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Abstract

We study equilibrium efficiency in second-price auctions with participation

costs. Costly participation generates three inefficiencies: insufficient entry, exces-

sive entry, and misallocation of the good. Even though all equilibria are ex-post

inefficient, an ex-ante efficient equilibrium always exists. We explain why asym-

metric equilibria are more efficient than the symmetric equilibrium in symmetric

games.
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1 Introduction

An important question in competition policy and market design is whether efficient

entry occurs when firms follow their private incentives. Mankiw and Whinston (1986)

showed that excessive entry happens when decisions are driven by business stealing

(see also Amir et al., 2014). Their analysis focuses on markets with an ample supply of

fully-informed entrants. However, with a limited number of firms privately-informed

about how much they value entering, their conclusions might not carry through.

We revisit the question of entry efficiency in the context of a second-price auction

where n privately-informed potential bidders deciding when (as opposed to whether)

to enter. Despite every equilibrium being ex-post inefficient, we show that the auction

has an ex-ante efficient equilibrium. More generally, if the seller sets a reservation price

equal to its valuation, every equilibrium matches a critical point of the social welfare

function. The marginal social contribution of entry at a given valuation is the gap

between the first and the second-highest valuation (minus the entry cost). In a second-

price auction, this gap corresponds to the difference between the valuation and the

price paid by a successful entrant, inducing private and social incentives to coincide.

This article contributes to the literature on entry to auctions, which is divided into

two broad classes of informational assumptions. Levin and Smith (1994) study entry in

environments with fully-informed bidders (see also McAfee and McMillan, 1987; Tan,

1992; Jehiel and Lamy, 2015). We build upon Samuelson (1985), who studied costly

entry into a symmetric auction with bidders that are privately informed about their

valuation. Within this framework, Campbell (1998) studies coordinated entry, whereas

Tan and Yilankaya (2007) examine collusive outcomes, and Menezes and Monteiro

(2000) study optimal auction design. Tan and Yilankaya (2006), Cao and Tian (2013)

and Esṕın-Sánchez et al. (2021) identify conditions for when the auction has a unique

entry equilibrium.

Our welfare analysis expands the early work of Stegeman (1996) (see also Lu, 2009),

who —following a mechanism design approach— indirectly shows the existence of an

efficient equilibrium. We build upon them by providing direct proof of the feasibility

of efficiency. By making the tradeoffs faced by a planer explicit, our method allow

us to link welfare outcomes with the game’s equilibrium structure, providing better

intuitions and a deeper understanding of the connection between welfare and market

outcomes. We organized the article as follows. Section 2 introduces the model, Section

3 the main result, and Section 4 discusses the findings, relating them to the literature.

We relegate proofs to the Appendix.
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2 Model, Payoffs, and Strategies

Set up. Consider a sealed-bid second-price auction with independent private values.

The auction consists of one seller, n potential bidders, and one indivisible good. The

seller values the good in v0 ≥ 0 and sets a reserve price r ≥ 0. Each bidder i ∈
{1, 2, . . . , n} independently observes her valuation for the object, vi, and then chooses

to participate in the auction by paying a participation cost of Ki. The valuation vi

is drawn from a finite expectation, atomless, continuously differentiable distribution

function Fi with full support on [0,∞). The distribution of valuations, participation

costs, and the number of potential bidders are commonly known by every player.

Strategies, payoffs, and equilibrium. The post-entry game matches a traditional

second-price auction. In equilibrium, bidders submit a bid equal to their valuation vi.

We focus the rest of our analysis on participation decisions. Define a cutoff strategy

as a threshold xi such that bidder i enters the auction whenever she values the good

by at least xi (i.e., when vi ≥ xi) and stays out otherwise.

Without loss of generality, we simplify the equilibrium characterization by ordering

the bidders’ identities according to their participation cutoffs. Bidder 1 has the lowest

participation cutoff, and bidder n has the highest. Given vector of cutoff strategies

x = (x1, x2, . . . , xn), define: i) Ak
i =

∏k
j>i Fj(xj) to be the probability that bidders

playing cutoffs greater than bidder i, up to bidder k, do not enter the auction; and,

ii) Bi(v) =
∏

j<i Fj(v), the probability that bidders playing cutoffs lower than bidder

i obtain valuations lower than v.

Denote by xi = (x1, x2, . . . , xi) the vector containing the cutoff strategies of bidder

1 up to bidder i. Given xi, bidder i’s expected revenue of participating in an auction

with i potential participants, having a valuation vi equal to xi, and the other i − 1

bidders play cutoffs lower than xi is:1

Ri(xi; xi−1) = xiBi(xi)− rAi−1
0 −

i−1∑
j=1

(
Ai−1

j

∫ xj+1

xj

max{r, s}dBj+1(s)

)
.

Bidder i’s revenue consists of its value, xi, times the probability of obtaining the

highest valuation (and winning the good), Bi(xi), minus the expected price paid. With

probability Ai−1
0 bidder i is the sole participant, paying the reserve price r. When

bidder i faces competition, it pays the maximum between the reserve price and the

highest competitors’ bid. The maximum competitors’ bid falls in the interval [xj, xj+1)

1We use the following notation throughout the article:
∑
∅ = 0 and

∏
∅ = 1.

3



when competitors playing cutoffs higher or equal to xj+1 stay out of the auction, event

occurring with probability Ai−1
j . Consequently, the price paid by bidder i distributes

according to Bj+1 in such interval.

A Bayesian equilibrium is a vector of cutoff strategies x such that each bidder i

satisfies the following condition:

An
i Ri(xi,xi−1) = Ki (1)

In equilibrium, each bidder must be indifferent to participating in the auction when

drawing a valuation equal to its participation cutoff xi. At that valuation, bidder i

loses the object when any bidder playing a higher cutoff participates in the auction.

This event occurs with probability 1−An
i and leaves bidder i with zero revenue. Con-

sequently, bidder i only makes revenue with probability An
i . In this scenario, bidder i

is the participating bidder with the highest participation cutoff, receiving Ri(xi,xi−1).

Bidder i is indifferent when her expected revenue equals her participation costs Ki.

3 Welfare

When participating in the auction is costly, ex-ante and ex-post efficiency are not

equivalent. After participation decisions are made, the auction delivers an efficient

outcome as long as the seller sets a reservation price equal to its valuation (i.e., r = v0).

From an ex-ante perspective, however, a social planner trades off the cost of inducing

participation with the benefits of a better ex-post allocation. This tradeoff generates

ex-post misallocation with positive probability.

Figure 1 illustrates the previous point by depicting an equilibrium with two bidders

with equal participation costs (Ki = K), no reserve price (r = 0), and different cutoff

equilibrium strategies (x1 < x2). An allocation is ex-post efficient when the bidder with

the highest valuation participates in the auction. Three types of inefficiencies arise: (i)

insufficient participation (dark-shaded area): at least one bidder values the good more

than its participation costs, but every bidder stays out of the auction; (ii) excessive

participation (lightly-shaded area): represents situations in which both bidders enter

the auction, paying excessive participation costs, and; (iii) misallocation (dotted area):

only the low valuation bidder participates in the auction.

From an ex-ante perspective, however, there is an efficient equilibrium. Consider a

planner prescribing each bidder an entry strategy that depends on the bidder’s private
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Figure 1: Ex-post inefficiency. The dark-shaded area represents realization of valuations
in which there is insufficient participation by both firms; the dotted represents realization
with misallocated entry, and; the light-shaded realizations with excessive participation.

information. The planner chooses a vector of cutoffs x that maximizes

W (x) = v0A
n
0 +

n∑
i=1

{∫ ∞
xi

[viΩi(vi, x−i)−Ki] dFi(vi)

}
(2)

where Ωi(vi, x−i) =
∏

k 6=i Fk(max{vi, xk}) is the probability that bidder i obtains the

object when her valuation is vi and opponents play according to x−i. Notice that

transfers between the winning bidder and the seller are irrelevant from the point of

view of welfare. The total welfare consists of the seller’s value v0 when nobody obtains

the good, which occurs with probability An
0 , plus the expected welfare obtained from

each bidder. With probability dFi(vi), bidder i draws valuation vi and enters the

auction whenever vi ≥ xi, paying the participation cost Ki and winning the object

with probability Ωi(vi, x−i). Bidder i’s contribution to welfare is integrated over the

values for which the bidder enters.

Proposition. If the seller sets a reservation price equal to his valuation, an ex-ante

efficient equilibrium exists. Furthermore, every equilibrium x is a critical point of the

welfare function and is either a (possibly local) maximum or saddle point.

The necessity of the seller setting a reserve price equal to its valuation mirrors

the classical auction result without entry costs. Suppose the seller sets a different

reserve price. In that case, there is the risk of allocating the good to a bidder with a

lower valuation than the seller (when r < v0) or the seller keeping the good when a

participating bidder values it more (r > v0).
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To see the intuition for a critical point in the welfare function being an equilibrium,

take the case where v0 = r = 0. Consider the social contribution of a marginal decrease

in bidder i’s entry cutoff, xi. By decreasing her cutoff, bidder i enters the auction on a

larger range of values, paying the entry cost Ki more often but increasing her expected

revenue by xiΩi(x). The decrease in xi also decreases the opponents’ probability of

obtaining the good for those bidders playing entry cutoffs lower than xi, as bidder

i can outbid them. In these cases, bidder i’s social contribution is the gap between

bidder i’s valuation and the now second-highest valuation. Because in a second-price

auction the price paid is the second-highest valuation, the social contribution of the

gap in valuations matches precisely bidder’s i private gain. That is, social and private

tradeoffs coincide. At each inflection point these tradeoffs equilibrate, generating an

equilibrium.

4 Discussion

The previous efficiency result stands in contrast to Levin and Smith (1994), which

shows that every equilibrium in a symmetric complete-information auction with costly

participation is ex-ante efficient. Under equilibrium multiplicity, the different equilibria

weight the three ex-post inefficiencies differently, leading to different welfare outcomes.

Different expectations may lead bidders to coordinate in inefficient equilibria. In sym-

metric games, where the symmetric equilibrium might be a natural focal point, the

outcome might be inefficient, as asymmetric equilibria might be more efficient.

Figure 2 illustrates the previous point. The symmetric equilibrium induces no

misallocation at the cost of paying excessive participation costs. In terms of welfare,

the symmetric equilibrium is a saddle point of the welfare function. On the other

hand, asymmetric equilibria minimizes the cost of excessive entry by choosing a bidder

to enter almost every time her value is above the participation costs and the other

bidder only participates when her value is high. The asymmetric equilibiria, however,

does induce some expost misallocation but it is, over all, more efficient.

There is deeper connection between equilibrium uniqueness and efficient outcomes.

To illustrate this connection consider an scenario with n = 2 potential bidders. The

Hessian of the planner’s problem, evaluated at a critical point, is equal to:

H(x) = −

(
f1(x1)F2(x2) x1f1(x1)f2(x2)

x1f1(x1)f2(x2) f2(x2)F1(x2)

)
.
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Figure 2: Welfare and multiple equilibria. Depiction of iso-welfare curves and best
response functions χi(xj) of a symmetric entry game with valuations distributing standard
log-normal, K = 1, and r = v0 = 0. Asymmetric equilibria maximize welfare. The symmetric
equilibrium is a saddle point.

Esṕın-Sánchez et al. (2021) show that there is a unique equilibrium in the entry game

when the distribution of valuations, Fi, are concave (i.e., Fi(x) ≥ xfi(x) for every

x > 0). We can show that concavity also implies that the second-order condition

for a maximum is satisfied at every critical point. In turn, this implies that at most

one equilibrium exists, delivering equilibrium uniqueness. In other words, concavity of

the CDF implies concavity of the welfare function. To see this, notice that at every

equilibrium x1 < x2, the first minor of H(x) is always negative and

det(H(x)) = f1(x1)f2(x2)
(
F1(x1)F2(x2)− (x1)

2f1(x1)f2(x2)
)
> 0.

Therefore, only one critical point exists and the game has a unique, efficient equilibrium.

This result implies concavity of the CDF is sufficient to guarantee both uniqueness and

efficient outcomes.
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Appendix

Proof of the Proposition. Let x = (x1, x2, . . . , xn) where, without loss of generality,

we order the bidders identities from the lowest cutoff chosen by the planer, x1, to the

highest, xn. Differentiating (2) with respect to xi we obtain

Wxi
(x) = fi(xi)v0A

i−1
0 An

i + fi(xi)(Ki − xiΩi(x)) +
∑
j 6=i

∫ ∞
xj

s
dΩj(s,x−j)

dxi

dFj(s).

Observe that Ωj(v,x−j) = Bk(v)An
k−1/Fj(v) where k is the index of the smallest cutoff

in x−j satisfying xk > v. The divisor Fj(v) always cancels out with an element of

Bk(v) or An
k−1 depending of the value of k. In particular, Ωi(x) = Bi(xi)A

n
i . Then, we

obtain dΩj(v,x−j)/dxi = Bk(v)Ai−1
k−1fi(xi)A

n
i /Fj(v) if v ≤ xi (and k defined as above)

and zero otherwise (v > xi). Using these observations, we can write∫ ∞
xj

s
dΩj(s,x−j)

dxi

dFj(s) = fi(xi)A
n
i

(
Ai−1

j

∫ xj+1

xj

sBj(s)dFj(s) + Ai−1
j+1

∫ xj+2

xj+1

sBj(s)Fj+1(s)dFj(s)

+ · · ·+
∫ xi

xi−1

sBj(s)
i−1∏

`=j+1

F`(s)dFj(s) + 0

)
= An

i

i−1∑
k=j

Ai−1
k

∫ xk+1

xk

sBj(v)
k∏

`=j+1

F`(s)dFj(s)

and Wxi
(x) becomes

− fi(xi)A
n
i

[
xiBi(xi)− v0A

i−1
0 −

i−1∑
j=1

i−1∑
k=j

Ai−1
k

∫ xk+1

xk

sBj(v)
k∏

`=j+1

F`(s)dFj(s)−Ki

]
. (3)

Corner solutions are not welfare maximizing as xi = 0 satisfies Wxi
(0,x−i) > 0 for all

x−i, and limxi→∞Wxi
(xi,x−i) < 0 due to the unboundedness of xiBi(xi). Therefore,

an interior maximum exists and is characterized by a value of xi satisfying Wxi
(x) = 0.

Using dBj+1(s) =
∑j

k=1Bk(v)
∏j

`=k+1 F`(s)dFk(s) to re-arrange the double summation

in (3) we obtain

Wxi
(x) = −fi(xi)A

n
i

[
xiBi(xi)− v0A

i−1
0 −

i−1∑
j=1

(
Ai−1

j

∫ xj+1

xj

sdBj+1(s)

)
−Ki

]
. (4)

The planner’s first order condition (4) coincides with (1) if and only if r = v0. In

this case, every equilibrium is a critical point of W . Furthermore, because Wxi,xi
(x) =

−fi(xi)Ωi(x) < 0, the critical points cannot be a minimum. Thus, every equilibria is

a local maximal or a saddle point. In particular, one of the equilibria is efficient. �
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