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Abstract—This paper proposes a set-theoretic method to es-
timate feasible nodal injections (generation or load) in a dis-
tribution network, while respecting power system performance
requirements. In the setting that we study, performance re-
quirements are constraints in the form of interval ranges on
the values that line flows can take, which are modelled by a
convex poloytope. At its core, the proposed method relies on
the solution of a linearly constrained least-squares optimization
problem, which is formulated using sensitivity factors computed
by linearizing the power flow equations around the operating
point. Since this optimization problem admits a linear closed-
form solution, the polytope of permissible line flows is propagated
through the solution, via set operations, to obtain the set of
feasible nodal injections.

I. INTRODUCTION

This paper proposes an analytically tractable and compu-
tationally efficient set-theoretic method to estimate feasible
active-power generation and load in a distribution network,
while respecting power system performance requirements. (We
refer to generation and load at a node generically as a nodal
injection, which is positive for generation and negative for
load.) These performance requirements include constraints in
the form of interval ranges on the values that line flows
and nodal voltage magnitudes, can take. Guaranteeing such
constraints in real time poses significant challenges for existing
power system operational tools due to increased penetration
of renewable electricity sources, such as wind and solar
photovoltaic generation. In particular, since these resources
may vary rapidly due to volatile weather conditions, there
exists an impetus to develop real-time tools to determine
acceptable levels of variability in renewable generation given
a set of performance requirements. Furthermore, since re-
newable generation varies in rated power output, they affect
the power system at different voltage levels. For example,
wind farms are usually connected at the transmission level,
whereas small-scale solar installations are usually connected
at the distribution level. Our proposed method is general
enough to be applied to both transmission- and distribution-
level systems. In this paper, without loss of generality, we
focus on distribution network applications.

The problem of determining feasible injections has long
been recognized as a challenging problem in the literature [1],

[2]. In recent years, convexification of the AC optimal power
flow problem has spurred renewed interest in necessary and
sufficient conditions for convexity of the feasibility region of
the power-flow equations [3], [4]. Distinct from these theoret-
ical contributions, this paper proposes a computationally effi-
cient method to identify feasible injections that satisfy certain
system performance requirements. Admittedly, the proposed
method does not identify the entire set of feasible injections,
but by leveraging a linearized power-flow model, the method
identifies feasible injections near the current operating point.
With respect to renewable resource integration, numerous
methods have been proposed to assess whether or not power
system performance requirements would be violated given
certain levels of renewable generation variability [5], [6]. In
contrast with these contributions, this paper tackles the inverse
problem of determining allowable variations in renewable
generation given a set of performance requirements. Although
the proposed method is general enough to include limits on,
e.g., nodal voltage magnitudes and active-power generation
limits, here we focus on estimating feasible injections that
respect line-flow limits.

By linearizing the power flow equations around the oper-
ating point, the proposed method obtains a linear relationship
that maps active-power nodal injections to active-power line
flows. Using this relationship, we then formulate a linearly
constrained least-squares optimization problem that solves for
active-power nodal injections given desired reference active-
power line flows. Line-flow limits are modelled with a zono-
tope (i.e., a special class of convex polytopes represented as
the Minkowski sum of a finite set of line segments) with its
centre at the current operating point. Using set operations,
this zonotope is propagated through the closed-form solution
of the linearly constrained least-squares optimization problem.
The result is a zonotope that bounds the feasible active-power
nodal injections. We illustrate the proposed method on case
studies involving a 4-node distribution network.

II. PRELIMINARIES

In this section, we introduce zonotopes—the geometric ob-
jects that are key to our approach—and describe the linearized
power-system model utilized for the distribution network.
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A. Zonotopes

Zonotopes are a special class of convex polytopes that
are represented as a Minkowski sum of a finite set of line
segments. Formally, a zonotope, denoted by X , is defined as

X =

{
x : x = x0 +

s∑
k=1

αkgk, −ck ≤ αk ≤ ck

}
, (1)

where x0 ∈ Rn is the centre of the zonotope, and the collection
of vectors g1, g2, . . . , gs ∈ Rn is the set of linearly independent
generators of X [7].

A useful property of the zonotope is that it is closed under
linear transformations. In other words, given the zonotope
defined in (1) and a linear transformation matrix K ∈ Rm×n,
we obtain a corresponding post-transformation zonotope Y as
Y = KX , or more specifically,

Y =

{
y : y = Kx0 +K

s∑
k=1

αkgk, −ck ≤ αk ≤ ck

}
. (2)

In the remainder of the paper, we will use the property
described in (2) to propagate the set of permissible flows,
defined by a zonotope, to obtain the corresponding set of
feasible nodal injections.

B. Distribution Network Model

Consider a distribution network with N nodes collected
in the set N = {1, . . . , N}. Without loss of generality,
node 1 denotes the point of common coupling (PCC) at the
distribution feeder substation. Assume the voltage at node 1
sets the reference voltage. Let Vi = |Vi|∠θi ∈ C represent
the voltage phasor at node i; similarly, let Ii ∈ C denote the
current injected into node i. Further, collect voltage phasors
into the vector V = [V1, . . . , VN ]T and current injections into
I = [I1, . . . , IN ]T.

The set of E lines is represented by E := {(m,n)} ⊆
N ×N . Each line is modelled using the lumped-parameter Π-
model with series admittance ymn ∈ C and shunt admittance
ysh
mn ∈ C. Then, the entries of the network admittance matrix,

denoted by Y , are1

[Y ]mn :=


ym +

∑
(m,k)∈E ymk, if m = n,

−ymn, if (m,n) ∈ E ,
0, otherwise,

(3)

where
ym = gm + jbm := ymm +

∑
k∈Nm

ysh
mk, (4)

denotes the total shunt admittance connected to node m with
Nm ⊆ N representing the set of neighbours of node m
and ym ∈ C any passive shunt elements connected to node
m. Then, applying Kirchhoff’s current law at each node and
combining them into matrix-vector form, the current balance
can be compactly represented as

I = Y V. (5)

1[Y ]mn denotes the entry in the m-th row and n-th column of matrix Y .

Denote the vector of complex-power nodal injections by
S = [S1, . . . , SN ]T = P + jQ, with P = [P1, . . . , PN ]T and
Q = [Q1, . . . , QN ]T. (By convention, Pi and Qi are positive
for generation and negative for loads.) Then, complex-power
nodal injections can be compactly written as

S = diag (V ) I∗. (6)

The above is the complex-valued equivalent of the standard
power flow equations, generalized to include active- and
reactive-power injections as well as voltage magnitudes and
phase angles at all nodes. Separating the real and imaginary
components of (6), we recover the ubiquitous power flow
equations, which can be compactly written as

f (θ, |V |, P,Q) = 0, (7)

where θ = [θ1, . . . , θN ]T and |V | = [|V1|, . . . , |VN |]T. In (7),
the dependence on network parameters, such as line series and
shunt impedances, is implicit in the formulation of f .

Next, shifting our focus from nodal injections to line flows,
we can express the current flowing in line (m,n) as

I(m,n) = ymn(Vm − Vn) + ysh
mnVm

=
(
ymne

T
mn + ysh

mne
T
m

)
V, (8)

where em ∈ RN denotes a column vector of all zeros except
with the m-th entry equal to 1, and emn := em − en.
From (5), the nodal voltages can be expressed as V = Y −1I .
Subsequently, (8) can be written as

I(m,n) =
(
ymne

T
mn + ysh

mne
T
m

)
Y −1I =: κT

(m,n)I, (9)

where κ(m,n) ∈ CN are current injection sensitivity factors.
Denote, by S(m,n) = P(m,n) + jQ(m,n), the complex power

flowing across line (m,n). We can write

S(m,n) = VmI
∗
(m,n). (10)

We substitute the current injection sensitivity factors from (9)
into (10), and obtain

S(m,n) = Vm

(
κT

(m,n)

)∗
I∗. (11)

Eliminating I∗ from (11) using (6), we get

S(m,n) = Vm

(
κT

(m,n)

)∗
(diag (V ))

−1
S, (12)

which relates complex-power flow in line (m,n) as a function
of nodal voltage phasors and complex-power nodal injections.

C. Linearized Model

Below, we sketch out the linearized model that relates small
variations in line (m,n) active-power flow to small variations
in active-power nodal injections. For the interested reader,
details can be found in our recent work [8]. First, separating
the real and imaginary components of (12), the active-power
flow in line (m,n) is

P(m,n) = p(m,n)(θ, |V |, P,Q). (13)

Further denote the solution to (7) by (θ?, |V?|, P?, Q?) and
assume p(m,n) is continuously differentiable with respect to
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θ, |V |, and P at (θ?, |V?|, P?, Q?). Let θ = θ? + ∆θ, |V | =
|V?| + ∆|V |, and P = P? + ∆P . Then, by assuming that
∆θ, ∆|V |, and ∆P are sufficiently small and neglecting any
variations in Q, we can express small variations in P(m,n) as

∆P(m,n) ≈ r1∆θ + r2∆|V |+ s∆P, (14)

where, with reference to p(m,n) in (13), we have that2

r1 = ∇θp(m,n), r2 = ∇|V |p(m,n), s = ∇P p(m,n),

all evaluated at (θ?, |V?|, P?, Q?). By applying a similar small-
signal assumption to (7), we can obtain[

∆θ
∆|V |

]
≈ J∆P, (15)

where J denotes the power-flow Jacobian matrix. Finally,
substituting (15) into (14), we get

∆P(m,n) ≈ ([r1, r2]J + s) ∆P =: Γ(m,n)∆P, (16)

where Γ(m,n) ∈ RN are active-power nodal injection sensitiv-
ity factors.

D. Problem Statement

In power systems, performance requirements include con-
straints in the form of interval ranges on the values that nodal
voltage magnitudes and active-power line flows can take. In
the remainder of the paper, we focus on active-power line flow
limits. With the above in mind, let Pmax

(m,n) and Pmin
(m,n) denote

the maximum and minimum allowable active-power flow in
line (m,n), respectively. Collect the variations in active-power
line flows, {∆P(m,n)}, where (m,n) ∈ E , into the column
vector ∆f ∈ RE . Similarly, collect the corresponding active-
power line flows for the nominal solution (θ?, |V?|, P?, Q?)
into vector f? ∈ RE . Also, assemble corresponding maxi-
mum and minimum allowable active power flows into vectors
fmax ∈ RE and fmin ∈ RE , respectively. Then, the set of
permissible active-power line flows can be described by a
(possibly asymmetric) polytope

∆H =
{

∆f : ηmin
i ≤ eT

i ∆f ≤ ηmax
i , i = 1, . . . , E

}
, (17)

where ηmax
i = eT

i (fmax − f?) and ηmin
i = eT

i (fmin − f?). To
ease our exposition, in the remainder of the paper, we consider
a symmetric polytope ∆H ⊆ ∆H described by

∆H =
{

∆f : −ηi ≤ eT
i ∆f ≤ ηi, i = 1, . . . , E

}
, (18)

where ηi = min{|ηmin
i |, |ηmax

i |}. Equivalently, the subset ∆H
can also be described by a zonotope using the collection of
generators {e1, e2, . . . , eE}, where ei ∈ RE , as follows:

∆H =

{
∆f : ∆f =

E∑
i=1

πiei,−ηi ≤ πi ≤ ηi

}
, (19)

Given that the system is operating at the nominal solution
(θ?, |V?|, P?, Q?), our goal is to compute the set of feasible
variations in active-power nodal injections that satisfy the line-
flow constraints described in (18), or equivalently (19).

2Given a scalar function f(x) : Rn → R, ∇xf(x) returns the gradient
[∂f/∂x1, . . . , ∂f/∂xn]

III. FEASIBLE ACTIVE-POWER NODAL INJECTION
COMPUTATION

We formulate a convex optimization problem that utilizes
the sensitivities in (16) to compute the set of feasible active-
power nodal injections. All active-power nodal injections,
except at the PCC, are modelled as independent quantities.

A. Feasible Active-power Nodal Injections

Consider the problem of obtaining the set of feasible active-
power nodal injections that best satisfy a set of permissi-
ble active-power line flows that lie within ∆H. In order
to solve this problem, recall that the variations in active-
power line flows are collected into the vector ∆f . Collect the
corresponding active-power injection sensitivity factors, i.e.,
Γ(m,n), (m,n) ∈ E , into the matrix G ∈ RE×N . Then, we
solve for ∆P ∈ RN from the following linearly constrained
least-squares optimization problem [9]:

min
∆P∈RN

||G∆P −∆f ||2

s.t. 1T
N∆P = ∆L, (20)

where ∆L denotes the change in total system loss and 1N
denotes the N × 1 vector with all ones.. The unique closed-
form solution to (20) is given by [10][

∆P
λ

]
=

[
2GTG 1N

1T
N 0

]−1 [
2GT∆f

∆L

]
, (21)

where λ is the Lagrange multiplier associated with the equality
constraint. Note that the change in system loss ∆L in (20) is
not known a priori. One option is to set it to zero, which is
equivalent to assuming all feasible injections lead to the same
system loss as the nominal solution, as would approximately
be the case if the variations ∆P are sufficiently small. Then,
from (21), the closed-form solution for ∆P is

∆P =
[
diag(1N ) 0N

] [2GTG 1N
1T
N 0

]−1 [
2GT

0T
E

]
∆f

=: M∆f, (22)

where 0N denotes the N × 1 vector with all zeros; diag(1N )
denotes a diagonal matrix formed with entries of 1N .

Denote the set of feasible variations in active-power injec-
tions as ∆P . Since ∆f ∈ ∆H, then from (22), we would
like to compute ∆P = M∆H using (2). However, we cannot
do this directly, due to the following. In (19), the set ∆H is
expressed as the Minkowski sum of orthogonal basis vectors
ei ∈ RE . This suggests that active-power flows on different
lines are independent quantities. Under the assumption of in-
dependent nodal injections, however, line flows are correlated
to each other. Below, we describe a procedure to obtain the
set of feasible injections that considers this correlation.

B. Permissible Active-power Line-flow Zonotope

Assume that all active-power nodal injections (except the
one at node 1) are independent from each other, i.e., if
m,n 6= 1, then a change in nodal injection at node m
does not affect that at node n. Node 1 absorbs any power
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(a) Active-power nodal injection generators. (b) Permissible active-power line flows (c) Feasible active-power nodal injections

Fig. 1: Injection and line-flow zonotope representations.

imbalance in the system. With the above independent injection
assumption, the set of active-power nodal injections can be ex-
pressed as the Minkowski sum of the collection of generators
{e21, e31, . . . , eN1}, where ei1 = ei − e1. Then, the corre-
sponding set of active-power line flows can be described using
the collection of generators {g2, g3, . . . , gN}. Each generator
vector gi is computed as gi = Gei1 ∈ RE using (2). The set
of generators {g2, g3, . . . , gN} are correlated so as to satisfy
the assumption that nodal injections are independent at nodes
2, . . . , N . These concepts are illustrated in Figs. 1a and 1b.

In (19), the set of permissible active-power line flows, ∆H,
is expressed as the Minkowski sum of orthogonal basis vectors.
As stated before, in general the generators that form ∆H are
at odds with the independent nodal injection assumption. On
the other hand, this assumption would be captured if the set
of permissible line flows is expressed as a Minkowski sum of
generators {g2, g3, . . . , gN}. In order to fit such a zonotope to
∆H, we define a set ∆F ⊆ ∆H as

∆F =

{
∆f : ∆f =

N∑
i=2

πigi,−β ≤ πi ≤ β

}
, (23)

where β is a scalar quantity to be determined. According
to (23), β serves to expand or shrink ∆F uniformly in the
directions of all its constituent generators (i.e., gi’s). Computed
according to the most limiting line-flow constraint,

β = min
k

(x[k]) and x = diag

(
1E∑N

i=2 abs(gi)

)(
E∑
i=1

ei

)
,

(24)
where x[k] denotes the kth entry in x, and each entry in
abs(gi) is the absolute value of the corresponding entry in
gi. The above choice of β ensures that ∆F occupies the
maximum possible volume within the line-flow constraint set
∆H. In this way, any further uniform expansion of ∆F , by
increasing the value of β, would cause a subset of ∆F to
lie outside of ∆H, thus violating the permissible line-flow
constraints. The relationships between sets ∆H, ∆H, and ∆F
are illustrated in Fig. 1b.

Now, assuming the permissible variations in active-power
line flow lie within the set ∆F , which accounts for line-flow

Fig. 2: 4-node distribution network.

correlations that result from the independent nodal injection
assumption, we return to the closed-form solution (22) of
the linearly constrained least-squares problem outlined in
Section III-A. Since ∆P = M∆f , where ∆f ∈ ∆F ⊆ ∆H,
then using the set operation in (2), the set of feasible variations
in active-power nodal injections ∆P = M∆F . This is
conceptually illustrated in Figs. 1b and 1c.

IV. CASE STUDIES

In this section, we illustrate the concepts developed in
Section III by presenting case study results for a 4-node
distribution network. The one-line diagram is reproduced in
Fig. 2 and a complete system description can be found
in [11]. We validate the framework developed by comparing
the estimated set of feasible nodal injections against exact
solutions of nonlinear power flow equations.

Using the network parameters, we obtain the power flow
solution for the nominal operating point. We then compute
active-power nodal injection sensitivity factors using (16),
which are used to map active-power nodal injection generators
(i.e., ei1’s in Fig. 1a) to generators that describe permissible
active-power line-flows (i.e., gi’s in Fig. 1b).

A. Incorporating Active-power Line-flow Limits

Suppose variations in active-power line flows are con-
strained to lie within lower and upper bounds, i.e., ∆P(1,2) ∈
[−0.5, 0.5] p.u., ∆P(2,3) ∈ [−0.3, 0.3] p.u., and ∆P(3,4) ∈
[−0.16, 0.16] p.u., which form the line-flow constraint set ∆H.
The value of β is computed, via (24), so that any uniform
expansion of ∆F causes it to exceed ∆H. The projection
of ∆H and ∆F onto the P(1,2)-P(2,3) subspace is shown in
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(a) Permissible active-power line flows. (b) Feasible active-power nodal injections.

Fig. 3: Permissible line flows and feasible nodal injections with active-power line-flow limits.
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(a) Permissible active-power line flows.
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(b) Feasible active-power nodal injections.

Fig. 4: Permissible line flows and feasible nodal injections with fixed feeder-head active-power injection.

Fig. 3a. Assuming ∆f ∈ ∆F , the set of feasible variations
in nodal injections is computed as ∆P = M∆F , where M
is defined in (22). As shown in Fig. 3b, ∆P is then sampled
to obtain solutions to the nonlinear power flow equations. The
set of permissible line flows depicted in Fig. 3a contains all
but the extrema of the nonlinear power flow samples. Thus,
we can conclude that the linearization is sufficiently accurate.

B. Incorporating Fixed Feeder-head Active-power Injection

Now suppose that the feeder-head active-power injection,
and in turn the active-power line flow from node 1 to 2, is
also fixed, i.e., ∆P1 = 0 and ∆P(1,2) = 0. The resulting
permissible active-power line-flows and feasible injections are
illustrated in Fig. 4a and Fig. 4b, respectively. The set-theoretic
method is compared against exact solutions of the power flow
equations. Indeed, as shown in Fig. 4a, P(1,2) is fixed at the
nominal solution.

V. CONCLUDING REMARKS

In this paper, we proposed a set-theoretic method to estimate
the feasible nodal power injections of a distribution network,
using linear sensitivity factors computed at the operating point.
The method was demonstrated via case studies involving a 4-
node network. While we focused on distribution networks, the
method is general enough to tackle the same problem at the
transmission level.
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