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1 Introduction

A key idea underlying merger policy is that greater competition—usually inter-

preted as low levels of market concentration—is at heart of a healthy economy.

For instance, it is well accepted that competition generally lowers prices. In in-

novative industries, however, the role of competition on market outcomes is far

less clear.1 Although merger review is one of the main activities performed by

competition policy authorities and innovation has been regarded by many as the

engine of a growing economy, the key tradeoffs that arise in mergers in innovative

industries are still not well understood. (Katz and Shelanski, 2005, 2007)

From a competition policy standpoint, the main question is whether innovations

should factor into merger analysis, and if so, how. Some authors have noted several

dynamic factors that complicate merger analysis in these industries. (Gilbert and

Sunshine, 1995, Evans and Schmalansee, 2002, Katz and Shelanski, 2005, 2007)

These factors include, firstly, that market leaders face a constant threat of becom-

ing obsolete by the introduction of new products, making standard measures of

market concentration uninformative regarding actual competition. Secondly, inno-

vations may have a high impact on market structure (i.e., current market structure

is a bad predictor of future market structure), making short-run price changes less

relevant compared to changes in the expected time between innovations or pace

of innovation. Thirdly, much of the R&D activity is often towards products that

are yet to reach the market, making market definition a challenging task. Finally,

mergers may involve firms without products in the market which may affect R&D

outcomes without affecting the product market equilibrium.

In this work, we propose a dynamic framework with endogenous market struc-

ture to study the consequences of mergers in innovative industries and to analyze

whether mergers are ever desirable from an innovation standpoint. We follow a

“creative destruction” approach by considering a winner-take-all competition for

a sequence of innovations, capturing the constant threat faced by market leaders

of being replaced by the new “killer” product. We use the model to answer the

question of how an R&D enhancing-merger affects market structure, the expected

time between innovations, and the industry-wide R&D expenditure.

We find that timely (but costly) entry into the R&D race guarantees that

mergers with R&D efficiencies are welfare improving. The welfare gains come

from a merger either increasing the pace of innovation or keeping the pace of

1See, for instance, Aghion et al. (2005).
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innovation constant while reducing overall R&D expenditure. The results hold true

despite the finding that a merger may substantially reduce the number of firms

performing R&D by inducing exit after the merger. An important implication of

these results is that verifying efficiencies is unnecessary as the welfare gains hold

true for all efficiency levels. We show that these results are robust to a series of

extensions which include various forms of patent protection, patent infringement,

firm heterogeneity, quality competition, and price competition. We do wish to

remark that these welfare gains, however, are in contrast to potential price increases

that may be experienced in the products market in the short-run.

In concrete terms, we develop a sequential extension to the classic patent race

models of Loury (1979), Lee and Wilde (1980), and Reinganum (1982). We as-

sume that each innovation has a high “innovation impact”, with the most recent

innovator becoming a monopolist in the product market in replacement of the pre-

vious market leader. As in these models, R&D is endogenous and determined by

the number of competitors and the firms’ productivity levels. In contrast to the

literature, the value of an innovation and the number of firms competing to achieve

the next breakthrough are endogenously determined by entry and exit conditions.

These conditions relate the value of participating in the R&D race with start-up

costs (e.g., setting up a lab) and each firm’s opportunity cost.

The main driving force behind the positive effects of a merger is that entry and

exit in the innovation market are intrinsically linked to the equilibrium value of

being the market leader. When the value of being leader is “too high”, entry of new

firms speeds innovation up, shortening the lifespan of the leader, and decreasing

the value of being the industry leader. Similarly, when the value of being leader

is “too low”, exit of firms slows down the innovation in the industry, increasing

the incentives to become a leader. In this way, entry and exit of firms stabilize

the value of being market leader to an equilibrium value that is a function of the

opportunity cost of firms. A critical piece of our argument is that we show that

there is a one-to-one mapping between the speed of innovation and the value of

being market leader. Consequently, as long as a merger does not affect the entry

or exit conditions of the marginal firm, the merger will make the industry more

cost-efficient without affecting the industry’s pace of innovation.

The entry and exit stabilizing forces, however, only operate as long as firms are

willing to participate in the race. When the R&D efficiencies of the merged firm

are large enough, the merged firm alone can achieve a pace of innovation that is
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higher than the pre-merger pace of innovation. In that case, the equilibrium value

of being the leader is so low that only the merged firm chooses to stay in the race.

Despite the massive exit of firms, the merger is welfare increasing as the pace of

innovation strictly increases.

In the horizontal merger literature, Williamson (1968) first identified the clas-

sical merger tradeoff between an increment in market concentration and efficiency

gains. In a static Cournot framework, Farrell and Shapiro (2008) found sufficient

conditions for mergers to enhance consumer surplus. Nocke and Whinston (2010)

identify conditions under which the rule proposed by Farrell and Shapiro (2008)

is optimal for a sequence of endogenous mergers. Nocke and Whinston (2013)

study the scenario where those conditions do not apply. Mermelstein et al. (2015)

analyze how merger policy affects investment and industry dynamics in a model

where firms can grow—either internally or through mergers—to exploit economies

of scale. The dynamic merger review literature has also incorporated endogenous

entry and exit into the analysis. Pesendorfer (2005) shows that while entry may

decrease the profitability of mergers, profitable mergers still exist. In a companion

paper, Marshall and Parra (2015) analyze mergers in innovative industries when

market structure is fixed and discuss strategic motives behind mergers that are

absent when market structure is endogenous.

This paper also belongs to a new but increasing literature on how changes in the

institutional background affect R&D in the context of sequential innovation. Se-

gal and Whinston (2007) study how antitrust regulation affects R&D investments

by changing how profits are divided between a technology leader and innovating

follower. Parra (2015) studies how different aspects of patent policy affect the tim-

ing of the firms R&D investment decision. Hopenhayn et al. (2006) study how to

implement efficient levels of R&D through the implementation of a general buyout

scheme. Our methodology also embodies many models used in the literature of

growth through innovation, most notably Aghion and Howitt (1992), Aghion et al.

(2005), and Acemoglu and Akcigit (2012).

Finally, on the empirical side of the literature, measurement and identification

issues have limited the study of how mergers affect innovation. Entezarkheir and

Moshiri (2015) and Ornaghi (2009), for instance, find evidence consistent with post-

merger R&D efficiencies. Entezarkheir and Moshiri (2015) finds a post-merger

increase in innovation activity among merged firms, while Ornaghi (2009) finds

that the post-merger R&D expenditure decreases among merged firms.
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The rest of the paper is organized as follows. Section 2 introduces the baseline

model and derives our main results on the effect of mergers on market outcomes.

Section 3 extends the model in several ways and shows that our results are robust to

alternative modeling choices. Lastly, Section 4 discusses our results and concludes.

2 Mergers in Innovative Industries

The main purpose of this section is to develop a simple and stylized dynamic model

of an innovative industry. We use the model to examine the effects of relaxing a

binding merger policy on the pace of innovation, industry concentration, and total

expenditure in R&D.

2.1 Setup

Consider a continuous-time economy consisting of firms competing in an infinitely-

lived market. At every instant of time there is one technology leader and n

endogenously-determined followers. The market leader obtains a monopoly profit

flow π > 0, while the followers make no direct profits from participating in the

race. Followers, denoted by i, perform R&D to leapfrog the incumbent and become

the new market leader. Firms discount their future payoffs at a rate r > 0 and we

assume that firms are protected by infinitely long patents.2

At each instant in time, each follower i chooses its R&D investment level which

induces a Poisson arrival of innovations xi ≥ 0. The cost flow of this investment

is given by c(xi), which we assume is strictly increasing, twice differentiable, and

strictly convex. The Poisson processes are independent among firms and generate

a stochastic process that is memoryless.

In order to enter the R&D race, followers have to incur a fixed cost K. We

interpret K as the cost of setting up a laboratory or a research facility. In addition,

we also assume that this investment is reversible, i.e., firms are able to recover this

investment when quitting the race. The reversibility assumption is later relaxed

and, as will be shown, relaxing this assumption only strengthens the results pre-

sented in this section. Under the reversibility assumption, the opportunity cost of

performing R&D at any instant of time is given by the returns of investing K at

market interest rate r. The decisions of entering and exiting the race are, therefore,

2Section 3 shows that the main results hold in environments in which patent protection expires
and in which new innovations may infringe currently active patents.
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based on a comparison between the value of being a follower and the alternative

use of the start-up investment.3

For the analysis to be of economic interest, we impose assumptions that guar-

antee a positive number of followers. We assume that the profit flow is larger than

the sum of the opportunity cost of a follower and the fixed cost of performing R&D,

i.e., π > rK+ c(0). In addition, to guarantee positive investments, we require that

c′(0) < π/r − K. For simplicity we treat n as a continuous variable, with the

interpretation that each firm has measure one.

2.2 Equilibrium Analysis

We study symmetric and stationary Markov perfect equilibria of the game, using

a continuous time dynamic programming approach. Our assumptions guarantee

the concavity of the value functions, implying that all computed equilibria will be

unique. Let V be the value of being a market leader and W be the value of being

one of the followers. Fixing any instant of time t, we can write the payoffs of both

types of firms as

V =

∫ ∞
t

(π + x̂W )e−(r+x̂)(s−t)ds

W = max

{
K,max

xi

∫ ∞
t

(xiV + x−iW − c(xi))e−(r+x̂)(s−t)ds

}
,

where x̂ =
∑

i xi is the industry-wide pace or speed of innovation, and x−i =∑
j 6=i xj. To understand the payoffs of participating in this industry, fix any instant

in time s > t. With probability exp(−x̂(s− t)), no innovation has arrived between

t and s. At that instant of time, the leader receives the flow payoff π and an

innovation replaces it at a rate x̂, turning the leader into a follower receiving W .

On the other hand, a follower can compete or quit the race, in which case it receives

the value of its capital, K. If it competes, the follower innovates at a rate xi, pays

the flow costs of its R&D, c(xi), and faces innovation by other firms at a rate x−i.

All these payoffs are discounted by exp(−r(s− t)).
To solve the problem above, we make use of the Principle of Optimality, which

3We assume that if a potential entrant is indifferent between entering and not entering the
race, the potential entrant chooses not to enter the race.
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implies that at every instant in time, the values for each type of firm must satisfy

rV = π − x̂(V −W ) (1)

rW = max

{
rK, max

xi

xi (V −W )− c(xi)
}
, (2)

where x̂ =
∑

i xi is the pace of innovation in the industry.4 In words, the flow value

of being the market leader at any instant of time, rV , is equal to the profit flow

obtained in that instant plus the expected loss if an innovation occurs. Similarly,

the instantaneous value of being a follower, rW , must be the maximum between

quitting the race and obtaining rK, and staying and achieving the incremental

value of becoming the leader, V −W , at the rate xi, minus the cost of R&D.5

In equilibrium, free entry and exit of firms guarantee that W = K. Maximizing

the value function (2) and imposing symmetry, we find that a follower’s investment

level is given by

c′(x∗) = V −K, (3)

or x∗ = 0 if c(0) > V −K. That is, at every instant of time the followers invest

until the marginal cost of increasing the arrival rate is equal to the incremental

rent of a successful innovation. Strict convexity implies that condition (3) can be

inverted so that x∗ = f(V −K), where f(z) is an strictly increasing function of z

(this function is characterized in Lemma 1 in the Appendix). By replacing x∗ into

equation (2), we can solve the innovation game. We describe the equilibrium in

the following proposition.

Proposition 1 (Pre-merger equilibrium). The equilibrium in the industry is char-

4For illustration purposes we show how to apply the Principle of Optimality to the leader’s
value. Starting at an arbitrarily small time interval [t, t+ dt); the leader’s value satisfies:

V = (π + x̂W )dt+ e−(r+x̂)dtV

That is, the value of being the leader is equal to the payoff flow at that instant dt in time,
plus its discounted expected continuation value. For sufficiently small dt, the discount factor
exp(−(r + x̂)dt is equal to 1 − (r + x̂)dt. Equation (1) is obtained by substituting in and
rearranging. From now on, we will apply the Principle of Optimality directly to all payoff
functions.

5Because of the infinite patent protection and the assumption that a new innovation com-
pletely replaces the old technology, Arrow’s replacement effect implies that the incumbent per-
forms no R&D. Both of these assumptions will be relaxed in Section 3. Also, we omit the leader’s
exit condition as in equilibrium V > K. Similar considerations will apply to the merged firm
value equation (8) below.
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acterized by W = K and by the unique positive V that solves

rK = f(V −K)(V −K)− c(f(V −K)). (4)

Each follower’s investment is given by equation (3) evaluated at the equilibrium

values of V and W . Finally, the equilibrium number of followers in the industry

is given by

n =
π − rV

x∗(V −K)
. (5)

We note that this simple model captures many of the features we expect from

a model of innovation with endogenous market structure. For instance, the equi-

librium number of followers, n, increases with a larger profit flow, a lower discount

rate, or lower entry costs. Similar results can be shown for the speed of innovation.

We summarize these results in the following proposition.

Proposition 2 (Comparative statics). The pace of innovation x̂ and the equilib-

rium number of firms in the industry, n, are increasing in the profit flow, π, and

decreasing in both entry costs, K, and the interest rate, r.

2.3 Merger Analysis

In this section, we study the impact of relaxing a binding merger policy, allowing

for an R&D-enhancing merger to take place. In particular, we explore the effect

of a one-time unexpected merger on the degree of market concentration, pace of

innovation, and total R&D expenditure. The one-time change in the merger policy

assumption simplifies the analysis in the sense that firms do not have expectations

of facing other mergers in the future. The unexpected change assumption guar-

antees that the characterization in Proposition 1 is the proper comparison for the

post-merger scenario.

A merger consists of two firms coming together to exploit synergies in their

R&D processes and form a new firm of size one. We capture these synergies by

assuming that the merged firm, denoted by M , is more effective than other firms at

the moment of translating its R&D investments into breakthroughs. In particular,

we assume that the investment of the merged firm induces innovations at a rate

φyM ≥ 0, where the parameter φ > 1 captures the extent to which the merged

firm is more effective than its rivals. To facilitate comparisons with the pre-merger

scenario, we denote the arrival rate of all other firms by yi and the total number
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of followers (including the merged firm) by m. To simplify exposition, we assume

that the higher effectiveness of the merged firm (i.e., φ > 1) lasts until the merged

firm achieves a breakthrough. As we discuss in Section 3, our results will be robust

to making the efficiency gains permanent.

Let L be the value of being a non-merged firm market leader, F be the value of

being a non-merged firm follower, and M (with abuse of notation) be the value of

being a merged-firm follower. By the Principle of Optimality, the values for each

type of firm satisfy

rL = π − y−M(L− F )− φyM(L−W ) (6)

rF = max

{
rK, max

yi
yi (L− F )− c(yi)− φyM(F −W )

}
(7)

rM = max
yM

φyM (V −M)− c(yM), (8)

where y−M =
∑

i 6=M yi, and V and W are the pre-merger values of being a fol-

lower and a leader (see equations (1) and (2)). Equations (6) to (8) possess the

same structure than the equation in the pre-merger scenario, but with two key

distinctions: (i) the existence of a merged firm that is more efficient than the other

followers, and; (ii) once the merged firm succeeds, the efficiencies expire and the

industry returns to the pre-merger scenario with n firms.

In equilibrium, free entry and exit of firms guarantee that F = K. Optimizing

with respect to the followers’ arrival rates and using symmetry we find that the

followers invest according to the incremental rent they obtain from participating

in the race

c′(y∗) = L−K and c′(y∗M) = φ (V −M) . (9)

To characterize the post-merger equilibrium, we split the equilibrium analysis

for when the efficiency gains are small (φ < φ̄) or large (φ ≥ φ̄), where the value of

φ̄ is defined as the smallest value of φ such that the efficiency of the merged firms

incentivizes all non-merged firms to exit (i.e., foreclosure): m = 1. φ̄ is implicitly

defined by6

φ̄f(φ̄(V −M)) =
π − rV
V −K

. (10)

Proposition 3 (Post-merger equilibrium: φ < φ̄). The industry equilibrium is

6Lemma 3 in the Appendix shows the existence and uniqueness of φ̄.
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characterized by F = K, L = V , and by the unique positive M that solves

rM = φf(φ(V −M))(V −M)− c(f(φ(V −M))). (11)

In equilibrium M ∈ (K,V ), y∗ = x∗, and the merged firm’s investment is given

by condition (9) evaluated at the equilibrium value of M . The total number of

followers in the industry is given by

m = n+ 1− φy∗M
y∗

. (12)

An important consequence of Proposition 3 is that the merger policy is in fact

restrictive. Under reversible investments, firms will always have incentives to merge

when they have synergies to exploit. To see this, observe that once two firms have

merged they gain M − 2W , plus the value K of the redundant capital after the

merger. Thus, the incremental value of a merger is M −K > 0, proving that firms

have incentives to merge as long as φ > 1.7

Perhaps surprisingly, Proposition 3 states that the value of being the industry

leader is not affected by a merger. As a consequence, the incremental rent of the

non-merged followers is not affected by the merger, keeping the followers’ R&D

investments constant. This result is driven by the entry and exit conditions. Since

in equilibrium the value of being a follower remains unchanged (i.e., F = W = K)

and a follower’s value is only a function of the leader’s value (see equations (2)

and (7)), the value of being the industry leader must also remain constant after

the merger. The degree of freedom to accommodate the merger efficiencies is,

therefore, the number of followers.

To further explore the implications of a the merger, it is convenient to write

the leader’s value (6) as

rL(pace) = π − ((m− 1)yi + φyM)︸ ︷︷ ︸
pace

(V −K),

which is illustrated in Figure 1.a. From the equation above we can observe that

the equilibrium value of the industry leader is decreasing in the pace of innovation.

Since in equilibrium L = V , the equilibrium pace of innovation is found by setting

L(pace) = V . As can be noted, the solution to this equation is independent of

7See the proof of Proposition 3 for details.
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Figure 1: Equilibrium number of followers under different levels of φ.

φ as long as foreclosure does not take place (i.e., φ ≤ φ̄). This shows that a

merger leaves the pace of innovation unchanged whenever the efficiency gains are

sufficiently small.

To obtain a better understanding of how the merger affects the number of

firms, observe that φyM is increasing in φ (see Lemma 2 in Appendix) while x∗

is unaffected by φ. Consequently, as illustrated in Figure 1.b, for a given pace

of innovation, x̂, a higher φ implies that the merged firms performs more of the

R&D that the industry can accommodate, incentivizing inefficient firms to exit

the market. In turn, the displacement of inefficient firms implies a decrease of

R&D expenditure in the industry. This discussion is summarized in the following

proposition.

Proposition 4 (Effect of a merger I). A merger with small efficiency gains (φ <

φ̄):

1. Increases market concentration (m < n).

2. Does not affect the speed of innovation.

3. Decreases overall R&D expenditure.

When instead the efficiency gains are large (i.e., φ ≥ φ̄), the merged firm

alone can achieve an innovation pace that is higher than the pre-merger pace of

innovation and it induces the exit of all inefficient followers. This result is stated

in the following proposition.

Proposition 5 (Effect of a merger II). If the efficiency gains are large (φ ≥ φ̄),

the merged firm forecloses the market, becoming the unique follower (i.e., m = 1).
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In this case, the merger increases the pace of innovation.

In simple words, Proposition 4 and 5 imply that as long as there is timely (but

costly) entry, mergers are always desirable from an innovation standpoint. Mergers

either decrease the total cost of R&D without affecting the pace of innovation or

directly increase the speed of innovation in the industry. Also noteworthy is that

these results hold even for mergers with φ = 1 (i.e., no efficiency gains) as the

market equilibrium is unaltered by the merger. This implies that the efficiencies

do not even need to be verified to assess the effect of a merger in this model.

3 Robustness

In order to check the robustness of the previous results, we show that the desirabil-

ity of mergers in innovative industries hold in several extensions of the model. We

consider the case when the efficiency gains are small enough that the merged firm

cannot foreclose its rivals (i.e., φ ≤ φ̄). While restrictive, this shifts our attention

to the policy relevant cases where a merger brings less social benefits.

3.1 Permanent Increase in Productivity

In the previous section we assumed that the merger efficiency gains lasted until

the merged firm achieved its first innovation. Although it may be reasonable

to think that in some industries the efficiency gains are transitory, the results

described above do not rely on this assumption. To see this recall that the value

of being the market leader, V , is determined by the inefficient followers’ value

in equilibrium (equations (2) and (7)) in conjunction with the entry and exit

conditions. Therefore, V does not depend on whether the increase in productivity

of the merged firm is permanent. More generally, having firms with different

productivity levels will not affect the leader’s equilibrium value as long as the

marginal firm entering the industry is an inefficient follower. Moreover, since the

pace of innovation is a function of the leader’s value, V , the observation that the

pace of innovation remains constant after a merger also extends to the scenario

with heterogeneous firms.

12



3.2 Merger between a Leader and a Follower

The result in the previous section—the speed of innovation is constant even in

presence of firm heterogeneity—carries through to a scenario in which the merging

parties are the industry leader and a follower. This result is of interest in compe-

tition policy, as the merger guidelines put special attention on whether these type

of mergers would delay the arrival of innovations.

The intuition for the result is as follows. As before, regardless of any efficiency

gain, Arrow’s replacement effect and the infinitely long patent protection implies

that the—now merged—industry leader would still choose to not perform R&D

while leader. In the meantime that the merged firm chooses not to perform R&D,

an entrant compensates for the lost R&D, leaving market competition unchanged

relative to the pre-merger scenario.

Once the merged firm loses its leadership position, the firm becomes a merged

follower and the equilibrium is characterized by that in Section 2.3. That is, a

merger between a leader and a follower has the same implications than one between

two followers. The differences with Section 2.3 are that the merger efficiency gains

are delayed until the merged firm starts to perform R&D and that the merged

leader has the benefit of becoming a more efficient follower once losing its leadership

position.

3.3 Patent Infringement

Thus far we have assumed away the possibility that an innovating follower may

infringe the leader’s patent. This section shows that the results in the previous

section are robust to the inclusion of this possibility. We assume that the reward

obtained from an innovation is represented by a continuously increasing function

`(v) satisfying `(v) ≤ v and `(π/r) > K, where v ≥ 0 is the value of being the

industry leader.8 The function ` encompasses multiple forms of licensing schemes.

For instance, `(v) = βv corresponds to the follower’s reward after Nash-bargaining

with the leader, where β ∈ [0, 1] represents its relative bargaining power (Green

and Scotchmer (1995)); or `(v) = v− αr to the case with license fees consisting of

royalties r > 0 incurred with probability α ∈ [0, 1], where α represents the strength

of the patent (Farrell and Shapiro (2008)).

8That is, the follower’s reward from an innovation increases with the value of being the leader,
license fees are non-negative, and are not prohibitively high.
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The baseline model, described in equations (1) and (2), is now modified in the

following way

rV = π + nx(W − `(V ))

rW = max
{
rK,max

x
x (`(V )−W )− c(x)

}
.

There are two differences with respect to the baseline model. First, when the

leader is replaced, the leader obtains license fees equal to V − `(V ) in addition to

the incremental payoff of W −V . Second, when a follower innovates it receives the

value of an innovation net of license fees, `(V ).

After a merger takes place, the value equations describing the behavior of the

industry leader and the inefficient followers are analogous to the equations above

but incorporating potential innovations coming from a merged firm (see equations

(6) and (7)). Similar to an inefficient follower, the merged firm’s value is now

described by

rM = max
yM

φyM (`(V )−M)− c(yM).

Proposition 6 (Patent Infringement). When patents may be infringed, a merger

does not affect the pace of innovation, it concentrates the industry, and it reduces

the total expenditure in R&D.

The proof follows almost directly from Proposition 4. As before, the endogenous

market structure guarantees that the value of being a follower is equal to K,

regardless of whether a merger takes place. The followers’ equilibrium condition

then determines the value of an innovation net from license fees, `(V ), which in

turn determines V . Since the value of being a leader is unaffected by a merger,

the pace of innovation is also unaffected. Moreover, since the efficient merged firm

displaces inefficient firms, overall R&D expenditure must fall.

3.4 Patent Protection

Previous results are also robust to the possibility that the protection granted by a

patent expires. Following Parra (2015) we assume that patent protection lasts T

years.9 As we shall see below, finite patent protection breaks the stationarity of the

9Qualitatively identical results are obtained by following Acemoglu and Akcigit (2012) and
assuming that patent protection terminates at an exogenous Poisson rate µ ≥ 0.
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model providing leaders with incentives to perform R&D to extend their leadership

position. These incentives increase as the patent expiration date approaches.

No active patent We start the analysis by studying a situation in which no

patent is in place. When an industry leader loses its patent protection we assume

that its innovation is imitated, which drives the leader’s profit to zero and changes

its status to being a follower. Denoting by z the investments when no patent is in

place, we can write the followers’ value of participating in the race as

rŴ = max{rK,max
zi

zi(V − Ŵ )− c(zi) + z−i(W − Ŵ )}

rM̂ = max
zM

φzM(V − M̂)− c(zM) + z−M(M − M̂)

where z−i is the sum of the arrival rates of all rival followers —including the merged

firm when applicable—, z−M =
∑

i 6=M zi, and V and W are the equilibrium values

computed in Proposition 1 (see below for an explanation). The main difference of

this scenario with respect to the baseline model is that now both types of firms

take into consideration that they switch to the scenario with an active patent when

a rival firm innovates.

Active patent We turn now to the scenario in which the leader is protected by

a patent that lasts T years. As shown in the Online Appendix, followers are still

characterized by equations (2) and (8). Hence, the value of being a non-merged

follower and the equilibrium value of obtaining an innovation correspond to the

same values that were computed in Proposition 1.

Denote by t the time that has passed since the last innovation.10 The value of

a leader evolves according to the following differential equation

rV (t) = max
xl,t

{π + xl,t(V − V (t)) + x̂(W − V (t))− c(xi,t) + V ′(t)} , (13)

with boundary condition v(T ) = Ŵ , and where xl,t is the R&D investment per-

formed by the leader at t and x̂ =
∑

i 6=l xi is the aggregate R&D performed by

followers. Equation (13) can be interpreted as follows. At every instant in time t,

the leader receives the profit flow of being the market leader; it innovates at a rate

10For instance, t = 0 means that an innovation just arrived and that the patent will not expire
for another T years. More generally, t < T means that there are T − t years left before patent
expiration.
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xl,t, earning an incremental rent V − V (t); it is replaced at a rate x̂; it pays the

costs of its R&D, c(xi,t); and it loses the value V ′(t) as its patent approaches the

expiration date.11 The boundary condition tells us that, once the patent expires,

the leader becomes one of the many followers in the race.

The first order condition of problem (13) is c′(xl,t) = V − V (t). Arrow’s Re-

placement effect tells us that firms invest according to the incremental rent they

obtain from an innovation. Since the value of an active patent declines as its ex-

piration date approaches, the incremental rent of the leader increases as the time

goes by and so does its investment. Also, because of the boundary condition and

V (0) = V in equilibrium, the leader’s investment is zero at t = 0 and increases to

V − Ŵ when t = T—see Figure 2.a for a representation.

In order to obtain an analytic solution for the differential equation (13) we

need to impose further structure to the cost function. In particular, we assume

that c(x) = x2/2. As shown in the Online Appendix, the solution to the problem

above is

V (t) =
(x̂(2Ŵ −W ) + θ1)(e

ϕ(T−t) − 1) + Ŵϕ(eϕ(T−t) + 1)

(x̂+ θ2)(eϕ(T−t) − 1) + ϕ(eϕ(T−t) + 1)
, (14)

where θ1, θ2, and ϕ are positive constants. It is not hard to verify that equation

(14) is decreasing in t, and satisfies v(T ) = Ŵ . However, the boundary condition

does not guarantee that V (0) = V . The equilibrium value of a newly issued patent,

V (0), is both a function of V (i.e., the value of an innovation that sets the followers

market in equilibrium) and the followers’ pace of innovation x̂.

Proposition 7 (Patent Protection). There is a unique followers’ pace of innova-

tion, x̂∗, that sets the market in equilibrium, i.e., V (0) = V . As a consequence,

regardless of whether a patent is in place, a merger does not affect the pace of

innovation, it concentrates the industry, and reduces total expenditure in R&D.

Once again, the timely entry assumption guarantees that the value of being

a follower is equal to K regardless of whether there is a merger or a patent in

place. When no patent is in place, the value of being a follower Ŵ is a decreasing

function of the pace of innovation in the industry. Consequently, the entry and

exit conditions imply Ŵ = K which in turn determines the innovation pace.12 A

11In equilibrium V ′(t) < 0 for all t < T .
12Note also that when there is no patent in place, firms have no incentives to exit as the

equation for W exactly matches the equation for Ŵ in equilibrium. Implying that the marginal
firm has no incentives to exit when the market becomes leaderless.

16



firms

value

V2

V2(n )V1,

V2( )n

n0
0

ix

(a)yR&Dyunderyfiniteypatentylenght

T

,t
lx ,t

time

(b)yEquilibriumywithyendogenousyquality
R&D

Figure 2: Robustness.

merger simply displaces inefficient followers to keep the innovation pace constant

and reduces the industry expenditure in R&D.

When a patent is in place, a follower’s value equation determines the reward

V that an innovation has to give the marginal firm in order for it to be indifferent

between participating in the race or not. From the leader’s standpoint, the value

of an innovation, V (0), depends on the reward of a new innovation, V , but also

on the level of competition it faces, x̂. As shown in the Online Appendix, the

leader’s value is decreasing in x̂. Thus if V (0) > V (or V (0) < V ) the industry

faces entry (exit), until the market reaches the equilibrium V (0) = V at x̂∗. Once

again, a merger simply incentivizes inefficient followers to exit the market until the

equilibrium followers’ pace of innovation is reached.

3.5 Leader Innovation with Endogenous Quality

In this section we extend the model in two dimensions. First, while we still assume

that followers perform radical innovations that completely replace the technology

in place, we allow for incumbents to improve the quality of their existing prod-

ucts (Acemoglu and Cao, 2015). In addition, we let the increase in quality to be

endogenously determined.

As before, each follower introduces a radical innovation at a rate x1 and flow

cost c(x1). The industry leader can improve the quality of its current product in

q units, increasing its profit flow by d(q). We assume d(q) to be an increasing,

differentiable, and concave function of q. We also assume that d(0) = 0, meaning
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that with no investment, profits cannot increase. The quality increase q arrives at

a Poisson rate x2 attained at flow cost c(x2, q). We assume that this cost function is

increasing and convex. To guarantee uniqueness of equilibrium, we further assume

that the derivative with respect to quality cq(x, q) is convex in x.

Although our results apply to environments in which the leader may improve

the quality of its product multiple times, for illustration purposes, we examine a

situation in which the leader can increase the quality of its product only once. Let

Vs be the value of being a leader that has innovated s ∈ {1, 2} times in a row. The

pre-merger equilibrium is characterized by the followers value equation (2) and by

replacing the leader’s value equation (1) with the next two equations

rV1 = max
x2,q

π + x2 (V2(q)− V1)− c(x2, q) + nx1(W − V1) (15)

rV2(q) = π + d(q) + nx1(W − V2(q)), (16)

The first equation describes the value of a being a leader that has innovated only

once and that is expending resources to increase the quality of its product by an

endogenously determined magnitude q at rate x2. The second equation describes

the value of a leader that has increased the quality of its innovation in q units and

enjoys a profit flow π + d(q) while it remains the industry leader.

The first order condition for the followers is given by equation (3), whereas the

first order conditions for a leader investing in R&D are

cx (x∗2, q
∗) = V2 (q∗)− V1 and cq (x∗2, q

∗) = x∗2V
′
2 (q∗) . (17)

The first condition tells us that the leader will invest in speed as a function of

the incremental rent from innovating, V2(q) − V1. The second condition tells us

that quality and speed are complementary at the moment of choosing the optimal

quality. It is not hard to verify that V ′2 > 0, as higher quality increases the leader’s

profit flow after improving its product.

Similarly, the post-merger equilibrium is characterized by the followers’ value

equation (7), the merged firm equation (8), and by replacing the leader condition

(6) with its analog of equations (15) and (16).

Proposition 8 (Innovating leader). The industry has a unique equilibrium before

and after the merger. With a merger, the leader’s innovation rate, the leader’s

choice of quality, and the followers’ pace of innovation remain constant. A merger,

however, reduces overall R&D expenditure. As a consequence, mergers are welfare
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improving.

As before, the solution of the followers problem (2) in conjunction with the

entry and exit conditions determine the equilibrium value of V1 and the investment

rate of the followers, x∗1. The key difference with the baseline model arises in

determining the value of being an innovating leader, V2, and the number of followers

in the industry. In equilibrium, V2 depends on the leader’s own quality investment

decision and the total number of followers, n. Figure 2.b illustrates the intuition of

how the number of followers and the value of being a leader that has innovated V2

are jointly determined. Fixing an arbitrary quality q > 0, the equilibrium equation

(16) can be written as

V2(n) =
π + d(q) + nx∗1W

r + nx∗1
,

a decreasing function of n, as an increase in the number of followers shortens the

life span of the leader, decreasing its value. On the other hand, given the value of

V1, it is not hard to verify that equation (15) implies an increasing relation between

n and V2. That is, a larger number of competitors has to be compensated with

larger R&D returns, V2(q), to keep the value of the innovating leader fixed at V1.

The equilibrium is, thus, the unique intersection of those curves.

When a merger occurs, the entry and exit conditions guarantee W = F = K.

This implies that the equilibrium condition for the followers before and after the

merger are identical, which determine that both the value of being a leader that

has innovated once and the followers’ investments remain constant (i.e., L1 = V1

and y∗1 = x∗1, respectively). Consequently, the number of followers m adjusts so

that both the pace of innovation, (m− 1)y∗1 + φyM = nx∗1, and the quality choice

of the leader remain unchanged in equilibrium.

3.6 Price Competition in a Quality Ladder

For simplicity, previous sections have analyzed the impact of a merger ignoring

that firms may compete in the downstream product market. Here we show that

the results carry through to environments in which innovations lead to a lower

marginal cost of production and firms compete in prices in the product market.

We do this by simply showing that such a scenario maps directly into the setting

in Section 3.5.

Suppose the product market is represented by a hyperbolic demand q = A/p,

where q is quantity, p the price, and A is any positive constant. The industry
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leader invest in R&D in order to reduce the current lowest marginal cost in the

market by an endogenously-determined factor 1 − α ∈ [0, 1]. Followers instead

invest to reduce the marginal cost by a predetermined factor β ∈ (0, 1).13 That

is, if the current marginal cost is τ , breakthroughs of size (1 − α) and β would

reduce marginal cost to (1 − α)τ and βτ , respectively. We assume that the cost

of investing in technologies that drives the marginal cost to zero is prohibitively

costly, which makes c(x, α) consistent with the assumptions in Section 3.5.

It is not hard to check that in this model the equilibrium price in the product

market is equal to the second lowest marginal cost, κ. At this price, a succeeding

follower would earn a profit flow of π = (κ − βκ)A/κ = (1 − β)A, which is

independent of the number of innovations that have taken place. That is, first

time innovators earn a constant profit flow as in Section 3.5.

Finally, note that the profit flow of a leader that has achieved two consecutive

innovations is d(α) = (1− β(1− α))A, which is increasing and (trivially) concave

in α.14 Note also that d(0) = 0. Consequently, the price competition environment

described here maps directly into the setting in Section 3.5, which implies that all

the results above apply to this case as well.

3.7 Irreversible Investments

We now investigate the industry equilibrium when start-up investments, K, are

irreversible. The irreversibility of K introduces an exit friction under which firms

may choose not to exit the industry when facing more competition due to a merger.

In concrete, we assume that by exiting, a firm does not recover any if of its initial

investment.15

Since prior to allowing the merger no firm was faced with incentives to exit the

market, the pre-merger analysis corresponds to that in Section 2.2. As a result, we

focus on analyzing the post-merger period. Since the exit condition is non-binding

for the market leader and merged firm, the only equation that changes is that of

13The assumption that β is exogenously given can be relaxed. If followers were to choose how
much to improve the current technology, their choice of β would be the same regardless of the
marginal cost in the industry. Thus, the model would still map to that of Section 3.5.

14Note also that the incremental flow of a t-th innovation is Aβαt

∏t−1
j=2(1−αj), where 1−αk

is the endogenously-determined cost reduction factor of the k-th innovation. Note that the incre-
mental flow is decreasing in t, which justifies that leaders will pursue only so many improvements
when the cost function, c, includes a fixed cost of performing R&D.

15More generally, qualitatively identical results are obtained by assuming that firms recover a
fraction δ ∈ [0, 1) of K. For ease in exposition, we present the case δ = 0.
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the followers, which becomes

rF = max

{
0,max

yi
yi(L− F ) + φyM(W − F )− c(yi)

}
, (18)

where W is the pre-merger value of being a follower defined by (2). The interpre-

tation of this value function is analogous to that in the baseline model, with the

difference that by exiting a follower does not recover its start-up investment.16 The

exit friction reduces the opportunity cost of firms, which will create cases where

the market will accommodate “too many” firms relative to the frictionless case.

Using equation (12) define φ̃ as the value of φ under which m = n − 1 in the

baseline model, i.e.,

φ̃f(φ̃(V −M)) = 2f(V −K). (19)

In words, φ̃ is the value of φ such that no firm chooses to enter or exit after a merger.

When the efficiency gains of a merger are small (φ ∈ [1, φ̃]) firms will enter (rather

than exit) the market.17 Thus, the number of firms under exit friction mf equals

the baseline number of firm m > n−1. Since no firm exercises its option of exiting

the market, the exit friction plays no role for these values of φ. Consequently, all

the results in Proposition 4 apply to the case of small efficiency gains.

On the other hand, when the efficiency gains from a merger are large (φ > φ̃),

there would be exit in the frictionless case. With exit frictions, however, firms

choose not to exit because their opportunity cost is less attractive than remaining

in the race: 0 ≤ F ≤ K. This implies that there are “too many” firms relative to

the frictionless case (i.e., mf = n− 1 > m). Figure 3.a illustrates this point.

Proposition 9 (Irreversible Investments). An R&D enhancing merger under ir-

reversible investments,

1. Increases market concentration (m ≤ mf < n).

2. Increases the speed of innovation when φ > φ̃, while it does not affect the

speed of innovation when φ ∈ [1, φ̃].

Figure 3.b depicts aggregate investments ŷ after a merger takes place. When

a merger leads to small efficiency gains, entry ensures that the pace of innovation

16Note that in Section 2, firms had incentives to merge for all values of φ > 1. With exit
frictions, incentives to merge arise only when φ is high enough to compensate for the losses that
the merged firm suffers when liberating capital. That is, φ must be such that M − 2K > 0.
Examples that satisfy this condition are available upon request.

17Existence of φ̃ follows from similar arguments to those given in Lemma 3.
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corresponds to that in the pre-merger scenario. Once the exit friction starts to

bind, there are “too many” firms investing with respect the frictionless case, which

speeds up the innovation process. Thus, irreversible investments simply reinforce

the desirability of a merger from an innovation standpoint.

4 Discussion and Concluding Remarks

The tension between productive efficiency and market concentration is at heart

of traditional merger analysis. Several authors argue that analyzing a merger in

innovative industries based on this tradeoff alone is inappropriate. For instance,

the merging firms may not even compete in the product market. To this end, we

propose a dynamic framework for merger analysis in innovative industries. The

framework follows a “creative destruction” approach where new products replace

old ones and firms compete to invent a sequence of products. Our approach cap-

tures many of the issues that make mergers in innovative industries special: market

structure changes rapidly by the introduction of new products, market leaders face

the threat of being replaced by new products, merging firms may not even have

products in the product market, and R&D may be towards products that are yet

to reach the market. We use our framework to analyze how mergers with R&D

efficiencies affect market outcomes over time.

We find that timely (but costly) entry is a sufficient condition to guarantee the

desirability of a merger from an innovation standpoint. In particular, a merger

either decreases the waiting time between innovations or keeps the waiting time
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constant while reducing the industry expenditure in R&D. We show that this

finding is robust to many variations of the model, which makes it a useful result

for competition policy.

We do wish to point out that our welfare results are from an innovation stand-

point only. To see this, consider the setting in Section 3.6 where firms compete in

prices in the product market and to achieve innovations that lower the marginal

cost of production. A merger between the market leader and the follower with

second lowest marginal cost increases the price in the product market and, at the

same time, is welfare improving along the innovation dimension. This example

shows that there may be a tension between the classic Williamson tradeoff in the

product market and the dynamic benefits of R&D efficiencies.

One may also argue that in some industries entry costs are irreversible and

have evolved to become prohibitive, implying that market structure is essentially

fixed. In Marshall and Parra (2015) we consider such case and note that some new

issues arise. We find that mergers create a tradeoff between less competition in

the patent race and R&D efficiency gains, which is created by the absence of the

stabilizing effects of entry and exit. We also argue that in this case, in particular,

a leader and a follower may have extra incentives to merge as a merger would

extend the expected lifespan of the leader by decreasing the pace of innovation in

the industry. As argued in Section 3.2, this preemptive motive does not exist when

timely (but costly) entry is feasible.

We believe that this framework and set of results contribute to the development

of a comprehensive theory of mergers. In particular, it is a first step towards

understanding the key trade-offs generated by mergers in innovative industries.

References

Acemoglu, D. and Akcigit, U. (2012). Intellectual property rights policy, competi-

tion and innovation. Journal of the European Economic Association, 10(1):1–42.

Acemoglu, D. and Cao, D. (2015). Innovation by entrants and incumbents. Journal

of Economic Theory, 157(0):255 – 294.

Aghion, P., Bloom, N., Blundell, R., Griffith, R., and Howitt, P. (2005). Com-

petition and innovation: An inverted-u relationship. The Quarterly Journal of

Economics, 120(2):pp. 701–728.

23



Aghion, P. and Howitt, P. (1992). A model of growth through creative destruction.

Econometrica, 60(2):pp. 323–351.

Blundell, R., Griffith, R., and Reenen, J. V. (1999). Market share, market value and

innovation in a panel of british manufacturing firms. The Review of Economic

Studies, 66(3):529–554.

Boutin, X. (2015). Mergers and the dynamics of innovation. Manuscript.

Dasgupta, P. and Stiglitz, J. (1980a). Industrial structure and the nature of inno-

vative activity. The Economic Journal, 90(358):266–293.

Dasgupta, P. and Stiglitz, J. (1980b). Uncertainty, industrial structure, and the

speed of r&d. The Bell Journal of Economics, 11(1):1–28.

Entezarkheir, M. and Moshiri, S. (2015). Merger induced changes of innovation:

Evidence from a panel of u.s. firms. Working Paper.

Evans, D. S. and Schmalansee, R. (2002). Some economic aspects of antitrust

analysis in dynamically competitive industries. In Jaffe, A., Lerner, J., and Stern,

S., editors, Innovation Policy and the Economy, Vol. 2. MIT Press, Cambridge.

Farrell, J. and Shapiro, C. (1990). Horizontal mergers: An equilibrium analysis.

American Economic Review, 80(1):107–126.

Farrell, J. and Shapiro, C. (2008). How strong are weak patents? The American

Economic Review, 98(4):pp. 1347–1369.

Gilbert, R. J. and Sunshine, S. C. (1995). Incorporating dynamic efficiency con-

cerns in merger analysis: The use of innovation markets. Antitrust Law Journal,

63(2):569–601.

Gowrisankaran, G. (1999). A dynamic model of endogenous horizontal mergers.

Rand Journal of Economics, 30(1):56–83.

Gowrisankaran, G. and Holmes, T. J. (2004). Mergers and the evolution of in-

dustry concentration: Results from the dominant-firm model. Rand Journal of

Economics, 35(3):561–582.

Green, J. R. and Scotchmer, S. (1995). On the division of profit in sequential

innovation. The RAND Journal of Economics, 26(1):pp. 20–33.

24



Hopenhayn, H., Llobet, G., and Mitchell, M. (2006). Rewarding sequential innova-

tors: Prizes, patents, and buyouts. Journal of Political Economy, 114(6):1041–

1068.

Igami, M. and Uetake, K. (2015). Mergers, innovation, and entry-exit dynamics:

The consolidation of the hard disk drive industry (1976-2014). Unpublished.

Katz, M. and Farrel, J. (1998). The effects of antitrust and intellectual property

law on compatibility and innovation. The Antitrust Bulletin, 43(3/4).

Katz, M. L. and Shelanski, H. A. (2005). Merger policy and innovation: Must

enforcement change to account for technological change? In Jaffe, A., Lerner,

J., and Stern, S., editors, Innovation Policy and the Economy, Vol. 5. MIT

Press, Cambridge.

Katz, M. L. and Shelanski, H. A. (2007). Mergers and innovation. Antitrust Law

Journal, 74(1):1–85.

Lee, T. and Wilde, L. L. (1980). Market structure and innovation: A reformulation.

The Quarterly Journal of Economics, 94(2):pp. 429–436.

Lemus, J. and Temnyalov, E. (2015). Outsourcing patent enforcement: The ef-

fect of “patent privateers” on litigation and R&D investments. Northwestern

Working Paper.

Loury, G. C. (1979). Market structure and innovation. The Quarterly Journal of

Economics, 93(3):pp. 395–410.

Marshall, G. and Parra, A. (2015). Mergers in innovative industries: A fixed

market structure analysis. UBC Working Paper.

McAfee, R. P. and Williams, M. A. (1992). Horizontal mergers and antitrust policy.

The Journal of Industrial Economics, 40(2):181–187.

Mermelstein, B., Nocke, V., Satterthwaite, M. A., and Whinston, M. D. (2015).

Internal versus external growth in industries with scale economies: A computa-

tional model of optimal merger policy. Unpublished.

Nocke, V. and Whinston, M. D. (2010). Dynamic merger review. Journal of

Political Economy, 118(6):1200–1251.

25



Nocke, V. and Whinston, M. D. (2013). Merger policy with merger choice. Amer-

ican Economic Review, 103(2):1006–1033.

Ornaghi, C. (2009). Mergers and innovation in big pharma. International Journal

of Industrial Organization, 27:70–79.

Parra, A. (2015). Sequential innovation and patent policy. UBC Working Paper.

Perry, M. K. and Porter, R. H. (1985). Oligopoly and the incentive for horizontal

merger. American Economic Review, 75(1):219–227.

Pesendorfer, M. (2005). Mergers under entry. Rand Journal of Economics,

36(Autumn):661–79.

Reinganum, J. F. (1982). A dynamic game of R and D: Patent protection and

competitive behavior. Econometrica, 50(3):pp. 671–688.

Reinganum, J. F. (1983). Uncertain innovation and the persistence of monopoly.

The American Economic Review, 73(4):pp. 741–748.

Reinganum, J. F. (1985). Innovation and industry evolution. The Quarterly Jour-

nal of Economics, 100(1):pp. 81–99.

Salant, S. W., Switzer, S., and Reynolds, R. J. (1983). Losses from horizontal

merger: The effects of an exogenous change in industry structure on cournot-

nash equilibrium. The Quarterly Journal of Economics, 98(2):185–199.

Schmalansee, R. (2000). Antitrust issues in schumpeterian industries. American

Economic Review, 90(2):192–196.

Segal, I. and Whinston, M. D. (2007). Antitrust in innovative industries. American

Economic Review, 97(5):1703–1730.

U.S. Department of Justice and the Federal Trade Commission (2010). Horizontal

merger guidelines. http://www.justice.gov/atr/public/guidelines/hmg-2010.pdf.

Williamson, O. E. (1968). Economies as an antitrust defense: The welfare tradeoffs.

The American Economic Review, pages 18–36.

26



Appendix

A Preliminary Results

Lemma 1. The function f(z) implicitly defined by c′(f(z)) = z satisfies:
1. f(z) > 0 for all z > 0 and f(0) ≥ 0.
2. f ′(z) > 0 for all z > 0.
3. Let h(z) = zf(z)− c(f(z)) for z ≥ 0. Then h′(z) = f(z) > 0 for all z ≥ 0.

Proof. 1. From c(x) being increasing and differentiable, c′(x) > 0 for all x > 0.
From c(x) being convex, c′′(x) > 0 for all x > 0. Thus, c′(x) is unbounded above
and for each z there exists a unique value of x = f(z) > 0 such that c′(x) = z.
2. The result follows from the derivative of the inverse function being equal to
f ′(z) = 1/c′(f(z)) > 0.
3. Differentiating h and using c′(f(z)) = z delivers h′(z) = f(z). The result then
follows from claim 1.

Lemma 2. The following are increasing in φ:
1. The value of being a merged firm, M .
2. The R&D of the merged firm, y∗M .
3. The arrival rate of the merged firm, φy∗M , which is also unbounded above.

Proof. 1. Implicit differentiation of (11) delivers

dM

dφ
= (V −M)

y∗M
r + φy∗M

> 0.

2. Using the expression above and Lemma 1.2, the derivative of y∗M = f(φ(V −M))
is given by

dy∗M
dφ

= f ′(φ(V −M))(V −M)
r

r + φy∗M
> 0.

3. The result is a consequence of the previous claim and φ being unbounded
above.

Lemma 3. There exist a unique value of φ1 implicity defined by

π − rV
V −K

− φ1f(φ1(V −M)) = 0.

Proof. Define ψ(φ) = (π − rV )/(V −K) − φf(φ(V −M)). From equation (5) if
follows that ψ(1) = (n− 1)f(V −K) > 0, since prior to the merger it is true that
n > 1 and V > K (see Proposition 1 and Lemma 1.1). From Lemma 2.3 we know
that φf(φ(V −M)) is increasing and unbounded above in φ. Thus, ψ single-crosses
zero from above and uniqueness of φ1 follows.
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B Proofs

Proof of Proposition 1 Equation (4) follows from the entry and exit conditions
and replacing x∗ into equation (2). It has a unique solution such that V > K as
the right hand side of (4): (i) satisfies −c(f(0)) < rK if V = K; (ii) is strictly
increasing in V (from the the envelope theorem we know that its derivative is
f(V −K), which we found is positive in Lemma 1.1), and; (iii) is unbounded above
as its second derivative is f ′(V − K), which we found is positive in Lemma 1.2.
The number of firms follows from replacing x̂ = nx∗ in equation (1) and solving
for n. In equilibrium n > 0, otherwise V = π/r and c(0) < V −K, which implies
that entry would occur.

Proof of Proposition 2 Using Lemma 1.3 and implicit differentiation of equa-
tion (4) we obtain

dV

dK
=
x∗ + r

x∗
dV

dr
=
K

x∗
dx∗

dK
=
rf ′

x∗
dx∗

dr
=
Kf ′

x∗

By Lemma 1.1 and 1.2 all derivatives are positive. Differentiating equation (5) we
obtain:

dx̂

dπ
=

1

V −K
> 0

dn

dπ
=

1

x∗
dx̂

dπ
> 0

dx̂

dK
= −r

(
π − rK

x∗(V −K)
+
dx̂

dπ

)
< 0

dn

dK
=

1

x∗

(
dx̂

dK
− nrf ′

x∗

)
< 0

dx̂

dr
= −dx̂

dπ

(
V +

K(π − rK)

x∗(V −K)

)
< 0

dx∗

dr
=
dx̂

dr
− nKf ′

(x∗)2
< 0.

Proof of Proposition 3 The entry and exit conditions imply that equation
(7) coincides with equation (4), implying that the equilibrium value for L is the
same as that for V in Proposition 1, i.e., L = V . The entry and exit conditions,
the followers first order condition in (9), and L = V imply that y∗ = x∗. The
value of M is determined by replacing the merged firm first order condition (9) in
(8) and solving. To see that M has a unique solution observe that the left hand
side of (11) is increasing in M , and the right hand side is decreasing in M by
Lemma 1.3. Hence, if there is a solution, it must be unique. Imposing M = V
delivers rV > −c(f(0)). Imposing M = K delivers

rK = (V −K)f(V −K)− c(f(V −K))

< φ(V −K)f(φ(V −K))− c(f(φ(V −K))),

where the equality follows from (4) and the inequality follows from φ > 1 and
Lemma 1.3. The result then follows from the intermediate value theorem and it
immediately implies that M ∈ (K,V ) when φ > 1, and M = K when φ = 1.
Finally, an expression for m is obtained by replacing y−M = (m−1)y∗ and y∗M into
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equation (6).

Proof of Proposition 4 1. From (12) we know that n > m if and only if
φyM > y∗. When φ = 1, condition (11) implies φyM = y∗. From Lemma 2.3, we
know that φyM increases with φ. Combined, these deliver the result.
2. In equilibrium, we have V = L. Then, using equations (1) and (6) in equilib-
rium, we obtain that

nx∗i =
rV − π
K − V

=
rL− π
K − L

= (m− 1)y∗i + φy∗m,

which proves the result.
3. Using x∗ = y∗ and equation (12), we write the change in expenditure as

∆Exp = nc(x∗)− ((m− 1)c(x∗) + c(y∗M)) =
φy∗M
x∗

c(x∗)− c(y∗M).

Using the equilibrium values of (2) and (8) we substitute for c(x∗) and c(y∗M) in
the expression above and obtain

∆Exp = φy∗M

(
M − r + x∗

x∗
K

)
+ rM. (20)

We note that when φ = 1, φy∗M = x∗ and M = K so that ∆Exp = 0. Claim 1
shows that dM/dφ and d(φy∗M)/dφ are both positive, which implies ∆Exp > 0 for
all φ > 1.

Proof of Proposition 5 For φ ≥ φ1, we have that m = 1 and that the pace of in-
novation is given by φy∗M = φf(φ(V −M)). At φ = φ1 we know, from Proposition 4,
that φ1y

∗
M = nf(V − K). Also, from Lemma 2.3 we know that d(φy∗M)/dφ > 0.

Combined, these relationships establish that the pace of innovation increases after
the merger when φ > φ1.
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C Omitted Proofs

Proof of Proposition 6 First, a note on pre- and post-merger equilibria. The
entry and exit conditions imply that W = F = K, which together with the optimal
investment levels, determine `(V ) = `(L). Existence and uniqueness follow from
arguments analogous to those in Proof of Proposition 1. The number of firms
pre-merger and post-merger are given by

n =
π − rV

x∗(`(V )−K)
and m = n+ 1− φyM

x∗
.

The arguments to establish the effects of a merger are analogous to those in
Proof of Proposition 4. That a merger increases market concentration follows from
m = n when φ = 1 and m being decreasing in φ. Constant pace of innovation
follows from `(V ) = `(L) and the pace of innovation being only a function of the
value of the leader. Finally, as in Proof of Proposition 4, the change in expenditure
satisfies equation (20), and the same argument applies.

Proof of Proposition 7 See Appendix D.

Proof of Proposition 8 By Proposition 1, the followers have a unique equilib-
rium which determines V1. The first order conditions (17) characterize the equi-
librium for an innovating leader. The Hessian of problem (15) is

(cxxcqq − (cxq)
2) + V ′2(q)cxq − xV ′′2 (q) + V ′2(q)(cxq − V ′2(q))

The first parenthesis is positive because convexity of costs. The second and third
terms are positive because concavity of d(q) implies V ′2(q) > 0 and V ′′2 (q) < 0.
Using condition (17) the last parenthesis can be written as cxq − cq/x ≥ 0. Where
positive sign follows concavity in x of cq. Thus the Hessian is positive, the solution
is strict local maximum, and existence of equilibrium is guaranteed.

Uniqueness follows from observing that corner solutions (i.e., no R&D of infi-
nite R&D) are not optimal, and that every point satisfying (17) is a locally unique
maximum. Thus, since there are no minimum or saddle points, at most one max-
imum exists.
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After a merger the frictionless assumption implies W = F = K. Thus, the
followers value equation in a merger scenario becomes:

rK = max
y1

y1(L1 −K)− c(y1)

which is the same value equations of the followers pre-merger. In equilibrium this
implies L1 = V1 and y∗1 = x∗1. Let q̂ represent the quality choice after a merger,
the equilibrium value equations for a leader in the different states are

rV1 = max
y2,q̂

π + y2(L2(q̂)− V1)− c(y2, q̂) + ((m− 1)x1 + φyM)(K − V1)

rL2(q̂) = π + d(q̂) + ((m− 1)x1 + φyM)(K − L2(q̂))

For any value of φyM , if m adjust so that (m−1)y∗1 +φy∗M = nx∗1. Then, the leader
faces the same problem as in the pre-merger scenario. Therefore, q̂ = q and since
the problem has a unique equilibrium, the result follows.

To establish the results in Proposition 4 observe that a merger increases market
concentration because m = n when φ = 1 and m decreases in φ. Constant pace
of innovation follows from V1 = L1, V2 = L2, and the same choice of quality
improvement after the merger. Finally, the change in expenditure can be written
as in equation (20) which is increasing in φ and takes the value of zero when φ = 1,
proving the result that the expenditure falls after the merger.

Proof of Proposition 9 1. Follows directly from the definition of mf .
2. We separately analyze the cases when φ ∈ [1, φ̃], φ > φ̃. When φ ∈ [1, φ̃], there
is entry of firms after the merger as m > n − 1, implying that F = K and that
L = V . Consequently, the arguments in the proof of Proposition 4 apply, and the
result follows.

When φ > φ̃. The arrival rate of innovations is given by ŷ(φ) = (n− 2)f(L−
F ) + φf(φ(V −M)). The derivative of ŷ(φ) with respect to φ is given by

dŷ

dφ
=
dφy∗M
dφ

[
1− (n− 2)(L− F )f ′(L− F )

r + (n− 1)y∗ + n(L− F )f ′(L− F ) + φy∗M

]
=
dφy∗M
dφ

r + (n− 1)y∗ + 2(L− F )f ′(L− F ) + φy∗M
r + (n− 1)y∗ + n(L− F )f ′(L− F ) + φy∗M

> 0,

where we make use of dφyM/dφ > 0 (see Lemma 2.3) and

d(L− F )

dφ
= −dφy

∗
M

dφ

(L− F )

r + (n− 1)y∗ + n(L− F )f ′(L− F ) + φy∗M
.

Since ŷ(φ1) = x̂ and dŷ/dφ > 0, the result follows.
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D Equilibrium with Finite Patent Length

Suppose patents have a maximal duration of T years. Denote by xl,t the investment
of the leader at time t and by xi,t the investments of entrant i. Denote the total
number of firms participating in the race—including the leader—by n, and define
xt =

∑
k∈n xk,t as the total investment in R&D at time t, and x−j,t =

∑
k∈n\j xk,t

as the total investment performed by all firms but j.
Let Vt be the value of being the leader with a patent that was issued t years

ago and Wt be the value of being a follower that faces a leader with a patent issued
t years ago. We can write the payoffs as18

Vt = max
{xi,s}∞s=t

∫ T

t

(π + xi,sV0 + x−i,sW0 − c(xi,s))e−
∫ s
t r+xkdkds+ e−

∫ T
t r+xkdkŴ

Wt = max

{
K, max
{xj,s}∞s=t

∫ ∞
t

(xj,sV0 + x−j,sW0 − c (xj,s)) e
−

∫ s
t (r+xk)dkds

}
,

where Ŵ is the value of being a follower in a scenario with no active patent. At
instant of time t, the value of participating in the race is equal to the expected
discounted sum of all future payoffs. For the leader this corresponds to the profit
flow, π; the costs of R&D, c(xl,t); the value of a new innovation, V0, arriving at a
rate xl,t; and the value of becoming a new follower, W0, arriving at a rate x−i,t.
The value of the followers is determined in a similar fashion.

Using the principle of optimality, we write the problem above as

rVt = max
xl,t

{π + xl,t(V0 − Vt) + x−l,t(W0 − Vt)− c(xl,t) + V ′t }

rWt =

{
rK,max

xi,t

{xi,t(V0 −Wt) + x−i,t(W0 −Wt)− c(xi,t) +W ′
t}
}

with corresponding first order conditions: c′(xl,t) = V0 − Vt and c(xi,t) = V0 −Wt.
Free entry and exit implies Wt = K for all t, thus c′(xi,t) = V0−K. Note that the
followers’ investments are constant over time. We denote the followers’ investments
by x∗i = f(V0 − K). Replacing x∗i into the followers’ value, we can see that the
equation becomes

rK = f(V0 −K)(V0 −K)− c(f(V0 −K))

which corresponds to equation (4) in the baseline model. This implies that, in
order to make the marginal follower indifferent between entering the race and
not we must have V0 = V in equilibrium. Assuming a quadratic cost function
c (x) = x2/2 , using x−l,t = (n− 1)x∗i ≡ x̂, and replacing the first order conditions
we obtain the following differential equation

V ′t = aV 2
t + bVt + c

18For space considerations we use the more compact notation Vt instead of V (t).
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where a = −1/2, b = r + x̂ + V , and c = −(2x̂W + 2π + V 2)/2. By defining
ϕ2 = b2 − 4ac, we can write the general solution to this differential equation as19

Vt = b+ ϕ
1 + exp (ϕ (C − t))
1− exp (ϕ (C − t))

where C a the constant of integration which defines a particular solution. To
obtain the particular solution we use the boundary condition VT = Ŵ , from where
we obtain

C = T +
1

ϕ
ln

(
Ŵ − b− ϕ
Ŵ − b+ ϕ

)
.

By replacing C into the general solution, we obtain equation (14), where θ1 =
(2π − rK) + V (V −K) and θ2 = r + (V −K). θ1 and θ2 are both positive given
the assumptions of the model.

Equilibrium Existence Using the Intermediate Value theorem we prove that
for every V > K there is a value of x̂ such that V0 = V . To simplify notation, we
make use of the equilibrium condition Ŵ = W = K. Define f(x̂) = V0 − V , or

f(x̂) =
(x̂K + θ1)(e

ϕT − 1) +Kϕ(eϕT + 1)

(x̂+ θ2)(eϕT − 1) + ϕ(eϕT + 1)
− V.

It is not hard to verify that limx̂→∞ f(x̂) = K − V < 0. For the upper limit it is
convenient to write f(x̂) as

f(x̂) =
(x̂(K − V ) + θ1 − V θ2) + (K − V )ϕ eϕT+1

eϕT−1

(x̂+ θ2) + ϕ eϕT+1
eϕT−1

.

Since the denominator is always positive, it is sufficient to find a value of x̂ that
makes the numerator positive. Take the value of x̂ = xo that makes ϕ2 = 0.20

Then, it suffices to show that xo(K − V ) + θ1 − V θ2 > 0. Replacing, we obtain

xo(K − V ) + θ1 − V θ2 = 2(π − rK)
(
(V −K)2 + 2(π − rK)

)
which is positive under our usual assumptions.

Equilibrium Uniqueness To prove uniqueness we show that V0 is strictly de-
creasing in competition, thus f(x̂) single crosses zero from above. To this end,
we show that the derivative of f(x̂) is globally negative. To determine the sign of

19The expression ϕ2 is increasing in x̂. Depending on x̂, the value ϕ could be real or imaginary.
We will assume throughout the proof that ϕ is real, which will be the case in equilibrium.

20In order to guarantee a positive speed of innovation in equilibrium we need xo = −θ2 +√
(V −K)2 + 2(π − rK) > 0. This is guaranteed by π > (r +

√
2rK)2/2 which is a slightly

stronger condition than π > rK.
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df/dx̂ we decompose the derivative as follows

df(x̂)

dx̂
=
∂V0
∂x̂

+
∂V0
∂ϕ

dϕ

dx̂
.

We know that dϕ/dx̂ > 0 and

∂V0
∂x̂

= −
((V −K)2 + 2(π − rK))

(
eTϕ − 1

)2
((V −K + r + x̂)(eϕT − 1) + ϕ(1 + eϕT ))2

< 0

under our usual assumptions. Finally,

∂V0
∂ϕ

= −
((V −K)2 + 2(π − rK))

(
e2(Tϕ) − 2TϕeTϕ − 1

)
((V −K + r + x̂) (eϕT − 1) + ϕ (1 + eϕT ))2

< 0.

To establish this last inequality, we need to show that e2(Tϕ) − 2TϕeTϕ − 1 > 0.
Define the function h(y) ≡ e2y − 2yey − 1 for y ≥ 0. We show that h(y) > 0 for all
y > 0, which implies the result. Observe that h(0) = 0 and h′(y) = 2ey(ey− y− 1)
which is positive for all y > 0 as the term in parenthesis is zero at y = 0 and has a
positive slope. Therefore, ∂V0/∂ϕ < 0 which together with dϕ/dx̂ > 0 and ∂V0/∂x̂
proves that df/dx̂ < 0 for all x̂.

Proof of Proposition 7 The arguments to establish the effects of a merger are
analogous to those in Proof of Proposition 4. Market concentration increases in φ
and the pace of innovation is constant due to the free entry and exit conditions
not altering V (0) nor Vt as a consequence of a merger. That expenditure decreases
with the merger follows from the merger not affecting the investment dynamics
of the leader and by the followers’ change of expenditure satisfying equation (20),
which is increasing in φ.
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