Entry Games under Private Information

José-Antonio Espín-Sanchez¹ Álvaro Parra²

¹Yale University, Economics

²University of British Columbia (UBC), Sauder School of Business

June 29, 2019

INTRODUCTION

- **Private information** is crucial in modern econ analysis, but is has not been fully explored in entry models
 - Auctions: Firms are privately informed about their valuation before participating
 - Oligopolistic Markets: Firms are better informed than competitors about their own costs before deciding whether to enter
- **2** We study entry into oligopolistic markets under private info
 - Strategic interaction post-entry relates to pre-entry decisions
 - General forms of market competition & firm heterogeneity
- **3** Goal: Characterize firms entry decisions
 - Given market characteristics, which firms are more likely to enter?
 - Are there conditions to guarantee a unique equilibrium?

MOTIVATION: THEORY

1 Our motivation is both **theoretical** and **empirical**

2 From the theory standpoint

Market Design

- Entry fees or subsidies (Moreno & Wooders, 2011)
- Optimal mechanism design (Jehiel & Lamy, 2015)

Competition Policy

- Is entry efficient (Mankiw & Whinston, 1986)
- Entry effects of merger (Marshall & Parra, 2019)

Trade Policy

Which firms enter international markets (Melitz, 2003)

3 Dynamic models of entry

4 All question above have their empirical counterpart

MOTIVATION: EMPIRICS

To incorporate entry into empirical analysis conveys challenges
Multiplicity of equilibrium & Lack of theory

2 Equilibrium Multiplicity

- Weak identification (Tamer 2003; Ciliberto & Tamer, 2009).
- (Im)possibility of making counterfactual analysis
- These are solved via assumptions: e.g., assuming an entry order (Berry 1992, Mazzeo 2002, Jia 2008, ...)

3 Current theories

- Symmetric oligopoly (Bresnahan & Reiss, 1990, 1991).
- Market-symmetric firms with entry-cost heterogeneity (Berry).
- Assume away post-entry strategic interaction (Hopenhayn, 1992; Melitz, 2003)
- Relevant empirical work (Athey et al, 2011; Seim, 2006; Krasnokutskaya & Seim, 2011; Roberts & Sweeting, 2016; Ciliberto, Murray & Tamer, 2018)

OUR CONTRIBUTION

1 General model of entry with private information

- Heterogeneous Firms: Firms may differ in profit functions π_i and distribution of private information F_i
- **Strategic interaction**: Post-entry profits depend on private info, entry decisions, and private info of participating firms
- 2 We show that every equilibrium is in **cutoff** strategies
- **3** We develop a notion of **strength** of a firm. We rank firms according to their strength.
 - Strength is a measure based on the fundamentals of the model
- We show that a herculean equilibrium always exists: stronger players play lower cutoffs
 - Focal equilibrium in markets with asymmetries
 - Reduces a combinatorial problem to solving a system of equations

OUR CONTRIBUTION

- When the elasticity of profits with respect of the private information is not too elastic, the *herculean* equilibrium is the unique equilibrium of the game
- **2** These results open the door to a richer empirical/structural assessments of market entry
 - Richer forms of competition
 - Explicit modeling of strategic interaction
 - Wider variety of applications

Talk: Road Map

1 Two potential Firms

- Model
- Examples
- Preliminary Results
- Main Result
- Intuition
- Implications
- 2 Concluding Remarks

Two potential firms: Model

In the paper, we deal with n. Today, n = 2

- **1** Each firm i draws its private info v_i from F_i (an atomless distribution on \mathbb{R}_+
- **2** After observing v_i , firms decide whether to enter the market

3 Payoffs:

- 1 *i* only entrant $\pi_i(v_i) \in \mathbb{R}$
- 2 both firms enter $\pi_i(v_i, v_j) \in \mathbb{R}$
- **4** The tuples (π_i, F_i) are common knowledge

ASSUMPTIONS

- A1 Monotonicity: $\pi_i(\cdot)$ is strictly increasing an differentiable in v_i
- A2 Competition: $\pi_i(v_i) \ge \pi_i(v_i, v_j)$ for all v_j and $\pi_i(v_i, v_j)$ is weakly decreasing in v_j
- A3 Entry: There exists $\underline{v}_i < \bar{v}_i$ such that $\pi_i(\underline{v}_i) = 0$ (entry is costly) and

$$\int_0^\infty \pi_i(\bar{v}_i, s) f_j(s) > 0$$

If draw is good enough, every firm would like to enter

EXAMPLES

The model accommodates most models of competition

1 Firms are privately informed about their entry costs Model most used in empirical analysis of entry (Seim 2006, Grieco 2014)

$$\pi_i = X_i \beta_i - \mathbb{I}_j \delta + v_i$$

j's private information does not directly affects i's payoffs.

2 **Bertrand Competition under Logit Demand** Let *e* be vector of entry by firms

$$\pi_i(v_e) = (p_i(v_e) - c_i) \frac{\exp(v_i - p_i(v_e))}{\sum_{k \in e} \exp(v_k - p_k(v_e)) + \lambda} - K_i$$

where

- $p_i(v_e)$ is the equilibrium price under v_e
- c_i is marginal cost of i
- λ is consumer outside option
- K_i entry cost

EXAMPLES (CONT.)

3 Selective Entry to Auctions

- $\hfill\blacksquare$ Before entering the auction, bidders receive a signal v_i about their valuation
- Upon entry, pay a participation cost
- After entry but before bid, firms learn type $V_i = v_i \varepsilon_i$ where $\varepsilon_i \sim G_i$ is independent noise ($\mathbb{E}(\varepsilon_i) = 1$).

$$\pi_i(v_i) = v_i$$

$$\pi_i(v_i, v_j) = \int_0^\infty \left(\int_{-\infty}^{v_i \varepsilon_i} (v_i \varepsilon_i - \max\{0, s\}) dG_j\left(\frac{s}{v_j}\right) \right) dG_i(\varepsilon_i)$$

Preliminaries

A strategy is a mapping from the valuation v_i to a probability of entering the market $p_i(v_i)$.

Definition (Cutoff strategy)

A strategy $p_i(v_i)$ is called *cutoff* if there exists a threshold x > 0 such that

$$p_i(v_i) = \begin{cases} 1 & \text{if } v_i \ge x \\ 0 & \text{if } v_i < x \end{cases}$$

To be clear:

- **1** x_i represents *i*'s cutoff.
- 2 We denote strategies with the cutoff itself

PRELIMINARIES (CONT.)

Proposition (Existence and cutoff equilibrium)

In any entry game there exists an equilibrium. Every equilibrium of the game is in cutoff strategies; i.e., a pair x_1 , x_2 that jointly solve:

$$\pi_i(x_i)F_j(x_j) + \int_{x_j}^\infty \pi_i(x_i, y)dF_j(y) = 0.$$

Explain Cutoff! What is the problem we want to solve?

Definition (Strength)

Strength of firm i is the unique number $s_i \in \mathbb{R}_+$ that solves

$$\pi_i(s_i)F_j(s_i) + \int_{s_i}^{\infty} \pi_i(s_i, y)dF_j(y) = 0.$$

STRENGTH

Definition (Strength (cont.))

The *strength* of firm i is the unique number $s_i \in \mathbb{R}_+$ that solves

$$\pi_i(s_i)F_j(s_i) + \int_{s_i}^{\infty} \pi_i(s_i, y)dF_j(y) = 0.$$

We say that player *i* is *stronger* than player *j* if $s_i \leq s_j$.

- Strength is always well defined.
- ranks firms by building upon two ideas: that firms play cutoffs strategies and symmetry

Definition (Herculean Equilibrium)

An equilibrium is called *herculean* if the equilibrium cutoffs are ordered by *strength*, with stronger players playing lower cutoffs.

ENTRY: MAIN RESULT

Proposition

A herculean equilibrium always exists (no conditions!). Moreover, it is the unique equilibrium of the entry game if for all $v_i > \underline{v}_i$ and $v_j > \underline{v}_j$

$$\frac{f_i(v_i)}{F_i(v_i)} \frac{\Delta_i(v_i, v_j)}{\pi'_i(v_i)} < 1.$$

where $\Delta_i(v_i, v_j) = \pi_i(v_i) - \pi_i(v_i, v_j)$. Actually, we can also use a stronger condition

$$\eta = \frac{f_i(v_i)}{F_i(v_i)} \frac{\pi_i(v_i)}{\pi'_i(v_i)} < 1.$$

INTUITION

Strength of player i is the unique number s_i satisfying

$$\sigma_i(s_i) \equiv \pi_i(s_i)F_j(s_i) + \int_{s_i}^{\infty} \pi_i(s_i, y)dF_j(y)$$

Figure: Strength and Herculean equilibrium

1 Private info is entry costs Recall

$$\pi_i = X_i \beta_i - \mathbb{I}_j \delta + v_i$$

condition for uniqueness becomes: for all $v_i > X_i \beta_i$

$$\frac{f_i(v_i)}{F_i(v_i)} < \delta^{-1}$$

Bounded inverted-hazard rate!

Berry and Tamer (2006) observe that, when $v_i \sim N(\mu, \sigma)$ and $\delta > \mu$: $\sigma = 0$ implies multiple equilibria and $\sigma = \infty$ implies unique eq.

We can provide tighter bound. Take for instance $X_i\beta_i = 0$, $\mu = 1$ and $\delta = 4$. Unique equilibrium exists whenever $\sigma > 3.876$.

2 Differentiated Bertrand with logit demand Condition for uniqueness becomes: for all $v_i > \underline{v}_i$

$$\frac{f_i(v_i)}{F_i(v_i)} < \frac{\lambda}{\exp(v_i - p_i(v_i)) + \lambda}$$

Market share of outside option!

3 Selective entry to auction Condition for uniqueness becomes: for all $v_i > K_i$

$$v_i f_i(v_i) < F_i(v_i)$$

Weak Concavity!

IMPLICATIONS OF THE RESULT

Entry is an n! combinatorial problem.

Strength reduces it to computing n numbers and solving a system of equations. The system is non-linear, but always has a solution!

Herculean equilibrium is focal. Asymmetric analogue of symmetric equilibrium in symmetric games.

Advantage: one number summarizes all information

- **1** Optimal auctions: Virtual valuation
- 2 Multi armed bandit: Gittins index
- **3** Entry Games: Strength

More importantly, result aids structural analysis of markets with entry.

Also in the Paper

1 When is there a relation between cutoff and profit order?

- **2** We discuss the limitation of strength when dealing with n firms.
- **3** Similar conditions for uniqueness in:
 - *n* symmetric firms. (Bresnahan and Reis)
 - n market-symmetric firms, with different entry costs (Berry 1992)
 - Two groups of within-group symmetric firms, but different among groups (Athey et al. in auctions)
- Extends to multi-product firms when demand can be written as an aggregative game (Shultz Nocke, 2018)

Thanks! Comments and Suggestions Welcome