area)

ż 2

0

[
T(x)2

´ B(x)2]dx

=
1
2

1
22/3

ż 2

0

(
(6´ x)2

´ x4 )dx =
3
44

[
´
(6´ x)3

3
´

x5

5

]2

0

=
3

44

(
´

64´ 216
3

´
32
5

)
=

3
44

664
15

=
166
55

The integral was evaluated by guessing an antiderivative for the integrand. It could also
be evaluated as

3
44

ż 2

0

(
36´ 12x + x2

´ x4 )dx =
3

44

[
36x´ 6x2 +

x3

3
´

x5

5

]2

0

=
3

44

(
72´ 24 +

8
3
´

32
5

)
=

3
44

664
15

=
166
55

(b) The question specifies the use of horizontal slices (as in Example 1.6.5 CLP 101 notes).
We start by converting both equations y = 6´ x and y = x2 into equations of the form
x = f (y). To do so we solve for x in both equations, yielding x =

?y and x = 6´ y.

(2, 4)

(0, 6)

x =
√
y

x = 6− y

x

y

• We use thin horizontal strips of width dy as in the figure above.

• When we rotate about the y–axis, each strip sweeps out a thin disk
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– whose radius is r = 6´ y when 4 ď y ď 6 (see the blue strip in the figure
above), and whose radius is r = ?y when 0 ď y ď 4 (see the red strip in the
figure above) and

– whose thickness is dy and hence

– whose volume is πr2 dy = π(6´ y)2 dy when 4 ď y ď 6 and whose volume is
πr2 dy = πy dy when 0 ď y ď 4.

• As our bottommost strip is at y = 0 and our topmost strip is at y = 6, the total
volume is

π

ż 4

0
y dy + π

ż 6

4
(6´ y)2 dy

S-12: (a) Here is a sketch of the specified region, which we shall call R.

(0,−1)
(1,−1)

y = ex

x

y

R

y = −1

The top of R has equation y = T(x) = ex, the bottom has equation y = B(x) = ´1 and x
runs from 0 to 1. So, using vertical strips, we see that R has

area =

ż 1

0

[
T(x)´ B(x)

]
dx =

ż 1

0

[
ex
´ (´1)

]
dx =

ż 1

0

[
ex + 1

]
dx =

[
ex + x

]1
0 = e

and

ȳ =
1

2(area)

ż 1

0

[
T(x)2

´ B(x)2]dx

=
1
2e

ż 1

0

[
e2x
´ 1

]
dx =

1
2e

[
e2x

2
´ x
]1

0

=
1
2e

(
e2

2
´ 1´

1
2

)
=

e
4
´

3
4e

(b) To compute the volume when R is rotated about y = ´1

• We use thin vertical strips of width dx as in the figure above.

• When we rotate about the line y = ´1, each strip sweeps out a thin disk

– whose radius is r = T(x)´ B(x) = ex + 1 and

– whose thickness is dx and hence
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– whose volume is πr2 dx = π(ex + 1)2 dx.

• As our leftmost strip is at x = 0 and our rightmost strip is at z = 1, the total volume
is

π

ż 1

0
(ex + 1)2 dx = π

ż 1

0
(e2x + 2ex + 1)dx = π

[
e2x

2
+ 2ex + x

]1

0

= π

[( e2

2
+ 2e + 1

)
´

(1
2
+ 2 + 0

)]

= π
( e2

2
+ 2e´

3
2

)

Solutions to Exercises 2.4 — Jump to TABLE OF CONTENTS

S-1: Rearranging, we have:

ey dy = 2x dx.

Integrating both sides:

ey = x2 + C.

Since y = log 2 when x = 0, we have

elog 2 = 02 + C
2 = C,

and therefore

ey = x2 + 2

y = log(x2 + 2)

S-2: Using separation of variables

dy
dx

=
xy

x2 + 1
ðñ

dy
y

=
x

x2 + 1
dx ðñ log |y| =

1
2

log(1 + x2) + C

To satisfy y(0) = 3, we need log 3 = 1
2 log(1 + 0) + C or C = log 3. Thus

log |y| =
1
2

log(1+ x2)+ log 3 = log
a

1 + x2 + log 3 = log 3
a

1 + x2 ùñ y(x) = 3
a

1 + x2

The other sign of y would violate y(0) = 3 and so is unacceptable.
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S-3: The given differential equation is separable and we solve it accordingly.

y1 = e
y
3 cos t ðñ e´y/3dy = cos t dt ðñ ´3e´y/3 = sin t + C ðñ ey/3 =

´3
C + sin t

ðñ y(t) = 3 log
´3

C + sin t

for any constant C. The solution only exists for C + sin t ă 0.

S-4: The given differential equation is separable and we solve it accordingly.

dy
dx

= xex2´log(y2) =
xex2

y2 ðñ y2dy = xex2
dx ðñ

y3

3
=

1
2

ex2
+ C1 ðñ y =

3

c

3
2

ex2 + C

for any constant C.

S-5: The given differential equation is separable and we solve it accordingly.

y1 = xey
ðñ

dy
ey = x dx ðñ ´e´y =

1
2

x2
´ C ðñ y = ´ log

(
C´

x2

2
)

for any constant C. The solution only exists for C´ x2

2 ą 0, i.e. for C ą 0 and |x| ă
?

2C.

S-6: The given differential equation is separable and we solve it accordingly.
Cross–multiplying, we rewrite the equation as

y2 dy
dx

= ex
´ 2x

y2 dy = (ex
´ 2x)dx.

Integrating both sides, we find

1
3

y3 = ex
´ x2 + C

Setting x = 0 and y = 3, we find 1
333 = e0 ´ 02 + C and hence C = 8; therefore the

solution is

1
3

y3 = ex
´ x2 + 8

y = (3ex
´ 3x2 + 24)1/3.

S-7: This is a separable differential equation that we solve in the usual way.

dy
dx

= ´xy3
ùñ

ż

dy
y3 = ´

ż

x dx ùñ
y´2

´2
= ´

x2

2
+ C ùñ y´2 = x2

´ 2C.
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To have y = ´1
4 when x = 0, we must choose C to obey

(
´

1
4

)´2
= 0´ 2C ùñ ´2C = 16 ùñ y´2 = x2

´ 2C = x2 + 16.

So y = f (x) = ´ 1?
x2+16

. We need to take the negative square root to have f (0) = ´1
4 .

S-8: This is a separable differential equation that we solve in the usual way.
Cross-multiplying and integrating,

y dy = (15x2 + 4x + 3)dx
ż

y dy =

ż

(15x2 + 4x + 3)dx

y2

2
= 5x3 + 2x2 + 3x + C.

Plugging in x = 1 and y = 4 gives 42

2 = 5 + 2 + 3 + C, and so C = ´2. Therefore

y2

2
= 5x3 + 2x2 + 3x´ 2

y =
a

10x3 + 4x2 + 6x´ 4.

We must choose the positive square root since y(1) is positive.

S-9: The given differential equation is separable and we solve it accordingly.

y1 = x3y ðñ
dy
y

= x3 dx ðñ log |y| =
x4

4
+ C

We are told that y = 1 when x = 0. So log 1 = 04

4 + C which gives C = 0 so that
log |y| = x4

4 or |y(x)| = ex4/4. Since y(0) = 1 ą 0, we should drop the absolute values.
(Since |y(x)| = ex4/4 ě 1, the magnitude of y(x) is always at least one. As y(x) must be
continuous, it cannot change sign.) Thus y(x) = ex4/4.

S-10: This is a separable differential equation, even if it doesn’t quite look like it. First
move the y from the left hand side to the right hand side.

x
dy
dx

+ y = y2
ðñ x

dy
dx

= y2
´ y = y(y´ 1)

ðñ
dy

y(y´ 1)
=
[ 1

y´ 1
´

1
y

]
dy =

dx
x

ðñ log |y´ 1| ´ log |y| = log |x|+ C

ðñ log
|y´ 1|
|y|

= log |x|+ C
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To determine C we set x = 1 and y = ´1.

log
| ´ 2|
| ´ 1|

= log |1|+ C ñ C = log 2

So the solution is

log
|y´ 1|
|y|

= log |x|+ log 2 = log 2|x| ðñ
|y´ 1|
|y|

= 2|x|

For x near 1 and y near ´1, both x and y´1
y are positive and we may drop the absolute

value signs.
y´ 1

y
= 2x ðñ y´ 1 = 2xy ðñ y =

1
1´ 2x

As a check, we compute

x
dy
dx

+ y = x
2

(1´ 2x)2 +
1

1´ 2x
=

2x + (1´ 2x)
(1´ 2x)2 =

1
(1´ 2x)2 = y2

and
y(1) =

1
1´ 2ˆ 1

= ´1

S-11: We are told that y = f (x) obeys the separable differential equation y1 = xy.

dy
dx

= xy ðñ
dy
y

= x dx

ðñ

ż

dy
y

=

ż

x dx

ðñ log |y| =
x2

2
+ C

To determine C we set x = 0 and y = e.

log e =
02

2
+ C ñ C = 1

So the solution is

log |y| =
x2

2
+ 1

We are told that y = f (x) ą 0, so may drop the absolute value signs.

log y =
x2

2
+ 1 ðñ y = e1+x2/2
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S-12: This is a separable differential equation.

dy
dx

=
1

(x2 + x)y
ðñ y dy =

dx
x(x + 1)

=
[1

x
´

1
x + 1

]
dx ðñ

y2

2
= log

x
x + 1

+ C

To satisfy the initial condition y(1) = 2 we must choose C to obey

22

2
= log

1
1 + 1

+ C ùñ C = 2´ log
1
2

So

y(x) =

c

2
(

log
x

x + 1
´ log

1
2
+ 2
)
=

c

4 + 2 log
2x

x + 1

Note that, to satisfy y(1) = 2, we need the positive square root.

S-13: This is a separable differential equation.

1 +
a

y2 ´ 4
tan x

y1 =
sec x

y
ðñ y

[
1 +

b

y2 ´ 4
]

dy = sec x tan x dx

ðñ

ż

y
[
1 +

b

y2 ´ 4
]

dy =

ż

sec x tan x dx

ðñ
y2

2
+

1
3
[
y2
´ 4
]3/2

= sec x + C

To determine C we set x = 0 and y = 2.

22

2
+

1
3
[
22
´ 4
]3/2

= sec 0 + C = 1 + C ñ C = 1

So the solution is
y2

2
+

1
3
[
y2
´ 4
]3/2

= sec x + 1

S-14: The given differential equation is separable and we solve it accordingly.

dP
dt

= ´k
?

P ùñ
dP
?

P
= ´k dt ùñ

?
P

1/2
= ´kt + C

At t = 0, P = 90, 000 so

2
a

90, 000 = ´kˆ 0 + C ùñ C = 2ˆ 300 = 600 ùñ P(t) =
1
4
(600´ kt)2

The constant of proportionality is determined by

P(6) = 40, 000 ùñ 40, 000 =
1
4
(600´ 6k)2

ùñ 200 =
1
2
(600´ 6k) ùñ 600´ 6k = 400

ùñ k =
200
6
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Subbing in the value of k, P(t) = 1
4

(
600´ 200

6 t
)2 so that P(t) = 10, 000 when

10, 000 =
1
4

(
600´

200
6

t
)2

ùñ
1
2

(
600´

200
6

t
)
= 100

ùñ t = 12 weeks

S-15: The given differential equation is separable and we solve it accordingly.

m
dv
dt

= ´(mg + kv2) ùñ
dv
dt

= ´g
(

1 +
k

mg
v2
)
ùñ

ż

dv
1 + k

mg v2
= ´g

ż

dt

Substitute u =
b

k
mg v, du =

b

k
mg dv

c

mg
k

ż

du
1 + u2 = ´g

ż

dt ùñ
c

mg
k

tan´1 u = ´gt + C

ùñ

c

mg
k

tan´1
(d

k
mg

v
)
= ´gt + C

At t = 0, v = v0 so C =
b

mg
k tan´1 (b k

mg v0
)
. At its highest point, the object has v = 0.

This happens when t obeys
c

mg
k

tan´1
(d

k
mg

0
)
= ´gt + C ùñ ´gt + C = 0 ùñ t =

C
g
=

c

m
kg

tan´1
(d

k
mg

v0

)

S-16: (a) The given differential equation is separable and we solve it accordingly.

dv
dt

= ´k v2
ùñ

dv
v2 = ´k dt ùñ

ż

dv
v2 = ´

ż

k dt ùñ ´
1
v
= ´kt + C

At t = 0, v = 40 so

´
1

40
= ´kˆ 0 + C ùñ C = ´

1
40

ùñ v(t) =
1

kt´ C
=

1
kt + 1/40

=
40

40kt + 1

The constant of proportionality is determined by

v(10) = 20 ùñ 20 =
40

40kˆ 10 + 1
ùñ

1
2
=

1
400k + 1

ùñ 400k + 1 = 2

ùñ k =
1

400

(b) Subbing in the value of k,

v(t) =
40

40kt + 1
=

40
t/10 + 1

ùñ v(t) = 5 when 5 =
40

t/10 + 1
ùñ

t
10

+ 1 = 8

ùñ t = 70sec
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S-17: (a) The given differential equation is separable and we solve it accordingly.

dx
dt

= k(3´ x)(2´ x) ðñ
dx

(x´ 2)(x´ 3)
= kdt ðñ

ż [ 1
x´ 3

´
1

x´ 2

]
dx =

ż

kdt

ðñ log
ˇ

ˇ

ˇ

x´ 3
x´ 2

ˇ

ˇ

ˇ
= kt + C

ðñ
x´ 3
x´ 2

= Dekt

where D = ˘eC. When t = 0, x = 1, forcing

1´ 3
1´ 2

= De0
ùñ D = 2

Hence

x´ 3
x´ 2

= 2ekt
ðñ x´ 3 = 2ekt(x´ 2) ðñ x´ 2ektx = 3´ 4ekt

ðñ x(t) =
3´ 4ekt

1´ 2ekt

(b)

lim
tÑ8

x(t) = lim
tÑ8

3´ 4ekt

1´ 2ekt = lim
tÑ8

3e´kt ´ 4
e´kt ´ 2

=
´4
´2

= 2

S-18: (a) The given differential equation is separable and we solve it accordingly.

dP
dt

= 4P´ P2
ùñ

dP
4P´ P2 = dt ùñ

dP
P(4´ P)

= dt ùñ
1
4

[ 1
P
+

1
4´ P

]
dP = dt

ùñ
1
4
[

log |P| ´ log |4´ P|
]
= t + C

When t = 0, P = 2, so 1
4

[
log |2| ´ log |2|

]
= C ùñ C = 0. So

1
4

log
ˇ

ˇ

ˇ

P
4´ P

ˇ

ˇ

ˇ
= t

At time t = 0, P
4´P = 1 ą 0. The ratio may not change sign at any finite time, because this

could only happen if at some finite time P took either the value 0 or the value 4. But at
this time t = 1

4 log
ˇ

ˇ

P
4´P

ˇ

ˇ would have to be infinite. So P
4´P ą 0 for all time and

1
4

log
P

4´ P
= t ùñ log

P
4´ P

= 4t ùñ
P

4´ P
= e4t

ùñ P = (4´ P)e4t
ùñ P + Pe4t = 4e4t

ùñ P =
4e4t

1 + e4t =
4

1 + e´4t

(b) At t = 1
2 , P = 4

1+e´2 = 3.523,. As t Ñ 8, e´4t Ñ 0 and P Ñ 4.
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S-19: The rate of change of speed at time t is ´kv(t)2 for some constant of proportionality

k (to be determined). So v(t) obeys the differential equation
dv
dt

= ´kv2 . This is a

separable differential equation, which we can solve in the usual way.

dv
dt

= ´kv2
ùñ

dv
v2 = ´kdt ùñ

ż

dv
v2 = ´kt + c ùñ ´

1
v
= c´ kt

At time t = 0, v = 400, so c = ´ 1
400 and 1

v = 1
400 + kt or v = 400

400kt+1 . At time t = 1,
v = 200, so

200 =
400

400k + 1
ùñ 400k + 1 = 2 ùñ k =

1
400

ùñ v =
400

t + 1

The speed is 50 when 400
t+1 = 50 or t + 1 = 8 or t = 7 .

S-20: (a) The given differential equation is separable and we solve it accordingly.

dB
dt

= (0.06 + 0.02 sin t)B ùñ
dB
B

= (0.06 + 0.02 sin t)dt

ùñ log B(t) = 0.06t´ 0.02 cos t + C1

ùñ B(t) = Ce0.06t´0.02 cos t

for arbitrary constants C1 and C = eC1 ě 0. (Note that the function B(t) = 0 obeys the
differential equation so that C = 0 is allowed, even though it is not of the form C = eC1 .)

(b) We are told that

B(0) = 1000 ùñ Ce0.06ˆ0´0.02 cos 0 = Ce´0.02 = 1000 ùñ C = 1000e0.02

so that

B(2) = 1000e0.02e0.06ˆ2´0.02 cos 2 = $1159.89

to the nearest cent. Note that cos 2 is the cosine of 2 radians.

S-21: (a) The given differential equation is separable and we could solve it accordingly. In
fact we have already done so. If we rewrite the equation in the form

dB
dt

= a
(

B´
m
a

)

it is of the form covered by Theorem 2.4.4 in the CLP 101 notes. So that theorem tells us
that the solution is

B(t) =
!

B(0)´
m
a

)

eat +
m
a

In this problem we are told that a = 0.02 = 1
50 , so

B(t) = tB(0)´ 50mu et/50 + 50m = t30000´ 50mu et/50 + 50m
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(b) The solution of part (a) is independent of time if and only if 30000´ 50m = 0. So we
need

m =
30000

50
= $600

S-22: By the Fundamental Theorem of Calculus

y1(x) =
d
dx

ż x

0

(
y(t)2

´ 3y(t) + 2
)

sin t dt =
(
y(x)2

´ 3y(x) + 2
)

sin x

So y(x) satisfies the differential equation y1 =
(
y2 ´ 3y + 2

)
sin x = (y´ 2)(y´ 1) sin x

and the initial equation y(0) = 3 (just substitute x = 0 into (˚)). For y ‰ 1, 2

dy
dx

= (y´ 2)(y´ 1) sin x ðñ
dy

(y´ 2)(y´ 1)
= sin x dx

ðñ

ż [ 1
y´ 2

´
1

y´ 1

]
dy =

ż

sin x dx

ðñ log |y´ 2| ´ log |y´ 1| = ´ cos x + c

ðñ

ˇ

ˇ

ˇ

ˇ

y´ 2
y´ 1

ˇ

ˇ

ˇ

ˇ

= ec´cos x

The condition y(0) = 3 forces
ˇ

ˇ

3´2
3´1

ˇ

ˇ = ec´1 or ec = 1
2 e and

ˇ

ˇ

y´2
y´1

ˇ

ˇ = 1
2 e1´cos x. Observe that,

when x = 0, y´2
y´1 = 1

2 ą 0. Furthermore 1
2 e1´cos x, and hence

ˇ

ˇ

y´2
y´1

ˇ

ˇ, can never take the
value zero. As y(x) varies continuously with x, y(x) must remain larger than 2.
Consquently, y´2

y´1 remains positive and we may drop the absolute value signs. Hence

y´ 2
y´ 1

=
1
2

e1´cos x

Solving for y,

y´ 2
y´ 1

=
1
2

e1´cos x
ðñ 2(y´ 2) = e1´cos x(y´ 1) ðñ y

(
2´ e1´cos x) = 4´ e1´cos x

ðñ y =
4´ e1´cos x

2´ e1´cos x

To avoid division by zero in the last step, we need

e1´cos x
ă 2 ðñ 1´ cos x ă log 2 ðñ cos x ą 1´ log 2

The largest allowed interval is ´ cos´1(1´ log 2) ă x ă cos´1(1´ log 2) « 1.259. As x
approachs the end points of this interval, e1´cos x approachs 2 and y approachs infinity.

S-23: Suppose that in a very short time interval dt, the height of water in the tank changes
by dh (which is negative). Then in this time interval the amount of the water in the tank
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decreases by ´π(3)2dh. This must be the same as the amount of water that flows through
the hole in this time interval, which is π(0.01)2v(t)dt = π(0.01)2

a

2gh(t)dt. Thus

´π(3)2dh = π(0.1)2
b

2gh(t)dt ðñ
dh

h1/2 = ´

(0.01
3

)2
a

2g dt

ðñ 2
?

h = ´

(0.01
3

)2
a

2g t + C

At time 0, the height is 6, so C = 2
?

6 and

2
?

h = ´

(0.01
3

)2
a

2g t + 2
?

6

The height drops to zero at time t obeying

0 = ´

(0.01
3

)2
a

2g t + 2
?

6 ðñ t = 2
( 3

0.01

)2
d

3
g
= 180, 000

d

3
g
« 99, 591sec « 27.66hr

S-24: Suppose that at time t, the mercury in the tank has height h, which is between 0 and
12 feet. At that time, the top surface of the mercury forms a circular disk of radius

6

6h− 6

a

62 ´ (h´ 6)2. Now suppose that in a very short time interval dt, the height of mercury
in the tank changes by dh (which is negative). Then in this time interval the amount of
the mercury in the tank decreases by ´π

(a
62 ´ (h´ 6)2

)2dh. (That’s the volume of the
red disk in the figure above.) This must be the same as the amount of mercury that flows
through the hole in this time interval, which is, π

( 1
12

)2v dt = π
( 1

12

)2a2gh dt. Thus

´π
(b

62 ´ (h´ 6)2
)2

dh = π
( 1

12

)2a
2gh dt ðñ

(
h2
´ 12h

)
dh =

1
144

a

2gh dt

ðñ
(
h3/2

´ 12h1/2)dh =
1

144

a

2g dt

ðñ
h5/2

5/2
´ 12

h3/2

3/2
=

1
144

a

2g t + C

At time 0, the height is 12, so C = 125/2

5/2 ´ 12123/2

3/2 = 125/2(2
5 ´

2
3

)
= ´ 4

15125/2 and

h5/2

5/2
´ 12

h3/2

3/2
=

1
144

a

2g t´
4

15
125/2

The height drops to zero at time t obeying

0 =
1

144

a

2g t´
4

15
125/2

ðñ t =
4ˆ 144

15

d

125

2g
= 38.4

d

124416
g

« 2, 394 sec « 0.665 hr
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S-25: (a) Setting x = 0 gives

f (0) = 3 +
ż 0

0

(
f (t)´ 1

)(
f (t)´ 2

)
dt = 3

(b) By the fundamental theorem of calculus

f 1(x) =
d
dx

ż x

0

(
f (t)´ 1

)(
f (t)´ 2

)
dt =

(
f (x)´ 1

)(
f (x)´ 2

)

Thus y = f (x) obeys the differential equation y1 = (y´ 1)(y´ 2).

(c) If y ‰ 1, 2,

dy
dx

= (y´ 1)(y´ 2) ðñ
dy

(y´ 1)(y´ 2)
= dx ðñ

ż [ 1
y´ 2

´
1

y´ 1

]
dy =

ż

dx

ðñ log |y´ 2| ´ log |y´ 1| = x + C

Observe that dy
dx = (y´ 1)(y´ 2) ą 0 for all y ě 2. That is, f (x) is increasing at all x for

which f (x) ą 2. As f (0) = 3, f (x) increases for all x ě 0 and f (x) ě 3 for all x ě 0. So we
may drop the absolute value signs.

log
f (x)´ 2
f (x)´ 1

= x + C ðñ
f (x)´ 2
f (x)´ 1

= eCex

At x = 0, f (x)´2
f (x)´1 = 1

2 so eC = 1
2 and

f (x)´ 2
f (x)´ 1

=
1
2

ex
ðñ 2 f (x)´ 4 = [ f (x)´ 1]ex

ðñ [2´ ex] f (x) = 4´ ex

ðñ f (x) =
4´ ex

2´ ex

S-26: Suppose that at time t (measured in hours starting at noon), the water in the tank
has height y, which is between 0 and 2m. At that time, the top surface of the water forms
a circular disk of radius r = yp and area A(y) = πy2p. Thus, by Torricelli’s law,

πy2p dy
dt

= ´c
?

y ðñ ´
π

c
y2p´ 1

2 dy = dt

ðñ ´
π

c
y2p+ 1

2

2p + 1
2

+ d = t

At time 0, the height is 2, so d = π
c

22p+ 1
2

2p+ 1
2

and

t =
π

c

(
22p+ 1

2

2p + 1
2

´
y2p+ 1

2

2p + 1
2

)
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The time at which the height is 1 is obtained by subbing y = 1 into this formula and the
time at which the height is 0 is obtained by subbing y = 0 into this formula. Thus the
condition that the top half (y = 2 to y = 1) takes exactly the same amount of time to
drain as the bottom half (y = 1 to y = 0) is

π

c

(
22p+ 1

2

2p + 1
2

´
12p+ 1

2

2p + 1
2

)
=

π

c

(
22p+ 1

2

2p + 1
2

´
02p+ 1

2

2p + 1
2

)
´

π

c

(
22p+ 1

2

2p + 1
2

´
12p+ 1

2

2p + 1
2

)

or
(
22p+ 1

2 ´ 12p+ 1
2
)
=
(
22p+ 1

2 ´ 02p+ 1
2
)
´
(
22p+ 1

2 ´ 12p+ 1
2
)

or

22p+ 1
2 = 2 ùñ 2p +

1
2
= 1 ùñ p =

1
4

Solutions to Exercises 3.1 — Jump to TABLE OF CONTENTS

S-1: Since
ˇ

ˇ sin3 k
ˇ

ˇ ď 1 and (k + 1)! = (k + 1)k!,

lim
kÑ8

ak = lim
kÑ8

k! sin3 k
(k + 1)!

= lim
kÑ8

sin3 k
k + 1

= 0

S-2: As n Ñ 8we have 1
n Ñ 0 and hence sin 1

n Ñ 0. So the sequence (´1)n sin 1
n

converges to 0.

S-3:

lim
nÑ8

[6n2 + 5n
n2 + 1

+ 3 cos(1/n2)
]
= lim

nÑ8

6 + 5
n

1 + 1
n2

+ 3 lim
nÑ8

cos(1/n2) =
6 + 0
1 + 0

+ 3 cos(0)

= 9

S-4: Write 1
n = x. Then

log
(

sin
1
n

)
+ log(2n) = log

(
sin

1
n

)
+ log(n) + log(2) = log

(
n sin

1
n

)
+ log(2)

= log(2) + log
(sin x

x

)

Note that x Ñ 0 as n Ñ 8. Since, by l’Hôpital,

lim
xÑ0

sin x
x

= lim
xÑ0

cos x
1

= 1
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we have

lim
nÑ8

!

log
(

sin
1
n

)
+ log(2n)

)

= lim
xÑ0

!

log(2) + log
(sin x

x

))

= log(2) + log
(

lim
xÑ0

sin x
x

)

= log(2) + log(1) = log(2)

S-5: (a), (c) Write f (x) = x´
?

3 + sin x. We want to show that f (x) has exactly one zero.
Because ´1 ď sin x ď 1, we have that

?
2 ď

?
3 + sin x ď

?
4 = 2. So if x ă

?
2, we have

f (x) ă 0 and if x ą 2, we have that f (x) ą 0. As f (x) is continuous, it must take the value
0 at least once (for some x between

?
2, where f (x) ď 0, and 2, where f (x) ě 0). Since

f 1(x) = 1´
cos x

2
?

3 + sin x

and
ˇ

ˇ

ˇ

ˇ

cos x
2
?

3 + sin x

ˇ

ˇ

ˇ

ˇ

ď
1

2
?

2
ă 1

we necessarily have f 1(x) ą 0 for all x. That is, f (x) is a strictly increasing function, and
so can take the values 0 for at most one value of x.

(b) Subtracting L =
?

3 + sin L from an+1 =
?

3 + sin an gives

an+1 ´ L =
a

3 + sin an ´
?

3 + sin L =
[
a

3 + sin an ´
?

3 + sin L
]?3 + sin an +

?
3 + sin L

?
3 + sin an +

?
3 + sin L

=
sin an ´ sin L

?
3 + sin an +

?
3 + sin L

Now
ˇ

ˇ sin an ´ sin L
ˇ

ˇ =

ˇ

ˇ

ˇ

ˇ

ż an

L
cos t dt

ˇ

ˇ

ˇ

ˇ

ď |an ´ L| since | cos t| ď 1

and
a

3 + sin an +
?

3 + sin L ě
?

2 +
?

2 since sin an, sin L ě ´1

so that
ˇ

ˇan+1 ´ L
ˇ

ˇ =

ˇ

ˇ

ˇ

ˇ

sin an ´ sin L
?

3 + sin an +
?

3 + sin L

ˇ

ˇ

ˇ

ˇ

ď
|an ´ L|

2
?

2

Thus the distance from an to L decreases by a factor of at least 1
2
?

2
every time the index n

increases by one and
lim

nÑ8

ˇ

ˇan ´ L
ˇ

ˇ = 0

Solutions to Exercises 3.2 — Jump to TABLE OF CONTENTS
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S-1: This series is
1
87 +

1
88 +

1
89 + ¨ ¨ ¨ . We recognize that this is a geometric series

a + ar + ar2 + ar3 + ¨ ¨ ¨ , with ratio r = 1/8 and first term a = 1
87 . We know this converges

to:

a
1´ r

=
1/87

1´ 1/8
=

1
7ˆ 86

S-2: We recognize that this is a geometric series a + ar + ar2 + ar3 + ¨ ¨ ¨ , with ratio
r = 1/3 and first term a = 1. We know this converges to:

a
1´ r

=
1

1´ 1/3
=

3
2

S-3: We recognize this as a telescoping series. When we compute the nth partial sum, i.e.
the sum of of the first n terms, successive terms cancel and only the first half of the first

term,
(

6
k2 ´

6
(k+1)2

)ˇ
ˇ

ˇ

k=1
, and the second half of the nth term,

(
6
k2 ´

6
(k+1)2

)ˇ
ˇ

ˇ

k=n
, survive.

sn =
n
ÿ

k=1

(
6
k2 ´

6
(k + 1)2

)
=

6
12 ´

6
(n + 1)2

Therefore, we can see directly that the sequence of partial sums tsnu is convergent:

lim
nÑ8

sn = lim
nÑ8

(
6
12 ´

6
(n + 1)2

)
= 6

By definition the series is also convergent with limit 6.

S-4: The Nth partial sum is

sN =
N
ÿ

n=3

(
cos

(π

n

)
´ cos

( π

n + 1

))
=

(
cos

(π

3

)
´ cos

(π

4

))
+

(
cos

(π

4

)
´ cos

(π

5

))

+ ¨ ¨ ¨+

(
cos

(π

N

)
´ cos

( π

N + 1

))

= cos
(π

3

)
´ cos

( π

N + 1

)
.

As N Ñ 8, the argument π
N+1 converges to 0, and cos x is continuous at x = 0. By

definition, the value of the series is

lim
NÑ8

sN = lim
NÑ8

(
cos

(π

3

)
´ cos

( π

N + 1

))
= cos

(π

3

)
´ cos(0) = ´

1
2
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S-5: (a) Since

sn´1 = a1 + a2 + ¨ ¨ ¨+ an´1

sn = a1 + a2 + ¨ ¨ ¨+ an´1 + an

we can find an by subtracting:

an = sn ´ sn´1

=
1 + 3n
5 + 4n

´
1 + 3(n´ 1)
5 + 4(n´ 1)

=
3n + 1
4n + 5

´
3n´ 2
4n + 1

=
(3n + 1)(4n + 1)´ (3n´ 2)(4n + 5)

(4n + 1)(4n + 5)

=
11

16n2 + 24n + 5

(b) Since,

lim
nÑ8

sn = lim
nÑ8

1 + 3n
5 + 4n

= lim
nÑ8

1/n + 3
5/n + 4

=
0 + 3
0 + 4

=
3
4

the series converges to 3
4 , by definition.

S-6:

8
ÿ

n=2

3 ¨ 4n+1

8 ¨ 5n =
3
2

8
ÿ

n=2

(4
5

)n
=

3
2

8
ÿ

n=2

rn
ˇ

ˇ

ˇ

r=4/5

This is a geometric series whose first term (in this case the n = 2 term) is a = 3
2r2 and

whose ratio r = 4
5 . So

8
ÿ

n=2

3 ¨ 4n+1

8 ¨ 5n =
3
2

r2

1´ r

ˇ

ˇ

ˇ

r=4/5
=

3
2

16/25
1/5

=
24
5

S-7: The number is 0.2 + 3
100 +

3
1000 +

3
104 + ¨ ¨ ¨ =

1
5 +

3
102

ř8
n=0 10´n. The geometric series

sums to

3
102

1
1´ 1

10

=
3

10(10´ 1)
=

1
30

so the fraction is

1
5
+

1
30

=
7
30
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S-8: The number is 2 + 65
102 +

65
104 +

65
106 + ¨ ¨ ¨ = 2 + 65

102

8
ř

n=0
10´2n. The geometric series

sums to
65
102

1
1´ 1

100

=
65
99

so the fraction is

2 +
65
99

=
263
99

S-9: The number

0.321 = 0.321321321 . . . =
321

1000
+

321
106 +

321
109 + ¨ ¨ ¨ =

8
ÿ

n=1

321ˆ 10´3n

This is a geometric series with first term a = 321
1000 and ratio r = 1

1000 and so sums to

a
1´ r

=
321
1000

1
1´ 1

1000

=
321

1000
1

999
1000

=
321
999

=
107
333

S-10: We split the sum into two parts. The first part is a geometric series with first term
a = 22+1

32 = 8
9 and ratio r = 2

3 .
8
ÿ

n=2

2n+1

3n =
a

1´ r
=

8/9
1´ 2/3

=
8
3

The rest telescopes.

8
ÿ

n=2

(
1

2n´ 1
´

1
2n + 1

)
=

n=2
hkkkkikkkkj(

1
3
´

1
5

)
+

n=3
hkkkkikkkkj(

1
5
´

1
7

)
+

n=4
hkkkkikkkkj(

1
7
´

1
9

)
+ ¨ ¨ ¨ =

1
3

So
8
ÿ

n=2

(
2n+1

3n +
1

2n´ 1
´

1
2n + 1

)
=

8
3
+

1
3
= 3

S-11: We split the sum into two parts.
8
ÿ

n=1

[(1
3

)n
+
(
´

2
5

)n´1]
=

8
ÿ

n=1

(1
3

)n
+

8
ÿ

n=1

(
´

2
5

)n´1

Both are geometric series. The first has first term a =
(1

3

)n=1
= 1

3 and ratio 1
3 . The second

has first term a =
(
´ 2

5

)n´1ˇ
ˇ

n=1 = 1 and ratio ´2
5 . So

8
ÿ

n=1

[(1
3

)n
+
(
´

2
5

)n´1]
=

1/3
1´ 1/3

+
1

1´
(
´ 2/5

) =
1
2
+

5
7
=

17
14
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S-12: We split the sum into two parts.

8
ÿ

n=0

1 + 3n+1

4n =
8
ÿ

n=0

1
4n +

8
ÿ

n=0

3n+1

4n

Both are geometric series. The first has first term a = 1
4n

ˇ

ˇ

ˇ

n=0
= 1 and ratio r = 1

4 . The

second has first term a = 3n+1

4n

ˇ

ˇ

ˇ

n=0
= 3 and ratio r = 3

4 . So

8
ÿ

n=0

1 + 3n+1

4n =
1

1´ 1/4
+

3
1´ 3/4

=
4
3
+ 12 = 13

1
3

Solutions to Exercises 3.3 — Jump to TABLE OF CONTENTS

S-1: The limit

lim
nÑ8

n2

3n2 +
?

n
= lim

nÑ8

1
3 + 1/(n

?
n)

=
1
3
‰ 0

is nonzero, so the series diverges by the divergence test.

S-2: When n is very large, the term 2n dominates the numerator, and the term 3n

dominates the denominator. So when n is very large an «
2n

3n . Therefore we should take

bn =
2n

3n . Note that, with this choice of bn,

lim
nÑ8

an

bn
= lim

nÑ8

2n + n
3n + 1

3n

2n = lim
nÑ8

1 + n/2n

1 + 1/3n = 1

as desired.

S-3: (a) In general false. The harmonic series
8
ř

n=1

1
n diverges by the p–test with p = 1.

(b) Be careful. You were not told that the an’s are positive. So this is false in general. If

an = (´1)n 1
n , then

8
ř

n=1
(´1)nan is again the harmonic series

8
ř

n=1

1
n , which diverges.

(c) In general false. Take, for example, an = 0 and bn = 1.

S-4: This precise question was asked on a 2014 final exam. Note that the nth term in the
series is an = 5k

4k+3k and does not depend on n! There are two possibilities. Either this was
intentional (and the instructor was being particularly nasty) or it was a typo and the

194



intention was to have an = 5n

4n+3n . In both cases, the limit

lim
nÑ8

an = lim
nÑ8

5k

4k + 3k =
5k

4k + 3k ‰ 0

lim
nÑ8

an = lim
nÑ8

5n

4n + 3n = lim
nÑ8

(5/4)n

1 + (3/4)n = +8 ‰ 0

is nonzero, so the series diverges by the divergence test.

S-5: Let f (x) =
1

x + 1
2

. Then f (x) is positive and decreases as x increases. So, by the

integral test, which is Theorem 3.3.5 in the CLP 101 notes, the given series converges if
and only if the integral

ş8

0
1

x+ 1
2

dx converges. Since

ż 8

0

1
x + 1

2

dx = lim
RÑ8

ż R

0

1
x + 1

2

dx = lim
RÑ8

"

log
(

x +
1
2

)ˇ
ˇ

ˇ

ˇ

x=R

x=0

*

= lim
RÑ8

"

log
(

R +
1
2

)
´ log

1
2

*

diverges, the series diverges.

S-6: Let f (x) =
5

x(log x)3/2 . Then f (x) is positive and decreases as x increases. So the

sum
8
ÿ

3

f (n) and the integral
ż 8

3
f (x)dx either both converge or both diverge, by the

integral test, which is Theorem 3.3.5 in the CLP 101 notes. For the integral, we use the
substitution u = log x, du = dx

x to get

ż 8

3

5 dx
x(log x)3/2 =

ż 8

log 3

5 du
u3/2

which converges by the p–test (which is Example 1.12.8 in the CLP 101 notes) with
p = 3

2 ą 1.

S-7: Since
ż 8

2

1
x(log x)p dx = lim

RÑ8

ż R

2

1
(log x)p

dx
x

= lim
RÑ8

ż log R

log 2

1
up du with u = log x, du =

dx
x

converges if and only if p ą 1, the same is true for the series, by the integral test, which is
Theorem 3.3.5 in the CLP 101 notes.
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S-8: Set f (x) = e´
?

x
?

x . For x ě 1, this function is positive and decreasing (since it is the

product of the two positive decreasing functions e´
?

x and 1?
x ). We use the integral test

with this finction. Using the substitution u =
?

x, so that du = 1
2
?

x dx, we see that

ż 8

1
f (x)dx = lim

RÑ8

ż R

1

(
e´
?

x
?

x
dx
)

= lim
RÑ8

(
ż

?
R

1
e´u

¨ 2 du
)

= lim
RÑ8

(
´2e´u

ˇ

ˇ

ˇ

?
R

1

)

= lim
RÑ8

(
´2e´

?
R + 2e´

?
1
)
= 0 + 2e´1,

and so this improper integral converges. By the integral test, the given series also
converges.

S-9: We first develop some intuition. For very large n, 3n2 dominates 7 so that
?

3n2 ´ 7
n3 «

?
3n2

n3 =

?
3

n2

The series
8
ÿ

n=2

1
n2 converges by the p–test with p = 2, so we expect the given series to

converge too.

To verify that our intuition is correct, it suffices to observe that

0 ă an =

?
3n2 ´ 7

n3 ă

?
3n2

n3 =

?
3

n2 = cn

for all n ě 2. As the series
8
ř

n=2
cn converges, the comparison test says that

8
ř

n=2
an

converges too.

S-10: We first develop some intuition. For very large k, k4 dominates 1 so that the
numerator 3

?
k4 + 1 « 3

?
k4 = k4/3, and k5 dominates 9 so that the denominator?

k5 + 9 «
?

k5 = k5/2 and the summand

3
?

k4 + 1
?

k5 + 9
«

k4/3

k5/2 =
1

k7/6

The series
8
ÿ

n=1

1
k7/6 converges by the p–test with p = 7

6 ą 1, so we expect the given series

to converge too.

196



To verify that our intuition is correct, we apply the limit comparison test with

ak =
3
?

k4 + 1
?

k5 + 9
and bk =

1
k7/6 =

k4/3

k5/2

which is valid since

lim
kÑ8

ak
bk

= lim
kÑ8

3
?

k4 + 1/k4/3
?

k5 + 9/k5/2
= lim

kÑ8

3
a

1 + 1/k4
a

1 + 9/k5
= 1

exists. Since the series
8
ř

k=1
bk is a convergent p–series (with ratio p = 7

6 ą 1), the given

series converges.

S-11: We first develop some intuition. For very large n, 2n dominates 7 so that

n42n/3

(2n + 7)4 «
n42n/3

(2n)4 =
1

16
2n/3

The series
8
ÿ

n=1

2n/3 is a geometric series with ratio r = 21/3 ą 1 and so diverges. We

expect the given series to diverge too.

To verify that our intuition is correct, we apply the limit comparison test with

an =
n42n/3

(2n + 7)4 and bn = 2n/3

which is valid since

lim
nÑ8

an

bn
= lim

nÑ8

n4

(2n + 7)4 = lim
nÑ8

1

(2 + 7/n)4 =
1
24

exists and is nonzero. Since the series
8
ř

n=1
bn is a divergent geometric series (with ratio

r = 21/3 ą 1), the given series diverges.

(It is possible to use the plain comparison test as well. One needs to show something like
an = n42n/3

(2n+7)4 ě
n42n/3

(2n+7n)4 = 1
94 bn.)

Alternatively, one could show

lim
nÑ8

an = lim
nÑ8

2n/3

(2 + 7/n)4 = 8

directly, and thus conclude that the given series diverges by the divergence test.
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Alternatively, one can apply the ratio test:

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(n + 1)42(n+1)/3/(2(n + 1) + 7)4

n42n/3/(2n + 7)4

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

(n + 1)4(2n + 7)4

n4(2n + 9)4
2(n+1)/3

2n/3

= lim
nÑ8

(1 + 1/n)4(2 + 7/n)4

(2 + 9/n)4 ¨ 21/3 = 1 ¨ 21/3
ą 1.

S-12: We first develop some intuition. For very large n, n2 dominates sin n and n6

dominates n2 so that

n2 ´ sin n
n6 + n2 «

n2

n6 =
1
n4

The series
8
ÿ

n=1

1
n4 converges by the p–test with p = 4 ą 1. We expect the given series to

converge too.

To verify that our intuition is correct, we apply the limit comparison test with

an =
n2 ´ sin n
n6 + n2 and bn =

1
n4

which is valid since

lim
nÑ8

an

bn
= lim

nÑ8

(n2 ´ sin n)
n6 + n2

n4

1
= lim

nÑ8

n6 ´ n4 sin n
n6 + n2 = lim

nÑ8

1´ n´2 sin n
1 + n´4 = 1

exists and is nonzero. Since the series
8
ř

n=1
bn converges, the given series converges

absolutely.

S-13: You might think that this series converges by the alternating series test. But you
would be wrong. The problem is that the nth term does not converge to zero as n Ñ 8, so
that the series actually diverges by the divergence test. To verify that the nth term does
not converge to zero as n Ñ 8 let’s write an = (2n)!

(n2+1)(n!)2 (i.e. an is the nth term without
the sign) and check to see whether an+1 is bigger than or smaller than an.

an+1

an
=

(2n + 2)!
((n + 1)2 + 1)((n + 1)!)2

(n2 + 1)(n!)2

(2n)!
=

(2n + 2)(2n + 1)
(n + 1)2

n2 + 1
(n + 1)2 + 1

=
2(2n + 1)
(n + 1)

1 + 1/n2

(1 + 1/n)2 + 1/n2 = 4
1 + 1/2n
1 + 1/n

1 + 1/n2

(1 + 1/n)2 + 1/n2

So
lim

nÑ8

an+1

an
= 4

and, in particular, for large n, an+1 ą an. Thus, for large n, an increases with n and so
cannot converge to 0. So the series diverges by the divergence test.
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S-14: This series converges by the alternating series test. It also converges absolutely by
the integral test. For the details, see Example 3.3.7 (with p = 101 ą 1) in the CLP101
notes.

S-15: (a) For large n, n2 " 1 and so
?

n2 + 1 «
?

n2 = n. This suggests that we apply the
limit comparison test with an = 1?

n2+1
and bn = 1

n . Since

lim
nÑ8

an

bn
= lim

nÑ8

1/
?

n2 + 1
1/n

= lim
nÑ8

1
a

1 + 1/n2
= 1

and since
8
ř

n=1

1
n diverges, the given series diverges.

(b) Since cos(nπ) = (´1)n, the given series converges by the alternating series test. To
check that an = n

2n decreases to 0 as n tends to infinity, note that

an+1

an
=

(n + 1)2´(n+1)

n2´n =
(

1 +
1
n

)1
2

is smaller than 1 (so that an+1 ď an) for all n ě 1, and is smaller than 3
4 (so an+1 ď

3
4 an) for

all n ě 2.

S-16: For large k, k4 " 2k3 ´ 2 and k5 " k2 + k so k4´2k3+2
k5+k2+k «

k4

k5 = 1
k . This suggests that we

apply the limit comparison test with ak =
k4´2k3+2
k5+k2+k and bk =

1
k . Since

lim
kÑ8

ak
bk

= lim
kÑ8

k4 ´ 2k3 + 2
k5 + k2 + k

k
1
= lim

kÑ8

k5 ´ 2k4 + k2

k5 + k2 + k
= lim

kÑ8

1´ 2/k + 1/k3

1 + 1/k3 + 1/k4

= 1

and since
8
ř

k=1

1
k diverges, by the p–test with p = 1, the given series diverges.

S-17: (a) For large n, n2 " n + 1 and so the numerator n2 + n + 1 « n2. For large n, n5 " n
and so the denominator n5 ´ n « n5. So, for large n, n2+n+1

n5´n « n2

n5 = 1
n3 . This suggests that

we apply the limit comparison test with an = n2+n+1
n5´n and bn = 1

n3 . Since

lim
nÑ8

an

bn
= lim

nÑ8

(n2 + n + 1)/(n5 ´ n)
1/n3 = lim

nÑ8

n5 + n4 + n3

n5 ´ n
= lim

nÑ8

1 + 1/n + 1/n2

1´ 1/n4

= 1

and since
8
ř

n=1

1
n3 converges, by the p–test with p = 3 ą 1, the given series converges.

(b) For large m, 3m " | sin
?

m| and so 3m+sin
?

m
m2 « 3m

m2 = 3
m . This suggests that we apply

the limit comparison test with am = 3m+sin
?

m
m2 and bm = 1

m . (We could also use bm = 3
m .)
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Since

lim
mÑ8

am

bm
= lim

mÑ8

(3m + sin
?

m)/m2

1/m
= lim

mÑ8

3m + sin
?

m
m

= lim
mÑ8

3 +
sin
?

m
m

= 3

and since
8
ř

m=1

1
m diverges, by the p–test with p = 1, the given series diverges.

S-18: This is a geometric series with first term a = 6
72 and ratio r = 1

7 . As |r| ă 1, the series
converges and takes the value

a
1´ r

=
6/72

1´ 1/7
=

6/72

6/7
=

1
7

S-19: (a) The given series is

1 +
1
3
+

1
5
+

1
7
+

1
9
+ ¨ ¨ ¨ =

8
ÿ

n=1

an with an =
1

2n´ 1

First we’ll develop some intuition by observing that, for very large n, an «
1

2n . We know

that the series
8
ř

n=1

1
n diverges by the p–test with p = 1. So let’s apply the limit comparison

test with bn = 1
n . Since

lim
nÑ8

an

bn
= lim

nÑ8

n
2n´ 1

= lim
nÑ8

1
2´ 1

n
=

1
2

the series
8
ř

n=1
an converges if and only if the series

8
ř

n=1
bn converges. So the given series

diverges.

(a, again) The series

1 +
1
3
+

1
5
+

1
7
+

1
9
+ ¨ ¨ ¨ ě

1
2
+

1
4
+

1
6
+

1
8
+

1
10

+ ¨ ¨ ¨

=
1
2

(
1 +

1
2
+

1
3
+

1
4
+

1
5
+ ¨ ¨ ¨

)

The series in the brackets is the harmonic series which we know diverges, by the p–test
with p = 1. So the series on the right hand side diverges. By the convergence test, the
series on the left hand side diverges too.

(b) We’ll use the ratio test with an = (2n+1)
22n+1 . Since

an+1

an
=

(2n + 3)
22n+3

22n+1

(2n + 1)
=

1
4
(2n + 3)
(2n + 1)

=
1
4
(2 + 3/n)
(2 + 1/n)

Ñ
1
4
ă 1 as n Ñ 8

the series converges.
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S-20: (a) For very large k, k ! k2 so that an =
3?k

k2´k «
3?k
k2 = 1

k5/3 . So we apply the limiting
convergence test with bk =

1
k5/3 . Since

lim
kÑ8

ak
bk

= lim
kÑ8

3
?

k/(k2 ´ k)
1/k5/3 = lim

kÑ8

k2

k2 ´ k
= lim

kÑ8

1
1´ 1/k

= 1

and
8
ř

k=1

1
k5/3 converges by the p–test with p = 5

3 ą 1, the given series converges by the

limiting comparison test.

(b) The kth term in this series is ak =
k1010k(k!)2

(2k)! . So

ak+1

ak
=

(k + 1)1010k+1((k + 1)!)2

(2k + 2)!
(2k)!

k1010k(k!)2 = 10
(k + 1

k

)10 (k + 1)2

(2k + 2)(2k + 1)

= 10
(

1 +
1
k

)10 (1 + 1/k)2

(2 + 2/k)(2 + 1/k)

As k tends to8, this converges to 10ˆ 1ˆ 1
2ˆ2 ą 1. So the series diverges by the ratio test.

(c) We’ll use the integal test. The kth term in the series is ak =
1

k(log k)(log log k) = f (k) with

f (x) = 1
x(log x)(log log x) , which is continuous, positive and decreasing for x ě 3. Since

ż 8

3
f (x) dx =

ż 8

3

dx
x(log x)(log log x)

= lim
RÑ8

ż R

3

dx
x(log x)(log log x)

= lim
RÑ8

ż log R

log 3

dy
y log y

with y = log x, dy =
dx
x

= lim
RÑ8

ż log log R

log log 3

dt
t

with t = log y, dt =
dy
y

=
[

log t
]log log R

log log 3

diverges as R Ñ 8, the series is divergent.

S-21: For large n, the numerator n3 ´ 4 « n3 and the denominator 2n5 ´ 6n « 2n5, so the
nth term is approximately n3

2n5 = 1
2n2 . So we apply the limit comparison test with

an = n3´4
2n5´6n and bn = 1

n2 . Since

lim
nÑ8

an

bn
= lim

nÑ8

(n3 ´ 4)/(2n5 ´ 6n)
1/n2 = lim

nÑ8

1´ 4
n3

2´ 6
n4

=
1
2

,

the given series
8
ř

n=1
an converges if and only if the series

8
ř

n=1
bn converges. Since the series

8
ř

n=1
bn =

8
ř

n=1

1
np

ˇ

ˇ

ˇ

p=2
is a convergent p-series, both series converge.
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S-22: By the alternating series test, the error introduced when we approximate the series
8
ÿ

n=1

(´1)n

n ¨ 10n by
N
ÿ

n=1

(´1)n

n ¨ 10n is at most the magnitude of the first omitted term

1
(N + 1)10(N+1)

. By trial and error, we find that this expression becomes smaller than

10´6 when N + 1 ě 6. So the smallest allowable value is N = 5.

S-23: The sequence t 1
n2 u decreases to zero as n increases to infinity. So, by the alternating

series error bound, which is given in Theorem 3.3.14 in the CLP 101 notes, π2

12 ´ SN lies

between zero and the first omitted term, (´1)N

(N+1)2 . We therefore need 1
(N+1)2 ď 10´6, which

is equivalent to N + 1 ě 103 and N ě 999.

S-24: The error introduced when we approximate S by the nth partial sum Sn lies

between 0 and the first term dropped, which is (´1)n+2

(2n+3)2 . So we need the smallest positive
integer n obeying

1
(2n + 3)2 ď

1
100

ðñ (2n + 3)2
ě 100 ðñ 2n + 3 ě 10 ðñ n ě

7
2

So we need n = 4 and then
S4 =

1
32 ´

1
52 +

1
72 ´

1
92

S-25: (a) There are plenty of powers/factorials. So let’s try the ratio test with an = nn

9nn! .

lim
nÑ8

an+1

an
= lim

nÑ8

(n + 1)n+1

9n+1(n + 1)!
9nn!
nn = lim

nÑ8

(n + 1)n+1

nn 9 (n + 1)
= lim

nÑ8

(1 + 1/n)n

9
=

e
9

Here we have used that lim
nÑ8

(1 + 1/n)n = e. See Example ?? in the CLP100 notes, with

x = 1
n and a = 1. As e ă 9, our series converges.

(b) We know that the series
ř8

n=1
1

n2 converges, by the p–test with p = 2, and also that
log n ě 2 for all n ě e2. So let’s use the limit comparison test with an = 1

nlog n and bn = 1
n2 .

lim
nÑ8

an

bn
= lim

nÑ8

1
nlog n

n2

1
= lim

nÑ8

1
nlog n´2 = 0

So our series converges, by the limit comparison test.

S-26: (a)

• Our first task is to identify the potential sources of impropriety for this integral.

• The domain of integration extends to +8. On the domain of integration the
denominator is never zero so the integrand is continuous. Thus the only problem is
at +8.
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• Our second task is to develop some intuition about the behavior of the integrand
for very large x. When x is very large:

– | sin x| ď 1 ! x, so that the numerator x + sin x « x, and

– 1 ! x2, so that denominator 1 + x2 « x2, and

– the integrand x+sin x
1+x2 « x

x2 = 1
x

• Now, since
ş8

2
dx
x diverges, we would expect

ş8

2
x+sin x

1+x2 dx to diverge too.

• Our final task is to verify that our intuition is correct. To do so, we set

f (x) =
x + sin x

1 + x2 g(x) =
1
x

and compute

lim
xÑ8

f (x)
g(x)

= lim
xÑ8

x + sin x
1 + x2 ˜

1
x

= lim
xÑ8

(1 + sin x/x)x
(1/x2 + 1)x2 ˆ x

= lim
xÑ8

1 + sin x/x
1/x2 + 1

= 1

• Since
ş8

2 g(x) dx =
ş8

2
dx
x diverges, by Example 1.12.8 in the CLP 101 notes3, with

p = 1, Theorem 1.12.22(b) in the CLP 101 notes now tells us that
ş8

2 f (x) dx =
ş8

2
x+sin x
e´x+x2 dx diverges too.

(a again) Since
ş8

2
1

1+x2 dx ď
ş8

2
1
x2 dx converges, by the p–test with p = 2, and

| sin x|
1+x2 ď

1
1+x2 , the integral

ş8

2
sin x
1+x2 dx converges. Hence

ş8

2
x+sin x

1+x2 dx converges if and
only if

ş8

2
x

1+x2 dx converges. But
ż 8

2

x
1 + x2 dx = lim

rÑ8

ż r

2

x
1 + x2 dx = lim

rÑ8

[
1
2 log(1 + x2)

]r

2

diverges, so
ş8

2
x+sin x

1+x2 dx diverges.

(b) The problem is that f (x) = x+sin x
1+x2 is not a decreasing function. To see this, compute

the derivative:

f 1(x) =
(1 + cos x)(1 + x2)´ (x + sin x)(2x)

(1 + x2)2 =
(cos x´ 1)x2 ´ 2x sin x + 1 + cos x

(1 + x2)2

If x = 2mπ, the numerator is 0´ 0 + 1 + 1 ą 0.

(c) Set an = n+sin n
1+n2 . We first try to develop some intuition about the behaviour of an for

large n and then we confirm that our intuition was correct.

3 To change the lower limit of integration from 1 to 2, just apply Theorem 1.12.20 in the CLP 101 notes.

203



• Step 1: Develop intuition. When n " 1, the numerator n + sin n « n, and the
denominator 1 + n2 « n2 so that an «

n
n2 = 1

n and it looks like our series should
diverge by the p–test (Example 3.3.6 in the CLP 101 notes) with p = 1.

• Step 2: Verify intuition. To confirm our intuition we set bn = 1
n and compute the

limit

lim
nÑ8

an

bn
= lim

nÑ8

n+sin n
1+n2

1
n

= lim
nÑ8

n[n + sin n]
1 + n2 = lim

nÑ8

1 + sin n
n

1
n2 + 1

= 1

We already know that the series
8
ř

n=1
bn =

8
ř

n=1

1
n diverges by the p–test with p = 1.

So our series diverges by the limit comparison test, Theorem 3.3.11 in the CLP 101
notes.

(c again) Since
ˇ

ˇ

sin n
1+n2

ˇ

ˇ ď 1
n2 and the series

8
ř

n=1

1
n2 converges by the p–test with p = 2, the

series
8
ř

n=1

sin n
1+n2 converges. Hence

8
ř

n=1

n+sin n
1+n2 converges if and only if the series

8
ř

n=1

n
1+n2

converges. Now f (x) = x
1+x2 is a continuous, positive, decreasing function on [1,8) since

f 1(x) =
(1 + x2)´ x(2x)

(1 + x2)2 =
1´ x2

(1 + x2)2

is negative for all x ą 1. We saw in part (a) that the integral
ş8

2
x

1+x2 dx diverges. So the

integral
ş8

1
x

1+x2 dx diverges too and the sum
8
ř

n=1

n
1+n2 diverges by the integral test. So

8
ř

n=1

n+sin n
1+n2 diverges.

S-27: Note that e´
?

x
?

x decreases as x increases. Hence, for every n ě 1,

e´
?

n
?

n
=

ż n

n´1

e´
?

n
?

n
dx ď

ż n

n´1

e´
?

x
?

x
dx

and, for every N ě 1,

EN =
8
ÿ

n=N+1

e´
?

n
?

n
ď

8
ÿ

n=N+1

ż n

n´1

e´
?

x
?

x
dx =

ż N+1

N

e´
?

x
?

x
dx +

ż N+2

N+1

e´
?

x
?

x
dx + ¨ ¨ ¨

=

ż 8

N

e´
?

x
?

x
dx

Substituting y =
?

x, dy = 1
2

dx?
x ,

ż 8

N

e´
?

x
?

x
dx = 2

ż 8

?
N

e´y dy = ´2e´y
ˇ

ˇ

ˇ

8

?
N
= 2e´

?
N
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This shows that
ř8

n=N+1
e´
?

n
?

n converges and is between 0 and 2e´
?

N. Since

E14 = 2e´
?

14 = 0.047, we may truncate the series at n = 14.

8
ÿ

n=1

e´
?

n
?

n
=

14
ÿ

n=1

e´
?

n
?

n
+ E14

= 0.3679 + 0.1719 + 0.1021 + 0.0677 + 0.0478
+ 0.0352 + 0.0268 + 0.0209 + 0.0166 + 0.0134
+ 0.0109 + 0.0090 + 0.0075 + 0.0063 + E14

= 0.9042 + E14

The sum is between 0.9035 and 0.9535. This even allows for a roundoff error of 0.00005 in
each term.

S-28: Since
8
ř

n=1
an, converges an must converge to zero as n Ñ 8. In particular there must

be some integer N such that 1
2 ą an ě 0 for all n ą N. Hence

8
ÿ

n=1

an

1´ an
=

N
ÿ

n=1

an

1´ an
+

8
ÿ

n=N+1

an

1´ an
ď

N
ÿ

n=1

an

1´ an
+

8
ÿ

n=N+1

an

1/2

=
N
ÿ

n=1

an

1´ an
+ 2

8
ÿ

n=N+1

an ď

N
ÿ

n=1

an

1´ an
+ 2

8
ÿ

n=1

an

is finite.

S-29: By the divergence test, the fact that
8
ř

n=0
(1´ an) converges guarantees that

lim
nÑ8

(1´ an) = 0, or equivalently, that lim
nÑ8

an = 1. So, by the divergence test, a second
time, the fact that

lim
nÑ8

2nan = +8

guarantees that
8
ř

n=0
2nan diverges too.

S-30: By the divergence test, the fact that
8
ÿ

n=1

nan ´ 2n + 1
n + 1

converges guarantees that

lim
nÑ8

nan´2n+1
n+1 = 0, or equivalently, that

0 = lim
nÑ8

n
n + 1

an ´ lim
nÑ8

2n´ 1
n + 1

= lim
nÑ8

an ´ 2 ðñ lim
nÑ8

an = 2

The series of interest can be written ´ log a1 +
8
ř

n=1

[
log(an)´ log(an+1)

]
which looks like
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a telescoping series. So we’ll compute the partial sum

SN = ´ log a1 +
N
ÿ

n=1

[
log(an)´ log(an+1)

]

= ´ log a1 +
[

log(a1)´ log(a2)
]
+
[

log(a2)´ log(a3)
]
+ ¨ ¨ ¨+

[
log(aN)´ log(aN+1)

]

= ´ log(aN+1)

and then take the limit N Ñ 8

´ log a1 +
8
ÿ

n=1

[
log(an)´ log(an+1)

]
= lim

NÑ8
SN = ´ lim

NÑ8
log(aN+1) = ´ log 2 = log

1
2

S-31: We are told that
ř8

n=1 an converges. Thus we must have that lim
nÑ8

an = 0. In

particular, there is an index N such that 0 ď an ď 1 for all n ě N. Then a2
n ď an for all

n ě N and
8
ÿ

n=1

a2
n =

N´1
ÿ

n=1

a2
n +

8
ÿ

n=N

a2
n ď

N´1
ÿ

n=1

a2
n +

8
ÿ

n=N

an ă 8

Thus
ř8

n=1 a2
n converges.

Solutions to Exercises 3.4 — Jump to TABLE OF CONTENTS

S-1: False. For example if bn = 1
n , then

8
ř

n=1
(´1)n+1bn =

8
ř

n=1
(´1)n+1 1

n converges by the

alternating series test, but
8
ř

n=1

1
n diverges by the p–test.

S-2: The series
8
ř

n=1

(´1)n

9n+5 converges by the alternating series test. On the other hand the

series
8
ř

n=1

ˇ

ˇ

(´1)n

9n+5

ˇ

ˇ =
ř8

n=1
1

9n+5 diverges by the limiting comparison test with bn = 1
n . So

the given series is conditionally convergent.

S-3: Note that (´1)2n+1 = (´1) ¨ (´1)2n = ´1. So we can simplify
8
ÿ

n=1

(´1)2n+1

1 + n
= ´

8
ÿ

n=1

1
1 + n

Since
1

1 + n
ě

1
n + n

=
1

2n
,

8
ÿ

n=1

1
1 + n

diverges by the comparison test with the

divergent harmonic series
8
ř

n=1

1
n . The extra overall factor of ´1 in the original series does

not change the conclusion of divergence.
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S-4: Since

lim
nÑ8

1 + 4n

3 + 22n = lim
nÑ8

1 + 4n

3 + 4n = 1

the alternating series test cannot be used. Indeed, lim
nÑ8

(´1)n´1 1 + 4n

3 + 22n does not exist (for

very large n, (´1)n´1 1+4n

3+22n alternates betwen a number close to +1 and a number close to
´1) so the divergence test says that the series diverges. (Note that “none of the above”
cannot possibly be the correct answer — every series either converges absolutely,
converges conditionally, or diverges.)

S-5: First, we’ll develop some intuition. For very large n
ˇ

ˇ

ˇ

ˇ

?
n cos(n)
n2 ´ 1

ˇ

ˇ

ˇ

ˇ

«

ˇ

ˇ

ˇ

ˇ

?
n cos(n)

n2

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

cos(n)
n3/2

ˇ

ˇ

ˇ

ˇ

ď
1

n3/2

since |cos(n)| ď 1 for all n. By the p–test, the series
8
ÿ

n=5

1
np converges for all p ą 1. So we

would expect the given series to converge absolutely.

Now, to confirm that our intuition is correct, we’ll set an =
ˇ

ˇ

ˇ

?
n cos(n)
n2´1

ˇ

ˇ

ˇ
and apply the limit

comparison test with the comparison series having nth term bn = 1
np . We’ll choose a

specific p shortly. Since

lim
nÑ8

an

bn
= lim

nÑ8

ˇ

ˇ

?
n cos n/(n2 ´ 1)

ˇ

ˇ

1/np = lim
nÑ8

np+1/2| cos n|
n2(1´ 1/n2)

= lim
nÑ8

| cos n|
n3/2´p(1´ 1/n2)

= 0 if p ă
3
2

the limit comparison test says that if p ă 3
2 and the series

8
ř

n=5
bn converges (which is the

case if p ą 1) then the series
8
ř

n=5

ˇ

ˇ

ˇ

?
n cos(n)
n2´1

ˇ

ˇ

ˇ
also converges. So choosing any 1 ă p ă 3

2 , for

example p = 5
4 , we conclude that the given series converges absolutely.

S-6: (a) We need to show that
8
ř

n=1
24n2e´n3

converges. If we replace n by x in the

summand, we get f (x) = 24x2e´x3
, which we can integate. (Just substitute u = x3.) So

let’s try the integral test. First, we have to check that f (x) is positive and decreasing. It is
certainly positive. To determine if it is dereasing, we compute

d f
dx

= 48xe´x3
´ 24ˆ 3x4e´x3

= 24x(2´ 3x3)e´x3

which is negative for x ě 1. Therefore f (x) is decreasing for x ě 1, and the integral test
applies. The substitution u = x3, du = 3x2 dx, yields

ż

f (x)dx =

ż

24x2e´x3
dx =

ż

8e´u du = ´8e´u + C = ´8e´x3
+ C.
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Therefore

ż 8

1
f (x)dx = lim

RÑ8

ż R

1
f (x)dx = lim

RÑ8

[
´8e´x3

]R

1

= lim
RÑ8

(´8e´R3
+ 8e´1) = 8e´1

Since the integral is convergent, the series
8
ř

n=1
24n2e´n3

converges and the series

8
ÿ

n=1

(´1)n´124n2e´n3
converges absolutely.

Alternatively, we can use the ratio test with an = 24n2e´n3
. We calculate

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

24(n + 1)2e´(n+1)3

24n2e´n3

ˇ

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

(
(n + 1)2

n2
en3

e(n+1)3

)

= lim
nÑ8

(
1 +

1
n

)2

e´(3n2+3n+1) = 1 ¨ 0 = 0 ă 1,

and therefore the series converges absolutely.

Alternatively, alternatively, we can use the limiting comparison test. First a little intuition

building. Recall that we need to show that
8
ř

n=1
24n2e´n3

converges. The nth term in this

series is

an = 24n2e´n3
=

24n2

en3

It is a ratio with both the numerator and denominator growing with n. A good rule of
thumb is that exponentials grow a lot faster than powers. For example, if n = 10 the
numerator is 2400 = 2.4ˆ 103 and the denominator is about 2ˆ 10434. So we would
guess that an tends to zero as n Ñ 8. The question is “does an tend to zero fast enough
with n that our series converges?”. For example, we know that

ř8
n=1

1
n2 converges (by the

p–test with p = 2). So if an tends to zero faster than 1
n2 does, our series will converge. So

let’s try the limiting convergence test with an = 24n2e´n3
= 24n2

en3 and bn = 1
n2 .

lim
nÑ8

an

bn
= lim

nÑ8

24n2e´n3

1/n2 = lim
nÑ8

24n4

en3
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By l’Hôpital’s rule, twice,

lim
xÑ8

24x4

ex3 = lim
xÑ8

4ˆ 24x3

3x2ex3 by l’Hôpital

= lim
xÑ8

32x
ex3 just cleaning up

= lim
xÑ8

32
3x2ex3 by l’Hôpital, again

= 0

That’s it. The limiting convergence test now tells us that
ř8

n=1 an converges.

(b) In part (a) we saw that 24n2e´n3
is positive and decreasing. The limit of this sequence

equals 0 (as can be shown with l’Hôpital’s Rule, just as we did at the end of part (a)).
Therefore, we can use the alternating series test, so that the error made in approximating

the infinite sum S =
8
ř

n=1
an =

8
ř

n=1
(´1)n´124n2e´n3

by the sum, SN =
N
ř

n=1
an, of its first N

terms lies between 0 and the first omitted term, aN+1. If we use 5 terms, the error satisfies

|S´ S5| ď |a6| = 24ˆ 36e´63

Solutions to Exercises 3.5 — Jump to TABLE OF CONTENTS

S-1: (a) We apply the ratio test for the series whose kth term is ak = (´1)k2k+1xk. Then

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ak+1

ak

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

(´1)k+12k+2xk+1

(´1)k2k+1xk

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

|2x| = |2x|

Therefore, by the ratio test, the series converges for all x obeying |2x| ă 1, i.e. |x| ă 1
2 , and

diverges for all x obeying |2x| ą 1, i.e. |x| ą 1
2 . So the radius of convergence is R = 1

2 .

Alternatively, one can set Ak = (´1)k2k+1 and compute

A = lim
kÑ8

ˇ

ˇ

ˇ

ˇ

Ak+1

Ak

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

(´1)k+12k+2

(´1)k2k+1

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

2 = 2

so that R = 1
A = 1

2 , again.

(b) The series is

8
ÿ

k=0

(´1)k2k+1xk = 2
8
ÿ

k=0

(´2x)k = 2
8
ÿ

k=0

rk
ˇ

ˇ

ˇ

r=´2x
= 2ˆ

1
1´ r

=
2

1 + 2x

for all |r| = |2x| ă 1, i.e. all |x| ă 1
2 .
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S-2: We apply the ratio test for the series whose kth term is ak =
xk

10k+1(k+1)! . Then

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ak+1

ak

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

xk+1

10k+2(k + 2)!
10k+1(k + 1)!

xk

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

1
10(k + 2)

|x| = 0 ă 1

for all x. Therefore, by the ratio test, the series converges for all x and the radius of
convergence is R = 8.

Alternatively, one can set Ak =
1

10k+1(k+1)! and compute A = limkÑ8
ˇ

ˇ

Ak+1
Ak

ˇ

ˇ = 0, so that R
is again +8.

S-3: We apply the ratio test with an = (x´2)n

n2+1 . Since

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

(x´ 2)n+1

(n + 1)2 + 1
n2 + 1
(x´ 2)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

n2 + 1
(n + 1)2 + 1

|x´ 2|

= lim
nÑ8

1 + 1/n2

(1 + 1/n)2 + 1/n2 |x´ 2|

= |x´ 2|

the series converges if |x´ 2| ă 1 and diverges if |x´ 2| ą 1. So the radius of convergence
is 1.

S-4: We apply the ratio test for the series whose nth term is an = (´1)n(x+2)n
?

n . Then

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(x + 2)n+1
?

n + 1

?
n

(x + 2)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

|x + 2|
?

n
?

n + 1

= lim
nÑ8

|x + 2|
1

?
1 + 1/n

= |x + 2|

So the series must converge when |x + 2| ă 1 and must diverge when |x + 2| ą 1. When
x + 2 = 1, the series reduces to

8
ÿ

n=1

(´1)n
?

n

which converges by the alternating series test. When x + 2 = ´1, the series reduces to

8
ÿ

n=1

1
?

n
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which diverges by the p–series test with p = 1
2 . So the interval of convergence is

´1 ă x + 2 ď 1 or (´3,´1].

S-5: We apply the ratio test for the series whose nth term is an = (´1)n

n+1

(
x+1

3

)n
. Then

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(´1)n+1

n+2

(
x+1

3

)n+1

(´1)n

n+1

(
x+1

3

)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

n + 1
n + 2

ˇ

ˇ

ˇ

ˇ

x + 1
3

ˇ

ˇ

ˇ

ˇ

=
|x + 1|

3
.

Therefore, by the ratio test, the series converges when |x+1|
3 ă 1 and diverges when

|x+1|
3 ą 1. In particular, it converges when

|x + 1| ă 3 ðñ ´3 ă x + 1 ă 3 ðñ ´4 ă x ă 2

and the radius of convergence is R = 3. (Alternatively, one can set An = (´1)n

(n+1)3n and

compute A = limnÑ8
ˇ

ˇ

An+1
An

ˇ

ˇ = 1
3 , so that R = 1

A = 3.)

Next, we consider the endpoints 2 and ´4. At x = 2, i.e. x + 1 = 3, the series is simply
ř8

n=0
(´1)n

n+1 , which is an alternating series: the signs alternate, and the unsigned terms
decrease to zero. Therefore the series converges at x = 2 by the alternating series test.

At x = ´4 the series is

8
ÿ

n=0

(´1)n

n + 1

(
´4 + 1

3

)n
=

8
ÿ

n=0

(´1)n

n + 1
(´1)n =

8
ÿ

n=0

1
n + 1

,

since (´1)n ¨ (´1)n = (´1)2n =
(
(´1)2)n

= 1. This series diverges, either by comparison
or limit comparison with the harmonic series (the p-series with p = 1). (For that matter, it
is exactly equal to the standard harmonic series

ř8
n=1

1
n , re-indexed to start at n = 0.)

In summary, the interval of convergence is ´4 ă x ď 2, or simply (´4, 2].

S-6: We first apply the ratio test with an = (x´2)n

n4/5(5n´4) . Since

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

(x´ 2)n+1

(n + 1)4/5(5n+1 ´ 4)
n4/5(5n ´ 4)
(x´ 2)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

n4/5(5n ´ 4)
(n + 1)4/5(5n+1 ´ 4)

|x´ 2|

= lim
nÑ8

(1´ 4/5n)

(1 + 1/n)4/5(5´ 4/5n)
|x´ 2|

=
|x´ 2|

5
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the series converges if |x´ 2| ă 5 and diverges if |x´ 2| ą 5. When x´ 2 = +5, i.e. x = 7,

the series reduces to
8
ř

n=1

5n

n4/5(5n´4) =
8
ř

n=1

1
n4/5(1´4/5n)

which diverges by the limit

comparison test with bn = 1
n4/5 . When x´ 2 = ´5, i.e. x = ´3, the series reduces to

8
ř

n=1

(´5)n

n4/5(5n´4) =
8
ř

n=1

(´1)n

n4/5(1´4/5n)
which converges by the alternating series test. So the

interval of convergence is ´3 ď x ă 7 or [´3, 7).

S-7: We apply the ratio test with an = (x+2)n

n2 . Since

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

(x+2)n+1

(n+1)2

(x+2)n

n2

ˇ

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

n2

(n + 1)2 |x + 2| = lim
nÑ8

1

(1 + 1/n)2 |x + 2| = |x + 2|

we have convergence for

|x + 2| ă 1 ðñ ´1 ă x + 2 ă 1 ðñ ´3 ă x ă ´1

and divergence for |x + 2| ą 1. For |x + 2| = 1, i.e. for x + 2 = ˘1, i.e. for x = ´3,´1, the

series reduces to
8
ř

n=1

(˘1)n

n2 , which converges absolutely, because
8
ř

n=1

1
np converges for

p = 2 ą 1. So the given series converges if and only if ´3 ď x ď ´1.

S-8: We apply the ratio test with an = 4n

n (x´ 1)n. Since

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

4n+1(x´ 1)n+1/(n + 1)
4n(x´ 1)n/n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

4|x´ 1|
n

n + 1

= 4|x´ 1| lim
nÑ8

n
n + 1

= 4|x´ 1| ¨ 1.

the series converges if

4|x´ 1| ă 1 ðñ ´1 ă 4(x´ 1) ă 1 ðñ ´
1
4
ă x´ 1 ă

1
4
ðñ

3
4
ă x ă

5
4

and diverges if 4|x´ 1| ą 1. Checking the right endpoint x = 5
4 , we see that

8
ÿ

n=1

4n

n

(
5
4
´ 1
)n

=
8
ÿ

n=1

1
n

is the divergent harmonic series. At the left endpoint x = 3
4 ,

8
ÿ

n=1

4n

n

(
3
4
´ 1
)n

=
8
ÿ

n=1

(´1)n

n

converges by the alternating series test. Therefore the interval of convergence of the
original series is 3

4 ď x ă 5
4 , or

[3
4 , 5

4

)
.
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S-9: We apply the ratio test with an = (´1)n (x´1)n

2n(n+2) . Since

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(x´ 1)n+1

2n+1(n + 3)
2n(n + 2)
(x´ 1)n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

|x´ 1|
2

n + 2
n + 3

=
|x´ 1|

2
lim

nÑ8

1 + 2/n
1 + 3/n

=
|x´ 1|

2

the series converges if

|x´ 1|
2

ă 1 ðñ |x´ 1| ă 2 ðñ ´2 ă (x´ 1) ă 2 ðñ ´1 ă x ă 3

and diverges if |x´ 1| ą 2. So the series has radius of convergence 2. Checking the left
endpoint x = ´1, so that x´1

2 = ´1, we see that

8
ÿ

n=0

(´1)n (´1´ 1)n

2n(n + 2)
=

8
ÿ

n=0

1
n + 2

is the divergent harmonic series. At the right endpoint x = 3, so that x´1
2 = +1 and

8
ÿ

n=0

(´1)n (3´ 1)n

2n(n + 2)
=

8
ÿ

n=0

(´1)n

n + 2

converges by the alternating series test. Therefore the interval of convergence of the
original series is ´1 ă x ď 3, or

(
´ 1, 3

]
.

S-10: We apply the ratio test with an = (´1)nn2(x´ a)2n. Since

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

(´1)n+1(n + 1)2(x´ a)2(n+1)

(´1)nn2(x´ a)2n

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

|x´ a|2
(n + 1)2

n2

= |x´ a|2 lim
nÑ8

(
1 + 1/n

)2
= |x´ a|2 ¨ 1.

the series converges if

|x´ a|2 ă 1 ðñ |x´ a| ă 1 ðñ ´1 ă x´ a ă 1 ðñ a´ 1 ă x ă a + 1

and diverges if |x´ a| ą 1. Checking both endpoints x´ a = ˘1, we see that

8
ÿ

n=1

(´1)nn2(x´ a)2n
ˇ

ˇ

ˇ

ˇ

x´a=˘1
=

8
ÿ

n=1

(´1)nn2

fails the divergence test — the nth term does not converge to zero as n Ñ 8. Therefore
the interval of convergence of the original series is a´ 1 ă x ă a + 1, or

(
a´ 1, a + 1

)
.
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S-11: (a) We apply the ratio test for the series whose kth term is Ak =
(x+1)k

k29k . Then

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

Ak+1

Ak

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

ˇ

ˇ

ˇ

ˇ

(x + 1)k+1

(k + 1)29k+1
k29k

(x + 1)k

ˇ

ˇ

ˇ

ˇ

= lim
kÑ8

|x + 1|
1
9

k2

(k + 1)2

= lim
kÑ8

|x + 1|
1
9

1
(1 + 1/k)2

=
|x + 1|

9

So the series must converge when |x + 1| ă 9 and must diverge when |x + 1| ą 9. When
x + 1 = ˘9, the series reduces to

8
ÿ

k=1

(˘9)k

k29k =
8
ÿ

k=1

(˘1)k

k2

which converges (since, by the p–test,
ř8

k=1
1
kp converges for any p ą 1). So the interval of

covnergence is |x + 1| ď 9 or ´10 ď x ď 8 or [´10, 8].

(b) The partial sum

N
ÿ

k=1

( ak
ak+1

´
ak+1

ak+2

)
=
( a1

a2
´

a2

a3

)
+
( a2

a3
´

a3

a4

)
+ ¨ ¨ ¨+

( aN

aN+1
´

aN+1

aN+2

)
=

a1

a2
´

aN+1

aN+2

We are told that
8
ÿ

k=1

( ak
ak+1

´
ak+1

ak+2

)
=

a1

a2
. This means that the above partial sum

converges to a1
a2

as N Ñ 8, or equivalently, that

lim
NÑ8

aN+1

aN+2
= 0

and hence that

lim
kÑ8

|ak+1(x´ 1)k+1|

|ak(x´ 1)k|
= |x´ 1| lim

kÑ8

|ak+1|

|ak|

is infinite for any x ‰ 1. So, by the ratio test, this series converges only for x = 1.

S-12: Using the geometric series
8
ř

n=0
xn = 1

1´x ,

x3

1´ x
= x3

8
ÿ

n=0

xn =
8
ÿ

n=0

xn+3 =
8
ÿ

n=3

xn
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S-13: We apply the ratio test for the series whose nth term is either an = xn

32n log n or

an =
ˇ

ˇ

xn

32n log n

ˇ

ˇ. For both series

lim
nÑ8

ˇ

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

xn+1

32(n+1) log(n + 1)
32n log n

xn

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

x log n
32 log(n + 1)

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

x log n
32[log(n) + log(1 + 1/n)]

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

ˇ

ˇ

ˇ

ˇ

x
32[1 + log(1 + 1/n)/ log(n)]

ˇ

ˇ

ˇ

ˇ

=
|x|
9

Therefore, by the ratio test, our series converges absolutely when |x| ă 9 and diverges
when |x| ą 9.

For x = ´9,
8
ÿ

n=2

xn

32n log n
=

8
ÿ

n=2

(´1)n

log n
which converges by the alternating series test.

For x = +9,
8
ÿ

n=2

xn

32n log n
=

8
ÿ

n=2

1
log n

which is the same series as
8
ÿ

n=2

ˇ

ˇ

ˇ

(´1)n

log n

ˇ

ˇ

ˇ
. We shall

shortly show that n ě log n, and hence 1
log n ě

1
n for all n ě 1. This implies that the series

8
ÿ

n=2

1
log n

diverges by comparison with the divergent series
8
ÿ

n=2

1
np

ˇ

ˇ

ˇ

ˇ

p=1
. This yelds both

divergence for x = 9 and also the failure of absolute convergence for x = ´9.

Finally, we show that n´ log n ą 0, for all n ě 1. Set f (x) = x´ log x. Then f (1) = 1 ą 0
and

f 1(x) = 1´
1
x
ě 0 for all x ě 1

So f (x) is (strictly) positive when x = 1 and is increasing for all x ě 1. So f (x) is (strictly)
positive for all x ě 1.

S-14: (a) Applying 1
1+r =

8
ř

n=0
(´1)nrn, with r = x3, gives

ż

1
1 + x3 dx =

8
ÿ

n=0

(´1)n
ż

x3n dx =
8
ÿ

n=0

(´1)n x3n+1

3n + 1
+ C

(b) By part (a),

ż 1/4

0

1
1 + x3 dx =

8
ÿ

n=0

(´1)n x3n+1

3n + 1

ˇ

ˇ

ˇ

ˇ

1/4

0
=

8
ÿ

n=0

(´1)n 1
(3n + 1)43n+1

This is an alternating series with successively smaller terms that converge to zero as
n Ñ 8. So truncating it introduces an error no larger than the magnitude of the first
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dropped term. We want that first dropped term to obey

1
(3n + 1)43n+1 ă 10´5 =

1
105

So let’s check the first few terms.

1
(3n + 1)43n+1

ˇ

ˇ

ˇ

ˇ

n=0
=

1
4
ą

1
105

1
(3n + 1)43n+1

ˇ

ˇ

ˇ

ˇ

n=1
=

1
45 ą

1
105

1
(3n + 1)43n+1

ˇ

ˇ

ˇ

ˇ

n=2
=

1
7ˆ 47 =

1
7ˆ 214 =

1
7ˆ 16ˆ 1024

=
1

112ˆ 1024
ă

1
105

So we need to keep two terms (the n = 0 and n = 1 terms).

S-15: (a) Differentiating both sides of

8
ÿ

n=0

xn =
1

1´ x

gives
8
ÿ

n=0

nxn´1 =
1

(1´ x)2

Now multiplying both sides by x gives

8
ÿ

n=0

nxn =
x

(1´ x)2

as desired.

(b) Differentiating both sides of the conclusion of part (a) gives

8
ÿ

n=0

n2xn´1 =
(1´ x)2 ´ 2x(x´ 1)

(1´ x)4 =
(1´ x)(1´ x + 2x)

(1´ x)4 =
1 + x

(1´ x)3

Now multiplying both sides by x gives

8
ÿ

n=0

n2xn =
x(1 + x)
(1´ x)3

We know that differentiation preserves the radius of convergence of power series. So this
series has radius of convergence 1 (the radius of convergence of the original geometric
series). At x = ˘1 the series diverges by the divergence test. So the series converges for
´1 ă x ă 1.
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S-16: By the divergence test, the fact that
8
ř

n=0
(1´ bn) converges guarantees that

lim
nÑ8

(1´ bn) = 0, or equivalently, that lim
nÑ8

bn = 1. So, by equation (3.5.2) in the CLP 101
notes, the radius of convergence is

R =

[
lim

nÑ8

ˇ

ˇ

ˇ

bn+1

bn

ˇ

ˇ

ˇ

]´1

=

[
1
1

]´1

= 1 (3.6.1)

S-17: (a) We know that the radius of convergence R obeys

1
R

= lim
nÑ8

an+1

an
= lim

nÑ8

n
n + 1

(n + 1)an+1

nan
= 1

C
C

= 1

because we are told that lim
nÑ8

nan = C. So R = 1.

(b) Just knowing that the radius of convergence is 1, we know that the series converges
for |x| ă 1 and diverges for |x| ą 1. That leaves x˘ 1.

When x = +1, the series reduces to
8
ř

n=1
an. We are told that nan decreases to C ą 0. So

an ě
C
n . By the comparison test with the harmonic series

8
ř

n=1

1
n , which diverges by the

p–test with p = 1, our series diverges when x = 1.

When x = ´1, the series reduces to
8
ř

n=1
(´1)nan. We are told that nan decreases to C ą 0.

So an ą 0 and an converges to 0 as n Ñ 8. Consequently
8
ř

n=1
(´1)nan converges by the

alternating series test.

In conclusion
8
ř

n=1
anxn converges when ´1 ď x ă 1.

Solutions to Exercises 3.6 — Jump to TABLE OF CONTENTS

S-1: Substituting y = 3x into the exponential series

ey =
8
ÿ

n=0

yn

n!

gives

e3x =
8
ÿ

n=0

(3x)n

n!
=

8
ÿ

n=0

3n xn

n!

so that c5, the coefficient of x5, which appears only in the n = 5 term, is c5 = 35

5!
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S-2: We just need to substitute y = x3 into the known Maclaurin series for sin y, to get the
Maclaurin series for sin(x3), and then multiply the result by x2.

sin y = y´
y3

3!
+ ¨ ¨ ¨

sin(x3) = x3
´

x9

3!
+ ¨ ¨ ¨

x2 sin(x3) = x5
´

x11

3!
+ ¨ ¨ ¨

so a = 1 and b = ´ 1
3! = ´1

6 .

S-3: Substituting y = 2x into 1
1´y =

8
ř

n=0
yn gives

f (x) =
1

2x´ 1
= ´

1
1´ 2x

= ´

8
ÿ

n=0

(2x)n = ´

8
ÿ

n=0

2nxn

S-4: Substituting first y = ´x and then y = 2x into 1
1´y =

8
ř

n=0
yn gives

1
1´ (´x)

=
8
ÿ

n=0

(´x)n =
8
ÿ

n=0

(´1)nxn

1
1´ (2x)

=
8
ÿ

n=0

(2x)n =
8
ÿ

n=0

2nxn

Hence

f (x) =
3

x + 1
´

1
2x´ 1

=
3

1´ (´x)
+

1
1´ 2x

= 3
8
ÿ

n=0

(´1)nxn +
8
ÿ

n=0

2nxn

=
8
ÿ

n=0

(
3(´1)n + 2n)xn

So bn = 3(´1)n + 2n.

S-5: Recall that

ey =
8
ÿ

n=0

yn

n!
= 1 + y +

y2

2
+

y3

3!
+ ¨ ¨ ¨
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Setting y = ´x2, we have

e´x2
= 1´ x2 +

x4

2
´

x6

3!
+ ¨ ¨ ¨

e´x2
´ 1 = ´x2 +

x4

2
´

x6

6
+ ¨ ¨ ¨

e´x2
´ 1

x
= ´x +

x3

2
´

x5

6
+ ¨ ¨ ¨

ż

e´x2
´ 1

x
dx = C´

x2

2
+

x4

8
´

x6

36
+ ¨ ¨ ¨

S-6: Recall that

arctan(y) =
8
ÿ

n=0

(´1)n y2n+1

2n + 1

Setting y = 2x, we have
ż

x4 arctan(2x)dx =
8
ÿ

n=0

(´1)n
ż

x4 (2x)2n+1

2n + 1
dx =

8
ÿ

n=0

(´1)n
ż

22n+1x2n+5

2n + 1
dx

=
8
ÿ

n=0

(´1)n 22n+1x2n+6

(2n + 1)(2n + 6)
+ C =

8
ÿ

n=0

(´1)n 22nx2n+6

(2n + 1)(n + 3)
+ C

S-7: Since

f 1(t) =
d
dt

log(1 + 2t) =
2

1 + 2t
= 2

8
ÿ

n=0

(´2t)n if |2t| ă 1 i.e. |t| ă
1
2

and f (0) = 0, we have

f (x) =
ż x

0
f 1(t)dt = 2

8
ÿ

n=0

ż x

0
(´1)n2ntn dt =

8
ÿ

n=0

(´1)n2n+1 xn+1

n + 1
for all |x| ă

1
2

S-8: Since 3n =
(?

3
)2n

= 1?
3

(?
3
)2n+1

8
ÿ

n=0

(´1)n

(2n + 1)3n =
?

3
8
ÿ

n=0

(´1)n

(2n + 1)
(?

3
)2n+1 =

?
3
8
ÿ

n=0

(´1)n x2n+1

2n + 1

ˇ

ˇ

ˇ

ˇ

x= 1?
3

=
?

3 arctan
1
?

3

=
?

3
π

6
=

π

2
?

3
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S-9: Recall that ex =
8
ř

n=0

xn

n! . So

8
ÿ

n=0

(´1)n

n!
=
[ 8
ÿ

n=0

xn

n!

]
x=´1

=
[
ex
]

x=´1
= e´1

S-10: Recall that ex =
8
ř

k=0

xk

k! . So

8
ÿ

k=0

1
ekk!

=
[ 8
ÿ

k=0

xk

k!

]
x=1/e

=
[
ex
]

x=1/e
= e1/e

S-11: Recall that ex =
8
ř

k=0

xk

k! . So

8
ÿ

k=0

1
πkk!

=
[ 8
ÿ

k=0

xk

k!

]
x=1/π

=
[
ex
]

x=1/π
= e1/π

This series differs from the given one only in that it starts with k = 0 while the given
series starts with k = 1. So

8
ÿ

k=1

1
πkk!

=
8
ÿ

k=0

1
πkk!

´ 1
loomoon

k=0

= e1/π
´ 1

S-12: Recall that

log(1 + x) =
8
ÿ

k=0

(´1)k xk+1

k + 1
=

8
ÿ

n=1

(´1)n´1 xn

n

(To get from the first sum to the second sum we substituted n = k + 1. If you don’t see
why the two sums are equal, write out the first few terms of each.) So

8
ÿ

n=1

(´1)n´1

n 2n =
[ 8
ÿ

n=1

(´1)n´1 xn

n

]
x=1/2

=
[

log(1 + x)
]

x=1/2
= log(3/2)

S-13: Write
8
ÿ

n=1

n + 2
n!

en =
8
ÿ

n=1

n
n!

en +
8
ÿ

n=1

2
n!

en

=
8
ÿ

n=1

en

(n´ 1)!
+ 2

8
ÿ

n=1

en

n!

= e
8
ÿ

n=1

en´1

(n´ 1)!
+ 2

8
ÿ

n=1

en

n!

= e
8
ÿ

n=0

en

n!
+ 2

8
ÿ

n=1

en

n!
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Recall that ex =
8
ř

n=0

xn

n! . So

8
ÿ

n=1

n + 2
n!

en = e
[ 8
ÿ

n=0

xn

n!

]
x=e

+ 2
[ 8
ÿ

n=1

xn

n!

]
x=e

= e
[
ex
]

x=e
+ 2
[
ex
´ 1
]

x=e
= ee+1 + 2(ee

´ 1)

= (e + 2)ee
´ 2

S-14: Substituting y = ´3x3 into 1
1´y =

8
ř

n=0
yn gives

d f
dx

= x
1

1 + 3x3 = x
8
ÿ

n=0

(
´ 3x3)n

=
8
ÿ

n=0

(´1)n3nx3n+1

Now integrating,

f (x) =
8
ÿ

n=0

(´1)n3n x3n+2

3n + 2
+ C

To have f (0) = 1, we need C = 1. So, finally

f (x) = 1 +
8
ÿ

n=0

(´1)n 3n

3n + 2
x3n+2

S-15: (a) Using the geometric series expansion with r = t4,

1
1´ r

=
8
ÿ

n=0

rn
ùñ

1
1 + t4 =

8
ÿ

n=0

(´t4)
n

Substituting this into our integral,

I(x) =
ż x

0

1
1 + t4 dt =

8
ÿ

n=0

(´1)n
ż x

0
t4n dt =

8
ÿ

n=0

(´1)n x4n+1

4n + 1

(b) Substituting in x = 1
2 .

I(1/2) =
8
ÿ

n=0

(´1)n 1
(4n + 1)24n+1

= 1
2 ´

1
5ˆ 25 +

1
9ˆ 29 ´

1
13ˆ 213 + ¨ ¨ ¨

= 0.5´ 0.00625 + 0.000217´ 0.0000094 + ¨ ¨ ¨ = 0.493967 ´ 0.0000094 + ¨ ¨ ¨

See part (c) for the error analysis.
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(c) The series for I(x) is an alternating series (that is, the sign alternates) with
successively smaller terms that converge to zero. So the error introduced by truncating
the series is between zero and the first omitted term. In this case, the first omitted term
was negative (´0.0000094). So the exact value of I(1/2) is the approximate value found
in part (b) plus a negative number whose magnitude is smaller than 0.00001 = 10´5. So
the approximate value of part (b) is larger than the true value of I(1/2).

S-16: Expanding the exponential using its Maclaurin series,

I =
ż 1

0
x4e´x2

dx =
8
ÿ

n=0

ż 1

0
x4 (´x2)

n

n!
dx =

8
ÿ

n=0

(´1)n

n!

ż 1

0
x2n+4 dx

=
8
ÿ

n=0

(´1)n

n!(2n + 5)
=

1
5

loomoon

n=0

´
1
7

loomoon

n=1

+
1

18
loomoon

n=2

´
1

3!(11)
loomoon

n=3

+ ¨ ¨ ¨

The signs of successive terms in this series alternate. Futhermore the magnitude of the
nth term decreases with n. Hence, by the alternating series test, I lies between 1

5 ´
1
7 +

1
18

and 1
5 ´

1
7 +

1
18 ´

1
3!(11) . So

|I ´ a| ď
1

3!(11)
=

1
66

S-17: Expanding the exponential using its Taylor series,

I =
ż 1

2

0
x2e´x2

dx =
8
ÿ

n=0

ż 1
2

0
x2 (´x2)

n

n!
dx =

8
ÿ

n=0

(´1)n

n!

ż 1
2

0
x2n+2 dx

=
8
ÿ

n=0

(´1)n

n!(2n + 3)
1

22n+3

The signs of successive terms in this series alternate. Futhermore the magnitude of the
nth term decreases with n. Hence, by the alternating series test, I lies between

N
ř

n=0

(´1)n

n!(2n+3)
1

22n+3 and
N+1
ř

n=0

(´1)n

n!(2n+3)
1

22n+3 , for every N. The first few terms are, to five decimal

places,

n 0 1 2 3
(´1)n

n!(2n+3)
1

22n+3 0.04167 -0.00625 0.00056 -0.00004

Allowing for a roundoff error of 0.000005 in each of these, I must be between

0.04167´ 0.00625 + 0.00056 + 0.000005ˆ 3 = 0.035995

and
0.04167´ 0.00625 + 0.00056´ 0.00004´ 0.000005ˆ 4 = 0.035920
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S-18: We use that

log(1 + y) =
8
ÿ

n=1

(´1)n´1 yn

n
for all ´ 1 ă y ď 1

with y = x´2
2 to give

log(x) = log(2 + x´ 2) = log 2 + log
(

1 +
x´ 2

2

)
= log 2 +

8
ÿ

n=1

(´1)n´1

n 2n (x´ 2)n

It converges when ´1 ă y = x´2
2 ď 1, or equivalently, 0 ă x ď 4.

S-19: (a) Using the Taylor series expansion of ex with x = ´t,

e´t =
8
ÿ

n=0

(´t)n

n!
ùñ e´t

´ 1 =
8
ÿ

n=1

(´1)n tn

n!
ùñ

e´t ´ 1
t

=
8
ÿ

n=1

(´1)n tn´1

n!

Substituting this into our integral,

I(x) =
ż x

0

e´t ´ 1
t

dt =
8
ÿ

n=1

(´1)n
ż x

0

tn´1

n!
dt =

8
ÿ

n=1

(´1)n xn

n n!

(b) Substituting in x = 1.

I(1) =
8
ÿ

n=1

(´1)n 1
n n!

= ´1 +
1

2 2!
´

1
3 3!

+
1

4 4!
´

1
5 5!

+ ¨ ¨ ¨

= ´1 + 0.25´ 0.0556 + 0.0104´ 0.0017 + ¨ ¨ ¨ = ´0.80

See part (c) for the error analysis.

(c) The series for I(x) is an alternating series (that is, the sign alternates) with
successively smaller terms that converge to zero. So the error introduced by truncating
the series is no larger than the first omitted term. So the magnitude of ´ 1

5 5! + ¨ ¨ ¨ is no
larger than 0.0017. Allowing for a roundoff error of at most 0.0001 in each of the two
terms ´0.0556 + 0.0104

I(1) = ´1 + 0.25´ 0.0556 + 0.0104˘ 0.0019 = ´0.7952˘ 0.0019

S-20: (a) Using the Taylor series expansion of sin x with x = t,

sin t =
8
ÿ

n=0

(´1)n t2n+1

(2n + 1)!
ùñ

sin t
t

=
8
ÿ

n=0

(´1)n t2n

(2n + 1)!
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So

Σ(x) =
ż x

0

sin t
t

dt =
8
ÿ

n=0

(´1)n
ż x

0

t2n

(2n + 1)!
dt =

8
ÿ

n=0

(´1)n x2n+1

(2n + 1)(2n + 1)!

(b) The critical points of Σ(x) are the solutions of Σ1(x) = 0. By the fundamental theorem
of calculus Σ1(x) = sin x

x , so the critical points of Σ(x) are x = ˘π,˘2π, ¨ ¨ ¨ . The absolute
maximum occurs at x = π.

(c) Substituting in x = π,

Σ(π) =
8
ÿ

n=0

(´1)n π2n+1

(2n + 1)(2n + 1)!

= π ´
π3

3 3!
+

π5

5 5!
´

π7

7 7!
+ ¨ ¨ ¨

= 3.1416´ 1.7226 + 0.5100´ 0.0856 + 0.0091´ 0.0007 + ¨ ¨ ¨

The series for Σ(π) is an alternating series (that is, the sign alternates) with successively
smaller terms that converge to zero. So the error introduced by truncating the series is no
larger than the first omitted term. So

Σ(π) = 3.1416´ 1.7226 + 0.5100´ 0.0856 + 0.0091 = 1.8525

with an error of magnitude at most 0.0007 + 0.0005 (the 0.0005 is the maximum possible
accumulated roundoff error in all five retained terms).

S-21: (a) Using the Taylor series expansion of cos x with x = t,

cos t = 1´
t2

2!
+

t4

4!
´

t6

6!
+ ¨ ¨ ¨ =

8
ÿ

n=0

(´1)n t2n

(2n)!

cos t´ 1
t2 = ´

1
2!

+
t2

4!
´

t4

6!
+ ¨ ¨ ¨ =

8
ÿ

n=1

(´1)n t2n´2

(2n)!

I(x) =
ż x

0

cos t´ 1
t2 dt = ´

x
2!

+
x3

4!3
´

x5

6!5
+ ¨ ¨ ¨ =

8
ÿ

n=1

(´1)n x2n´1

(2n)!(2n´ 1)

(b), (c) Substituting in x = 1,

I(1) = ´
1
2
+

1
4!3

´
1

6!5
+ ¨ ¨ ¨

= ´0.5 + 0.0139´ 0.0003´ ¨ ¨ ¨
= ´0.486˘ 0.001

The series for I(1) is an alternating series with decreasing successive terms that converge
to zero. So approximating I(1) by ´1

2 +
1

4!3 introduces an error between 0 and ´ 1
6!5 .

Hence I(1) ă ´1
2 +

1
4!3 .
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S-22: (a) Using the Taylor series expansions of sin x and cos x with x = t,

cos t = 1´
t2

2!
+

t4

4!
´

t6

6!
+

t8

8!
+ ¨ ¨ ¨

sin t = t´
t3

3!
+

t5

5!
´

t7

7!
+ ¨ ¨ ¨

t sin t = t2
´

t4

3!
+

t6

5!
´

t8

7!
+ ¨ ¨ ¨

cos t + t sin t´ 1 =
(

1´
1
2!

)
t2
´

( 1
3!
´

1
4!

)
t4 +

( 1
5!
´

1
6!

)
t6
´

( 1
7!
´

1
8!

)
t8 + ¨ ¨ ¨

=
1
2!

t2
´

3
4!

t4 +
5
6!

t6
´

7
8!

t8 + ¨ ¨ ¨
(
use 1 =

2
2!

,
1
3!

=
4
4!

,
1
5!

=
6
6!

,
1
7!

=
8
8!

, ¨ ¨ ¨
)

cos t + t sin t´ 1
t2 =

1
2!
´

3
4!

t2 +
5
6!

t4
´

7
8!

t6 + ¨ ¨ ¨

I(x) =
1
2!

x´
1
4!

x3 +
1
6!

x5
´

1
8!

x8 + ¨ ¨ ¨ =
1´ cos x

x

(b) I(1) = 1
2! ´

1
4! +

1
6! ´

1
8! + ¨ ¨ ¨ = 0.5´ 0.0416̇ + 0.00139´ 0.000024 + ¨ ¨ ¨ = 0.460 . The

error analysis is in part (c).

(c) The series for I(1) is an alternating series with decreasing successive terms that
convege to zero. So approximating I(1) by 1

2! ´
1
4! +

1
6! introduces an error between 0 and

´ 1
8! . So I(1) ă 1

2! ´
1
4! +

1
6! ă 0.460.

S-23: (a) Substituting x = ´t into the known power series ex = 1 + x + x2

2! +
x3

3! +
x4

4! + ¨ ¨ ¨ ,
we see that:

e´t = 1´ t +
t2

2!
´

t3

3!
+

t4

4!
´ ¨ ¨ ¨

1´ e´t = t´
t2

2!
+

t3

3!
´

t4

4!
+ ¨ ¨ ¨

1´ e´t

t
= 1´

t
2!

+
t2

3!
´

t3

4!
+ ¨ ¨ ¨

ż

1´ e´t

t
dt = C + x´

x2

2 ¨ 2!
+

x3

3 ¨ 3!
´

x4

4 ¨ 4!
+ ¨ ¨ ¨

Finally, f (0) = 0 (since f (0) is an integral from 0 to 0) and so C = 0. Therefore

f (x) =
ż x

0

1´ e´t

t
dt = x´

x2

2 ¨ 2!
+

x3

3 ¨ 3!
´

x4

4 ¨ 4!
+ ¨ ¨ ¨ .
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We can also do this calculation entirely in summation notation: ex =
8
ř

n=0

xn

n! , and so

e´t =
8
ÿ

n=0

(´t)n

n!
= 1 +

8
ÿ

n=1

(´1)ntn

n!

1´ e´t = ´

8
ÿ

n=1

(´1)ntn

n!
=

8
ÿ

n=1

(´1)n´1tn

n!

1´ e´t

t
=

8
ÿ

n=1

(´1)n´1tn´1

n!

f (x) =
ż x

0

1´ e´t

t
dt =

8
ÿ

n=1

(´1)n´1xn

n ¨ n!

(b) We set an = Anxn = (´1)n´1

n¨n! xn and apply the ratio test. Since

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

(´1)nxn+1/((n + 1) ¨ (n + 1)!)
(´1)n´1xn/(n ¨ n!)

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

(
|x|n+1

|x|n
n ¨ n!

(n + 1) ¨ (n + 1)!

)

= lim
nÑ8

(
|x|

n
(n + 1)2

)
since (n + 1)! = (n + 1) n!

= 0

This is smaller than 1 no matter what x is. So the series converges for all x.

S-24:

ex = 1 + x +
x2

2!
+

x3

3!
+ ¨ ¨ ¨ ě 1 + x for all x ě 0

ùñ ex
´ 1 ě x

ùñ
x3

ex ´ 1
ď

x3

x
= x2

ùñ

ż 1

0

x3

ex ´ 1
dx ď

ż 1

0
x2 dx =

1
3
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S-25: Using the Maclaurin series expansions of cos x and ex,

cos x = 1´
x2

2!
+

x4

4!
+ ¨ ¨ ¨

1´ cos x =
x2

2!
´

x4

4!
+ ¨ ¨ ¨

ex = 1 + x +
x2

2!
+

x3

3!
+ ¨ ¨ ¨

1 + x´ ex = ´
x2

2!
´

x3

3!
+ ¨ ¨ ¨

1´ cos x
1 + x´ ex =

x2

2! ´
x4

4! + ¨ ¨ ¨

´ x2

2! ´
x3

3! + ¨ ¨ ¨
=

1
2! ´

x2

4! + ¨ ¨ ¨

´ 1
2! ´

x
3! + ¨ ¨ ¨

we have

lim
xÑ0

1´ cos x
1 + x´ ex = lim

xÑ0

1
2! ´

x2

4! + ¨ ¨ ¨

´ 1
2! ´

x
3! + ¨ ¨ ¨

=
1
2!

´ 1
2!

= ´1

S-26: Using the Maclaurin series expansion of sin x,

sin x = x´
x3

3!
+

x5

5!
´

x7

7!
+ ¨ ¨ ¨

sin x´ x +
x3

6
=

x5

5!
´

x7

7!
+ ¨ ¨ ¨

sin x´ x + x3

6
x5 =

1
5!
´

x2

7!
+ ¨ ¨ ¨

we have

lim
xÑ0

sin x´ x + x3

6
x5 = lim

xÑ0

( 1
5!
´

x2

7!
+ ¨ ¨ ¨

)
=

1
5!

=
1

120

S-27: Using the Maclaurin series expansions of cos x,

cos x = 1´
x2

2
+

x4

4!
´

x6

6!
+

x8

8!
´ ¨ ¨ ¨

ùñ 1´ x2
´ cos x = ´

x2

2
´

x4

4!
+

x6

6!
´

x8

8!
+ ¨ ¨ ¨

ùñ
1´ x2 ´ cos x

x5/2 = ´
x´1/2

2
´

x3/2

4!
+

x7/2

6!
´

x11/2

8!
+ ¨ ¨ ¨

ùñ

ż 1

0

1´ x2 ´ cos x
x5/2 dx = ´1´

2
5ˆ 4!

+
2

9ˆ 6!
´

2
13ˆ 8!

+ ¨ ¨ ¨

This is an alternating series with successive terms decreasing. So the error introduced by
truncating is between 0 and the first term dropped. So

ż 1

0

1´ x2 ´ cos x
x5/2 dx = ´1´

1
60

+
1

3240
´

1
262080

+ ¨ ¨ ¨ = ´1´
1

60
+ E = ´

61
60

+ E
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with the error E between 0 and 1
3240 ă 0.00031 and ´61

60 = ´1.017 with an additional error
of at most 0.00034.

S-28: (a) The naive strategy is to set an = x2n

(2n)! and apply the ratio test. Since

lim
nÑ8

ˇ

ˇ

ˇ

an+1

an

ˇ

ˇ

ˇ
= lim

nÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x2n+2

(2n+2)!
x2n

(2n)!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= lim
nÑ8

x2

(2n + 2)(2n + 1)
since (2n + 2)! = (2n + 2)(2n + 1) (2n)!

= 0

This is smaller than 1 no matter what x is. So the series converges for all x.

Alternatively, the sneaky way is to observe that both ex =
8
ÿ

n=0

xn

n!
and e´x =

8
ÿ

n=0

(´x)n

n!
are known to converge for all x. So

1
2
(
ex + e´x) =

ÿ

n even

xn

n!
=

8
ÿ

n=0

x2n

(2n)!

also converges for all x.

(b) Recall that ex =
8
ř

n=0

xn

n! , Hence

e =
8
ÿ

n=0

1
n!

e´1 =
8
ÿ

n=0

(´1)n

n!

e + e´1 =
8
ÿ

n=0

1 + (´1)n

n!
= 2

8
ÿ

n even

1
n!

= 2
8
ÿ

n=0

1
(2n)!

Hence
8
ř

n=0

1
(2n)! =

1
2

(
e + 1

e
)
.

S-29: (a) We know that ex =
8
ř

n=0

xn

n! for all x. Replacing x by ´x, we also have

e´x =
8
ř

n=0

(´x)n

n! for all x and hence

cosh(x) =
1
2
[
ex + e´x] = 1

2

[ 8
ÿ

n=0

xn

n!
+

8
ÿ

n=0

(´x)n

n!

]
=

8
ÿ

n=0
n even

xn

n!
=

8
ÿ

n=0

x2n

(2n)!

for all x. In particular, the interval of convergence is all of R.
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(b) Using the power series expansion of part (a),

cosh(2) = 1 +
22

2!
+

24

4!
+

8
ÿ

n=3

x2n

(2n)!
= 3

2
3
+

8
ÿ

n=3

22n

(2n)!

So it suffices to show that
ř8

n=3
22n

(2n)! ď 0.1. Let’s write bn = 22n

(2n)! . The first term in
ř8

n=3
22n

(2n)! is

b3 =
26

6!
=

26

6ˆ 5ˆ 4ˆ 3ˆ 2
=

4
45

The ratio between successive terms in
ř8

n=3
22n

(2n)! is

bn+1

bn
=

22n+2/22n

(2n + 2)!/(2n)!
=

4
(2n + 2)(2n + 1)

ď
4

8ˆ 7
=

1
14

for all n ě 3

Hence

8
ÿ

n=3

22n

(2n)!
ď

b3
hkkikkj

4
45

+

b4ď
hkkkikkkj

4
45
ˆ

1
14

+

b5ď
hkkkkikkkkj

4
45
ˆ

1
142 +

b6ď
hkkkkikkkkj

4
45
ˆ

1
143 + ¨ ¨ ¨ =

4
45

1
1´ 1

14

=
4
45

14
13

=
56
585

ă
1
10

(c) Comparing

cosh(t) =
8
ÿ

n=0

t2n

(2n)!
=

8
ÿ

n=0

(t2)
n

(2n)!
and e

1
2 t2

=
8
ÿ

n=0

(1
2 t2)

n

n!
=

8
ÿ

n=0

(t2)
n

2nn!

we see that it suffices to show that (2n)! ě 2nn!. Now. for all n ě 1,

(2n)! =

n factors
hkkkkkkkikkkkkkkj

1ˆ 2ˆ ¨ ¨ ¨ ˆ n

n factors
hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

(n + 1)ˆ (n + 2)ˆ ¨ ¨ ¨ ˆ 2n

ě

n factors
hkkkkkkkikkkkkkkj

1ˆ 2ˆ ¨ ¨ ¨ ˆ n

n factors
hkkkkkkkikkkkkkkj

2ˆ 2ˆ ¨ ¨ ¨ ˆ 2
= 2n n!
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