

Green Space, Physical Activity and Obesity

Michael Jerrett, PhD Professor and Chair Department of Environmental Health Sciences University of California, Los

Map of Talk

- Brief historical perspective
- Potential burden of illness large
- Mechanisms linking greenspace to health

Two research study snapshots: 1. Physical activity effects of momentary exposure to greenspace 2. Longitudinal assessment of parks and programming access on obesity development

in children

Interest in Places and Health Dates back to Ancient Greece (Hippocrates 460-377 BC)

Environmental Squalor of the 19th Century No Green Space

Source: Hall (1984)

Garden City of To-Morrow 1898-1902 (Howard)

Garden City

Freedom and Health away from Industry

Historically . . .

 Idea that green space exposure would benefit health is nothing new, BUT

 We now have scientific evidence that it might have real effects on major causes of illness and mortality

Physical inactivity has been identified as the **fourth leading risk factor** for global mortality causing an estimated 3.2 million deaths globally (WHO, 2016)

BBC

Physical activity reduces the risk of

- cardiovascular diseases
- diabetes
- colon and breast cancer
- depression
- decrease the risk of fractures
- help control weight

PHYSICAL ACTIVITY (18-64 YEARS OLD)

Per week:

- at least 150 minutes of moderate-intensity aerobic physical activity, or

- at least 75 minutes of vigorous-intensity aerobic physical activity

Aerobic activity should be performed in bouts of at least 10 minutes duration.

Muscle-strengthening activities should be done involving major muscle groups on 2 or more days a week.

Photo credit: Rudd Center for Food Policy & Obesity

Prevalence of physical inactivity* among adults, ages 18+ (age standardised estimates) Both sexes

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. Data Source: World Health Organization Map Production: Health Statistics and Information Systems (HSI) World Health Organization

© WHO 2015. All rights reserved.

WHO Global Burden of Mortality

Implications

- Physical activity and obesity play a major role in the global burden of mortality
- Even small improvements in physical activity, obesity and possibly stress could have substantial benefits for global health
- Green Space may therefore be a large determinant of health because it links to these important outcomes

PA Key to Many Health Effects

Direct Health Benefits

The health benefits of urban green spaces: a review of the evidence

A.C.K. Lee, R. Maheswaran

Section of Public Health, School of Health and Related Research, The University of Sheffield, Sheffield S1 4DA, UK Address correspondence to Andrew Lee, E-mail: andrewlee@shef.ac.uk

Bottom Line

Whilst there is some evidence and expert consensus to suggest that green spaces can facilitate physical activity, the evidence of a direct effect at present remains weak.⁶⁰ However, the available evidence does on balance suggest a positive association between green spaces and better health.

 Interesting results, but many open questions about confounding and who is affected

A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data

Michael Jerrett, PhD

Healthy PLACES* Study Chino, California

Natural experiment intervention study designed to evaluate the effects of smart growth community design on family obesity risk (e.g. physical activity behavior)

- Intervention group: smart growth residents (~1/3)
- Comparison group: community controls from nearby conventional communities and from random controls (~2/3)
- > Anthropometric, accelerometer and GPS data
- Longitudinal: data collected annually for 4 years
- 386 families at baseline for year 1 (1 parent and 1 child each) * Promoting Livable Active Community EnvironmentS

Healthy PLACES Study Area Chino, California

The Preserve Community Plan

The Preserve at Chino - North of Pine Avenue Lewis Planned Communities Chino, California

Current Study

- Is neighborhood greenness exposure associated with heightened physical activity in children?
- If so, is the association stronger for children residing in a smart growth community?

Space-Time-Activity Data Collection GPS and Accelerometer (ACC) Monitoring Devices

GPS Logger GlobalSat BT 335

- Date & Time
- Location (Latitude, Longitude)
- Speed

Accelerometer ActiGraph GT2M

- Date & Time
- Activity Counts (index for activity)

GPS-ACC collected every 30 seconds for 7 days (except when bathing, swimming, or sleeping)

Merging Results Example Data (selected fields)

SID	Female	Age	Race	Community	<u>Time</u>	Lat	Long	Speed	<u>MVPA</u>
12345	1	10	Hispanic	1	85.19479	34.xxxx	-117.xxxx	0.3	0
12345	1	10	Hispanic	1	85.19514	34.xxxx	-117.xxxx	0.2	0
12345	1	10	Hispanic	1	85.19549	34.xxxx	-117.xxxx	0.2	0
12345	1	10	Hispanic	1	85.19583	34.xxxx	-117.xxxx	0.3	0
12345	1	10	Hispanic	1	85.19618	NA	NA	NA	0
12345	1	10	Hispanic	1	85.19653	NA	NA	NA	1
12345	1	10	Hispanic	1	85.19688	NA	NA	NA	0
12345	1	10	Hispanic	1	85.19722	NA	NA	NA	0
12345	1	10	Hispanic	1	85.19757	34.xxxx	-117.xxxx	0.2	0
12345	1	10	Hispanic	1	85.19792	34.xxxx	-117.xxxx	0.2	0
12345	1	10	Hispanic	1	85.19826	34.xxxx	-117.xxxx	0.2	0
12345	1	10	Hispanic	1	85.19861	34.xxxx	-117.xxxx	0.2	0
12345	1	10	Hispanic	1	85.19896	34.xxxx	-117.xxxx	0.2	0
12345	1	10	Hispanic	1	85.19931	34.xxxx	-117.xxxx	0.1	0
12345	1	10	Hispanic	1	85.19965	34.xxxx	-117.xxxx	0.6	0
12345	1	10	Hispanic	1	85.2	34.xxxx	-117.xxxx	0.8	1
12345	1	10	Hispanic	1	85.20035	34.xxxx	-117.xxxx	0.4	1
12345	1	10	Hispanic	1	85.20069	34.xxxx	-117.xxxx	0.7	1
12345	1	10	Hispanic	1	85.20104	34.xxxx	-117.xxxx	0.5	1
12345	1	10	Hispanic	1	85.20139	34.xxxx	-117.xxxx	0.9	0
12345	1	10	Hispanic	1	85.20174	34.xxxx	-117.xxxx	0.4	0
12345	1	10	Hispanic	1	85.20208	34.xxxx	-117.xxxx	2.29	1
12345	1	10	Hispanic	1	85.20243	34.xxxx	-117.xxxx	0.7	0
12345	1	10	Hispanic	1	85.20278	34.xxxx	-117.xxxx	0.1	0

Average Number Records per Subject: 21,000

Remote Sensed Indicator of Vegetation

Normalized Difference Vegetation Index = (NIR - RED) / (NIR +RED)

Assigned NDVI values to 30-second epochs in GIS

Scope of Analysis: Neighborhood Activity Outside of Home & Non-School Hours

Neighborhood 500 m buffer

Home Excluded 30m buffer

Motorized Excluded >32 kph/20mph

Excluded school hours (Aug 31-Jun 10, 9am-2pm)

Inclusion Criteria

Invalid Data

- ACC Outliers: Activity > 16383 counts per 30 sec.
- GPS Outliers: GPS speeds > 169kph/105mph
- Night Hours: 11pm-5am
- ACC Non-Wear: > 1 hour continuous zero counts
- Missing Data: Records missing either GPS or ACC

Valid Day

• ≥ 4 hours of **valid** data

Valid Subject

• \geq 3 valid days

Valid for Neighborhood Analysis

 > 1 hour of neighborhood activity after removal of home, school and motorized data

Final Sample Size 208 subjects, 142,552 records

Activity Pathway for 1 Child

Momentary Greenness Exposure and the Likelihood of MVPA Logistic Regression with 142,552 30-second epochs from 208 subjects

	Definition	OR (95% CI)	P-value
Response Variable	0: Sedentary/light		
MVPA	1: Moderate/vigorous		
Covariates NDVI ^a	Normalized difference vegetation index	1.34 (1.30, 1.38)	< 0.001
Community Design Group	0: Conventional 1: Smart growth	1.26 (0.82, 1.92)	0.29
	.		

NDVI*CommunityInteraction1.044 (1.001, 1.089)Negative NDVI values primarily representing water were assigned zero.

For regression NDVI values were rescaled by dividing by their 10-90th quantile range.

0.04

- Controlled for age, gender, race, and income.
- Other covariates included BMI and a temporal variable that partly adjusted for **seasonality**.
- Random effect on subject included to account for repeat measures.
- MVPA kernel density term (bandwidth 100m) included to address potential autocorrelation.
- Moran's I test for spatial autocorrelation was significant for model residuals. However the
 magnitude was small (Moran's I=0.09) indicating the effect of autocorrelation on parameter
 and standard error estimation was likely minimal.

Conclusions

- Results indicate greenness was positively associated with children's momentary physical activity
- Methods using traditional buffers showed no effect but exposure measurement error reduced with this analysis
- Although these results suggested modest effect sizes, the health impacts could be cumulatively substantial at the population-level
- Findings also suggest the greenness-physical activity association was stronger for residents from the smart growth community compared to conventional communities

Future Steps

- Future studies will include other spatial layers (e.g. park) and exposures such as traffic, air pollution, temperature
- Longitudinal analyses of obesity and physical activity
- Use of new cell phone based censors

A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data

Estela Almanza^{a,*}, Michael Jerrett^a, Genevieve Dunton^b, Edmund Seto^a, Mary Ann Pentz^b

^aDivision of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-7360, USA ^bDepartment of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9031, USA

DOI: 10.1016/j.healthplace.2011.09.003.

Access to Parks/ Programming and Obesity Development in Children

Research Aim

 To assess the association between parks/ recreational programming access and the longitudinal development of measured BMI (Kg/m²) in children aged 10-18 years

 Children's Health Study (CHS) offers longitudinal sample with objectively measured BMI data

Data and Methods

- 11,797 CHS children
 - Up to 8 years of follow up
 - Building on \$50+ million prior investment
 - 12 Southern California communities
 - BMI measured yearly by trained staff
- Geospatial data
 - Land use
 - Transportation
 - Business locations
 - Public facilities/programs
 - Green cover
 - Air pollution
- Use of flexible growth curve multilevel modeling

Models Focus on Attained BMI at Age 18

Obesity Society Conference
Characteristics of Analytic Cohort Age 10-18

	Prevalence Rate (%) of overweight (BMI ≥ 85 th %ile)					
Cohort (year, # of subjects)	All	Ethnicity				
		Non-Hispanic White	Hispanic	African American	Asian	
(1993: 2192)	25.3	21.6	36.0	20.2	15.9	
(1996: 2081)	27.5	24.0	34.5	31.0	21.6	

Analytic Cohort N = 3318 with 8 years of follow up from ages 10-18

BMI Growth Over 8 Years

Access to Recreation Programs

Multilevel Modeling of BMI Trajectories

Level 1: Within subject/between times

Allows for:

- Prediction of attained BMI levels for each subject at any age
- Calculation of 8-yr BMI growth slope for each child
- Adjustment of time-dependent covariates (e.g., health status)
- Non-linear growth trajectory due to puberty Obesity Society Conference

Level 2: Between subjects/within community

Allows for:

- Within-community built environment effects
- Community average of 8-yr BMI growth
- Adjustment of time-independent covariates (e.g., ethnicity)
- Control of individual-level errors

Level 3: Between communities

Allows for:

- Between-community pollution effect, urban sprawl, crime
- Adjustment of ecologic covariates Obesity Society Conference

Model Results (8-year Growth Curves, Age Centered at 18, with

adjustments for ethnicity, town, gender, cohort, and park/recreation specific confounders)

Variable of Interest	Effect: Males (std)	Effect: Females (std)
Park space (km) within 500 meter buffer	-0.012*** (0.005)	-0.007* (0.005)
Recreation programs within 5 km buffer	-0.015*** (0.004)	-0.008*** (0.004)
Recreation programs within 10 km buffer	-0.025*** (0.005)	-0.016*** (0.005)

	Major Outcomes		
Model Confounders		Total Number of Recreation Programs within 5 KM	Total Number of Recreation Programs within 10 KM
Traffic Density within 150 m Buffer	\checkmark	\checkmark	\checkmark
Traffic Density within 300 m Buffer	\checkmark	\checkmark	
Distance from Residence to Nearest Side of Highway		\checkmark	\checkmark
NDVI within 500 m Buffer	\checkmark	\checkmark	\checkmark
Buffer Population (Total Population within 500 m Buffer)		\checkmark	\checkmark
Average Urban Impreviousness within 500 m Buffer	\checkmark	\checkmark	\checkmark
Average Tree Canopy within 500 m Buffer		\checkmark	\checkmark
Total Length of Highway within 500 m Buffer		\checkmark	
Total Length of Major Arterial within 500 m Buffer	\checkmark	\checkmark	
Total Length of Airport Runway within 500 m Buffer			\checkmark
Agriculture Land Use within 500 m Buffer			\checkmark
Average Block Size of Blocks within 500 m Buffer		\checkmark	
Number of "X" Intersections within 500 m Buffer		\checkmark	\checkmark
Percent Below Poverty within Census Block	\checkmark	\checkmark	\checkmark
Percent Unemployment within Census Block		\checkmark	
Town Level Forcible Rape Rate			\checkmark

Proximity of Parks & BMI Level at Age 18 (10%-90%ile Scale)

Proximity of Recreation & BMI Level at Age 18 (10%-90%ile Scale)

Results Summary

- Park space within 500 m of child's home inversely associated with BMI at age 18
- Public recreational programs ≤10 km of child's home also protective for obesity with large effects
- Many children have poor access to public recreational programs
 - Almost 20% have no access within 10 km
 - 36% have no access within 5 km

Interpretation of Findings for Recreational Programs and BMI

- If all children had comparable access to recreational programs:
 - Boys: 11.26% move from overweight to normal; 3% from obese to overweight
 - Girls: 8.5% move from overweight to normal; almost 3% from obese to overweight

Connections to Active Living Interventions

 Increase park space and recreational programming near poor and minority neighborhoods with high densities of children

Research Team

- Jennifer Wolch, PhD, Co-I (UCB)
- Michael Jerrett, PhD, PI (UCB)
- Kiros Berhane, PhD, PI (USC)
- Rob McConnell, MD, Co-I (USC)
- Frank Gilliland, MD, PhD, Co-I (USC)
- Kim Reynolds, PhD, Co-I (USC)
- John Wilson, PhD, Co-I (USC)
- Chih-Chieh Chang, PhD Student (USC Biostatistics)
- Claudia Lam, PhD Student (USC Biostatistics)
- Julienne Gard, PhD Student (USC Geography)
- Bernardo Beckerman PhD Student (UCB Public Health, GIS)
- Zev Ross, Consultant (GIS, Land Use Regression)
- Kirby Brady, MPI Student (USC Planning)
- Funding NCI, RWJF

Better physiological effects of exercise when in greenspace compared to other areas

- Small but interesting body of literature from crossover experiments
- Subjects exercised in controlled or nongreen settings
- Several studies show improved mental health outcomes