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C Equilibrium Exists and is in Cutoff Strategies

An entry strategy for firm i is a mapping from the firm’s type vi to a probability
of entering in the market τi : [a, b]→ [0, 1]. We assume that the strategy of firm i
is an integrable function with respect to its own type vi. We study the Bayesian
Equilibria of the entry game. Denote by τ = (τ1, τ2, . . . , τn) the vector of entry
strategies. Given a strategy profile τ , the expected profit of firm i after drawing
the type vi but before entry decisions are realized is

Πi(vi; τ) = τi(vi)

[∑
e∈Ei

{∫
[a,b]n−1

πi(ve) Pr[e|τ−i, v−i]φ(v−i)d
n−1v−i

}]
(C.1)

where Pr[e|τ−i, v−i] is the probability of observing market structure e, given the
vector of strategies τ−i and the realizations of types v−i. The integral is over each
of the n−1 dimensions of firm i’s competitors types, v−i. Conditional on i’s entry,
which occurs with probability τi(vi), the expected profit of firm i consists of the
expected sum of profit that firm i would get under each feasible market structure,
which is induced by the vector of strategies τ and the realization of types v−i,
integrated over all possible realizations of the competitors’ types, φ(v−i).

Definition (Cutoff Strategy). A strategy τi(vi) is called cutoff if there exists a
threshold x > 0 such that

τi(vi) =

{
1 if vi ≥ x
0 if vi < x

.

A cutoff strategy specifies whether a firm enters a market with certainty de-
pending on whether its type is above or below some given threshold. In any best
response, there exists a type, vi, that makes a firm indifferent to enter the market.
We break this indifference by assuming that firms enter. For a cutoff strategy, this
means that a firm enters when its type is greater or equal to its cutoff. Given
a vector τ−i, a best response is given by the strategy τ̂i that maximizes (C.1) at
every value of vi.

A Bayesian Nash equilibrium is defined by a vector of strategies τ in which every
firm best respond to each other. The next proposition establishes the existence of
an equilibrium and that, without loss of generality, we can restrict our analysis to
cutoff strategies.
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Lemma C.1. For any game (πi, Fi)
n
i=1 satisfying assumptions A1-A3, there exists

an equilibrium. For any vector τ−i, firm i’s best response is a cutoff strategy.
Therefore, every equilibrium of the game is in cutoff strategies.

Proof of Lemma C.1.
best responses are cutoff strategies : Fix any firm i and vector of strategies τ . By
assumptions A3 and A2, we know that in equilibrium no firm will enter if they
draw vj < vj. For relevance, impose that τ satisfies the restriction τj(vj) = 0
in that range. Because firm i’s profit is linear in τi, firm i’s best response is to
participate with probability one whenever there is a positive payoff of doing so.
Suppose firm i enters the market with certainty (τi(vi) = 1). The restriction above
implies that there is positive probability that firm i is the sole entrant to the market
and, consequently, by A1, profits are strictly increasing in vi. By A3, Πi(vi; τ) < 0,
and Πi(vi; τ) > 0. Thus, Πi(vi; τ) single crosses zero and i’s best response to τ−i
is the cutoff strategy defined by the value xi that satisfies Πi(xi; τi = 1, τ−i) = 0.

Existence: We check the conditions of Brouwer’s fixed-point theorem. Because
Fi is atomless and has full support and πi(ve) being continuous and differentiable
in vi, firm i’s best response lies in the compact and convex set [vi, v̄i]. Thus the
n-dimensional function of best responses is a continuous mapping from ×ni=1[vi, v̄i]
to itself and the conditions for the proposition are met. �

Existence follows from Brouwer’s fixed-point theorem. The restriction to cutoff
strategies is quite intuitive: regardless of which strategy competitors are playing,
assumption A1 implies that firm i’s expected profit is strictly increasing in its type.
Because i’s expected profit is linear in its entry probability (see eq. (C.1)), i either
prefers to enter with certainty, when it is profitable to do so, or to stay out. The
next Lemma characterizes all cutoff equilibria.

Lemma C.2. The vector x of cutoff strategies constitutes an equilibrium if and
only if Πi(x) = 0 for every firm i.

Proof of Lemma C.2. By the previous proof a cutoff strategy is defined as the
value xi satisfying Πi(xi; τi = 1, τ−i) = 0. Because in a cutoff equilibrium Pr[e|τ, vi]
is either zero or one. Integrating (C.1) over payoff-irrelevant firms delivers (6). �

Lemma C.2 characterizes every equilibrium of the entry game. Firm i’s best
response to x−i is defined by a cutoff xi equal to the value of vi that satisfies
Πi(vi; x−i) = 0. A profile of equilibrium cutoffs x is, thus, constructed by the
collection of functions Πi(x) evaluated at a point in which every firm i is indifferent
between entering the market when drawing type xi.

D Second Price Auction

D.1 Alternative notions for Strength

In this section, we explore alternative notions for strength. In particular, we study
the relationship between: (i) the cutoff strategies, xi; (ii) the ex-ante probability
of participating in the auction, 1− Fi(xi); and (iii) the ex-ante expected payoff of
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each bidder; which, for a given vector of cutoffs strategies x = (x1, x2), is equal to:

Ui(x) =

∫ ∞
xi

(
vFj(max{v, xj})−

∫ max{v,xj}

xj

sdFj(s)−Ki

)
dFi(v). (D.1)

That is, for each valuation vi under which bidder i participates (i.e., for each
vi > xi), the expected payoff of participating in the auction, weighted by the
probability that vi occurs.

We explore the relation between the previous objects by means of an example.
Consider two asymmetric bidders whose distribution of valuations follows a Gener-
alized Pareto distribution (GPD) with shape parameter κ and scale parameter σ.28

The choice of GPD yields a simple concave distribution with positive support that
is flexible enough to change its mean and variance. Suppose both bidders have a
symmetric participation cost K, but bidder 1 is characterized by (κ1, σ1) = (0, 1)
and bidder 2 by (κ2, σ2) = (0.25, 0.75). Both distributions have the same mean but
the second distribution has twice the variance. That is, the second distribution is a
mean-preserving spread of the first. Because the CDFs cross, distributions are not
ordered by FOSD. Consequently, the game is not ordered and it is not self-evident
which bidder is stronger.

Intuitively, the stronger bidder would be the one whose distribution of valu-
ations has more mass to the right of the equilibrium cutoffs strategies, as this
implies the bidder is more likely to obtain higher valuations. If the equilibrium
cutoff strategies are high, then bidder 2 would have more mass to the right of
the cutoffs, and thus bidder 2 would be the stronger bidder. High equilibrium
cutoff strategies are likely to occur when participation costs are high. Conversely,
if the cutoff strategies are low, then bidder 1 would have more probability mass
to the right of the cutoffs, and thus bidder 1 would be the stronger bidder. Low
equilibrium cutoff strategies are likely to occur when participation costs are low.

This situation is illustrated in Figure 5. Panel (a) shows that both distribu-
tions are concave, thus Lemma 2 implies that the participation game has a unique
equilibrium for any participation costs K > 0. Panel (a) also shows that both dis-
tributions cross at v◦ = 2.2007. Panel (b) depicts the bidders’ strength. It shows
that bidders are equally strong when K◦ = 1.957. For participation costs above
K◦, bidder 2 is stronger (s2 < s1) and, in the unique equilibrium, bidder 2 plays
a lower cutoff strategy (x2 < x1). For instance, if Ka = 2 > K◦, then the vector
of equilibrium cutoffs is x = (2.241, 2.238). Alternatively, when K < K◦, bidder 1
is stronger (s1 < s2) and plays a lower equilibrium cutoff strategy (x1 < x2). For

28For κ ∈ R and σ ∈ (0,∞), the Generalized Pareto CDF is defined over R+ and given by

F (x|κ, σ) =

{
1−

(
1 + κx

σ

)− 1
κ κ 6= 0

1− e− xσ κ = 0
.

The CDF is concave whenever κ > −1, its mean is well defined for κ < 1 and given by σ/(1−κ),
whereas its variance is defined for κ < 1/2 and given by σ2/(1− κ)2(1− 2κ).
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Figure 5: Strength under second-order stochastic dominance. Distributions
are Generalized Pareto with parameters (κ1, σ1) = (0, 1) and (κ2, σ2) = (0.25, 0.75)
respectively. Panel (a) shows that distributions cross at v◦ = 2.2007. Panel (b) shows
that, depending on the entry cost, either bidder can be stronger.

example, if Kb = 1 < K◦, then the equilibrium is x = (1.281, 1.383).
When the participation cost is equal to K◦, bidders are equally strong (si = v◦).

Because the CDFs are concave, the unique equilibrium is given by the symmetric
cutoffs equal to the bidders’ strength (xi = v◦). The expected payoff of bidder 2,
however, is greater than the expected payoff of bidder 1. Using equation (D.1),
we obtain (U1, U2) = (0.103, 0.185). This means that although bidders’ cutoffs
are not ranked, their expected profits are. The intuition in this scenario follows
from F2(v) < F1(v) for every v > v◦. Relative to bidder 1, bidder 2’s valuations
(distributed according to F2(v)) are skewed to the right tail of the distribution,
whereas their expected payment price (distributed according to F1(v)) is skewed
towards the left (see Figure 5a). In other words, for valuations greater than v◦,
bidder 2’s conditional distribution of valuations FOSD the bidder 1’s conditional
distribution.

Beginning from the previous example, we construct an equilibrium in which
bidder 1 receives a lower expected payoff than bidder 2, despite playing a lower
participation cutoff and having a higher participation probability. By decreasing
bidder 1’s participation cost, bidder 1 becomes stronger than bidder 2 and will
play a lower cutoff in the unique equilibrium of the game. By continuity, if the
decrease in bidder 1’s cost is small, we can construct an equilibrium with said
characteristics. Take for example (K1, K2) = (1.9, K◦), then bidder 1 is stronger
and plays a lower cutoff—in this case x = (2.1327, 2.2196)—but also receives lower
expected payoffs (U1, U2) = (1.11, 1.83). At a cutoff equal to v◦, both bidders are
equally likely to enter. Thus, x1 < v◦ < x2 implies that bidder 1 is simultaneously
more likely to participate and receive a lower expected payoff.
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Finally, to show that cutoff order need not coincide with entry-probability
order, modify the participation costs to (K1, K2) = (1.1, 1). In this scenario, bidder
1 plays a higher entry cutoff x1 = 1.434 > 1.313 = x2 while also participating more
frequently 1− F1(x1) = .238 > .234 = 1− F2(x2).

D.2 Example of Non-Existence of a Herculean Equilibrium
when the Game is not Ordered

We provide an example of a non-ordered game with three entrants which does not
have a herculean equilibrium. Suppose the three bidders have identical entry costs,
K = 1, and the distributions of valuations are given by

F1(v) = 1− e−
v
2 F2(v) = 1− (1 +

v

0.3322
)−1 F3(v) = 1− e−v.

These distributions are concave. In this game, s1 = 1.545 and s2 = s3 = 1.909.
Thus, bidder one is strongest, and bidders 2 and 3 are equally strong. A herculean
equilibrium prescribes that bidders 2 and 3 play the same strategy in equilibrium.
However, there is no equilibrium with such property. In fact, the unique equilib-
rium of the game is given by: x1 = 1.2938, x2 = 2.1718, and x3 = 2.2180.

D.3 Derivation of Equation (A.4)

Recall equation (1)
Πi(xi; x−i) = Ani Ri(xi; xi−1)−Ki.

where

Ri(xi; xi−1) = xiBi(xi)− rAi−1
0 −

i−1∑
j=1

(
Ai−1
j

∫ xj+1

xj

max{r, s}dBj+1(s)

)
,

Before differentiating its is worth noticing that

dBi(v)

dv
= Bi(v)

i−1∑
s=1

hs (v) and
dAni
dxj

= Ani hj (xj) for j > i.

For a given vector x =
(
χ1(xk+1), . . . , χk(x

k+1),xk+1
)
, the derivative of Πi(x)

with respect to xj for j > k is

dΠi(x)

dxj
= Ani Ri(xi)

k∑
s=i+1

hs (xs)
dχs
dxj

+ Ani Ri(xi)hj (xj) + Ani
dRi(xi)

dxj
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where

dRi(xi)

dxj
=Bi(xi)

dχi
dxj

+ xiBi(xi)

(
i−1∑
s=1

hs (xi)

)
dχi
dxj
− rAi−1

0

(
i−1∑
`=1

h` (x`)
dχ`
dxj

)

−
i−1∑
`=1

(
Ai−1
`

(
i−1∑

s=`+1

hs (xs)
dχs
dxj

)(∫ x`+1

x`

vdB`+1 (v)

)

+ Ai−1
` x`+1B`+1 (x`+1)

(∑̀
s=1

hs (x`+1)

)
dχ`+1

dxj

−Ai−1
` x`B`+1 (x`)

(∑̀
s=1

hs (x`)

)
dχ`
dxj

)
(D.2)

But observe

Ai−1
`−1x`B` (x`)

(
`−1∑
s=1

hs (x`)

)
dχ`
dxj
− Ai−1

` x`B`+1 (x`)

(∑̀
s=1

hs (x`)

)
dχ`
dxj

= Ai−1
`−1x`

(
B` (x`)

`−1∑
s=1

hs (x`)−
B`+1 (x`)

F` (x`)

∑̀
s=1

hs (x`)

)
dχ`
dxj

= Ai−1
`−1x`

(
B` (x`)

`−1∑
s=1

hs (x`)−B` (x`)
∑̀
s=1

hs (x`)

)
dχ`
dxj

= −Ai−1
`−1x`B` (x`)h` (x`)

dχ`
dxj

substituting in, the substracting summation in (D.2) becomes

i−1∑
`=1

(
Ai−1
`

(∫ x`+1

x`

vdB`+1 (v)

)( i−1∑
s=`+1

hs (xs)
dχs
dxj

)

−Ai−1
`−1x`B` (x`)h` (x`)

dχ`
dxj

+ xiBi(xi)

(
i−1∑
s=1

hs (xi)

)
dχi
dxj

)

Then, the derivative of Ri(xi) becomes

dRi(xi)

dxj
=

i−1∑
`=1

(
Ai−1
`−1

(
x`B` (x`)− rA`−1

0

)
h` (x`)

dχ`
dxj

)
+Bi(xi)

dχi
dxj

−
i−1∑
`=1

(
Ai−1
`

(
i−1∑

s=`+1

hs (xs)

)
dχs
dxj

∫ x`+1

x`

vdB`+1 (v)

)
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The last term can be rewritten as:

i−1∑
`=1

(
Ai−1
`

(
i−1∑

s=`+1

hs (xs)

)
dχs
dxj

∫ x`+1

x`

vdB`+1 (v)

)

=
i−1∑
`=1

(
`−1∑
s=1

Ai−1
s

(∫ xs+1

xs

vdBs+1 (v)

)
h` (x`)

dχ`
dxj

)

Re arranging and using Ai−1
`−1h` (x`) = Ai−1

` f` (x`) we obtain

dRi(xi)

dxj
=

i−1∑
`=1

(
Ai−1
`−1R`(x`)f`(x`)

dχ`
dxj

)
+Bi(xi)

dχi
dxj

and equation (A.4) follows.

E A Weaker Sufficient Condition for Uniqueness

In this section we show that, in the two-group model, if the expected profit
gain (see equation (7) in the main text) satisfies a condition that is analogous
to (but stronger than) supermodularity, we can weaken the sufficient conditions
for uniquneness in Proposition 4.

Proposition 5. Let ∆i,j(x) = Fj(xj)∆̂i,j(x). Suppose that for every vector of
group-symmetric cutoff strategies x, the expected profit gain satisfies the following
property29

∆̂1,1(x)∆̂2,2(x) ≥ ∆̂1,2(x)∆̂2,1(x) (E.1)

Then, the game has a unique equilibrium if for every firm i and each opponent j,
the following condition holds

fi(xi)

Fi(xi)

∆i,j(x)

Π′i(x)
< 1 (E.2)

hold for every vector x such that each dimension k satisfies xk ∈ [vg(k), vg(k)].

Before proving the result we note that, when ng = 1, ∆i,i(x) is not defined;
i.e., firm i’s profit gain when a firm of group g(i) exits when there only is one firm
in group g(i). This, however, can be corrected if in property (E.1) we substitute
∆̂i,i(x) for Π′i(x)fi(xi). Under sufficient condition (E.2) this substitution is a bit

more demanding than (E.1), as condition (E.2) implies ∆̂i,i(x) < Π′i(x)/fi(xi).
Below, we show that both the SPA and the linear model satisfy condition (E.1)
for any ng ≥ 1.
Proof. By the proof of Proposition 4 we know that a herculean equilibrium
exists. We need to prove that it is unique. By Lemma B.3 we know that firms
will play group symmetric strategies. As in the proof of Proposition 4, let x̂ =

29Condition (E.1) is equivalent to ∆1,1(x)∆2,2(x) ≥ ∆1,2(x)∆2,1(x).
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(x1, x1, . . . , x1, x2, x2, . . . , x2) be a vector of group-symmetric cutoff strategies. Pick
any firm in group i ∈ {1, 2} and let Πgs

i (x1, x2) = Πi(x̂) —where gs stands for
group-symmetric— represent the expected profit of a firm belonging to group i
entering with a valuation xi, when opponents play group-symmetric strategies x1

and x2. Observe that the function Πgs
i (x1, x2) has a two-dimensional domain,

taking as input the group-symmetric strategy of each group.
Define χ1(x) to be the function that solves Πgs

1 (χ1(x), x) = 0. Thus, χ1(x)
corresponds to group 1’s symmetric best response to group 2 playing the group-
symmetric cutoff x. By Lemma H.1, the value χ1(x) exists and is unique; i.e.,
χ1(x) is well defined.

Using implicit differentiation, the chain rule, that groups members are sym-
metric, and equation (B.2)

χ′1(x) = −
∂Πgs1 (χ1(x),x)

∂x2
∂Πgs1 (χ1(x),x)

∂x1

= −
∑

j∈G2

∂Π1(x̂)
∂xj∑

j∈G1

∂Π1(x̂)
∂xj

(E.3)

=
−n2h2(x2)∆1,2(x̂)

Π′1(x̂) + (n1 − 1)h1(x1)∆1,1(x̂)
> −n2h2(x2)∆1,2(x̂)

n1h1(x1)∆1,1(x̂)
(E.4)

where x1 = χ(x2) and hi(v) = fi(v)/Fi(v) is the reversed hazard rate. The inequal-
ity in (E.4) follows from substituting sufficient condition (E.2) in the denominator.

To prove uniqueness Π̂′2(x) > 0 so that Π̂2(x) single crosses zero from below.
Recall x̂ = (χ1(x), . . . , χ1(x), x, . . . , x). Differentiating Π̂2(x), using the chain rule,
and that firms play group-symmetric strategies, we obtain30

Π̂′2(x) =
∑
j∈G2

∂Π2(x̂)

∂xj
+ χ′1(x)

∑
j∈G1

∂Π2(x̂)

∂xj

= Π′2(x̂) + (n2 − 1)h2(x)∆2,2(x̂) + χ′1(x)n1h1(χ1(x))∆2,1(x̂)

> n2h2(x)

[
∆2,2(x̂)− ∆2,1(x̂)∆1,2(x̂)

∆1,1(x̂)

]
> 0.

The second equality follows from using Lemma B.2. The first inequality follows
from using condition (E.2) in Π′2(x) and using the lower bound (E.4) for χ′(x). The
last inequality follows from property (E.1). Proving that the derivative is always
positive and equilibrium uniqueness. �
Example. We show that property (E.1) holds in the linear model and in SPAs.

30If n1 = 1 simply use χ′1(x) = −n2h2(x2)∆1,2(x̂)/Π′1(x̂). Then,

Π̂′2(x) > n2h2(x)

[
∆2,2(x̂)− h1(x1)

∆2,1(x̂)∆1,2(x̂)

Π′1(x̂)

]
> 0.

The last inequality follows from the property (E.1) modified. Similar steps can be applied if
n2 = 1.
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(i) Linear model: Consider the linear model

πi(ve) = ηi − δi(ne − 1) + vi,

where ne is the number of entrants in market structure e. In this context, for a
given vector of cutoff strategies x, equation (6) is given by

Πi(vi; x−i) = ηi + vi − δiIne>1

∑
e∈Ei


 ∏
j∈Oi(e)

Fj(xj)

 ∏
`∈Ii(e)

(1− F`(x`))


and Π′(x) = 1. Similarly, noticing that π(vi, ve\i) − π(vi, vj, ve\i) = δi we obtain

∆̂i,j(x) = δi. Then, the sufficient conditions for uniqueness, which are independent
of ng, become

fi(xi)

Fi(xi)

∆i,j(x)

Π′i(x)
=

{
δifi(xi) < 1 if j ∈ g(i),

δiFj(xj)fi(xi)/Fi(xi) < 1 if j 6∈ g(i)
.

Finally, property (E.1) when ng > 1 holds as

∆̂1,1(x)∆̂2,2(x)− ∆̂1,2(x)∆̂2,1(x) = δ1δ2 − δ1δ2 = 0.

When n1 = 1 (similarly for n2)

Π′1(x)

f1(x1)
∆̂2,2(x)− ∆̂1,2(x)∆̂2,1(x) =

1

f1(x1)
δ2 − δ1δ2 = δ2

[
1

f1(x1)
− δ1

]
> 0

where the inequality follows from sufficient condition (E.2).

(ii) Second Price Auction In a SPA, we already know that vfi(v)/Fi(v) is a
sufficient condition for uniqueness. We show that the framework satisfies condition
(E.1). When x1 ≤ x2 we have (the proof when x2 ≤ x1 is analogous)

∆1,1(x) = Π1(x) ∆1,2(x) = Π1(x)

∆2,1(x) = (x1 − r)F1(x1)n1F2(x2)n2−1 ∆2,2(x) = Π2(x)

Π′1(x) = F1(x1)n1−1F2(x2)n2 Π′2(x) = F1(x1)n1F2(x2)n2−1

where Π1(x) = (x1 − r)F1(x1)n1−1F2(x2)n2 and Π2(x) = F2(x2)n2−1R2(x1, x2).
Then,

∆1,1(x)∆2,2(x)−∆1,2(x)∆2,1(x)

= Π1(x)F2(x2)n2−1 [R2(x1, x2)− (x1 − r)F1(x1)n1 ]

= Π1(x)F2(x2)n2−1

[
x2F1(x2)n1 − rF1(x1)−

∫ x2

x1

vdF1(v)n1 − (x1 − r)F1(x1)n1

]
.
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= Π1(x)F2(x2)n2−1

[∫ x2

x1

F1(v)n1dv

]
> 0

where the last equality follows from integrating by parts. When n1 = 1, sufficient
condition for uniqueness implies Π′1(x)/h1(x) > Π1(x) = ∆1,1(x), which implies
condition (E.1). A similar argument applies for n2 = 1.

F Uniqueness with Partially Informed Bidders

In this section we show that, when n1 = n2 = 1, xifi(xi)/Fi(xi) < 1 implies

fi(xi)

Fi(xi)

∆i,j(x)

Π′i(x)
< 1

Thus, sufficient condition (3) implies sufficient conditions (8) and (9). Start by
observing that, by construction, ∆i,j(x) ≤ Πi(x). Then, it is sufficient to show

fi(xi)

Fi(xi)
Πi(x) < Π′i(x).

Recall

πi(xe) =

∫ ∞
r/xi

(∫ xiε

0

(xiε−max{r, s})dΨi (s, xe)

)
dG(ε)−Ki,

where Ψi(s, xe) =
∏

j∈e\iG(s/xj). Then,

π′i(xe) =

∫ ∞
r/xi

εΨi (εxi, ve) dG(ε)

we show that fi(xi)
Fi(xi)

πi(xe) < π′i(xe), which implies the result

fi(xi)

Fi(xi)
πi(xe) =

∫ ∞
r/xi

(∫ xiε

0

(
fi(xi)

Fi(xi)
xiε−max{r, s}

)
dΨi (s, xe)

)
dG(ε)−Ki

<

∫ ∞
r/xi

(∫ xiε

0

(
fi(xi)

Fi(xi)
xiε

)
dΨi (s, xe)

)
dG(ε)

=

∫ ∞
r/xi

fi(xi)

Fi(xi)
xiεΨi (xiε, xe) dG(ε)

<

∫ ∞
r/xi

εΨi (xiε, xe) dG(ε) = π′i(xe)

where in the first inequality we took all the subtracting terms to zero, the second
equality integrated the inner integral, and the second inequality used xifi(xi)/Fi(xi)
< 1. This proves the result.
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G Uniqueness in Ordered Games

In an entry game, there are two elements that determine payoffs: the distribution
of types Fi(vi) and the profit function πi(ve). A game is called ordered when firms
are symmetric in one of these two dimensions and are ordered in the other. In this
section, we extend our results to ordered environments.

Definition (Ordered games). A game is ordered by profit when firms have sym-
metric distributions of types, Fi(vi) = F (vi) for every i, and anonymous profit
functions that, for any realization ve, satisfy πi(vi,vne−1) ≥ πi+1(vi,vne−1), where
ne is the number of entrants in e and vne−1 is an (ne − 1)-dimensional vector con-
taining the types of i’s competitors.
An entry game is called ordered by distributions when firms have symmetric and
anonymous profit functions, πi(ve) = π(vi,vne−1) for every i, and their distribu-
tions of types, Fi(vi), are ordered in terms of first-order stochastic dominance.31

Without loss of generality, we order firms’ identities so they satisfy Fi(v) ≤
Fi+1(v) for all v when ordered by distributions, or πi(v,vne−1) ≥ πi+1(v,vne−1)
when ordered by profit.

Lemma G.1. Suppose an entry game in which firms are ordered (either by profit
or distributions). Then, the firms are also ordered by strength, with si < si+1; i.e.,
firm 1 is the strongest and firm n the weakest.

Proof of Lemma G.1. We start by showing the order in the context of ordered
by profit. Let si be the strength of firm i, using σi(s) ≡ Πi(s; s, . . . , s) we obtain

0 = σi(si) =
∑
e∈Ei

{(∏
j∈ec

F (si)

)∫ b

(si)j∈e\i

πi
(
si, ve\i

)
φ(ve\i)d

ne−1ve\i

}

>
∑
e∈Ei

{(∏
j∈ec

F (si)

)∫ b

(si)j∈e\i

πi+1

(
si, ve\i

)
φ(ve\i)d

ne−1ve\i

}
= σi+1(si),

where in the inequality we used πi(v,vne−1) > πi+1(v,vne−1). In the last equality,
after changing the firm’s identity, we used Ei = Ei+1. Then, by Lemma 5, σi+1(s)
is increasing in s and si+1 > si.

For games ordered by distributions, rewriting σi(si) we obtain

0 = σi(si) =
∑

e∈Ei∩Ei+1

{(∏
j∈ec

Fj(si)

)∫ b

(si)j∈e\i

π
(
si, ve\i

)
φ(ve\{i,i+1})fi+1(vi+1)dne−1ve\i

}
+

∑
e∈Ei\Ei+1


Fi+1(si)

∏
j∈ec\i+1

Fj(si)

∫ b

(si)j∈e\i

π
(
si, ve\i

)
φ(ve\i)d

ne−1ve\i


31Our results below also extend to environments in which firms are ranked consistently across

both dimensions; i.e., Fi(v) ≤ Fi+1(v) for all v and πi(vi,vne−1) ≥ πi+1(vi,vne−1) for all ve.
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>
∑

e∈Ei∩Ei+1

{(∏
j∈ec

Fj(si)

)∫ b

(si)j∈e\i

π
(
si, ve\i

)
φ(ve\{i,i+1})fi(vi+1)dne−1ve\i

}
+

∑
e∈Ei\Ei+1


Fi(si)∏

j∈ec\i+1

Fj(si)

∫ b

(si)j∈e\i

π
(
si, ve\i

)
φ(ve\i)d

ne−1ve\i

 = σi+1(si),

where the inequality uses two properties of FOSD. In the second term we used
Fi(v) < Fi+1(v). In the first term, we used

∫ b
si
ϕ(v)fi(v)dv ≤

∫ b
si
ϕ(v)fi+1(v)dv for

any non-increasing function ϕ(x). Then, by Lemma 5, σi+1(s) is increasing in s
and si+1 > si. �

The previous lemma shows that the firms’ ranking provided by strength coin-
cides with the order of the game. In ordered games, the firm ranking provided
by strength is robust to adding competitors. That is, if we add a new firm to
the game, the existing strength order between the firms remains unchanged (as
illustrated in Figure 4a). Recall v = min{vi}ni=1 and v = max{vi}ni=1.

Proposition 6. In ordered games, there always exists a herculean equilibrium.
Moreover, the entry game has a unique equilibrium if the following condition holds

(n− 1)
fi(xi)

Fi(xi)

∆i,j(x)

Π′i(x)
< 1 (G.1)

for every pair of firms {i, j} and every vector x such that each dimension satisfies
xk ∈ [v, v], and the game is: i) ordered by profit or, ii) ordered by distributions and
the profit gain does not depend on the type of competitors; i.e., δi,j(xi, xj, ve\i) =
δi(xi, ne).

We postpone the proof to the next section. Observe that Proposition 6 is not
a particular case nor a generalization of Proposition 4 in the main text. While the
former can handle more than two groups of asymmetric firms, the latter allows
for a larger degree of firm heterogeneity between the two groups. There are also
differences in the sufficient condition for uniqueness.

Although Proposition 6 says that condition (G.1) needs to hold for every pair
of potential entrants, for certain ordered structures it is sufficient to check the
sufficient condition for a single pair of firms.

Lemma G.2. 1) If firms are ordered by distribution and belong to the exponenti-
ated family, i.e., Fi(vi) = F (vi)

θi, then condition (G.1) is satisfied for every firm
if it holds for the strongest firm (that is, the firm with the highest θi).
2) If firms are ordered by profits and satisfy πi(vi,vne−1) = π(vi,vne−1) +Ki, then
condition (G.1) is satisfied for every firm if it holds for any firm.

Proof of Lemma G.2. In condition (G.1), when firms are ordered by distribu-
tion, the term ∆i,j(x)/Π′i(x) is common across firms and the term fi(xi)/Fi(xi) =
θixif(xi)/F (xi) can be ordered using θi. For the second claim, f(xi)/F (xi) is com-
mon across firms, and the term Ki cancels out from ∆i,j(x) and Π′i(x). Thus, the
same restriction applies to every firm. �
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G.1 Proof of Proposition 6

We present the proof when firms are ordered by distributions. The proof when
firms are ordered by profit is, basically, identical but we can drop the subindices
from the distribution functions. Using Lemma G.1 we order firms using stochastic
dominance, from stronger (firm 1) to weakest (firm n).

Existence of an herculean equilibrium. We prove existence by construction. For
any vector of cutoff strategies x and k ∈ {2, . . . , n} let xk = (xk, xk+1, . . . , xn).
Construct the equilibrium vector sequentially, as follows:
• Firm 1: Define χ1

1(x2) to be firm’s 1 best response to x2; i.e., χ1
1(x2) satisfies

Π1(χ1
1(x2); x2) = 0.

where Π1(x) is defined in (6). By Lemma H.1 in the Auxiliary Result section,
χ1

1(x2) exists and (the best response) is unique and continuous.

• Firm 2: Let Π̂2(x2) = Π2(χ1
1(x2); x2); that is, Π̂2(x2) represents firm’s 2 profit

after incorporating that firm 1 is best responding to x2. Define χ2
2(x3) to be a

solution to Π̂2(χ2
2(x3),x3) = 0. By Lemma H.1, χ2

2(x3) exists and is continuous
in each dimension of x3. This function represents firm’s 2 best response when
firms 1 and 2 are mutually best responding to each other and to x3. For ease in
notation, denote firm’s 1 best response after incorporating firm’s 2 best response
as χ2

1(x3) = χ1
1(χ2

2(x3),x3).32 This function is also continuous in each dimension
of x3.

Claim 9. For any x3, χ2
2(x3) > χ2

1(x3).

Proof. Fix x3 and find the value x̂ that satisfies x̂ = χ1
1(x̂,x3). The value x̂

exists by continuity of χ1
1(x2) and by χ1

1(x2) being bounded below and above
by v1 and v1 respectively (by assumption A3). Then by Lemma H.2 in the
auxiliary results section we have Π2(x̂; x̂,x3) < Π1(x̂; x̂,x3) = 0. Define a pair
of sequences {ym, zm}m∈N satisfying: (i) y1 = z1 = x̂; (ii) ym+1 is the unique (by
Lemma H.1) value that solves Π2(zm; ym+1,x

3) = 0 (i.e., ym+1 is firm’s 2 best
response to the cutoffs (zm,x

3)) and; (iii) zm+1 = χ1
1(ym+1,x

3). By definition,
zm+1 solves Π1(zm+1; ym+1,x

3) = 0 and, by Lemma H.1, the value zm+1 is also
unique. We show that {ym}m∈N is increasing and {zm}m∈N decreasing. Because
Π2(x̂; x̂,x3) < 0 and Π2(x) being strictly increasing in the 2nd dimension, y2 >
y1 = x̂. Similarly, because (by Lemma B.2) Π1(x) is also increasing in the 2nd
dimension, we have Π1(z1; y2,x

3) > 0, which implies z2 = χ1
1(y2,x

3) < z1 =
χ1

1(y1,x
3). This, in turn, implies (by Lemma H.2)

Π2(z2; y2,x
3) < Π1(z2; y2,x

3) = 0;

which implies y3 > y2. By induction, the argument generalizes to an arbi-
trary step m and the sequences {ym, zm}m∈N are monotonically increasing and

32More generally, for j < k the notation χkj (xk) represents firm’s j best response to xj+1 (i.e.,

χ(xj+1)) after substituting subsequent best responses from firm j + 1 up to firm k.
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decreasing respectively. By assumption A3, {ym}m∈N is bounded above by v2

and {zm}m∈N is bounded below by v1. Thus, the sequences converge to y∞
and z∞, respectively. By convergence, we have: (i) z∞ = χ1

1(y∞,x
3) and; (ii)

Π2(z∞; y∞,x
3) = Π̂2(y∞,x

3) = 0 (i.e., y∞ = χ2
2(x3)). Thus, χ1

1(y∞,x
3) = χ2

1(x3)
and, as z∞ < x̂ < y∞, we have χ2

2(x3) > χ2
1(x3). �

• Firm k ≤ n: Suppose we have shown the existence of χ``(x
`+1) for every

` ∈ {1, . . . , k − 1}, have recursively defined χ`j(x
`+1) = χ`−1

j (χ``(x
`+1),x`+1)

for j ∈ {1, . . . , `}, and that both constructions are continuous. Let Π̂k(x
k) =

Πk(χ
k−1
1 (xk), . . . , χk−1

k−1(xk),xk) represent firm’s k profit after incorporating that
every firm j ∈ {1, . . . , k − 1} is mutually best responding to each other and to
xk. Define χkk(x

k+1) (observe that χnn is a number, not a function, as xk+1 is
empty when k = n) to be a solution to Π̂k(χ

k
k(x

k+1),xk+1) = 0. By Lemma H.1,
χkk(x

k) exists and is continuous in each dimension of xk. This function represents
firm’s k best response to xk+1 when every firm j ∈ {1, . . . , k − 1} is mutually
best responding to each other and to xk.

Claim 10. For any xk+1, if firm k − 1 is stronger than k the solution χkk(x
k+1)

satisfies χkk(x
k+1) > χkk−1(xk+1).

Proof. Fix any xk+1 and let χkk(x
k+1) be one of the solutions found in the previ-

ous step. Then define the vector of cutoffs x =
(
χk1(xk+1), . . . , χkk(x

k+1),xk+1
)
.

Throughout the proof, the vector of strategies for every firm except firm k and
k − 1, xE\{k,k−1}, remains fixed (i.e., they are numbers not functions). Define
x̂ to be a value satisfying x̂ = χk−1

k−1(x̂,xk+1). The value x̂ exists by continu-

ity of χk−1
k−1(xk) and by χk−1

k−1(xk) being bounded below and above by vk−1 and
vk−1 respectively (by assumption A3). By definition of best response x̂ satisfies
Πk−1(x̂; x̂,xE\{k,k−1}) = 0. Then, by Lemma H.2, we have

Πk(x̂; x̂,xE\{k,k−1}) < Πk−1(x̂; x̂,xE\{k,k−1}) = 0.

Define a pair of sequences {ym, zm}m∈N satisfying: (i) y1 = z1 = x̂; (ii) ym+1 is
the unique (by Lemma H.1) value that solves Πk(zm; ym+1,xE\{k,k−1}) = 0 (i.e.,
ym+1 is firm’s k best response to the cutoffs (zm,xE\{k,k−1})) and; (iii) zm+1 =
χk−1
k−1(ym+1,x

k+1). By definition, zm+1 solves Πk−1(zm+1; ym+1,xE\{k,k−1}) = 0
and, Lemma H.1, the value zm+1 is also unique. We show that {ym}m∈N is in-
creasing and {zm}m∈N decreasing. Because Πk(x̂; x̂,xE\{k,k−1}) < 0 and Πk(x)
being strictly increasing in the kth dimension, y2 > y1 = x̂. Similarly, be-
cause (by Lemma B.2) Πk−1(x) is also increasing in the kth dimension, we have
Πk−1(x̂; y2,xE\{k,k−1}) > 0, which implies z2 = χk−1

k−1(y2,x
k+1) < χk−1

k−1(y1,x
k+1) =

z1. This, in turn, implies (by Lemma H.2)

Πk(z2; y2,xE\{k,k−1}) < Πk−1(z2; y2,xE\{k,k−1}) = 0,

which, in turns, implies y3 > y2. By induction, the argument generalizes to an
arbitrary step m and the sequences {ym, zm}m∈N are monotonically increasing
and decreasing respectively. By assumption A3, {ym}m∈N is bounded above by
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vk and {zm}m∈N is bounded below by vk−1. Thus, the sequences converge to
y∞ and z∞, respectively. By convergence, we have: (i) z∞ = χk−1

k−1(y∞,x
k+1)

and; (ii) Πk(z∞; y∞,xE\{k,k−1}) = Π̂k(y∞; xE\{k,k−1}) = 0 (i.e., y∞ = χkk(x
k+1)).

Thus, χk−1
k−1(y∞,x

k+1) = χkk−1(xk+1) and, as z∞ < x̂ < y∞, we have χkk(x
k+1) >

χkk−1(xk+1). �
Thus, we have constructed an equilibrium vector x = (χn1 (xn), . . . , χnn−1(xn), xn)
with the property that xi < xi+1; i.e., a Herculean equilibrium.

Uniqueness within the herculean-equilibrium class : We show that at each step k of
the previous construction there is a unique best response xk = χkk(x

k+1) to xk+1.
• Firm 1: The uniqueness of χ1

1(x2) follows from Lemma H.1. Let hi(x) =
fi(x)/Fi(x) be the reversed hazard rate of firm i’s distribution of private in-
formation. The next result is needed for subsequent steps.

Claim 11. Under condition (G.1), for every j ∈ {2, . . . , n}, ∂χ1
1(x2)/∂xj satis-

fies:

0 >
∂χ1

1(x2)

∂xj
= −hj(xj)

∆1,j(x)

Π′1(x)
> −hj(xj)

h1(x1)

1

n− 1
. (G.2)

1

hj(xj)

∂χ1
1(x2)

∂xj
<

1

hq(xq)

∂χ1
1(x2)

∂xq

1

n− 1
for q ∈ {2, . . . , j − 1} (G.3)

Proof. Let x = (χ1
1(x2),x2); using implicit differentiation and Lemma B.2 we

obtain
∂χ1

1(x2)

∂xj
= −∂Π1(x)/∂xj

∂Π1(x)/∂x1

= −hj(xj)
∆1,j(x)

Π′1(x)
, (G.4)

which is negative as, ∆1,j(x) > 0 and Π1,j(x) > 0 for every x. The lower bound
in equation (G.2) follows from applying condition (G.1) into equation (G.4).
Property (G.3) follows from observing

1

hq(xq)

∂χ1
1(x2)

∂xq

1

n− 1
− 1

hj(xj)

∂χ1
1(x2)

∂xj
=

1

Π′1(x)

(
∆1,j(x)− ∆1,q(x)

n− 1

)
> 0,

where the equality follows from substituting in equation (G.4), and the inequality
follows from Lemma H.3 and the fact that q ∈ {2, . . . , j − 1}. �

• Firm 2: Fix x3 and let x = (χ1
1(x2),x2), we need to show that the best response

χ2
2(x3) is unique. We do this by showing that Π̂2(x2) = Π2(χ1

1(x2); x2) is strictly
increasing in x2; so that, Π̂2(x2,x

3) single crosses zero and there is a unique
value χ2

2(x3) satisfying Π̂2(χ2
2(x3),x3) = 0. Using the chain rule and equation

(B.2)

Π̂′2(x2) = Π′2(x) +
∂χ1

1(x2)

∂x2

∂Π2

∂x1

= Π′2(x) +
∂χ1

1(x2)

∂x2

h1(χ1
1(x2))∆2,1(x)

> Π′2(x)− h2(x2)
∆2,1(x)

n− 1
> Π′2(x)

[
1− 1

(n− 1)2

]
> 0, (G.5)
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where in the first inequality follows from the lower bound in equation (G.2)
and the second inequality follows from sufficient condition (G.1). This proves
uniqueness of the best response. The next result is needed for the induction
argument in the proof.

Claim 12. Let χ2
1(x3) = χ1

1(χ2
2(x3),x3). Under condition (G.1), for every j ∈

{3, . . . , n} and ` ∈ {1, 2}, ∂χ2
`(x

3)/∂xj satisfies:

∂χ2
2(x3)

∂xj
= −

hj(xj)∆2,j(x) +
∂χ1

1(x2)

∂xj
h1(x1)∆2,1(x)

Π′2(x) +
∂χ1

1(x2)

∂x2
h1(x1)∆2,1(x)

(G.6)

0 >
∂χ2

`(x
3)

∂xj
> −hj(xj)

h`(x`)

1

n− 1
and, (G.7)

1

hj(xj)

∂χ2
2(x3)

∂xj
<

1

hq(xq)

∂χ2
2(x3)

∂xq

1

n− 1
for q ∈ {3, . . . , j − 1} (G.8)

Proof. To show equation (G.6) use implicit differentiation, the chain rule, and
equation (B.2) to obtain

−∂χ
2
2(x3)

∂xj
=

∂Π̂2

∂xj

∂Π̂2

∂x2

=

∂Π2

∂xj
+

∂χ1
1(x2)

∂xj

∂Π2

∂x1

Π′2(x) +
∂χ1

1(x2)

∂x2

∂Π2

∂x1

=
hj(xj)∆2,j(x) +

∂χ1
1(x2)

∂xj
h1(x1)∆2,1(x)

Π′2(x) +
∂χ1

1(x2)

∂x2
h1(x1)∆2,1(x)

Observe, by equation (G.5), that the denominator is positive. Using lower bound
(G.2) and Lemma H.3 we can see that the numerator is also positive, implying
that ∂χ2

2(x3)/∂xj is negative; which proves the upper bound of (G.7) when
` = 2. For the lower bound of equation (G.7) when ` = 2, using equation
(G.6), observe that equation (G.7) holds if and only if the following expression
is positive (replace (G.6) into (G.7) and work out the inequality):

hj(xj)

[(
1

h2(x2)

Π′2(x)

n− 1
−∆2,j(x)

)
+

h1(x1)

(
1

h2(x2)

∂χ1
1(x2)

∂x2

1

n− 1
− 1

hj(xj)

∂χ1
1(x2)

∂xj

)
∆2,1(x)

]
.

The first round bracket is positive by sufficient condition (G.1). The second
round bracket is positive by property (G.3). Thus, the expression is indeed
positive and the lower bound in equation (G.7) holds.

We now prove the bounds of (G.7) when ` = 1. Using χ2
1(x3) = χ1

1(χ2
2(x3),x3),

observe
∂χ2

1(x3)

∂xj
=
∂χ1

1(x2)

∂xj
+
∂χ1

1(x2)

∂x2

∂χ2
2(x3)

∂xj
. (G.9)

Using (G.4) to substitute for ∂χ1
1(x2)/∂x` with ` ∈ {2, j} and using the lower
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bound in equation (G.7) when ` = 2, we obtain the following upper bound:

∂χ2
1(x3)

∂xj
<
hj(xj)

Π′1(x)

[
∆1,2(x)

n− 1
−∆1,j(x)

]
< 0,

the inequality follows from Lemma H.3; proving the upper bound. The lower
bound in equation (G.7) follows from using equation (G.9) and observing

∂χ2
1(x3)

∂xj
>
∂χ1

1(x2)

∂xj
> −hj(xj)

h1(x1)

1

n− 1
,

where the inequalities follow from ∂χ2
2(x3)/∂xj · ∂χ1

1(x2)/∂x2 > 0 and equation
(G.2), respectively.

Finally, to prove property (G.8) use equation (G.6) to write

1

hq(xq)

∂χ2
2(x3)

∂xq

1

n− 1
− 1

hj(xj)

∂χ2
2(x3)

∂xj
=

1

D2

[
∆2,j(x)− ∆2,q(x)

n− 1
+

h1(x1)

(
1

hj(xj)

∂χ1
1(x2)

∂xj
− 1

hq(xq)

∂χ1
1(x2)

∂xq

1

n− 1

)
∆2,1(x)

]
,

where D2 = Π′2(x) +
∂χ1

1(x2)

∂x2
h1(x1)∆2,1(x) > 0. We show that a lower bound of

this expression is positive. Taking −∂χ1
1(x2)/∂xq > 0 to zero, we obtain

1

D2

[
∆2,j(x)− ∆2,q(x)

n− 1
+
h1(x1)

hj(xj)

∂χ1
1(x2)

∂xj
∆2,1(x)

]
>

1

D2

[
∆2,j(x)− ∆2,q(x)

n− 1
− ∆2,1(x)

n− 1

]
>

1

D2

[
∆2,j(x)− 2∆2,q(x)

n− 1

]
> 0.

The first inequality follows from using lower bound (G.2). The other two in-
equalities follow from Lemma H.3 and the fact that q ∈ {2, . . . , j − 1}. �

• Firm k ∈ {3, . . . , n}: Suppose that, for every p ∈ {1, . . . , k − 1} and j ∈
{p+ 1, . . . , n}, we have proven that: χpp(x

p+1) is unique;

0 >
∂χpp(x

k)

∂xj
= −

hj(xj)∆p,j(x) +
∑p−1

`=1

∂χp−1
` (xp)

∂xj
h`(x`)∆p,`(x)

Π′p(x) +
∑p−1

`=1

∂χp−1
` (xp)

∂xp
h`(x`)∆p,`(x)

; (G.10)

0 >
∂χpq(x

k)

∂xj
> −hj(xj)

hq(xq)

1

n− 1
for q ∈ {1, . . . , p} and; (G.11)

1

hj(xj)

∂χpp(x
p+1)

∂xj
<

1

hq(xq)

∂χpp(x
p+1)

∂xq

1

n− 1
for q ∈ {p+ 1, . . . , j − 1}.

(G.12)

Fix xk+1 and let x = (χk−1
1 (xk), . . . , χk−1

k−1(xk),xk). We show that the best re-
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sponse χkk(x
k+1) is unique by showing that Π̂k(x

k) is strictly increasing in xk.
Differentiating,

Π̂′k(x
k) = Π′k(x) +

k−1∑
`=1

∂χk−1
` (xk)

∂xk
h`(x`)∆k,`(x)

> Π′k(x)− hk(xk)
k−1∑
`=1

∆k,`(x)

n− 1
> Π′k(x)− hk(xk)

(k − 1)∆k,k−1(x)

n− 1
> 0,

where the inequalities follow from lower bound (G.11), Lemma H.3, and sufficient
condition (G.1), respectively. This proves uniqueness of the best response. The
next result completes the induction argument.

Claim 13. Under condition (G.1), for every j ∈ {k + 1, . . . ,m} and p ∈
{1, . . . , k}, ∂χkp(xk+1)/∂xj satisfies

∂χkk(x
k+1)

∂xj
= −

hj(xj)∆k,j(x) +
∑k−1

`=1

∂χk−1
` (xk)

∂xj
h`(x`)∆k,`(x)

Π′k(x) +
∑k−1

`=1

∂χk−1
` (xk)

∂xk
h`(x`)∆k,`(x)

(G.13)

0 >
∂χkp(x

k+1)

∂xj
> −hj(xj)

hp(xp)

1

n− 1
and, (G.14)

1

hj(xj)

∂χkk(x
k+1)

∂xj
<

1

hq(xq)

∂χkk(x
k+1)

∂xq

1

n− 1
for q ∈ {k + 1, . . . , j − 1}

(G.15)

Proof. To show equation (G.13) use the implicit differentiation, the chain rule,
and equation (B.2) to obtain

∂χkk(x
k+1)

∂xj
= −∂Π̂k(x)/∂xj

∂Π̂k(x)/∂xk
= −

∂Πk(x)
∂xj

+
∑k−1

`=1

∂χk−1
` (xk)

∂xj

∂Πk(x)
∂x`

Π′k(x) +
∑k−1

`=1

∂χk−1
` (xk)

∂xk

∂Πk(x)
∂x`

.

= −
hj(xj)∆k,j(x) +

∑k−1
`=1

∂χk−1
` (xk)

∂xj
h`(x`)∆k,`(x)

Π′k(x) +
∑k−1

`=1

∂χk−1
` (xk)

∂xk
h`(x`)∆k,`(x)

.

We already showed that the denominator is positive. We show that a lower
bound of the numerator is positive, which immediately implies the upper bound
in equation (G.14) for the case when p = k. Using equation (G.11) a lower
bound for the numerator is

hj(xj)

[
∆k,j(x)−

k−1∑
`=1

∆k,`(x)

n− 1

]
> hj(xj)

[
∆k,j(x)− (k − 1)∆k,k−1(x)

n− 1

]
> 0,

where both inequalities follows from Lemma H.3. Thus, the numerator is posi-
tive.
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For the lower bound in equation (G.14) in the case p = k, replace (G.13) into
(G.14) and observe that the inequality holds if and only if the following expres-
sion is positive

hj(xj)

[(
1

hk(xk)

Π′k(x)

n− 1
−∆k,j(x)

)
+

k−1∑
`=1

h`(x`)

(
1

hk(xk)

∂χk−1
` (xk)

∂xk

1

n− 1
− 1

hj(xj)

∂χk−1
` (xk)

∂xj

)
∆k,`(x)

]
. (G.16)

The first term in round brackets is positive due to sufficient condition (G.1). We
now work with the summation and show that it is also positive. Before doing
this, observe that, by definition, for every ` ∈ {1, . . . , k − 1}

χk` (x
k+1) = χ``(χ

k
`+1(xk+1), χk`+2(xk+1), . . . , χkk(x

k+1),xk+1).

Then, for any j ∈ {k + 1, . . . ,m}

∂χk` (x
k+1)

∂xj
=
∂χ``(x

`+1)

∂xj
+

k∑
q=`+1

∂χ``(x
`+1)

∂xq

∂χkq(x
k+1)

∂xj
. (G.17)

For a given ` in the summation in equation (G.16), we use equation (G.17) to
write the round bracket as(

1

hk(xk)

∂χ``(x
`+1)

∂xk

1

n− 1
− 1

hj(xj)

∂χ``(x
`+1)

∂xj

)
+

k−1∑
q=`+1

∂χ``(x
`+1)

∂xq

(
1

hk(xk)

∂χk−1
q (xk)

∂xk

1

n− 1
− 1

hj(xj)

∂χk−1
q (xk)

∂xj

)
. (G.18)

Substitute equation (G.18) when ` = 1 into the summation in equation (G.16)
to obtain

k−1∑
`=2

(
h`(x`)∆k,`(x) +

∂χ1
1(x2)

∂x2

a1

)(
1

hk(xk)

∂χk−1
` (xk)

∂xk

1

n− 1
− 1

hj(xj)

∂χk−1
` (xk)

∂xj

)
+ a1

(
1

hk(xk)

∂χ1
1(xk)

∂xk

1

n− 1
− 1

hj(xj)

∂χ1
1(xk)

∂xj

)
, (G.19)

where a1 = ∆k,1(x)h1(x1) > 0. Then, substituting (in increasing order) into
equation (G.19) the expression (G.18) for ` = 2, ` = 3 until ` = k−1, we obtain
that the summation in equation (G.16) is equal to

k−1∑
`=1

a`

(
1

hk(xk)

∂χ``(x
`+1)

∂xk

1

n− 1
− 1

hj(xj)

∂χ``(x
`+1)

∂xj

)
> 0, (G.20)
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where

a` = h`(x`)∆k,`(x) +
`−1∑
p=1

∂χpp(x
p+1)

∂x`
ap (G.21)

is defined recursively. The parenthesis in equation (G.20) is positive by equation
(G.12). We show that each a` is positive, which proves the lower bound in
equation (G.14) when p = k. By induction, suppose that for every p ∈ {1, . . . , `−
1} we have shown that 0 < hp(xp)∆k,p(x) ≤ ap (we already showed this for a1).
We need to show that the same inequalities hold for equation (G.21). First,
because ∂χpp(x

p+1)/∂x` < 0 and ap > 0 (by the induction hypothesis) it is easy
to see that a` < h`(x`)∆k,`(x). Using the lower bound in equation (G.11) and
the upper bound for ap we obtain the following lower bound for equation (G.21)

a` > h`(x`)

[
∆k,`(x)−

`−1∑
p=1

∆k,p(x)

n− 1

]
> h`(x`)

[
1− (`− 1)

n− 1

]
∆k,`(x) > 0,

where the second inequality follows from Lemma H.3; which proves the result.

To prove the upper bound in equation (G.14) for p ∈ {1, . . . , k − 1} we proceed
by induction downwards. Suppose that for every firm ` ∈ {p+ 1, . . . , k} we have
proven

0 >
∂χk` (x

k+1)

∂xj
> −hj(xj)

h`(x`)

1

n− 1
(G.22)

we prove that equation (G.14) holds for p. Observing that, in equation (G.17),
∂χpp(x

p+1)/∂x` < 0, we can construct an upper bound for ∂χkp(x
k+1)/∂xj using

the induction hypothesis (G.22)

∂χkp(x
k+1)

∂xj
<
∂χpp(x

p+1)

∂xj
−

k∑
`=p+1

∂χpp(x
p+1)

∂x`

hj(xj)

h`(x`)

1

n− 1

Using equation (G.10), the upper bound for ∂χkp(x
k+1)/∂xj is equal to

hj(xj)

Dp

k∑
`=p+1

(
h`(x`)∆p,`(x) +

p−1∑
q=1

∂χp−1
q (xp)

∂x`
hq(xq)∆p,q(x)

)
1

h`(x`)

1

n− 1

− hj(xj)

Dp

(
∆p,j(x) +

1

hj(xj)

p−1∑
q=1

∂χp−1
q (xp)

∂xj

∆p,q(x)

hq(xq)

)

whereDp = Π′p(x)+
∑p−1

q=1
dχp−1
q (xp)

dxp
hq(xq)∆p,q(x) > 0. Taking ∂χp−1

q (xp)/∂x` < 0

equal to zero and ∂χp−1
q (xp)/∂xj < 0 to the lower bound in equation (G.11), we

build the following upper bound for the previous expression (and omitting Dp,
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as it does not affect the sign)

hj(xj)

[
k∑

`=p+1

∆p,`(x)

n− 1
+

p−1∑
q=1

∆p,q(x)

n− 1
−∆p,j(x)

]
< hj(xj)

[
k − 1

n− 1
− 1

]
∆p,j(x)

≤ 0.

The inequality follows from equation Lemma H.3; proving ∂χkp(x
k+1)/∂xj < 0.

The lower bound for ∂χkp(x
k+1)/∂xj follows from equation (G.17) and observing

∂χkp(x
k+1)

∂xj
>
∂χpp(x

p+1)

∂xj
> −hj(xj)

hp(xp)

1

n− 1

where the first inequality follows from (∂χpp(x
k+1)/∂x`) · (∂χk` (xk+1)/∂xj) > 0

for every `, and the second from the lower bound in equation (G.11).

Finally, we prove equation (G.15) using equation (G.13) to write

1

hq(xq)

∂χkk(x
k+1)

∂xq

1

n− 1
− 1

hj(xj)

∂χkk(x
k+1)

∂xj
=

1

Dk

[
∆k,j(x)− ∆k,q(x)

n− 1
+

k−1∑
`=1

h`(x`)

(
1

hj(xj)

∂χk−1
` (xk)

∂xj
− 1

hq(xq)

∂χk−1
` (xk)

∂xq

1

n− 1

)
∆k,`(x)

]
,

where Dk = Π′k(x) +
∑k−1

`=1

∂χk−1
` (xk)

∂xk
h`(x`)∆k,`(x) > 0. We show that a lower

bound of this expression is positive. Taking −∂χk−1
` (xk)/∂xq > 0 to zero and

∂χk−1
` (xk)/∂xj < 0 to the lower bound in equation (G.11), we obtain

1

Dk

[
∆k,j(x)− ∆k,q(x)

n− 1
−

k−1∑
`=1

∆k,`(x)

n− 1

]
>

1

D

[
∆k,j(x)− k∆k,q(x)

n− 1

]
> 0.

The inequalities follow from Lemma H.3 and the fact that q ∈ {k, . . . , j−1}. �
Because at each step best responses are unique and at k = n the firm has only one
best response when every firm k < n is best responding to xn and to each other,
there is a unique Herculean equilibrium within the herculean class.

No non-herculean equilibria exists : By contradiction. Suppose x represents a
non-herculean equilibrium. Order firms from smallest cutoff x1 to largest, xn. Let
p be the first instance (smallest cutoff) that a strength reversal occurs. That is,
xp < xp+1 but sp > sp+1. Because every firm k ∈ {1, . . . , p} is ordered by strength,
they satisfy conditions (G.13), (G.11), and (G.12). We show that xp+1 cannot lie
above xp (i.e, a contradiction). Fix the strategies of all the firms but p and p+1, i.e.,
xE\{p,p+1}, and let x̂ be the value that satisfies χp(x̂,xE\{p,p+1}) = x̂, where χp(x−p)
is firm’s p unique best response to x−p. This best response exists (and is unique)
by Lemma H.1. The value x̂ exists because χp(x−p) is continuously decreasing
in xp+1. This implies that, for every xp+1 > x̂, χp(x−p) < xp+1. In addition,
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following analogous steps to those in Claim 11, we can show that ∂χp(x−p)/∂xp+1 >
−hp+1(xp+1)/(hp(xp)(n − 1)). Then, by Lemma H.2, Πp(x̂, x̂,xE\{p,p+1}) = 0 <
Πp+1(x̂, x̂,xE\{p,p+1}). Also, letting x̂ = (χp(x−p),x−p) observe that

dΠp+1(x̂)

dxp+1

= Π′p+1(x̂) +
∂χp(x−p)

∂xp+1

∂Πp+1(x̂)

∂xp

> Π′p+1(x̂)− hp+1(xp+1)
∆p+1,p(x̂)

n− 1
> 0

Thus, Πp+1(x̂) is strictly increasing in xp+1 which implies that Πp+1(x̂) > 0 for
every xp+1 ≥ x̂, which implies that no equilibrium cutoff xp+1 > χp(x−p) = xp
exists. �

H Auxiliary Results

Lemma H.1. Let Πi be defined by (6). Let A and B be disjoint sets of k and
r firms, where k + r < n, such that i ∈ A. Define f : [a, b]k+r → [a, b]n−k−r to
be a continuous function and let xB be any vector of cutoff strategies for firms in
set B. Then, there exist a value x̃ such that the symmetric k-dimensional vector
x̃A = (x̃)i∈A satisfies Πi(x̃A, f(x̃A,xB),xB) = 0. The vector x̃A is continuous in
each dimension of xB. When the function f is constant in x̃—i.e., when xE\A =
(f(x̃A,xB),xB) does not change with x̃A—the value of x̃ is unique.

Proof. Fix xB, because f is continuous, the function Πi (xA, f(xA,xB),xB) is
continuous in the input value x of the symmetric vector xA. Let vA = (vi)i∈A and
vA = (vi)i∈A. Observe that assumptions A3 and A2 jointly imply

Πi (vA, f(vA,xB),xB) ≤ πi(vi) < 0.

Similarly, assumption A3 and Lemma B.2 together imply,

Πi (vA, f(vA,xB),xB) ≥ Πi (vi, a−i) > 0.

Then, by the intermediate value theorem, there exist x̃ ∈ (vi, v̄i) such that

Πi (x̃A, f(x̃A,xB),xB) = 0.

Because the functions Πi and f are continuous, the value x̃A is continuous in each
dimension of xB. For uniqueness when f is constant, by the chain rule, dΠi/dx =∑

k∈A ∂Πi/∂xk > 0 where the inequality follows from Lemma B.2. Therefore
Πi (xA, f(xA,xB),xB), as a function of the value x for the symmetric vector xA, is
increasing and crosses zero once. �

Lemma H.2. Consider an ordered game, in which the firms’ identities are ordered
by strength, with firm 1 being the strongest. Then, for any firm i < j, valuation y,
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and vector of strategies for the other firms xE\{i,j}, we have

Πi(y; y,xE\{i,j}) > Πj(y; y,xE\{i,j}).

Proof. If firms are ordered by profit, the inequality follows by definition. Recall
φ(ve) =

∏
j∈e fj(vj). For games ordered by distribution, observe

Πi(y; y,xE\{i,j}) =
∑

e∈Ei\Ej


Fj(y)

∏
k∈ec\j

Fk(xk)

∫ b

(xk)k∈e\i

πi
(
xi, ve\i

)
φ(ve\i)d

ne−1ve\i

+

∑
e∈Ei∩Ej

{(∏
k∈ec

Fk(xk)

)∫ b

y

∫ b

(xk)k∈e\{i,j}

πi
(
xi, ve\i

)
φ(ve\{i,j})fj(v)dne−1ve\i

}

>
∑

e∈Ei\Ej


Fi(y)

∏
k∈ec\j

Fk(xk)

∫ b

(xk)k∈e\i

πi
(
xi, ve\i

)
φ(ve\i)d

ne−1ve\i

+

∑
e∈Ei∩Ej

{(∏
k∈ec

Fk(xk)

)∫ b

y

∫ b

(xk)k∈e\{i,j}

πi
(
xi, ve\i

)
φ(ve\{i,j})fi(v)dne−1ve\i

}
= Πj(y, y, xE\{i,j}),

where the inequality uses two properties of FOSD. The first term uses that Fi(x) ≤
Fj(x) for all x. The second term uses that

∫ b
y
ϕ(x)fi(x)dx ≤

∫ b
y
ϕ(x)fj(x)dx for

any non-increasing function ϕ(x). �

Lemma H.3. Let firm k be stronger than firm j. Suppose the firms play cutoffs
xk < xj; then, for any firm i, ∆i,j(x) ≥ ∆i,k(x) if: (i) firms are ordered by profits,
or; (ii) firms are ordered by distribution and the profit gain only depends on the
number of entrants.

Proof. Start by observing that, in the expression for ∆i,j(x) (see equation (7)),
the sum over market structures Ei \ Ej can be divided into two disjoints sets:
(Ei∩Ek)\Ej and Ei \ (Ej∪Ek). Using these sets subtract ∆i,j(x)−∆i,k(x) to obtain

∑
e∈Ei\(Ej∪Ek)

{( ∏
`∈ec

F`(x`)

)∫ b

(x`)`∈e\i

(
δi(xi, xj, ve\i)− δi(xi, xk, ve\i)

)
φ(ve\i)d

ne−1ve\i

}

+
∑

e∈(Ei∩Ek)\Ej


 ∏
`∈ec\j

F`(x`)

Fj(xj)

∫ b

xk

∫ b

(x`)`∈e\{i,k}

δi(xi, xj, ve\i)φ(ve\i)d
ne−1ve\i


−
∑

e∈(Ei∩Ej)\Ek


 ∏
`∈ec\k

F`(x`)

Fk(xk)

∫ b

xj

∫ b

(x`)`∈e\{i,j}

δi(xi, xk, ve\i)φ(ve\i)d
ne−1ve\i

 (H.1)

where we used Ei \ (Ej ∪ Ek) = Ei \ (Ek ∪ Ej) and, by profits being anonymous, we
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dropped the second sub index from the profit gain δi(x{i,j}, ve\i). Equation (H.1)
has three summations. For the first one, observe that the term inside the integral
is non-negative as

δi(xi, xj, ve\i)− δi(xi, xk, ve\i) = πi(xi, xk, ve\i)− πi(xi, xj, ve\i) ≥ 0

where the last inequality follows from assumption A2 and xk < xj. This implies
that the first summation is non-negative.

For the last two summations in (H.1), we show that a lower bound of the
first term is equal to the subtracting term. Thus, the difference is non-negative.
Observe that, for each market structure e ∈ (Ei ∩ Ek) \ Ej in the first term, we can
remove firm k and add firm j, i.e., ê = (e \ j) ∪ k, and the new market structure
satisfies ê ∈ (Ei∩Ej)\Ek, which belongs to the second term. We show that a lower
bound of payoffs in e is equal to those in ê.

(i) Ordered by profit : When the game is ordered by profit, we can drop the
sub-index from the distributions of types. Bounding the expression under market
structure e ∈ (Ei ∩ Ek) \ Ej ∏

`∈ec\j

F (x`)

F (xj)

∫ b

xk

∫ b

(x`)`∈e\{i,k}

δi(xi, xj, ve\i)φ(ve\{i,k})f(vk)d
ne−1ve\i

>

 ∏
`∈ec\k

F (x`)

F (xk)

∫ b

xj

∫ b

(x`)`∈e\{i,j}

δi(xi, xk, ve\i)φ(ve\{i,k})f(vj)d
ne−1ve\i

where in the inequality we used xj > xk in three places: (i) in the probability of
firm j being out of the market; (ii) in the domain of integration over k’s types,
which jointly with δi(xi, xj, ve\i) ≥ 0 implies that we are integrating over a smaller
domain, decreasing the value of the integral, and; (iii) δi(xi, s, ve\i) being increasing
in s (by assumption A2). Finally, we inverted the roles of firm k and j in e
using that payoffs are anonymous to re-arrange indexes. Thus, we obtain that
the lower bound equals the payoffs in the third summation of (H.1) under market
structure ê ∈ (Ei∩Ej)\Ek. Because the inequality holds for every market structure
e ∈ (Ei ∩ Ek) \ Ej, the result follows.

(ii) Ordered by distribution: When the game is ordered by distributions and the
profit gain only depends on the number of entrants, the expression under market
structure e ∈ (Ei ∩ Ek) \ Ej becomes ∏

`∈ec\j

F`(x`)

Fj(xj)

(1− Fk(xk))
∏

`∈e\{i,k}

(1− F`(x`))

 δi(xi, ne)

>

 ∏
`∈ec\k

F`(x`)

Fk(xk)

(1− Fj(xj))
∏

`∈e\{i,j}

(1− F`(x`))

 δi(xi, ne).
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The inequality uses stochastic dominance, the fact that xk < xj (so that Fj(xj) ≥
Fj(xk) ≥ Fk(xk)), and re-arranges indexes. The lower bound equals the payoffs
in the third summation of (H.1) under market structure ê ∈ (Ei ∩ Ej) \ Ek. The
inequality holds for every market structure e ∈ (Ei∩Ek)\Ej, proving the result. �
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