
SPATIAL

AUTOCORRELATION

ISSN 0306-6142
ISBN  0-86094-223-6

© Michael Goodchild

Published by Geo Books, Norwich
Primed by Hutchins  C Sons, Norwich

Michael F. Goodchild



CATMOG - Concepts and Techniques in Modem Geography

CATMOG has been created to fill in a teaching need in the field of quantitative
methods in undergraduate geography courses. These texts are admirable guides for
teachers, yet cheap enough for student purchase as the basis of glasswork. Each
book is written by an author currently working with the technique or concept he
describes.

1. Introduction to Markov chain analysis - L. Collins
2. Distance decay in spatial interactions - P.J. Taylor
3. Understanding canonical correlation analysis - D. Clark
4. Some theoretical and applied aspects of spatial interaction shopping models

- S. Openshaw
5. An introduction to trend surface analysis - D. Unwin
6. Classification in geography - R.J. Johnston
7. An introduction to factor analysis - J.B. Goddard & A. Kirby
8. Principal components analysis - S. Daultrey
9. Causal inferences from dichotomous variables - N. Davidson
10. Introduction to the use of logit models in geography - N. Wrigley
11. Linear programming: elementary geographical applications of the transportation

problem - A. Hay
12. An introduction to quadrat analysis (2nd edition) - R.W. Thomas
13. An introduction to time-geography - N.J. Thrift
14. An introduction to graph theoretical methods in geography - K.J. Tinkler
15. Linear regression in geography - R. Ferguson
16. Probability surface mapping. An introduction with examples and FORTRAN

programs - N. Wrigley
17. Sampling methods for geographical research - C.J. Dixon & B. Leach
18. Questionnaires and interviews in geographical research - C.J. Dixon & B. Leach
19. Analysis of frequency distributions - V. Gardiner & G. Gardiner
20. Analysis of covariance and comparison of regression lines - J. Silk
21. An introduction to the use of simultaneous-equation regression analysis in

geography - D. Todd
22. Transfer function modelling: relationship between time series variables

- Pong-wai Lai
23. Stochastic processes in one dimensional series: an introduction - K.S. Richards
24. Linear programming: the Simplex method with geographical applications

- James E. Killen
25. Directional statistics - G.L. Gaile & J.E. Burt
26. Potential models in human geography - D.C. Rich
27. Causal modelling: the Simon-Blalock approach - D.G. Pringle
28. Statistical forecasting - R.J. Bennett
29. The British Census - J.C. Dewdney
30. The analysis of variance - J. Silk
31. Information statistics in geography - R.W. Thomas
32. Centrographic measures in geography - A. Kellerman
33. An introduction to dimensional analysis for geographers - R. Haynes
34. An introduction to 0-analysis - J. Beaumont & A. Gatrell

(continued inside back cover)

SPATIAL AUTOCORRELATION
Michael F. Goodchild

University of Western Ontario
London,
Ontario,
Canada

N6A 5C2
August, 1986

Table of Contents

Introduction 3
1 Measures of Spatial Autocorrelation 7

1.1 Spatial Features 7
1.2 Attributes 8
1.3 Measures of Spatial Autocorrelation 11

1.3.1 Geary's index 13
1.3.2 Moran's index 16
1.3.3 Interval attributes; point, line and raster objects 18
1.3.4 Ordinal attributes 18
1.3.5 Nominal attributes 19
1.3.6 Variograms and correlograms 20

1.4 Sampling and Hypothesis Testing 21
2 The Geary and Moran Indices 23

2.1 Introduction 23
2.2 Hypothesis Testing 24
2.3 Properties of the Indices 29

2.3.1 Expected values 29
2.3.2 Maxima and minima 29
2.3.3 Complementarity 30

2.4 Example Applications 30
2.4.1 Ethnic group distribution in London, Ontario, 1961-1971 30
2.4.2 Cancer mortality in Southern Ontario 32

2.5 Other Applications in the Literature 36
3 Join Count Statistics 36

3.1 Measures 36
3.2 Tests of Significance 37

3.2.1 Joins of the same colour 37
3.2.2 Joins of different colours 38
3.2.3 Hypothesis testing 38

3.3 Applications 41
4 Autocorrelated Processes 41

4.1 Simulations 41
4.2 Spatial Processes 42
4.3 Autocorrelation in Residuals 43

5 Conclusions 44
References 46
Appendix I BASIC program for calculating Geary and Moran

statistics and significance tests 50
Appendix II BASIC program for calculating join count statistics

and significance tests 53



List of Figures

1. Varying levels of spatial autocorrelation in the pattern of 32 white
and 32 black cells on an 8 by 8 raster 5

2a. Example of joint objects: sulphate ion concentration in rainfall in
Northeastern North America. Source: Pack (1980) 9

2b. Example of line objects: accident rates in the Southwestern
Ontario provincial highway network. Source: Hall (1977). 9

2c. Example of area objects: percent Italian by census tract, London,
Ontario, 1971. Source: Statistics Canada. 10

2d. Example of raster objects: number of cloud free Thematic Mapper
frames acquired by Fucino (Italy) ground receiving station in 1984
(6 April - 31 December). Source: Pasco Frei and Hsu (1985). 10

3. Example data set for calculation of the Geary and Moran
coefficients. 14

4. Alternative arrangements of the population densities reported for
the 51 census tracts of London, Ontario in the 1971 census. 15

5. SMR's for cancer of the lung by county, Southern Ontario, 1971. 33

6. Example data set for calculation of join count statistics. 39

List of Appendices

1. BASIC program for calculating Geary and Moran statistics and
significance tests. 50

2. BASIC program for calculating join count statistics and significance
tests. 53

Goodchild, Michael F.
Spatial autocorrelation. 
(Concepts and techniques in modern
geography, ISSN 0306-6142; 47)
1. Geography Statistical methods
2. Autocorrelation (Statistics)
3. Spatial analysis (Statistics)
I. Title II. Series
519.5'37 G70.3

ISBN 0-86094-223-6

No responsibility is assumed by the Publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions or ideas contained in the material
herein.

INTRODUCTION 

In its most general sense, spatial autocorrelation is concerned with the degree
to which objects or activities at some place on the earth's surface are similar
to other objects or activities located nearby. Its existence is reflected in the
proposition which Tobler (1970) has referred to as the "first law of geography:
everything is related to everything else, but near things are more related than
distant things." It is impossible for a geographer to imagine a world in which
spatial autocorrelation could be absent: there could be no regions of any kind,
since the variation of all phenomena would have to occur independently of
location, and places in the same neighbourhood would be as different as places
a continent apart. Gould (1970, pp. 443-444, also quoted in Cliff and Ord,
1981, p. 8) expresses the same idea:

Why we should expect independence in spatial observations which are of
the slightest intellectual interest or importance in geographic research I
cannot imagine. All our efforts to understand spatial pattern, structure
and process have indicated that it is precisely the lack of independence -
the interdependence - of spatial phenomena that allows us to substitute
pattern, and therefore predictability and order, for chaos and apparent
lack of interdependence of things in time and space.

Spatial autocorrelation can be interpreted as a descriptive index,
measuring aspects of the way things are distributed in space, but at the same
time it can be seen as a causal process, measuring the degree of influence
exerted by something over its neighbours. This duality echoes the nature of
the literature on spatial autocorrelation: despite the importance of the
concept, there are several very distinct traditions to be examined in the course
of this book.

The spatial analytic tradition of geography is concerned with the study
and interpretation of the various types of features found on the earth's surface.
To some extent the methods of analysis are similar whether the features of
interest are associated with economic or social activities or the physical
environment. Point pattern analysis (for reviews see Ripley, 1981; Rogers,
1969a, b; Rogers 1974; Getis and Boots, 1978) is a good example of a set of
techniques which has been applied to almost the full range of geographic
phenomena over the past three decades. Spatial autocorrelation is another,
although it has developed more slowly. Although the concept is a very general
one, and of fundamental importance, it remains somewhat controversial and to
some extent in conflict with the mainstream of statistical analysis, as we shall
see.

Spatial analysis deals with two quite distinct types of information. On
the one hand are the attributes of spatial features, which include measures such
as size, value, population or rainfall, as well as qualitative variables such as
name, religion or soil type. On the other hand each spatial feature has a
location, which can be described by its position on a map or by various
geographic referencing or coordinate systems. Many kinds of analysis look only
at feature attributes without making explicit reference to location, and in this
class we would have to include the vast majority of standard statistical
techniques, ranging from simple tests of means and analysis of variance to
multiple regression and factor analysis. Location is often involved indirectly in
the sense that it is used to determine whether a case falls inside or outside
the study area, but the locations of cases within the study area in no way
affect the outcome of this class of analyses, and can be shuffled freely.
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Other techniques, and we would probably include point pattern analysis in
this set, deal with the locations of a set of features treated as members of a
homogeneous class, any differences of attributes among them being ignored. So
apart from the initial step of determining whether or not a feature belongs to
the class of interest, the major part of the analysis is carried out on the
locational information alone, without any reference to the feature attribute
data.

Spatial autocorrelation is one of the relatively small set of techniques
which deals simultaneously with both locational and attribute information.
Location-allocation (for reviews see Hodgart, 1978; Handler and Mirchandani,
1979) and spatial interaction modelling (for reviews see Haynes and
Fotheringham, 1984) also belong to this set, and it is significant that
geographers have made major contributions in each of these fields. A pair of
spatial features, for example two cities, may be similar or dissimilar in
attributes, and their proximity will determine how similar they are in spatial
location. In its broadest sense, spatial autocorrelation compares the two sets
of similarities. If features which are similar in location also tend to be similar
in attributes, then the pattern as a whole is said to show positive spatial
autocorrelation. Conversely, negative spatial autocorrelation exists when features
which are close together in space tend to be more dissimilar in attributes than
features which are further apart. And finally the case of zero autocorrelation
occurs when attributes are independent of location.

Figure 1 shows a simple illustration of these ideas. The features are 64
square cells arranged in the form of a chessboard, and the attributes are the
two colours, black and white. Each of the five illustrations contains the same
set of attributes, 32 white cells and 32 black cells, but the spatial
arrangements are very different. Figure la, the familiar chess board,
illustrates extreme negative autocorrelation between neighbouring cells (using
the Rook's or Castle's move to define neighbour). Figure le shows the opposite
extreme of positive autocorrelation, when black and white cells cluster together
into homogeneous regions. The other illustrations show independent
arrangements which are intermediate at intervals on a scale of autocorrelation
to be discussed later. Figure lc corresponds to spatial independence, or an
autocorrelation of zero, Figure lb shows a relatively dispersed arrangement and
Figure ld a relatively clustered one. Note that several distinct arrangements
of attributes out of the 2 6 " possible (64!/32!32! if only arrangements with 32
white and 32 black cells are counted) may have the same spatial
autocorrelation index.

The degree of spatial autocorrelation present in a pattern is very much
dependent on scale. In Figure 1 the spatial autocorrelation between cells varies
from one illustration to another, but in all cases the pattern is the same,
perfectly homogeneous within cells. If we were to subdivide each cell into four
and measure the autocorrelation between neighbouring cells the results would be
quite different, although the pattern is the same. So any measurement of
spatial autocorrelation must be specific to a particular scale, and a pattern can
have different amounts at different scales. There are also constraints on the
variation which can occur from one scale to another. For example, in order to
show negative autocorrelation at the scale of the cells in Figures la or lb, it
is necessary for subdivisions of the cells to be positively autocorrelated.
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Figure 1. Varying levels of spatial autocorrelation in the pattern of 32 white
and 32 black cells on an 8 by 8 raster.

What is the practical importance of spatial autocorrelation? First, as
an index it provides a type of information about a spatially distributed
phenomenon which is not available in any other form of statistical analysis, and
which can be vital to correct interpretation. If one were forced to summarize
a spatial distribution of unequal attributes in a single statistic, one would in all
likelihood choose a spatial autocorrelation index, just as one would probably
choose a measure of central tendency such as the mean or median to
summarize a nonspatial data set. Later in the book we will look at the use of
spatial autocorrelation in interpreting data on the incidence of disease, and as
an example, see how it can be used to suggest possible environmental causes
for various kinds of cancer. In this kind of application, spatial autocorrelation
measures give a precise and objective value to something which would otherwise
have to be perceived subjectively and probably inaccurately from a map.

A second important area of application follows directly from this. In
looking for causes for a particular spatial distribution, it frequently happens
that one variable is found to explain a pattern, but only partially. The next
step is to search for other variables which might help account for the
remaining variation, and this is often assisted by examining the spatial pattern
of residuals. Taylor (1980) gives a worked example of this process, using
precipitation figures at a number of sample points in California. His first step
is to try to model precipitation as a function of altitude, latitude and distance
from the coast, using multiple linear regression. These variables together
cannot fully account for variation in precipitation, as the values predicted by
the model are not exactly equal to the observed values at each sample point.
The differences are the residuals, which are mapped to help in identifying
further causative factors. In fact, they show strong positive spatial
autocorrelation, those at sample points on west-facing slopes being positive,
indicating actual precipitation higher than predicted, and those on the leeward
side of mountain ranges being negative. If there had been no spatial
autocorrelation in the residuals, the inference would have been that although
explanation was not perfect, there would be little to be gained by looking for
additional factors, as they would likely be complex and possibly unique to each
sample station.
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1. MEASURES OF SPATIAL AUTOCORRELATION

Third, as a measure of the process by which one place influences
another, spatial autocorrelation analysis is often a necessary part of correct
forecasting. To use another medical example, the incidence of an infectious
disease such as 'flu in an area is best predicted not from the previous
incidence of 'flu in that area, or from any of the area's characteristics, but
from knowledge of the incidence of 'flu in the neighbouring areas from which it
is likely to spread. The probability or rate of spreading can be measured by an
appropriate index of spatial autocorrelation.

Just as spatial autocorrelation is concerned with arrangement in space,
we can ask a parallel set of questions about arrangements in time. Indeed the
term autocorrelation originated with the notion that for many measures,
magnitude at one point in time is related to or dependent on magnitude at
previous times. This area is the concern of time series analysis, which is one
of the foundations of econometrics and has also attracted attention in
geography. In this volume the term time autocorrelation will be used to refer
to effects in the time domain, although in everyday usage the term
autocorrelation normally implies time rather than spatial autocorrelation.
Historically, much of the spatial autocorrelation literature has developed by
extension of time autocorrelation techniques, but there are important
differences and we will not take that route in this volume. Processes in time
operate only in one direction, forwards in time, and in one dimension, whereas
spatial processes may operate in both directions and in two or more dimensions.
In addition the normal case in time series is for sampling to be at regular
intervals, but this tends to be the exception for many kinds of spatial data.
The field of spatial forecasting, which will be discussed at some length later,
deals with processes which operate both in time and across space.

This very general introduction needs a great deal more precision before
it can be very useful. The first chapter will have to define clearly what is
meant by a spatial feature, and the terms near and far, and to establish a
taxonomy of feature attribute types, and the result will be a class of spatial
autocorrelation measures rather than one universal statistic. The second
chapter focuses on the Moran and Geary indices, the subset of measures which
has probably attracted the greatest attention in the geographical literature, and
includes several applications. Chapter Three looks at join count statistics,
which are appropriate for nominally scaled data. Finally Chapter Four looks at
attempts which have been made to model autocorrelated processes.

The first text to appear devoted to the subject of spatial autocorrelation
was by Cliff and Ord (1973). A much enlarged and renamed edition by the
same authors appeared in 1981 (Cliff and Ord, 1981) and included a much more
extensive set of example applications, besides new material on autocorrelated
spatial processes. These two books are still the most useful general references
to the field, although several others (Ripley, 1981; Getis and Boots, 1978; Cliff
et al., 1975; Haggett, Cliff and Frey, 1977; Upton and Fingleton, 1985) include
discussions of spatial autocorrelation as part of more general reviews of spatial
statistics. Readers who might wish to pursue the topic at greater depth and
with a more mathematical approach than that taken in this volume are
recommended to begin with Cliff and Ord (1981).
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1.1 Spatial features

The introduction referred variously to features, objects and activities distributed
over space, and we should now clarify what these are and establish a formal
classification scheme. To be consistent, the term spatial object will be used
from now on, and the previous terms will be taken to be synonymous. For
most purposes, the spatial objects of concern in any analysis correspond to
measurement zones, statistical reporting areas or sampling points, and are
equivalent to the cases of a statistical analysis. So for example in a study of
socioeconomic conditions in cities the spatial objects would likely be census
tracts, enumeration districts or some such statistical reporting areas, and their
precise boundaries would have been determined by the data collection agency.
The general case in human geography is for the definition of the sampled
spatial objects to be outside the control of the researcher. On the other hand
in the study of physical phenomena it is not unusual for the primary data
collection to be part of the study, and for the researcher therefore to have
control over the definition of the spatial objects. This would be true in cases
where a pedologist determined the locations of soil pits, or a microclimatologist
laid out his or her own rain gauges. Openshaw (Openshaw, 1977a, 1977b, 1978;
Openshaw and Taylor, 1979, 1981) has written extensively on the effects of
control over the definition of statistical reporting zones in human geography.

Given the range of possible research conditions, we clearly need a robust
taxonomy of spatial objects. Borrowing to some extent from the spatial data
handling literature, we define four types, as follows:

Points - the data of interest are attached to irregularly spaced points
distributed within the study area, representing for example the locations of
towns, retail stores, individual people, sample soil pits or rain gauges.

Lines - the data are attached to line features, which may or may not be
connected to each other, for example road or rail links or streams.

Areas - the data are provided for statistical reporting zones such as counties or
census tracts, drainage basins, forest stands or areas of homogeneous soil.

Lattices - the sampling design consists of a regular grid of points or cells,
usually in the form of a square lattice. This type of spatial object is common
in the analysis of topographic data and some climatic variables, and in much of
the theoretical mathematical literature on spatially autocorrelated processes.
Other arrangements besides square arrays are possible, including triangles and
hexagons: they are collectively referred to as regular tesselations.

In many cases the type of spatial object present in the data may not
correspond precisely to any real feature: an example would be the use of a
point object to represent a city. However this issue is not of concern here,
although it may affect the eventual interpretation of the results. The choice of
an appropriate method of measuring spatial autocorrelation depends primarily on
the nature of the data more than on the real phenomena represented.
Similarly, we are not immediately concerned with whether the objects
correspond to real spatial features, as they might in the case of watersheds
represented by areas, or to arbitrarily chosen sample points.
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Figure 2 shows examples of each of the four object types, with
associated attributes, chosen to represent situations in which a spatial analyst
might wish to measure spatial autocorrelation. The point data in Figure 2a
consist of a set of statistics on the acidity of rainfall in Northeastern North
America obtained at irregularly spaced measurement locations (Pack; 1980 and
see also Diaconis and Efron, 1983). Over the past century or so the average
height of stacks used to discharge coal smoke into the atmosphere has
increased dramatically, with the result that the effects have spread over larger
and larger areas. Sulphur dioxide pollution has changed as a consequence from
a problem limited to heavily industrialized cities in the nineteenth century to
one which now affects major global regions. We would expect this to be
reflected in an increasingly positive spatial autocorrelation of rainfall acidity at
the regional scale.

For line data, the example (Figure 2b) is of accident statistics on links
of the Ontario provincial highway network in Southwestern Ontario (Hall, 1977).
Low spatial autocorrelation in these statistics would imply local causative
factors such as 'black spots' whereas strong positive autocorrelation would imply
a more regional scale of variation, pointing to causative factors such as
lifestyles, rural/urban and core/periphery cleavages, or climate. Area data
(Figure 2c) is illustrated by the distribution of population by ethnic origin in
the city of London, Ontario, as reported by census tract by Statistics Canada:
this example will be used as an application in Chapter Two. Finally the case
of raster objects is illustrated by Figure 2d, which shows the number of cloud-
free images obtained by the Italian receiving station from the Thematic Mapper
sensor over a nine-month period. Strong positive spatial autocorrelation is
expected since the factors affecting the probability of cloud vary regionally
over Southern Europe. However the orbit of the satellite platform is polar, so
we might expect different structures of autocorrelation in the North-South and
East-West directions.

The location of each type of object is described in different ways. Points
can be located with a single geographic reference, a pair of grid coordinates,
or latitude and longitude. Lines and areas are less straightforward, and to
describe their spatial location and form requires an amount of information
which depends on the complexity of the object. Finally the location of raster
objects is usually determined implicitly by their position within a standard
ordering, usually row by row from the top left corner (for a discussion of
alternatives and their relative efficiency in the context of spatial
autocorrelation see Goodchild and Grandfield, 1983).

With this taxonomy of spatial objects, we can now turn to the
establishment of a parallel classification of attribute variables.

1.2 Attributes

The spatial objects in a data set can possess any number of attributes, and
these are conveniently thought of in the form of a rectangular table. The rows
correspond to the objects, and the columns to the different attributes or
variables whose values are known for each object. This is the standard case-
wise organization of data used in such common statistical analysis packages as
SPSS or SAS. Each column describes the variation of a single attribute, across
objects, and each row describes all of the attributes for a single object.

Figure 2a. Example of point objects: sulphate ion concentration in rainfall in
Northeastern North America. Source: Pack (1980).

Figure 2b. Example of line objects: accident rates in the Southwestern Ontario
provincial highway network. Source: Hall (1977).
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Figure 2c. Example of area objects: percent Italian by census tract, London,
Ontario, 1971. Source: Statistics Canada.

Figure 2d. Example of raster objects: number of cloud free Thematic Mapper
frames acquired by Fucino (Italy) ground receiving station in 1984 (6
April - 31 December). Source: Pasco, Frei and Hsu (1985).

In general there are no restrictions on the kinds of information which
can appear in the columns of an attribute table, and there are appropriate
measures of spatial autocorrelation for each type. To determine the
appropriate measure, we rely on the standard taxonomy of data types used in
many areas of statistics:

Interval - data which establishes numeric value, so that the differences between
the values given to objects have meaning. Weight, temperature, income and
percent Catholic all have this property, but telephone numbers and colours do
not. Much but not all interval data also has the ratio property, which gives
meaning, for example, to statements such as "x is 'twice as heavy as y".

Ordinal - data which establishes rank order, but differences do not have
meaning. Information on rank ordering of alternatives is ordinal but not
interval, since the difference between rank 1 and rank 2 is not necessarily the
same as the difference between rank 2 and rank 3.

Nominal - data which establishes category, but with no implied relationship
among categories. Two telephone numbers can either be the same or different,
but no other relationship is meaningful. One cannot be more or less than
another, and adding, subtracting, multiplying or dividing nominal data makes no
sense.

Unlike the taxonomy of objects, this one is determined not by the form
of the data, but by its meaning, and hence its relationship to the real world.
A sequence of digits such as 4710681 can belong in any of the three categories,
depending on the meaning it conveys in a particular context.

With these two issues dealt with, we are now in a position to discuss
actual measures of spatial autocorrelation, in terms of our three attribute types
and four classes of spatial objects. We will always be dealing with one
combination at a time, since the task is to measure the arrangement of one
attribute possessed by one type of object.

1.3 Measures of spatial autocorrelation

In the introductory section we saw that spatial autocorrelation was concerned
with a comparison of two types of information: similarity among attributes,
and similarity of location. The ways in which the former can be measured
depend on the type of data present, while the calculation of spatial proximity
depends on the type of object. Finally, there will be a number of ways of
comparing the two sets of information in compiling the final index. Since only
a small fraction of the theoretical possibilities have actually appeared in the
literature, it would be easiest to proceed by reviewing them within the general
framework established thus far, rather than by examining every possible option.

To simplify things, a consistent notation will be used, as follows:

n number of objects in the sample

i, j any two of the objects
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where:

(5)

(6)

where A is the polygon's area given by:

(1)

(2)

(3)

(4)

between objects is often a measure of spatial proximity, since nearby objects
are more likely to be linked than distant ones. For area objects, a common
boundary between areas is a simple, binary indicator of proximity but only an
indirect one. Many of the early indices of spatial autocorrelation specified
such binary weights matrices, but generalizations were provided by Cliff and
Ord (1973) to allow the use of any measures of proximity, and these will be
the forms discussed in the following sections, rather than the originals.

area objects. Although  It can be subject to uncertainty in the case of highly
irregular boundaries, it is in many cases a better representation of the
proximity of two areas than simple adjacency. Another option is to represent
each area by a control point, in effect changing the object's type, and to
measure the distances between points. As a control point one might use the
geographic centroid, defined as the point about which the area would balance if
it were suspended and of uniform density, but this has the disadvantage of
sometimes being located outside the area (as in the case of the most southerly
tract in Figure 4). The centroid location is easy to calculate if the area is
represented as a polygon with known vertices, as follows (see for example
Monmonier, 1982 pp. 114-118).

Alternatively, and if the appropriate information is available, one might
select control points based on the distribution of density within each area.

Once distances between objects have been obtained, the weights can be
set equal to some suitable decreasing function, such as a negative power,

12

interpreted as a parameter which affects the rate at which weight declines
with distance: a small b produces a slow decrease, and a large b a more rapid
one. Examples of many of these options will be discussed later.

Gatrell (1979a) argues that in some applications it may be appropriate to
base the measure of proximity on an index of social or economic interaction,
rather than distance. He gives an example in which the spatial autocorrelation
of the populations of major Swedish cities is measured using weights which have
been derived through a multidimensional scaling.

A variety of ways have also been devised to measure the similarity of

Hubert, Golledge and Costanzo (1981) pointed out that most measures of
spatial autocorrelation can be reduced to an element by element comparison of
two matrices, and thus fall into a much more general class of indices with a
literature extending over many disciplines.

1.3.1 Geary's index (area objects, interval attributes)

Geary's index (Geary, 1954; reprinted as Geary, 1968) is a measure of spatial
autocorrelation for area objects and interval data, and as such has found its
most suitable applications in human geography in the analysis of data assembled

which would be meaningful only if z were measured on an interval scale. In
the original paper locational similarity was measured in a binary fashion, w ij .
being given the value of 1 if i and j shared a common boundary, and zero
otherwise. The other terms in the index ensure that the extremes occur at
fixed points:

13



Figure 3. Example  data set for calculation of the Geary and Moran coefficients.

In fact Geary arranged the index so that c would have the value of 1 when
attributes are distributed independently of location, dropping below 1 when
si milar attributes coincide with similar locations, and above 1 otherwise.
Somewhat confusingly, then, positive spatial autocorrelation corresponds to c
less than 1, zero to c equal to 1, and negative to c greater than 1.

To clarify the meaning of the terms, the calculation of the Geary index
can be illustrated with the simple example shown in Figure 3, using binary
weights based on adjacencies.

Example calculation of the Geary index:

14

Figure 4. Alternative arrangements of the population densities reported for the
51 census tracts of London, Ontario in the 1971 census.



The attribute similarity measure used by the Moran index makes it
analogous to a covariance between the values of a pair of objects:

the value of the variable at one place and its value at another. This idea of
autocovariance will appear in other contexts later in this volume.

The remaining terms in the Moran index are again designed to constrain
it to a fixed range:

and can be calculated in any suitable way. For comparison, I is also calculated
below for the data shown in Figure 3. The precise relationship between the
two indices will be discussed further in Chapter 2, and we will also examine
the question of whether the maximum and minimum values of both indices can
be known, as well as issues of sampling and hypothesis testing.

We have now defined two indices of spatial autocorrelation for area
objects and interval attributes. The remaining sections of this chapter review a
number of other measures for alternative data types.

17

(8)

To give a visual impression of the range of c values, Figure 4
illustrates a number of different arrangements of the same set of attributes
over a map of areas. The figures are the population densities of the 51 census
tracts of the city of London, Ontario, as reported in the 1971 census, and they
have been distributed among the 51 tracts to show the actual pattern (4a), as
well as artificial patterns of maximally positive (4b), and maximally negative
(4c) autocorrelation. Note that each pattern is independent of the others. So
although there is a tendency for a peak of population density to occur at the
city centre in the actual data, peaks can occur anywhere in the city in the
si mulations.

We will leave the Geary index for now in order to continue with a brief
review of the other autocorrelation measures which have been devised for the
various object and attribute types. The next chapter will discuss the Geary
index in more detail, and provide a number of applications.

1.3.2 Moran's index

Moran's index (Moran, 1948) provides an alternative to Geary's for the same
data context, and in most applications both are equally satisfactory. Perhaps
the only obvious advantage of one over the other is that the Moran index is
arranged so that its extremes match our earlier intuitive notions of positive and
negative correlation, whereas the Geary index uses a more confusing scale (but
see the later discussion of this issue in Chapter Two). The Moran index is
positive when nearby areas tend to be similar in attributes, negative when they
tend to be more dissimilar than one might expect, and approximately zero when
attribute values are arranged randomly and independently in space. These
relationships are summarized in Table 1 below.

Table 1: Correspondence between Geary, Moran and conceptual scales of
spatial autocorrelation

Conceptual Geary c Moran I

Similar, regionalized,
smooth, clustered 0 < c < 1 I > 0*

Independent, uncorrelated,
random c = 1 I < 0*

Dissimilar, contrasting,
checkerboard c > 1 I < 0*

* The precise expectation is -1/(n-1) rather than 0.
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1.3.3 Interval attributes; point, line and raster objects

In essence, both the Moran and Geary indices can be applied to other object
types provided an appropriate method can be devised for measuring the spatial
proximity of pairs of objects. One way discussed earlier of generating a

located control point and to measure distances. The weights are then set equal
to some decreasing function of distance, such as a negative power or negative
exponential. This suggests a simple way of adapting either the Geary or Moran
indices to points. For example, one might measure the spatial autocorrelation
in the pattern of unemployment rates across cities by representing each city as
a point, and basing the weights on the distances between pairs of points raised
to a negative power. Another alternative would be to convert the point objects
to areas by some systematic procedure, such as the generation of Thiessen or
Dirichlet polygons (Boots, 1986), which partition the area into polygons each of
which surrounds one point and encloses the area which is closer to that point
than to any other (see Brassel and Reif, 1979 for an efficient method of
generating Thiessen polygons from a point set; and see Griffith, 1982, for an
example of the use of this method to measure spatial autocorrelation for point
objects). The weights might then be based on the existence of, or length of,
common boundary as before. In effect, points can be regarded as
interchangeable with areas for both Moran and Geary measures.

In discussing line objects we need to recognize two distinct cases. First,
the lines may represent links between nodal points, the problem being to
measure the spatial autocorrelation present in some attribute of the nodes. In

the link length or link capacity. In the second case the problem is to measure
the spatial autocorrelation present in some attribute of the links themselves,
such as transport cost per, unit length, or probability of motor vehicle accident.

based on whether or not two links are directly connected, or on the distance
between the centre points of two links. As in the case of point objects, then,
the Geary and Moran indices provide suitable measures for interval attributes
provided a little ingenuity is used in the definition of the spatial proximity
measures.

value of 1 to pairs of raster cells which share a common boundary, and 0
otherwise. In some studies pairs of cells which join at a corner are also defined
as adjacent and given a value of 1 (in dealing with a square raster the two
alternatives are sometimes referred to as the 4-neighbour and 8-neighbour cases
respectively, or Rook's case and Queen's case).

1.3.4 Ordinal attributes

A number of papers have discussed the definition of specific spatial
autocorrelation indices for attributes whose scale of measurement is ordinal.
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Coffey, Goodchild and MacLean (1982) were concerned with describing the
spatial pattern of the Canadian settlement system, in particular the distribution
of settlement sizes. Do large settlements tend to be surrounded by small
settlements or by other large ones, or are settlement sizes randomly
distributed? Settlements were allocated to one of five size classes, so that the
attribute of interest is an ordinal measure limited to the integers 1 through 5.

The authors discuss two types of spatial autocorrelation measures of the
settlement size distribution. In the first the Geary and Moran indices are

which shared a direct road link and 0 otherwise. In effect this approach treats
the ordinal size class data as if it had interval properties, since the calculation
of both Geary and Moran indices requires the taking of differences between z
values.

The second set of measures was based on the observed numbers of links

number of direct road links observed between a settlement of class 1 and one
of class 2. The observed frequencies of each link type were then compared to
the frequencies expected if settlement sizes are distributed randomly. In effect
this approach treats the ordinal data as if it were merely nominal. Measures
of this type are the topic of the next section.

While the authors proposed to deal with the ordinal case by using either
interval or nominal methods, the index described by Royaltey, Astrachan and
Sokal (1975) is more directly suitable for the ordinal case. Each object is given

difference in ranks between each pair. I he index was applied to a set of point
objects, with weights set to 1 if no other point lay within a circle drawn with
the pair as diameter, and 0 otherwise (this is the adjacency matrix of the
Gabriel graph, (Gabriel and Sokal, 1969)). The index was further generalized by
Hubert (1978). Sen and Soot (1977) discuss a number of other indices for
ordinal data, again based on ranks.

1.3.5 Nominal attributes

It is convenient to think of nominal attributes as if the objects on the map
were coloured using a finite set of colours. An attribute limited to two
nominal classes might be thought of as a pattern of black and white. Three
classes might be visualized as a distribution of the three primary colours red,
green and blue. One frequently finds spatial distributions of nominal attributes
referred to as k-colour maps, where k denotes the number of possible classes of
the attribute. The object set being coloured might equally consist of areas,
points, lines or a raster.

In dealing with nominal data we are highly constrained in the ways in
which attributes can be compared, since the nature of the data allows only two
notions: a pair of object attributes can be the same, or different, but no

which measure the similarity of is and j's attributes, can take one of only two
values.
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A variogram is defined in a similar fashion, but shows the variance or
mean squared difference between attributes at given proximity to each other,
rather than the correlation. To be consistent, in view of the nature of the two
indices, we should refer to a plot of the Moran index with scale as a
correlogram, and to a plot of the Geary index as a variogram.

Variograms and correlograms are most useful in the interpretation of
spatial patterns of continuous distributions, in other words where it is
reasonable to think of the phenomenon as having a value at every point in the
space. This is most likely to be true of raster objects, which are often the
result of regular sampling of a continuous variable, or points, which are often
irregularly placed samples. On the other hand ared data is not usually
consistent with this continuous model.

Another way of constructing a correlogram is to compute a series of

constant b is to increase the weight given to short distances relative to long
ones. An index calculated with a large b will thus emphasize spatial variation
over short distances, and a small b will emphasize variation over large
distances.

Finally, one can construct correlograms and variograms by using the
weights as distance filters: autocorrelation can be estimated for a certain
distance range by setting weights to 1 for pairs of objects whose separation lies

1.4 Sampling and hypothesis testing

Thus far the concern has been with devising suitable ways of measuring an
intuitive property of a spatial distribution. The result will be a single value
somewhere on a scale, a useful summary index of an interesting aspect of the
data from which it was calculated, to be interpreted in relation to known fixed
points on the scale, or in relation to values for other sets of data obtained
from other places or at other times.

As with other measures in statistics, it is often useful to be able to go
rather further, by making the index the basis of generalization, inference and
hypothesis testing. Instead of limiting the interpretation to the actual data
from which the index was calculated, it would be interesting to be able to
make statements in a larger context, by generalizing from the sample which
was analysed to the larger population from which it was drawn. Suppose that
the Moran index has been used to measure the spatial autocorrelation present in
a study area, and the result is a value of 0.2. Since we are dealing with a
sample, we know that the amount of autocorrelation present in the larger
population from which it was drawn is likely in the range of 0.2, but its
precise value is unknown. On the one hand we might want to ask whether this
value of 0.2 confirms that spatial autocorrelation is present in the larger

Most of the measures which have been devised for nominal attributes are
based on join count statistics using binary definitions for the spatial proximity

where two objects can be defined as joined if they share a common boundary.
The join count between colour s and colour t is defined as the number of times
a cell of colour s is joined to a cell of colour t. Note that it is necessary to
avoid double counting in dealing with loins between cells of the same colour.

The spatial arrangement of colours is reflected directly in the join count
statistics, so measures of spatial autocorrelation can be devised based on them.
If the distribution shows positive autocorrelation then joins of the same colour
will be more likely than one would expect in a random distribution of colours,
and similarly negative autocorrelation will be reflected in a higher than
expected incidence of joins between different colours.

Join count statistics provide a simple way of measuring spatial pattern,
but they do not lead to a simple summary index or to indices analogous to the
Geary or Moran measures. For this reason further discussion and illustration
will be deferred to Chapter Three, where join counts will be examined in
greater detail.

These ideas can be extended from rasters to points, lines and areas
provided similar binary spatial proximity measures can be devised. Areas can
be regarded as joined if they share a common boundary. Points can be dealt
with by constructing Thiessen polygons, two points being 'joined' if they share a
Thiessen edge. Or one could define two points as adjacent if either is the
nearest neighbour of the other. Two lines might be regarded as adjacent if
they share a common node. As before, dealing with different object types is a
matter of ingenuity in the definition of spatial proximity.

1.3.6 Variograms and correlograms

We have already noted that the concept of scale is implicit in any measure of
spatial autocorrelation, and that spatial patterns may possess quite different
forms of autocorrelation at different scales. Scale is implicit in the definition
of spatial objects, particularly if these are arbitrarily defined. For example; in
a raster data set the size of the cells will affect the outcome; for a point
data set the result may be affected by the density of points if these represent
sample points from a larger population.

These observations suggest that it would be appropriate to make scale
explicit in the measurement of spatial autocorrelation, and this can be done in

adjacencies, as in the original Geary index. We could define a second-order
adjacency as existing between two areas which were not adjacent, but separated
by exactly one intervening area. In other words two areas i and j are second-
order adjacent if some third area k exists such that i and k are adjacent, and
k and j are adjacent, but i and j are not adjacent. The same idea can be
extended up to any order (although we are limited in principle by the diameter
of the adjacency graph). By measuring autocorrelation at each of these levels
one could construct a correlogram showing the performance of the index across
scale.
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population from which the sample was drawn, or whether 0.2 might have arisen
by chance in the sample even though autocorrelation was absent in the
population. This is the hypothesis-testing context. On the other hand we
might ask for limits on either side of 0.2 within which we can be reasonably
confident that the true, population value lies. This is the confidence intervals
context.

The literature on spatial autocorrelation provides methods for answering
some of these questions, in one of two ways, depending on how one is willing
to believe the sample was obtained from the population. The randomization
hypothesis proposes that the population consists of all possible ways in which
the observed attributes could be rearranged among the objects: the sample is
just one such possible arrangement. All possible samples contain exactly the
same set of attribute values, but differ only in the objects to which each value
is attached. Figure 1, for example, shows three of the 64!/32!32! possible
distinct samples which could be obtained by randomizing the 64 attributes in
this data set.

The resampling hypothesis proposes that the attribute values assigned to
any object are obtained from an infinitely large population by a random process
in which each individual attribute value is drawn independently. Since the
individuals are drawn independently the population must have zero spatial
autocorrelation. Each sample will contain a different set of values.
Furthermore it will be necessary to make assumptions about the range of values
which occur in the population and their relative probabilities, since unlike the
randomization hypothesis, the population is not limited to those values which
occur in the sample. In the case of interval data the usual assumption will be
that the data is sampled from a normal or Gaussian distribution.

The precise approach to be taken to inference and generalization will
depend on the experimental context, and it is quite likely that none of the
available methods will be suitable. First, the arguments over hypothesis testing
versus confidence interval estimation seem rather different in the case of
spatial autocorrelation measures than for more conventional indices such as the
Pearson correlation coefficient. While it is easy to imagine two variables
which have no influence on each other, it is relatively hard for a spatial
analyst to conceive of a variable whose distribution in space is truly without
spatial autocorrelation, so that the value at one place is statistically
independent of the value at nearby places. It seems that virtually all spatial
distributions show some form of finite spatial autocorrelation. It follows that
the hypothesis testing question, of whether a population is or is not spatially
autocorrelated, is not often of significant interest since the answer is rarely in
doubt. To make the same point in somewhat different form, if a hypothesis
test led to the conclusion that no spatial autocorrelation could be confirmed in
the population, the correct interpretation would in almost all cases be that the
sample was simply too small to confirm the relatively small amount present, in
other words that a Type 2 statistical error had been made. It appears that for
spatial autocorrelation statistics the more relevant form of inference lies in
using sample statistics to estimate confidence intervals for the population
rather than to test hypotheses. Unfortunately both randomization and
resampling are suitable for hypothesis testing rather than confidence interval
estimation.

It would be a mistake to take this argument to the point of denying the
possibility of spatial independence, however. Since spatial autocorrelation is
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scale-dependent, it is quite likely that for a given distribution, some scale - -

exists at which the distribution appears independent. The issue is rather over
whether it is reasonable to adopt a hypothesis-testing approach which assumes
that absence of spatial autocorrelation is the norm.

The question of whether to apply a randomization or a resampling
approach in a given situation is best answered by one's conceptualization of the
sampling process, or the mechanism by which the sample was drawn from the
population. In most cases the set of objects used as a sample in measuring
spatial autocorrelation is the entire set found within the study area boundary at
some given point in time. Because of the way the indices are defined it would
be difficult to take a random sample from within a given area, and much
easier to take the entire population. It is therefore unreasonable to argue that
the sample is a random sample of the objects found in a larger area of which
the study area is a part, and equally unreasonable to argue that the sample is
randomly drawn from the attributes which would exist at other points in time.

In one sense, however, it may be possible to argue that the sample is
indeed randomly drawn from a population, although the latter must be strictly
hypothetical. Suppose that the processes which led to the observed outcome,
the values of the attributes, are conceived as extremely complex and subject to
influences which we can regard as random. If the clock were set back and the
system allowed to redevelop, we might argue that the result would be the same
in its general properties, but different in detail, to the extent that the actual
pattern can be regarded as randomly drawn from the set of all possible
patterns. Resampling would be appropriate if the hypothetical values were
drawn independently and were different from the real values, while
randomization would be appropriate if the effect of rerunning the clock were
simply to redirect the same values to other parts of the map. It seems that
resampling is more reasonable in most contexts, despite the inherent
disadvantage that assumptions must be made about the statistical distribution
from which the hypothetical values are drawn.

In summary, the following chapters will describe two alternative
approaches to hypothesis testing: resampling and randomization. Although
confidence interval estimation might seem more appropriate to spatial
autocorrelation, neither resampling nor randomization is useful in this context
since neither proposes a population with non-zero spatial autocorrelation.
Moreover, it is difficult to argue that the sampling design normally used in
spatial autocorrelation studies provides a random sample of anything other than
a somewhat artificially conceived hypothetical population. So although
inference and generalization are conceptually useful, in practice the spatial
autocorrelation statistics to be described in this volume are most often used as
indices descriptive of the spatial pattern present in a limited study area. The
examples will show how useful results can be obtained by observing how these
measures vary through time, from area to area or from one variable to
another.

2. THE GEARY AND MORAN INDICES 

2.1 Introduction

Chapter One introduced the basic taxonomy of spatial objects and attribute
types, and several of the most commonly used indices. The purpose of this
chapter is to explore two of those, the Moran and Geary, more fully. In
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particular the second section will discuss their use in hypothesis testing, under
the general conceptual framework introduced in section 1.4. Subsequent
sections will provide two extensive applications of the Geary index, review the
applications which have been described in the literature, and explore further the
relationships between the two indices and the conceptual scale of spatial
autocorrelation.

2.2 Hypothesis testing

The simplest and most straightforward hypothesis to test regarding the spatial
autocorrelation exhibited by a sample of n cases is that the sample was drawn
from a population in which autocorrelation is zero. This null hypothesis was
discussed at some length in section 1.4. As we have already seen, there are
two different interpretations of the term 'drawn'. The randomization null
hypothesis proposes that the sample is one randomly chosen possibility from
among the n! possible arrangements of the observed attributes among the n
objects, and estimates the probability that such a randomly chosen arrangement
would have a spatial autocorrelation index as extreme as that observed in the
real arrangement. The resampling null hypothesis proposes on the other hand
that each of the n attributes was drawn independently from a population of
normally distributed values: since the drawing was independent, the population
must have no spatial autocorrelation by definition. It also estimates the
probability that a sample of n attributes drawn in this way and assigned
randomly to the n objects would exhibit a spatial autocorrelation index as
extreme as the one which is observed.

The general form of both tests is the same, and closely parallels the
format of most statistical hypothesis testing, so much of the material which
follows in this section may be familiar to many readers. The probability that
the null hypothesis could yield results as extreme as those observed is denoted
by a . Since the results were indeed observed, it can also be interpreted as
the probability that the null hypothesis is true, referred to as the significance
level. Finally, if this probability is small, less than say 5%, the null hypothesis
is rejected and we conclude that indeed spatial autocorrelation is present in the
population.

The phrase "as extreme as" raises an issue which is general in hypothesis
testing and deserves special attention in the context of spatial autocorrelation.
In most statistical tests it is possible for the test statistic to deviate from
what would be expected under the null hypothesis towards one of two extremes,
referred to statistically as tails. In the case of the Moran index, the statistic
might differ by being too positive or too negative. In cases like this, the
researcher has the option of specifying which of the two tails are of interest.
In many applications the aim is merely to show the presence of an effect
without specifying which direction the effect takes: in this case both extremes
or tails are of interest and a two-tail test is used. In other applications we
may be looking for a particular effect which should push the statistic in one
direction only. The amount by which the statistic has moved in this direction
will then determine the outcome of the test. If the statistic has in fact
moved in the other direction, we have no choice but to accept the null
hypothesis and deny the presence of the effect.

In the case of spatial autocorrelation indices the effects which produce
positive and negative autocorrelation are so different that it is hard to imagine

a researcher being interested in both of them equally. For this reason
discussion which follows will assume that all tests are one-tail.

The significance a is relatively easy to calculate because the sampling
distributions of both I and c are asymptotically normal under both null
hypotheses (for proof see Cliff and Ord, 1973, 1981; Sen, 1976). In other words
the indices calculated for random samples of size n drawn according to either
null hypothesis show a distribution which is approximately normal or Gaussian as
long as n is relatively large, and perfect when n is infinite. Cliff and Ord
(1973, p. 21) assumed that a sample size of 16 was adequate to ensure the
accuracy of the approximation, but other rules of thumb, both more and less
conservative, have been suggested in the literature. By using Monte Carlo
si mulation Cliff and Ord (1981, pp. 53-56 and see also Cliff and Ord, 1971,
1973) were able to provide more detailed rules under which the assumption of
normality can be taken to be valid for small sample sizes.

We use the subscripts N and R to denote resampling and randomization
null hypotheses respectively. Note that this particular form of the resampling
null hypothesis assumes that the attributes be drawn from a normal or Gaussian
distribution: if this is not valid, it may be appropriate to use randomization
instead.

The following expressions give the expected value and variance of I and
c for samples of size n under each null hypothesis:

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

where:

n is the number of cases
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where s is the observed I or c index for the sample. Since x is expected to
have a distribution, under either null hypothesis, which is normal with zero
mean and unit standard deviation, we can obtain the significance very easily by
entering a table of areas under the normal curve, using x as a z score.

The data in Figure 3 will now be used in order to illustrate the
calculation of the test statistic and a, for both N and R null hypotheses and
for both I and c. Of course the sample size of four makes this an
inappropriate use of the method, but it may nevertheless help to illustrate the
process of calculation. As a further aid a program in BASIC is included as
Appendix 1. Since it requires the user to enter every element in the weights
matrix, it becomes cumbersome to use for large examples, but may be of value
for teaching purposes. Most of the calculations in the examples in this volume
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have been made by using a computer program which operates directly on the
spatial objects in a geographic information system.

Example calculation of the significance of the Geary and Moran
coefficients.
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A type 2 error occurs when the null hypothesis is accepted when in fact
it is false. The chance of this occurring will depend on the sample size, since
a small sample is more likely to lead to a type 2 error than a large one, and
also on the degree to which the null hypothesis is false: if it is almost true,
the chance of a type 2 error is clearly higher. As we saw in the first chapter,
it is hard to believe that any distribution is truly lacking in spatial
autocorrelation, and therefore a type 2 error is almost inevitable in cases
where a test leads to the acceptance of the null hypothesis. This point and its
implications for interpretation will be explored further in the example
applications later in this chapter.

2.3 Properties of the indices

The Moran and Geary indices were introduced in Chapter 1 as mathematical
expressions yielding results which could be related to the conceptual scale of
spatial autocorrelation. We saw that the Geary scale was essentially an
inversion of the Moran and conceptual scales, and that the Geary scale assigned
zero autocorrelation a value of 1. In this section the properties of the two
indices will be explored a little further.

2.3.1 Expected values

The expected values E listed in section 2.2 for the two indices give the values
we expect to find by averaging the respective indices for samples drawn under
the null hypothesis and therefore from a population with zero spatial
autocorrelation. In both cases it makes no difference whether the resampling
or randomization forms are used. The Geary index expectation is exactly 1.
However, the expectation of the Moran index is not exactly 0, but slightly
negative at -1/(n-1). For large samples this is asymptotic to 0, but for small
samples the difference becomes quite large. So unfortunately it is not
precisely correct to identify 0 on the Moran scale with independence or with
absence of spatial autocorrelation on the conceptual scale.

2.3.2 Maxima and minima

In order to interpret a given index it may be useful to know not only the fixed
point corresponding to independence but also the upper and lower limits of the
scale. We might ask the question in two ways, corresponding to the
randomization and resampling null hypotheses respectively. Under randomization
the problem is to find two arrangements of the given attributes, one yielding
the highest possible index and the other the lowest possible. Under resampling
the problem is to select both the attributes and the arrangements which will
yield the two extreme patterns, given the distribution from which the attributes
are believed to be drawn.

Unfortunately answers are difficult to obtain in both cases, and the
locations of the extreme points on both I and c scales depend on the particular
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details of the weights matrix and attribute values. Although the definition of
the Moran index is similar to that of the Pearson correlation coefficient, I can
exceed 1.0 for certain matrices of weights and samples of attribute values.
The patterns shown in Figures 4b and 4c are the extremes under randomization:
no arrangements have more extreme spatial autocorrelation indices. Yet in
neither case are the values of the Moran or Geary index convenient round
numbers. In summary, there are no fixed extreme points on either scale. So
only one fixed point, independence, is available for purposes of interpretation.
This is somewhat limiting, but reasonable given the nature of spatial
autocorrelation.

2.3.3 Complementarity

The Geary and Moran indices are conceptually complementary, suggesting that
there might be some simple mathematical relationship between them. Goodchild
(1980) notes that the equation defining I can be manipulated to the following
form:

2.4 Example applications

We now turn to two applications of the Geary and Moran indices to real data.
Besides illustrating typical applications of the indices as descriptive measures of
spatial pattern, the examples also draw attention to some of the difficulties
and limitations commonly found in interpretation. The first example is an
analysis of patterns of ethnic group distribution in a Canadian city, and the
changes and trends which have occurred through time in response to such social
processes as immigration and assimilation into the mainstream of Canadian
society. The second example uses statistics on mortality due to cancer of
various types over a six year period to draw some limited conclusions regarding
possible causal factors and indicators of risk.

2.4.1 Ethnic group distributions in London, Ontario, 1961-1971

This example is drawn from the work of Khondakar (1981). The data to be
examined consist of the numbers of persons of different ethnic origins living in
London, Ontario in the census years 1961 and 1971. Ontario cities have
received large numbers of immigrants over the past one hundred years, initially
from Britain, but increasingly from other parts of Europe and now from all
parts of the world. The postwar period of the late 1940s and 1950s saw large
numbers of Dutch, German, Italian, Polish and Ukrainian arrivals.
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The questions to be asked in the analysis of the data are largely
concerned with the concept of ethnic assimilation. Some groups have moved
rapidly into the mainstream of Canadian society, while others have taken rather
longer, remaining socially distinct for a significant period. This social
distinction will be reflected in uneven spatial distribution of ethnic groups over

the city.

The degree to which any variable is uniformly distributed in a set of
statistical reporting zones, such as the 51 census tracts in the city, can be
measured readily using the Gini coefficient. Suppose the value of the variable
is known for each tract, and is expressed as a percentage of the total city.
Let the tracts be ordered on the basis of this variable, from the tract which
has the lowest percentage of the total to that with the highest. With n tracts,
if the distribution is uniform then all percentages will be equal to 100/n%.
Plot the data in cumulative form on a graph, with the vertical axis ranging
from 0% to 100%, and the horizontal axis from 1 to n. Draw a diagonal line
from the lower left to the upper right corners of the graph, representing a
uniform distribution. The Gini coefficient is then simply the area between this
diagonal line and the sample curve, scaled so that a value of 1 indicates total
concentration of the variable in one tract, and 0 uniform distribution over all

tracts.

Table 2 shows the Gini coefficients for each ethnic group for the two
years of the study. The British, French and German, older groups derived from
northwestern Europe, show substantial decreases in concentration between 1961
and 1971. Much less change occurred in the Ukrainian, Italian and Polish
groups, all of which remained highly concentrated, and by implication less
assimilated.

Table 2: Gini and Geary coefficients for ethnic groups in London,
Ontario, 1961 and 1971

Ethnic Group 1961 Gini 1971 Gini 1961 Geary 1971 Geary

British 0.366 0.141 1.047 0.976

French 0.212 0.163 0.839 0.895

German 0.175 0.120 0.955 1.025

Hungarian no data 0.324 no data 0.982

Italian 0.394 0.410 0.864 0.876

Dutch 0.245 0.254 0.885 0.996

Polish 0.377 0.343 0.912 0.727

Scandinavian 0.222 0.294 1.060 0.959

Ukrainian 0.394 0.366 0.856 0.974

The Gini coefficient pays no attention to the spatial arrangement of the
reporting zones, and identical results would be obtained if the attribute values
were redistributed over the spatial objects. Thus we have no way of knowing
whether the zones with high percentages of one group are scattered over the
city, or concentrated in a single region. However this is precisely the aspect
of the pattern which can be captured using a spatial autocorrelation coefficient.

Table 2 also shows the Geary coefficients calculated for the same data,
using unstandardized binary weights based on the adjacencies between census
tracts. The results show several effects which were not apparent in the Gini
coefficients. First, since the British and German groups show very little

31



Figure 5. SMR's for cancer of the lung by county, Southern Ontario, 1971.

been expected if the county had behaved in exactly the same way as the whole
province. These adjusted rates are known as Standardized Mortality Ratios
(SMRs) and are shown in Figure 5. More precisely, the SMRs are given by:

(21)
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autocorrelation at both dates, the changes in concentration between 1961 and
1971 indicated by the Gini coefficients must have occurred with almost no
change in the spatial pattern. This would suggest that the change occurred by
substantial dilution of the 1961 concentrations.

The Dutch and Ukrainian groups show a major increase in the Geary
index from 1961 to 1971 while the Gini coefficients remained constant. This
suggests a rearrangement from a single region of high concentration in 1961 to
a scatter of equally concentrated but isolated tracts in 1971. New immigrants
often move into clearly defined regions of cheap housing, but after some years
are able to move outward into areas of higher socioeconomic status. In the
cases of these two groups this move outward and upward does not coincide with
substantial assimilation. The Polish group remained concentrated, but became
more strongly spatially autocorrelated in 1971. The 1960s saw high rates of
Polish immigration to London, and the small, scattered community which had
existed in 1961 had by 1971 become concentrated and localized on the southern
edge of the core.

This example illustrates the use of the Geary index as a simple, summary
description of a spatial distribution, augmenting the information available from
the aspatial Gini coefficient. The study from which this example was drawn
examined the question of scale in greater detail by computing both coefficients
by Enumeration Area, a reporting unit with roughly one tenth the population of
a census tract. It is then possible to compare the degree of concentration and
regionalization of each group at each scale. Furthermore, since the two sets
of zones are hierarchically related, we can compute the indices for the
Enumeration Areas separately for each tract, and look at the variation in
pattern from one tract to another. Concentration appears to be much higher in
some types and ages of housing than in others.

2.4.2 Cancer mortality in Southern Ontario

The raw data for this second study (Boost, 1979) consist of numbers of deaths
recorded for various forms of cancer for each of the counties of Southern
Ontario for the period 1971-6. Cancer rates vary from place to place in
response to a number of factors. Besides straightforward environmental effects
such as air and water quality, we would expect lifestyle factors to vary
spatially and to influence mortality for certain cancers. Occupational hazards
are often significant factors, as are various components of diet. The scale of
variation in mortality will be affected by and tend to mirror the scale of
variation of the cause, but will also be affected by scales of human movement.
The incidence of cancer attributable to working in a particular place will not
be limited to the place alone, but will occur over the whole area from which
workers commute. Similarly movement of patients from residence to hospital
for long term treatment may create another form of spatial averaging.

Raw mortality rates can be calculated from these data in the form of
ratios per 1000 population, for each year and county and for each major form
of cancer. But although these rates show clear variation, they are difficult to
interpret because age distributions are not uniform across the study area, and
some areas are therefore inherently more at risk than others. We can remove
the effects of age and sex of the population, and thus intrinsic risk, by
computing the province-wide mortality rates for each age and sex category, and
then expressing each county's mortality as a percentage of what would have
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The SMRs shown in Figure 5 indicate a quite different pattern of
concentration from the raw mortalities. Similar SMRs are used by Cliff and
Ord (1981) in their examples of bronchitis infection in London, 1959-1963.

The SMRs can be tested for significance by comparing the observed
number of deaths with the number expected if the county is no different from
the province as a whole in a standard chi-square test. Of the 34 counties
shown, only eight have SMRs significantly different from 100. This is partly
due to the sample sizes, since the numbers of cases for each county, cause and
year are often small. Furthermore, some of the eight may result from type 1
errors, and there may be type 2 errors present in the 26 cases not judged
significant, making the results difficult to interpret. However we have not yet
made use of the information available from the spatial arrangement of county
SMRs.

Table 3 shows the Geary indices calculated for each year and for each
of the six cancer types studied. The types listed are those for which the
Geary c index was significantly different from 1 at the .01 significance level
on the N (resampling) null hypothesis. We would argue here that the individual
county values are subject to a large number of factors whose combined effects
can be regarded as random, and the SMRs show a distribution which is
approximately normal, making the N null hypothesis reasonable in this case.
Cancers of the lung and breast show a significant persistence in space in all
years, suggesting that the causative factors are similarly persistent in space
between counties.

Persistence in time may also be a useful indicator, since the long periods
associated with the development of many cancers would suggest that high
SMR's should persist for many years. Table' 4 shows the Spearman rank
correlation coefficients for each pair of years for lung cancer SMR's.
Correlations are not high, which is not surprising given the sample sizes, but
are positive in all cases but one, and the majority are significant at the 0.05
level. To some extent, then, the anomalies which are observed in SMR's in
certain counties are persistent from one year to the next, as well as being
persistent from one county to the next. So although only eight individual lung
cancer SMR's were significant in 1971, the existence of significant correlations
in both space and time suggests that causes can be found at the county scale.

Perhaps the most instructive point of this example application lies in the
importance of scale in interpretation. The spatial scale over which spatial
autocorrelation is observed to operate suggests causative factors which operate
over the same spatial scale. For example, it is unlikely that the effects of a
single point source of water contamination would be reflected in the statistics
of adjacent counties, and therefore in the degree of spatial autocorrelation
between counties. On the other hand a health problem attributable to urban
lifestyle would persist in all of the urbanized region around Toronto, would be
significantly absent in the periphery, and would be revealed in strong spatial
autocorrelation at the county level. Similar observations apply to duration of
persistence in the time dimension.
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Table 3: Spatial autocorrelation for Standard Mortality Ratios, Ontario, 1971-
1976

Geary's c z-score

Types for 1971
Digestive .5254 -3.390

Intestines .5776 -2.971

Lung .5866 -2.908

Prostate .5930 -2.863

Stomach .5992 -2.819

Breast .6642 -2.362

Types for 1972
Digestive .3884 -4.331

Lung .4874 -3.606

Breast .5198 -3.378

Intestines .5531 -3.144

Types for 1973
Lung .3993 -4.226
Intestines . 4975 -4.535
Breast .5525 -3.148

Digestive .5900 -2.885

Types for 1975
Lung .4459 -3.577

Breast .5514 -3.025

Digestive .5587 -2.849

Types for 1976
Breast .3102 -4.454

Lung .3959 -3.900

Intestine .4834 -3.335

Digestive .5067 -3.184

Stomach .5837 -2.688

Values listed are significant using a one-tailed test at the .01 level against a
critical z-score of 2.33.

Table 4: Spearman's rank correlation coefficients, Lung Cancer SMR's,
Southern Ontario 1971-1976

1971 1972 1973 1974 1975 1976

1971 1.00 0.31* 0.27* 0.29* 0.00 0.44*

1972 1.00 0.13 0.11 0.20 0.32*

1973 1.00 0.48* 0.11 0.37*

1974 1.00 0.35* 0.42*

1975
1976

1.00 0.23
1.00

*Denotes significant at the .05 level
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2.5 Other Applications in the Literature

Cliff and Ord (1973, 1981) used the Moran index to reexamine the diffusion
si mulation model of Hagerstrand, as applied to the spread of improved pasture
subsidy among Swedish farmers. They also give an example of the use of the
Moran index to study the incidence of cholera from contaminated water supplies
in London boroughs in 1854.

Geary's original application of the c index (Geary, 1954, reprinted in
Geary, 1968) was to the analysis of patterns of agricultural, social and
economic statistics across Irish counties.

Gatrell (1979b) examined population patterns in Southern Germany in an
application of spatial autocorrelation statistics in the context of central place
theory, while Bannister (1975) used the Moran index and various weighting
schemes to expose the spatial structure of settlement in Southern Ontario.

Griffith (1982) used both I and c in an analysis of point objects in order
to investigate the space-time structure of the Manitoba grain handling system.

Jumars, Thistle and Jones (1977) describe the use of both I and c,
together with weights based on inverse square distances, in analyzing patterns
of species abundances. Jumars (1978) gives an interesting three dimensional
application to patterns of microfauna in the San Diego trench. Similar
applications are described by Sokal and Oden (1978a, b) in a comprehensive
review of the use of spatial autocorrelation measures in biology.

Hodder and Orton (1976) discuss the use of spatial autocorrelation
measures in archaeology, and use I as a Measure of pattern in the spatial
distribution of various types of ancient material.

3. JOIN COUNT STATISTICS

3.1 Measures

Join count statistics were introduced in Chapter 1 as a means of measuring
spatial autocorrelation for nominal attributes. Since the classes of a nominal
variable can be thought of as colours, it is common to refer to a distribution
of two classes in terms of black and white objects, and of more than two
classes as a k-colour map.

A join count refers to the number of cases of adjacent objects on the
map. Counts could be made for joins between any pair of colours, or between
objects of the same colour: for example, for a binary attribute we can count
the number of BB, WW and BW joins. We can also generalize the notion of a
join count to the case of weights. If each pair of objects i and j is given a

example, would be defined as the sum of the weights for all BB pairs.
Counting joins is then precisely equivalent to summing binary adjacency weights.
In the discussion which follows the most general case will be given first.
Simplifications will follow in most cases where adjacencies are used as weights
or where the objects are raster cells, or where there are only two colours.

3.2 Tests of Significance

the probability that a cell has colour r. The n's will be relevant in the case
of randomization, where the observed colours are hypothetically redistributed
over the objects. On the other hand the p's will be important in evaluating
the resampling null hypothesis, which proposes that each object's attribute is
obtained by random sampling from a parent population having unlimited numbers
of attributes of each colour. In the interval case, resampling was assumed to
occur from a normally distributed parent population, but in the nominal case
each attribute is assumed to be obtained by a single trial under estimated
probabilities. In most cases the p's would be estimated from the observed
proportions of each colour present in the sample, but it is possible that other
sources of information might exist.

In the following sections the notation used will be similar to that in
Chapter 2. The subscript R will refer to the randomization null hypothesis and
N to resampling. The expressions given below were first obtained by Moran
(1946, 1947) and Krishna Iyer (1947, 1948, 1949a,b, and see also Decay, 1968).

3.2.1 Joins of the same colour

The index of interest in this case is the number of joins observed between
objects of the same colour r. This is equivalent to the number of BB joins (or
WW joins) in the binary case. As before, E refers to the expectation and Var
to the variance.

(22)

(23)

(24)

(25)

If weights are binary, the S terms, which are derived from the weights matrix,
simplify as follows, and these relationships apply also to the following section:
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3.2.2 Joins of different colours

Here the index of concern is the observed number of joins between objects
coloured r and s.

(26)

(27)

(28)

(29)

test of a binary sequence (Siegel, 1956) when the weights are binary adjacencies
and the objects are arrayed along a single dimension.

More complex expressions for the total number of joins between counties
of different colours are given in Cliff and Ord (1981, pp. 19-20)

3.2.3 Hypothesis testing

Given the above expressions for expectations and variances of the join count
statistics under both null hypotheses, it is a relatively straightforward matter to
calculate the test statistic using the methods outlined in Chapter 2. Like the
Moran and Geary statistics, the join counts are asymptotically normally
distributed under both null hypotheses, and so identical methods can be used.

Because it is possible to make separate tests of each join count statistic,
it is possible to compare the degree of spatial autocorrelation revealed by the
arrangement of one colour over the map with that exhibited by one or more of
the others. The join count test thus has the potential to reveal somewhat
more than a test of I or c, although a loss of information is inevitable in
reducing data from an interval to a nominal scale.

An example calculation and test using join count statistics is shown
below to clarify the meaning of each of the terms in the equations, for the
data shown in Figure 6. In addition the BB, WW and BW join counts are shown
for each of the patterns in Figure 1. Note that the BB and WW counts are
highest in those patterns having positive spatial autocorrelation, and the BW
count is highest when spatial autocorrelation is negative. A BASIC program for
calculating join count statistics is included in Appendix 2.
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Figure 6. Example data set for calculation of join count statistics.

Example calculation for join count statistics
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3.3 Applications

Cliff and Ord (1981) use join count statistics in their analysis of the
Hagerstrand simulation model to supplement the Moran index. Join counts are
also used in their analysis of the incidence of measles in Cornwall, and
mortality due to bronchitis in London and chest diseases in Wales. The Cornish
measles data are also described in Cliff and Haggett (1979). A more general
discussion of the use of spatial autocorrelation in analyzing epidemics can be
found in Cliff and Haggett (1984).

An interesting perspective on join counts is provided by Olson (1975) who
discusses the visual perception of autocorrelated spatial patterns.

4. AUTOCORRELATED PROCESSES

4.1 Simulations

The emphasis in this volume to this point has been almost exclusively on the
measurement and description of spatial autocorrelation rather than on the
processes which generate it. This emphasis is deliberate, partly because
discussion of process tends to be more technical, complex and diifficult, and
partly because of the relatively poorly developed level of our understanding of
spatially autocorrelated processes.

A simple mental experiment will illustrate the difficulty. Suppose we
wished to simulate a topographic surface by generating a raster or grid of
si mple elevations. To simulate the spatial autocorrelation present to some
degree in all topographic surfaces, the generating process would have to ensure
that each point in the representative raster is correctly autocorrelated with
each of its neighbours, four in number in a regular square array. It is clearly
impossible to generate such a surface by sequentially assigning elevations row
by row from the top, since one could ensure independence from the previous
elevation in the row, or the elevation immediately above in the previous row,
but not both simultaneously. In fact there has been considerable debate in the
literature over appropriate methods of generating reasonable-looking topographic
surfaces (see Mandelbrot, 1977, 1982).

The process used to generate the various arrangements of attribute
Values in Figures 1 and 4 bears no relationship to any process which might
operate in the real world, but was devised merely for the generation of
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(30)

patterns with known spatial autocorrelation (Goodchild, 1980). A set of
attribute values is generated, and allocated randomly to the objects. Pairs of
objects are then selected at random, and their attributes are swapped if doing
so would bring the spatial autocorrelation of the entire arrangement closer to
the prescribed target.

At this point, we can now turn to a discussion of the attempts which
have been made to model processes operating to produce autocorrelation in real
data. Because of the complexity of the field the treatment will be necessarily
descriptive and superficial, but references to more complete discussions will be
given for the interested reader. For a discussion of autocorrelated processes in
the context of simulation see Haining, Griffith and Bennett (1983).

4.2 Spatial Processes

An attribute variable can show spatial autocorrelation in its arrangement across
spatial objects either because neighbouring objects influence each other directly,
so that the value at one place is caused directly by values at neighbouring
places (autocorrelation), or because the value at each place is determined by
some other variable at the same place which is itself autocorrelated. For
example, we do not know whether the Italian ethnic group in the city of
London, Ontario (Figure 2c) shows autocorrelation at the Census tract level
because people of Italian origin are attracted to areas near other people of the
same ethnic group, or because the factor which attracts them is also present in
other areas with large Italian populations.

Cliff and Ord (1981, pp. 141ff.) refer to the two interpretations as
interactive and reactive respectively. Suppose the process which generated the
attributes is solely reactive. Then if all of the causative factors can be found
and modelled, the residuals from this model will be completely lacking in
spatial autocorrelation. So if a test for autocorrelation of residuals in
negative, and if we are willing to ignore the possibility of a Type 2 error, we
can conclude that the modelling effort is successful and that the assumption of
no interactive effects is valid. On the other hand if a test for autocorrelation
is positive, we will be unable to resolve whether the source is interactive
effects, or reactive effects not included in the model. So we can in general
resolve the ambiguity between interaction and reaction only in those cases
where perfect models can be obtained.

Whittle (1954) proposed the first spatial autoregressive model for the
interactive case as follows:

Given a suitable model of interactive process, the next step would be to
calibrate the model using observed data, in other words to attempt to find the
value of the constant 0 which gives the best fit between the model and

model which is most likely.

Unfortunately neither approach leads to simple results in the case of the
autoregressive model. Whittle notes that the least squares estimators are
inconsistent, although Ord (1975) provided a modified least squares method
which yields consistent, if inefficient, estimators. And the mathematics
necessary to obtain the maximum likelihood estimators are too difficult except
in certain simple cases.

An alternative to the autoregressive model is the method of moving
averages developed by Haining (1978):

(40)

where all terms have their previous meanings. In effect, the process consists
of a constant mean disturbed by autocorrelated errors. Again the model is not
easy to calibrate.

The literature on spatial processes has grown rapidly in recent years.
Further information can be found in Cliff and Ord (1981, Chapter 6) and Ripley
(1981 pp. 88-95). Many of the methods are extensions of one-dimensional
methods developed initially in the study of time series.

4.3 Autocorrelation in Residuals

The previous section discussed models of processes which were purely
interactive. We now turn to cases of mixtures of interactive and reactive
processes, and to models of reactive processes where not all of the causative
factors are known. In either case we might construct and calibrate a model of
the form:

not all of the causative factors are included, or if interactive processes are
also present, the residuals or e.'s will be spatially autocorrelated. The b's
would be obtained by ordinary least squares regression.

One of the assumptions made in a large number of traditional statistical
tests. including regression analysis, is that the observations are independent of
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standard packages for regression allow the user to test for autocorrelation of
the residuals in time by computing a test statistic based on the sequence of
observations, but it is rare for any test to be made of spatial autocorrelation.

The importance of the assumption is quite easy to see. Suppose all of
the variables in the model, including the z i 's, show strong, positive spatial

autocorrelation. If a new sample is obtained from a point close to one of the
existing samples, we know that the values of all of the variables will be close
to those at the existing point. In a sense, then, this is not truly new data, and
the task of predicting the new data is not as difficult as it would have been
had the new point been located a long way from any previous point. We can
visualize the effect of spatial autocorrelation as reducing the apparent number
of degrees of freedom, so that the model appears more powerful than it really
is.

Autocorrelation can appear in the residuals for several reasons: because a
linear model has been used for a nonlinear relationship; because one or more of
the causal variables have been omitted; or because both reactive and
interactive processes are present. If present, autocorrelation leads to bias in
the estimation of residual variance and therefore in R 2 and other measures of
the success of the model, and inefficiency in the estimation of the regression
coefficients, the b's.

Cliff and Ord (1981, pp. 200 ff.) discuss a test statistic based on the
Moran index which can be used to test for spatial autocorrelation among the
residuals of a regression model, and provide methods of testing its statistical
significance. If spatial autocorrelation is found to be present, one useful
strategy would be to manipulate the mix of causal variables in the model to
try to reduce it, and Cliff and Ord illustrate this using an example. Geary
(1954) argued that absence of spatial autocorrelation among the residuals would
indicate complete success: if we assume that all causal variables are spatially
autocorrelated, then it would indicate that no causative variables would remain
to be found. However it seems more likely that the correct inference would be
that a type 2 error had been made: there are causes not yet included in the
model, but their influence is so weak that any spatial autocorrelation induced in
the residuals is insufficient to lead to the rejection of a null hypothesis of no
spatial autocorrelation.

Another strategy would be to delete observations selectively, particularly
those close to others and therefore likely to contribute to autocorrelation. This
is somewhat drastic, however, as it diminishes the data available. Finally, one
might modify the form in which the independent variables appear in the model
by powering or taking logs, particularly if it is suspected that the cause of the
autocorrelation is the use of a linear model when a nonlinear one is needed.

5. CONCLUSIONS 

The emphasis in this volume has been on the use of measures of spatial
autocorrelation, particularly the Moran, Geary and join count statistics, in order
to measure certain significant aspects of spatial pattern. As noted earlier, one
can argue that spatial autocorrelation is the most significant aspect of the
arrangement of attributes over the objects present in geographical space.
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This is only one of the traditions of the spatial autocorrelation literature,
and references to others have been made from time to time, although
constraints of space and mathematical complexity have not allowed more
detailed discussion. One approach has been to regard spatial autocorrelation as
a problem which violates the assumptions of many standard statistical tests, and
to attempt to devise modifications of those tests which might be used where
appropriate. There was limited discussion of this in relation to regression in
Chapter 4, and the literature also contains analyses of the t test of means and
lengthy discussion of the effect of spatial autocorrelation on the calibration of
spatial interaction models (see Cliff and Ord, 1981 for review).

A second approach to autocorrelation derives from spectral analysis, since
there is a simple relationship between the spectrum and the autocorrelation
function of a one or two dimensional series. Spectral analysis has found
applications in several branches of geography, particularly in climatology. More
generally, however, its applications have been limited by two factors: first,
there tend to be few repetitive, cyclical aspects of patterns in space; and
second, spatial phenomena tend to exhibit trend components. Both factors
suggest that the variogram may be more suitable as a descriptive device for
spatial distributions than the spectrum. Geographers have made use of
correlograms and variograms in a number of areas, many of which would make
very interesting additions to this volume if more space were available. Kriging
is a method of spatial interpolation developed in the mining industry (Krige,
1951) and by the French school of geostatistics (Matheron, 1965; David, 1977;
Olea, 1974; Delfiner and Delhomme, 1975) based on the principle that the
interpolated data should show the same variogram, in effect the same structure
of spatial autocorrelation, as that observed between the known data points.
Variograms are also a basic tool in the simulation of terrain by fractal
processes (see the striking illustrations in Mandelbrot, 1977, 1982).

The third basic approach to spatial autocorrelation which has been
touched on at various points, particularly in Chapter Four, is its analysis as a
parameter of process, rather than a description of form or arrangement. Again
space and mathematical complexity have been limiting factors, as well as the
technical difficulties of calibration. This is clearly an area of great potential
for spatial modelling.

Geographers are trained to see spatial autocorrelation as the rule rather
than the exception in the phenomena they study, and so it comes as something
of a shock to realize the extend to which traditional statistical methods rely on
assuming its absence: Gould (1970) expresses this sentiment very clearly in the
passage quoted in the introduction. Yet our texts still largely reflect the
traditional statistical view. Perhaps the real test of the coming of age of
statistical geography will be the design of an introductory quantitative course
which takes spatial autocorrelation as the rule rather than the exception, and
builds systematically from that premise.
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