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MOTIVATION

1 How does a more protective patent policy affect R&D investments?
• Classic single-innovation literature: R&D increase.
• Empirically, this seems not to be true.
• Intuitively, in a sequential context, more protective patents may

discourage incumbents from innovating.

2 How the different tools in patent policy affect R&D investments,
leadership persistence, and the number of firms in the market?

• Patent length – For how long an innovator is protected.
• Forward Protection – How strongly we protect an innovator from

futures breakthroughs.
• Finite patents leads to non-stationarity.
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MY CONTRIBUTION

1 (Non) Stationarity Matters
• Non-stationarity is difficult to solve. To my knowledge, first paper to

deal the non-stationarity induced by finite patents (Doraszelski, 93).
• Dynamic version of Arrow replacement effect.
• Arrow’s Reversal: followers may invest less than leader.

2 Patents that last too long discourage innovation and (possibly)
entry.

• Longer patents delay leader’s R&D and (possibly) the followers’.
• Cost of a protective policies lies beyond the DWL of the monopoly

that the patent grants.

3 The effectiveness of each tool depends on the market’s
characteristics.

• Patent length and forward protection substitute for one another.
• Long but weak patents in markets that innovate slowly.
• Short but protective patents in markets that innovate fast.
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MY CONTRIBUTION IN PERSPECTIVE

1 Two-periods models - Good intuitions but cannot fully capture
dynamics (countless papers, Scotchmer, Denicolò).

2 Infinite sequence of innovations - stationarity
• Innovations occur exogenously (O’Donoghue et al., 1998;

Hopenhayn et al., 2006; Hopenhayn and Mitchell, 2013).
• Restrict the policy space to patents of infinite length (O’Donoghue,

1998; Bessen and Maskin, 2009; Acemoglu and Cao, 2010).
• Patents terminate stochastically in a Poison fashion (Acemoglu and

Akcigit, 2012).
• Restrict agents performing R&D to only potential entrants (Riis and

Shi, 2012)
• or only incumbents (Horowitz and Lai, 1996).
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TALK: ROAD MAP

1 A model of sequential innovation.

2 Solving the dynamic game.

3 Understanding investments dynamics.

4 Optimal Policy.

5 Back to the full model

6 Extensions (time permitting).
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THE MODEL: SETUP

• Consider an infinite ladder of innovations
(Grossman Helpman, 91; Aghion Howitt, 92; Aghion et al., 01; etc.).

• Time is continuous and future payoffs discounted at a rate r.

• The (technology/market) leader (l):
• Firm with the latest technology.
• Protected by a patent an active patent.
• Gets a monopoly flow of π, while patent is active.
• Invest in R&D to extend leader status.

• The followers (f ):
• There are n endogenously-determined followers.
• Compete using obsolete technologies (zero profit flow).
• Invest in R&D to leapfrog and become the new leader.
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THE MODEL: PROBABILISTIC PATENTS

• A patent is described by the tuple (T, b).
• T ≥ 0: Patent length – How long.
• b ∈ [0, 1]: Forward protection – How strongly.
• Forward Protection: With probability b, an entrant’s innovation is

considered an infringement of the active patent. In which case, she
has to pay as a license fee the damages caused to the leader.
(Probabilistic Patents: Lemley Shapiro, 05; Farrell Shapiro, 08)

• t denotes how much time has passed since the last innovation.
• When an innovation arrives clock is reset to t = 0.
• When t ≥ T no patent protection. Imitation drives profits to zero.

• Let vt and wt (resp.) be the value of being the leader and a follower.
• At t = 0, followers pay entry costs K.
• ‘Free entry’ drives w0 = K.
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THE MODEL: R&D AND INNOVATION

• xk,t ≥ 0 is the R&D intensity of firm k ∈ {l, f} at t.

• Cost of R&D at instant t is given by c(xk,t) = (xk,t)
2/2.

• Firm k ∈ {l, f} innovations follow a non-homogeneous Poisson
process with arrival rate of λxk,t, independent among firms.

• λ ∈ R+ is the market’s natural innovation rate (cost!).
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TIMING OF THE GAME
Recall vt and wt are the values of a being the leader and a follower at t.

No infringement 

innovates at a rate

innovates at a rate

receives the profit flow

b

f

becomes the new leaderf

l

lv0

1 b

clock is reset 

extends leader statusl
clock is reset

Infringement: follower pays the leader a license fee s

t Tt st 0

lx ,s

fx ,s

Patent protection
expires:

wT q=vT q= and

each
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PAYOFFS: AFTER PATENT PROTECTION

After a patent expires t ≥ T:

• The race becomes symmetric and stationary.
(Loury, 79; Lee Wilde, 80; Reinganum, 82; etc).

• There are n + 1 firms competing.

• Let q be the value of competing in such a race. For generic firm i:

rq = max
xi
{λxi(v0 − q) + nλx̂i(w0 − K− q)− (xi)

2

2
}

• At any instant t:
• Pay R&D cost (xi)

2/2.
• Firm i innovates at a rate λxi. Gets net reward v0 − q
• Competitors succeed at a rate nλx̂i.

• q can be easily solved and has standard comparative statics.
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PAYOFFS: LEADERS

• License fees:
• Define qt the (expected discounted) value of q at instant t.
• When infringement occurs, compulsory license fees equal to

damages (Tandom, 82):
`t = vt − qt

• Using the principle of optimality:

rvt = max
xl,t≥0

{
π −

x2
l,t

2
+ λxl,t(v0 − vt)− nλxf ,t(bqt + (1− b)vt) + v′t

}
with boundary condition vT = q.

• At any instant s > t.
• Gets monopoly flow π and pays R&D costs.
• The leader innovates at a rate λxl,t, gets net reward v0 − vt

• The followers innovate at a rate nλxf ,t.
• The patent changes value v′t.
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PAYOFFS: FOLLOWERS

Recall that wt denotes the value of being a follower:

• Using the principle of optimality:

rwt = max
xf ,t≥0

{
−

x2
f ,t

2
+ λxf ,t (v0 −wt − b`t)− λ(xl,t + (n− 1)x̂f ,t)wt + w′t

}
with boundary condition wT = q.

• At any instant t followers:
• Pay R&D costs.
• Innovate at a rate λxf ,t and get v0 −wt − `t

• Opponents innovate at a rate λ(xl,t + (n− 1)x̂f ,t).
• The patent changes value v′t.
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R&D DYNAMICS

Taking first order condition we obtain

x∗l,t = λ(v0 − vt) ; x∗f ,t = λ(v0 −wt − b`t)

The incremental rent!

Proposition (R&D Dynamics)

At the beginning of a patent race (t = 0), leaders do not invest in R&D. As an
active patent approaches its expiration date, both types of firms perform
increasing investments over time. When patent protection expires, leader’s and
followers’ investments converge.

Dynamic version of Arrow’s Replacement Effect (1962)
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t

R&D Dynamics:
Arrow's Replacement Effect

kx t,
*

lx t,
*

fx t,
*

= 20T

Recall: x∗l,t = λ(v0 − vt) ; x∗f ,t = λ(v0 −wt − b`t)
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INTERNALIZATION OF REPLACEMENT EFFECT

Theorem (Arrow’s Reversal)

Depending on forward protection, followers internalize the cost of replacing
the leader. In particular, when forward protection is sufficiently strong,
followers do not invest at the beginning of the patent life and then invest at a
lower rate than the leader.

Recall: x∗f ,t = λ(v0 −wt − b`t). When b = 1 we can write

x∗f ,t = x∗l,t − λ(wt − qt)

With dynamics there is two replacements effects (option value).
Under strong forward protection, follower internalizes both.
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(b) R&D Dynamics:
Arrow's Reversal

lx t,
*

fx t,
*

Tt

(a) R&D Dynamics:
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t

Figure: Leader may invest less in R&D at every t < T.
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REVERSAL IN CONTEXT
Figure: Arrow’s 62 Argument

P

fmc

Q

lmc

lmc'

Q Q'

Gilbert Newbery’s 82
Argument

π̂M ≥ 2π̂d

Thus, leader’s incremental loss
π̂M − π̂d ≥ π̂d followers
incremental gain.

Reingaunum 83: GN’s result is
not robust to patent races

xf ,t = λ[ (v0 −wt)︸ ︷︷ ︸
f ’s replacement π̂d

− b(vt − qt))︸ ︷︷ ︸
l’s loss π̂M − π̂d

]
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OTHER RESULTS II

The result does rely in the non-stationarity of the game!

Lemma (Stationarity)

If T = ∞, the values vt and wt become independent of t.
Firms investments become stationary. The leader performs no R&D and
followers’ invest at a positive rate of xf = λ(v∞(1− b)− K) whenever
π(1− b) > rK.

• In stationary games there is no reversal.

• Forward protection simply discourages R&D.
(O’Donoghue and Zweimller, 04; Denicolò and Zanchettin, 12)
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TALK: ROAD MAP

1 A model of sequential innovation.
• R&D dynamics - Arrow’s Reversal

2 Solving the dynamic game.

3 Understanding investments dynamics.

4 Optimal Policy.

5 Back to the full model

6 Extensions (time permitting).
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SOLVING

Replacing back the FOC, we obtain the following system of ODE:

rvt = v′t + π +
λ2

2
(v0 − vt)

2 − λ2n(bqt + (1− b)vt)(v0 −wt − b`t)

rwt = w′t +
λ2

2
(v0 −wt − b`t)

2 − λ2(v0 − vt + (n− 1)(v0 −wt − b`t))wt.

Unfortunately, there no closed-form solution.
Two options: Do it numerically or find a different way!
Long run - short run players (Fudenberg et al., 90).

• The leader faces a sequence of short-run followers

• Followers maximize spot payoff (no dynamic considerations)

xf ,t = λ(v0 − bvt)

• Reduces problem to single agent.
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LEADER’S PROBLEM

Suppose the value of a new patent, v0, is known.

The previous system of ODEs simplifies to:

rvt = π +
λ2

2
(v0 − vt)

2 − λ2(1− b)(v0 − vt)vt + v′t

This is a Riccati separable differential equation.

• Unique solution through the boundary condition vT = 0.

The solution vt depends on the initial condition v0. An actual solution
must satisfy:

vt=0 = v0.
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SOLUTION

Proposition (Existence and uniqueness)

There always exists a unique fixed-point vt=0 = v0. The value of a patent

vt =

(
2π + (λv0)2) (eφ(T−t) − 1)

θ(eφ(T−t) − 1) + φ(eφ(T−t) + 1)

decreases as its expiration date approaches, where θ and φ are known.

The value of an active patent vt increases with:

1 Larger discounted expected profits.

2 Longer patents

3 Forward protection

4 An increase in leader’s productivity

5 A decrease in followers’ productivity
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TALK: ROAD MAP

1 A model of sequential innovation.
• R&D dynamics - Arrow’s Reversal

2 Solving the dynamic game.

3 Understand incentives and investments.

4 Optimal Policy.

5 Back to the full model.

6 Extensions (time permitting)
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R&D INVESTMENTS

Theorem (Patent length and R&D)

An increase in the statutory length T:

1 delays the leader’s investment, and;

2 when forward protection is large enough, delay the followers’ investments.
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Figure: R&D and patent length T.
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R&D INVESTMENTS: INTUITION

Recall the leader’s first-order condition:

x∗l,t = λ(v0 − vt)

Intuitively, how does patent length effect v0 and vt?

1 Increases the value of new projects v0. (known)

2 But also the value of an active patent vt at every t ≤ T.

Which one increases more?

For the followers simply notice:

xf ,t = bxl,t + (1− b)v0
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R&D INVESTMENTS

Theorem (Forward Protection and R&D)

An increase in in forward protection b:

1 increases the the leader’s investment, and;

2 delays the folowers’ investments.
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FORWARD PROTECTION

k,sx

t

l,sx f,sxb=1/4
b=3/4

T
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TALK: ROAD MAP

1 A model of sequential innovation.
• R&D dynamics - Arrow’s Reversal

2 Solving the dynamic game.

3 Understand incentives and investments.
1 Longer patents delay investments.
2 Forward protection deters entrants.

4 Optimal Policy.

5 Back to the full model.

6 Extensions (time permitting).
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THE ECONOMY’S INNOVATION RATE

• Goal: measure the speed of the innovative activity.

• Why innovation pace and not welfare?

• Let xt = xi,t + xn,t. Define the economy’s innovation rate as the
inverse of the expected waiting time between innovations

λ̂ = E[t]−1 =

(∫ ∞

0
tλxte−

∫ t
0 λxsdsdt

)−1

• If λxt = λ̄ constant through t, then λ̂ = λ̄.
• i.e. the arrival rate of an Exponential distribution with parameter λ̄.
• Thus, the larger λ̂, the faster innovations occur.

Theorem (Long patents discourage R&D)

The optimal policy (T∗, b∗) consists of a finite patent length.
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OPTIMAL PATENT LENGTH IS FINITE
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Note. Parameters used: r = 5%, K = 1/30, λ = 1 and π = 1/20.
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OPTIMAL POLICY ACROSS MARKETS
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Note. Parameters used: r = 5%, K = 1/30 and π = 1/20.
Gallini, 92; Horowitz and Lai, 96; Bessen and Maskin, 09
O’Donoghue and Zweimller, 04; Denicolò and Zanchettin, 12.
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TALK: ROAD MAP

1 A model of sequential innovation.
• R&D dynamics - Arrow’s Reversal

2 Solving the dynamic game.

3 Understand incentives and investments.
1 Longer patents delay investments.
2 Forward protection deters entrants.

4 Optimal Policy.
1 Slow markets: High T little b.
2 Fast markets: High b short T.

5 Back to the full model

6 Extensions (time permitting)
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Figure: R&D over time
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Figure: The value of a patent and the number of entrants
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When forward protection is sufficiently strong, longer patents
discourage entry!
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Table: Optimal patent under different λ.

T = 10 T = 20

λ T∗ b∗ E[t]∗ n∗ b = 1/3 b = 2/3 b = 1/3 b = 2/3

0.5 33.6 0 6.26 3.10 19.2% 23.8% 6.6% 21.4%
0.75 14.4 0 4.42 2.57 2.4% 8.6% 5.8% 18.5%
1.0 9 0.02 3.48 2.18 1.7% 8% 7% 17.8%
1.25 5.7 0.22 2.87 1.81 3.8% 9.7% 9.36% 19.2%
1.50 4.1 0.24 2.45 1.55 6.6% 11.8% 12.2% 19.6%
1.75 3.2 0.25 2.14 1.35 9.6% 14.1% 15.1% 23.6%

Note: Parameters used: r = 5%, K = 1/30 and π = 1/20. E[t]/E[t]∗ − 1 quantifies (in
percentage points) the delay of implementing an inefficient policy.
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TALK: ROAD MAP

1 A model of sequential innovation.
• R&D dynamics - Arrow’s Reversal

2 Solving the dynamic game.

3 Understand incentives and investments.
1 Longer patents delay investments.
2 Forward protection deters entrants.

4 Optimal Policy.
1 Slow markets: High T little b.
2 Fast markets: High b short T.

5 Back to the full model
1 Previous results are replicated.
2 Longer patents may deter entry.

6 Extensions
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LEADER EXTENDS ITS LEAD

Previous result assumed that only benefits of leader innovation were:

• Extending its patent clock

• Deterring Entrant R&D (in equilibrium).

Let m be the number of consecutive innovations by the leader.

• πm+1 ≥ πm.

As a consequence

• vm+1,t ≥ vm,t , `m,t = vm,t − qt, and wm+1,t ≤ wm,t

In this context investments become:

xl,m,t = λ(vm+1,0 − vm,t); xf ,m,t = λ(v1,0 −wm,t − b`m,t)

Arrow Reversal get’s reinforced with larger gap.
Delay effect of longer patent persists.
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TO WRAP UP AND CONCLUDE

Relevance:

• Sequentiality + Non stationarity does play a role.

• Some important intuitions change with respect the one-shot case.
• Arrow’s result may reverse.
• Longer patents may delay investments.
• Protective patent policy may slow the economy’s innovation rate.

• Optimal policy varies with market characteristics.
• Policy should be market dependent.
• More importantly, it seems there is room for self-selection.

Thanks!
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