
MATH 105 – Review Problems: Integrals and Series

Brief Solutions

Integrals

(a) ∫
sin3(u) cos2(u)du

Note: 3 = odd power. Single a sin(u) out, use sin2(u) = 1− cos2(u) then sub v = cos(u).

Answer: cos5 u
5 − cos3 u

3 + C

(b) ∫
ex

1 + e2x
dx

e2x = (ex)2, use sub u = ex, du = exdx.

Answer: arctan(ex) + C

(c) ∫
y2
√

1 + y3dy

u = 1 + y3 since 1
3du = y2dy, which appears already

Answer: 2
9 (1 + y3)3/2 + C

(d) ∫ ∞
1

ln(x)

x101
dx

Improper so
∫∞
1

ln(x)
x101 dx = lima→∞

∫ a

1
ln(x)
x101 dx. Then IBP (with u = ln(x), dv = x−101dx. You need

L’Hospital for the limit.)

(Alternative (harder) solution u = ln(x), x = eu, then one IBP)

Answer: 1
104 .

(e) ∫
x√

1− x4
dx

First u = x2, 12du = xdx to simplify, then trigonometric substitution u = sin(θ). Remember to go back:
θ → u→ x

Answer: 1
2 arcsin(x

2) + C



(f) ∫
1

x2
√
16− x2

dx

Trigonometric Substitution x = 4 cos(x)
(better than u = 4 sin(x) for this problem since you don’t have to use an antiderivative that was not
discussed in the course; u = 4 sin(x) works too if you know

∫
1

sin2(y)
dy BUT don’t learn it.) We need

the triangle to go back to x.

Answer: −
√
16−x2

16x + C

(g) ∫
cos(
√
x)dx

Start with u =
√
x. Bit tricky but you should only have u′s in the new integral. Then IBP.

Answer: 2(
√
x sin(

√
x) + cos(

√
x)) + C

(h) (ignore; ended up being more challenging that intended; the antiderivative of sec(x) was required, don’t
learn it)

Series: Converges or diverges?

1.
∞∑

n=1

2 lnn

n6

converges by the Comparison Test, comparing with
∑∞

n=1
2n
n6 = 2

∑∞
n=1

1
n5 . To see why we can

compare with the latter check that lnx < x, (hint: do monotonicity analysis on f(x) = lnx − x ).
alternative solution: use the Integral Test (check the decreasing property); the corresponding integral
is almost the same as (d) above.

2.
∞∑

n=1

(−1)nn
3 + 1

n3 − 7

diverges by the Divergence Test, since for even n an = n3+1
n3−7 → 1, while for odd n an = (−1)n

3+1
n3−7 → −1

so an doesn’t have a limit.

3.
∞∑

n=1

7

n5n

converges by the Comparison Test, since 7
n5n ≤

7
5n and the series

∑∞
n=1

7
5n = 7

∑∞
n=1

1
5n = 7

∑∞
n=1(

1
5 )

n

which is a converging geometric series. Alternatively, one can use the Ratio Test (limit = 1
5 < 1)

4.
∞∑

n=1

2n2

9n2 − 7

diverges by the Divergence Test, since an = 2n2

9n2−7 →
2
9 6= 0

2



5.
∞∑

n=1

1

4 +
4
√
n3

diverges by the Limit Comparison Test; notice that for large n the fraction behaves like 1
n3/4 whose

corresponding series diverges (p-series with p < 1). Since we cannot use the Comparison Test (check
that the inequality is in the unhelpful direction), the problem calls for the Limit Comparison Test.

Check that limn

1

4+
4√

n3

1
4√

n3

= 1 > 0 hence by the Limit Comparison test our series also diverges.

6.
∞∑

n=1

(−1)nn
32n

n!

converges by the Ratio Test (limit is 0)

7.
∞∑

n=1

10 + 9n

5 + 8n

diverges by the Divergence Test, since an = 10+9n

5+8n → ∞ (which you can see either by using L’
Hospital’s rule or by diving both numerator by 9n and the denominator by 8n)

8.
∞∑

n=1

(−1)n cosn
n5

converges; we will show that this series is absolutely convergent, thus is convergent. Consider the

series of the absolute values which becomes
∑∞

n=1
| cosn|

n5 . Now, by the Comparison Test (can now use
since my series has non-negative terms) since 0 ≤ | cosn| ≤ 1 the series of the absolute values converges
by comparison to a converging p-series (p = 5). We have shown that the series converges absolutely
and hence converges.
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