MATH 105 - Review Problems: Integrals and Series

Brief Solutions

Integrals

(a)

$$
\int \sin ^{3}(u) \cos ^{2}(u) d u
$$

Note: $3=$ odd power. Single a $\sin (u)$ out, use $\sin ^{2}(u)=1-\cos ^{2}(u)$ then sub $v=\cos (u)$.
Answer: $\frac{\cos ^{5} u}{5}-\frac{\cos ^{3} u}{3}+C$
(b)

$$
\int \frac{e^{x}}{1+e^{2 x}} d x
$$

$e^{2 x}=\left(e^{x}\right)^{2}$, use sub $u=e^{x}, d u=e^{x} d x$.

Answer: $\arctan \left(e^{x}\right)+C$
(c)

$$
\int y^{2} \sqrt{1+y^{3}} d y
$$

$u=1+y^{3}$ since $\frac{1}{3} d u=y^{2} d y$, which appears already
Answer: $\frac{2}{9}\left(1+y^{3}\right)^{3 / 2}+C$
(d)

$$
\int_{1}^{\infty} \frac{\ln (x)}{x^{101}} d x
$$

Improper so $\int_{1}^{\infty} \frac{\ln (x)}{x^{101}} d x=\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{\ln (x)}{x^{101}} d x$. Then IBP (with $u=\ln (x), d v=x^{-101} d x$. You need L'Hospital for the limit.)
(Alternative (harder) solution $u=\ln (x), x=e^{u}$, then one IBP)
Answer: $\frac{1}{10^{4}}$.
(e)

$$
\int \frac{x}{\sqrt{1-x^{4}}} d x
$$

First $u=x^{2}, \frac{1}{2} d u=x d x$ to simplify, then trigonometric substitution $u=\sin (\theta)$. Remember to go back: $\theta \rightarrow u \rightarrow x$

Answer: $\frac{1}{2} \arcsin \left(x^{2}\right)+C$
(f)

$$
\int \frac{1}{x^{2} \sqrt{16-x^{2}}} d x
$$

Trigonometric Substitution $x=4 \cos (x)$
(better than $u=4 \sin (x)$ for this problem since you don't have to use an antiderivative that was not discussed in the course; $u=4 \sin (x)$ works too if you know $\int \frac{1}{\sin ^{2}(y)} d y$ BUT don't learn it.) We need the triangle to go back to x.

Answer: $-\frac{\sqrt{16-x^{2}}}{16 x}+C$
(g)

$$
\int \cos (\sqrt{x}) d x
$$

Start with $u=\sqrt{x}$. Bit tricky but you should only have u^{\prime} s in the new integral. Then IBP.

Answer: $2(\sqrt{x} \sin (\sqrt{x})+\cos (\sqrt{x}))+C$
(h) (ignore; ended up being more challenging that intended; the antiderivative of $\sec (x)$ was required, don't learn it)

Series: Converges or diverges?

1.

$$
\sum_{n=1}^{\infty} \frac{2 \ln n}{n^{6}}
$$

converges by the Comparison Test, comparing with $\sum_{n=1}^{\infty} \frac{2 n}{n^{6}}=2 \sum_{n=1}^{\infty} \frac{1}{n^{5}}$. To see why we can compare with the latter check that $\ln x<x$, (hint: do monotonicity analysis on $f(x)=\ln x-x$). alternative solution: use the Integral Test (check the decreasing property); the corresponding integral is almost the same as (d) above.
2.

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}+1}{n^{3}-7}
$$

diverges by the Divergence Test, since for even $\mathrm{n} a_{n}=\frac{n^{3}+1}{n^{3}-7} \rightarrow 1$, while for odd $\mathrm{n} a_{n}=(-1) \frac{n^{3}+1}{n^{3}-7} \rightarrow-1$ so a_{n} doesn't have a limit.
3.

$$
\sum_{n=1}^{\infty} \frac{7}{n 5^{n}}
$$

converges by the Comparison Test, since $\frac{7}{n 5^{n}} \leq \frac{7}{5^{n}}$ and the series $\sum_{n=1}^{\infty} \frac{7}{5^{n}}=7 \sum_{n=1}^{\infty} \frac{1}{5^{n}}=7 \sum_{n=1}^{\infty}\left(\frac{1}{5}\right)^{n}$ which is a converging geometric series. Alternatively, one can use the Ratio Test (limit $=\frac{1}{5}<1$)
4.

$$
\sum_{n=1}^{\infty} \frac{2 n^{2}}{9 n^{2}-7}
$$

diverges by the Divergence Test, since $a_{n}=\frac{2 n^{2}}{9 n^{2}-7} \rightarrow \frac{2}{9} \neq 0$
5.

$$
\sum_{n=1}^{\infty} \frac{1}{4+\sqrt[4]{n^{3}}}
$$

diverges by the Limit Comparison Test; notice that for large n the fraction behaves like $\frac{1}{n^{3 / 4}}$ whose corresponding series diverges (p -series with $p<1$). Since we cannot use the Comparison Test (check that the inequality is in the unhelpful direction), the problem calls for the Limit Comparison Test. Check that $\lim _{n} \frac{\frac{1}{4+\sqrt[4]{n^{3}}}}{\sqrt[1]{\sqrt[1]{n^{3}}}}=1>0$ hence by the Limit Comparison test our series also diverges.
6.

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3} 2^{n}}{n!}
$$

converges by the Ratio Test (limit is 0)
7.

$$
\sum_{n=1}^{\infty} \frac{10+9^{n}}{5+8^{n}}
$$

diverges by the Divergence Test, since $a_{n}=\frac{10+9^{n}}{5+8^{n}} \rightarrow \infty$ (which you can see either by using L' Hospital's rule or by diving both numerator by 9^{n} and the denominator by 8^{n})
8.

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n}{n^{5}}
$$

converges; we will show that this series is absolutely convergent, thus is convergent. Consider the series of the absolute values which becomes $\sum_{n=1}^{\infty} \frac{|\cos n|}{n^{5}}$. Now, by the Comparison Test (can now use since my series has non-negative terms) since $0 \leq|\cos n| \leq 1$ the series of the absolute values converges by comparison to a converging p -series $(p=5)$. We have shown that the series converges absolutely and hence converges.

