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Abstract

Parallel evolution is often assumed to result from repeated adaptation to

novel, yet ecologically similar, environments. Here, we develop and analyse

a mathematical model that predicts the probability of parallel genetic evolu-

tion from standing genetic variation as a function of the strength of pheno-

typic selection and constraints imposed by genetic architecture. Our results

show that the probability of parallel genetic evolution increases with the

strength of natural selection and effective population size and is particularly

likely to occur for genes with large phenotypic effects. Building on these

results, we develop a Bayesian framework for estimating the strength of par-

allel phenotypic selection from genetic data. Using extensive individual-

based simulations, we show that our estimator is robust across a wide range

of genetic and evolutionary scenarios and provides a useful tool for rigor-

ously testing the hypothesis that parallel genetic evolution is the result of

adaptive evolution. An important result that emerges from our analyses is

that existing studies of parallel genetic evolution frequently rely on data that

is insufficient for distinguishing between adaptive evolution and neutral

evolution driven by random genetic drift. Overcoming this challenge will

require sampling more populations and the inclusion of larger numbers of

loci.

Introduction

As the availability of genome sequences has increased,

interest in understanding how genomic architecture

shapes adaptation at both the genetic and phenotypic

levels has grown substantially (Stapley et al., 2010).

How and which genes respond to selection is a complex

result of many aspects of the genotype to phenotype

map, including allelic effect sizes, epistatic interactions,

linkage disequilibrium and pleiotropy. Significant work

using natural populations (Nadeau & Jiggins, 2010),

experimental evolution (Wichman et al., 1999; Qi et al.,

2016) and evolutionary theory (Orr, 2005; Chevin

et al., 2010) has been devoted to elucidating how these

many factors interact to shape adaptation. Particularly

useful natural systems for addressing such questions are

those exhibiting parallel evolution. Many striking

examples of repeated phenotypic and genetic change

exist (Conte et al., 2012; Martin & Orgogozo, 2013;

Stern, 2013), putatively as a consequence of adaptation

to similar selective environments (Schluter, 2009).

These systems can be viewed as natural experimental

replicates for understanding the interplay of selection

and genetic architecture in shaping patterns of adapta-

tion (Hohenlohe et al., 2010).

There are many definitions for ‘parallel evolution’, a

phenomenon which may or may not be distinguished

from ‘convergent evolution’. These many definitions all

share the common theme of repeated evolution in two

or more populations, but differ in following two major

ways: first, in terms of whether or not these popula-

tions originated from a recent common ancestral popu-

lation or are only distantly related; second, definitions

differ in the biological level at which repeated evolution

occurs, ranging from the genetic to the phenotypic level

(Lenormand et al., 2016). Here, we focus on parallel
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genetic evolution defined as the repeated fixation of

identical alleles in multiple descendent populations. We

further restrict our study to cases where parallel genetic

evolution results from standing genetic variation rather

than from new mutations. Our interest in this specific

scenario is motivated by a number of biological systems

where adaptation to a novel environment is thought to

result from standing genetic variation present in the

ancestral population (Colosimo et al., 2005; Hoekstra

et al., 2006; Steiner et al., 2007). In contrast to de novo

mutation, adaptation from standing genetic variation is

likely rapid (Barrett & Schluter, 2008) and may lead to

distinct genomic signatures of parallel adaptation

(Roesti et al., 2014).

Understanding the conditions that promote parallel

genetic evolution has been facilitated by theoretical

studies. For instance, Orr (2005) calculated the proba-

bility that one of k de novo beneficial mutations arises

and fixes repeatedly and found that parallel evolution

becomes more likely as the strength of selection

increases and the number of possible alleles, k,

decreases. These results are supported by experimental

adaptation of the bacteriophage φX174 to high temper-

atures (Wichman et al., 1999) and adaptation of anti-

fungal drug resistance in Saccharomyces cerevisiae

(Anderson et al., 2003). Taking a different approach,

Chevin et al. (2010) calculated the probability that a

beneficial de novo mutation fixes at the same genetic

locus in independent populations. By allowing muta-

tions to influence multiple phenotypic traits simultane-

ously, this work demonstrated that the probability of

parallel evolution is greatest when pleiotropy is weak.

In addition, this work demonstrated that when muta-

tions have pleiotropic effects, the probability of parallel

evolution is greater when populations are relatively

close to their adaptive optima (i.e. not too maladapted).

Together, these previous theoretical studies provide a

solid framework for understanding the likelihood of

parallel evolution arising from the fixation of novel

mutations.

Although understanding the contribution of new

mutations to parallel evolution is inarguably impor-

tant, in some systems it may be more relevant to

understand the likelihood of parallel evolution from

standing genetic variation. For instance, in the stickle-

back, Gasterosteus aculeatus, repeated adaptation to

freshwater is thought to involve genes already segre-

gating at low frequencies within the marine popula-

tions (Colosimo et al., 2005). In cases like these, the

presence of adaptive alleles in the ancestral population

can have a significant effect on the probability of par-

allel evolution, influencing both the long-term proba-

bility of parallel adaptation and the rate at which

adaptation occurs (Ralph & Coop, 2015). Our focus

here is to enhance our understanding of parallel evo-

lution by developing a genetically explicit multilocus

framework for predicting the probability of parallel

evolution from standing genetic variation. We have

two specific goals: first, we will predict the probability

of parallel evolution in terms of quantities that are

regularly measured in natural populations using a

multilocus model of parallel genetic adaptation that

assumes weak selection and rapid recombination. Sec-

ond, we will develop a statistical framework for esti-

mating the historical average strength of parallel

selection by coupling our multilocus model to rou-

tinely collected genetic data.

The model

Biological scenario

We envision a scenario where haploid individuals from

an ancestral population colonize two or more novel

environments and establish new populations (see

Fig. 1a). After this initial colonization, we assume gene

flow between the ancestral and descendent populations

is negligible and that individuals within populations

mate at random. The descendent populations then

experience identical patterns of phenotypic selection

causing population mean phenotypes at the focal trait

to diverge in parallel from the ancestral population, for

example repeated selection resulting in reduced body

armour in multiple freshwater stickleback populations

relative to their common marine ancestral phenotype

(Colosimo et al., 2004).

We next envision that the genetic basis of the trait

undergoing parallel phenotypic evolution is studied

using one of two commonly used experimental designs

(Conte et al., 2012). Figure 1b illustrates the first exper-

imental design where parallel genetic evolution is

assessed at a set of candidate genes. To identify possible

candidate genes, individuals from at least one descen-

dent population (descendent population 1 in Fig. 1B)

are crossed with ancestral individuals and the resulting

offspring are scanned for divergent QTLs influencing

the focal trait. The remaining populations (descendent

population 2 in Fig. 1b) are then tested for the candi-

date genes using a variety of approaches such as genetic

complementation tests (Hartl & Jones, 2005). This

method, which we will call the ‘candidate gene method’,

has been used in human populations to identify the

genetic basis of the multiple independent origins of lac-

tose tolerance (Tishkoff et al., 2007; Enattah et al.,

2008; Ingram et al., 2009). Alternatively, in the second

design (shown in Fig. 1c), descendent populations are

searched independently for the genes responsible for

the repeated phenotypic divergence from the ancestral

population. This is done by performing independent

QTL scans in each descendent population. This ‘QTL

method’ was used to identify separate genes responsible

for a change in developmental rate in two populations

of Oncorhyncus mykiss (Robison et al., 2001; Sundin

et al., 2005; Nichols et al., 2007).
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Analytical model

Our model assumes the trait experiencing parallel selec-

tion is controlled by n additive loci. Each locus, denoted

with the index i, has two possible alleles Ai and ai and

a phenotypic effect equal to bi associated with the Ai

allele, such that the phenotype of an individual is

described by

z ¼ �z þ
Xn

i¼1
biðXi � piÞ; (1)

where Xi is an indicator variable taking the value 1 if

the individual carries the A allele at locus i and the

value 0 if the individual carries the a allele at locus i.

We assume bi is positive for all i implying that the Ai

allele always increases the value of the trait z. The
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Fig. 1 Schematic of biological scenario. Panel (a) depicts two descendent populations diverging in parallel from a common ancestral

population. The a allele predominates at all four loci in the ancestral population, whereas the A allele fixes at various loci in the two

descendent populations. Panels (b) and (c) depict two methods for deducing the underlying genetics of reduced body size in the two

descendent populations depicted in panel (a). Panel (b) shows the candidate gene method which relies on a genomewide scan of progeny

from a cross between the first descendent population and the ancestral population and subsequent candidate gene search in the second

descendent population. Panel (c) shows the QTL method which involves two genomewide scans, one in each population. Compared with

the candidate gene method, the QTL method uncovers an additional locus driving divergence in population 2.
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frequency of the Ai allele is given by pi and �z denotes

the average phenotype of the population. We assume

the average phenotype of the ancestral population is

small, meaning that the frequency of the Ai allele is

low at all loci, and initially equal to p0i . Within the

new environments, individuals experience selection for

large phenotypes, favouring an increase in frequency of

the A alleles.

The biggest challenge to modelling evolution across

multiple loci is that epistasis and linkage disequilibrium

make it extremely difficult to formulate analytical pre-

dictions for the probability of fixation at individual loci.

Two key assumptions, however, make calculating the

probability of fixation tractable. First, we assume the

relationship between an individual’s phenotype, z, and

its fitness, W(z), is linear:

WðzÞ ¼ bz þ a: (2)

and thus defined only by its intercept (a) and slope (b).
Second, we assume the strength of linear directional

selection, b, is weak, and that the rate of recombination

between loci relatively high. Under these conditions,

recombination breaks apart linkage disequilibrium more

quickly than it can be built up by selection, and a

quasi-linkage equilibrium (QLE) is reached where link-

age disequilibrium is also small, and of the same order

as b (Nagylaki, 1993, Nagylaki et al., 1999). Using the

expression for the phenotypic trait z, given in eqn (1),

as well as the expression for fitness, given by eqn (2),

we can use the multilocus methods developed by Barton

and Turelli (1991) and expanded by Kirkpatrick et al.

(2002) to derive the change in the frequency of the Ai

allele at QLE over a single generation

Dpi � b
a
bipið1� piÞ (3)

(see Data S1 for a full derivation). Because we have

assumed linear selection and that the population is at

quasi-linkage equilibrium (QLE), eqn (3) does not

depend on linkage disequilibrium or the frequencies of

alleles at other loci; instead, each locus evolves inde-

pendently. Later, using individual-based simulations,

we will relax these key assumptions and evaluate the

robustness of this analytical approximation.

The independent evolution of loci enables us to uti-

lize a classic result of the Wright–Fisher model describ-

ing the probability of fixation for an allele with initial

frequency p0 in a population of constant size N. This

probability can be approximated as

Pfix ¼ ð1� e2Nsp0 Þ
1� e2Ns

(4)

(Kimura, 1957; Karlin & Taylor, 1981) where s is the

strength of selection acting on the allele and p0 is its

initial frequency. Under our assumption of linear direc-

tional selection, strength of selection acting on locus i is

s ¼ b
a bi, and eqn (4) can be rewritten as

PfixðiÞ ¼ ð1� e2N
b
abip0i Þ

1� e2N
b
abi

: (5)

Equation (5) reveals that the probability of fixation

depends on initial allele frequency, local population

size, the strength of phenotypic selection and the phe-

notypic effect of the locus. In the next section, we will

use this result to explore how these important parame-

ters influence the extent of parallel evolution.

The probability of parallel genetic evolution at a
single locus

We begin by analysing the simplest possible scenario: a

single genetic locus. For this case, parallel evolution

entails the repeated fixation of the same allele in multi-

ple descendent populations. The probability of this

occurring can be calculated using eqn (5) to find the

probability that at the locus of interest, i, the Ai allele

fixes independently in each of m populations:

Pk ¼ pfixðiÞð Þm: (6)

Requiring repeated fixation in all m populations rep-

resents a very restrictive definition of parallel genetic

evolution and in some cases a less restrictive definition

may be preferable. In such cases, it is straightforward to

develop expressions for the probability of repeated fixa-

tion in any subset of m populations using (5). An

example of the calculations for a less restrictive defini-

tion is provided in the online Data S1.

Equations (5 and 6) highlight three important fac-

tors that will influence the probability of observing

parallel genetic evolution. First, the probability of

repeated fixation of an allele increases with its initial

frequency, p0i . Second, large effect alleles, those with

large bi, are more likely to fix in parallel under direc-

tional selection. This relationship between effect size

and parallel evolution is shown in Fig. 2. Third, paral-

lel genetic evolution is more likely to occur when

evolution is driven primarily by the deterministic force

of natural selection rather than the stochastic force

of random genetic drift. Specifically, the probability of

parallel evolution increases with the product of popu-

lation size and the phenotypic selection gradient in

derived populations, N b
a. This product captures the bal-

ance between drift and selection and shows that paral-

lel evolution is more likely in large populations

experiencing strong natural selection as shown by the

three curves in Fig. 2. As this term arises repeatedly in

the derivation to follow, we will denote it with the

composite parameter g

g ¼ N
b
a
: (7)
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The probability of parallel genetic evolution at
multiple loci

Although the single locus results of the previous section

are insightful, they fall short of capturing the genetic

richness of real populations where the extent of parallel

evolution must be assessed across multiple loci. Fortu-

nately, calculating the probability of parallel evolution

across multiple loci is straightforward and yields the

following formula:

Pk ¼
Yn

i¼1
pfixðiÞð Þm; (8)

where the product is carried over the number of loci.

Not surprisingly, eqn (8) shows that the factors enhanc-

ing the probability of parallel evolution at a single locus

(e.g. large population size, strong selection) also

increase the probability of parallel evolution across

multiple loci. What distinguishes one locus from the

next is the initial allele frequency and the allelic effect

size. Therefore, the probability of parallel evolution

across multiple loci will depend on the distribution of

allelic effects. Equation (8) clarifies the connection

between the effect size distribution and parallel evolu-

tion yielding several novel insights that emerge only

when multiple loci are considered.

The first and most obvious insight to emerge from

(8) is that perfectly parallel genetic evolution, where all

loci are fixed for the selectively favoured Ai alleles in

all descendent populations, becomes less and less likely

as the number of loci increases. This is a simple result

of the product rule of probabilities and arises because

the overall probability of parallel evolution decreases as

each additional locus is required to fix in parallel in the

m descendent populations. The second insight that

emerges from eqn (8) is that when selection is rela-

tively weak, population sizes are relatively small, and

adaptive alleles initially infrequent, it is unlikely to

observe parallel evolution at more than a single locus

with large phenotypic effect (Fig. 3). As selection

becomes stronger, population sizes larger, or adaptive

alleles initially more frequent, however, it becomes

increasingly likely that parallel evolution will occur at

multiple loci, including loci with moderate phenotypic

effects (Fig. 3). These results are, for the most part, rel-

atively insensitive to the particular distribution of effect

sizes across loci. Only in cases of strong selection and

high initial allele frequency (when evolution becomes

more deterministic) does the effect size distribution

contribute significantly (bottom right panel of Fig. 3).

In such cases, the probability of parallel evolution at a

large number of loci increases with the mode of the

effect size distribution. In other words, parallel evolu-

tion at a large number of loci is most likely when the

effect size distribution is not skewed towards small

effect loci (Fig. 3). Together, these results suggest that

the likelihood of observing parallel genetic evolution at

any particular number of loci depends heavily on the

parameter g.

Bayesian inferences of parallel phenotypic selection

The results derived in the previous section demon-

strate a strong connection between the parameter g
and the probability of observing parallel genetic evolu-

tion. In this section, we develop a method for estimat-

ing the value of this key parameter using a Bayesian

framework that capitalizes on eqn (8). Our goal is to

provide a methodology that allows support for a

hypothesis of adaptive parallel evolution to be assessed

using data collected in empirical studies of parallel

genetic evolution. Specifically, by estimating g it

becomes possible to distinguish between parallel

genetic evolution caused by random genetic drift,

g = 0, and parallel genetic evolution caused by natural

selection.

Our Bayesian approach will rely on genetic data

described by a matrix, D, where rows represent descen-

dent populations and columns loci. Each element of D
takes a value of 0 or 1 depending on which allele has

fixed at a particular locus in a given population

(Fig. 1a). Using eqn (8), we can develop a likelihood

function specifying the probability of observing the data,

D, given a particular value of the parameter g, empirical

estimates of the effect sizes bi and initial allele frequen-

cies p0. The effect sizes can be (and frequently are) esti-

mated using QTL scans (Lynch & Walsh, 1998; Broman

& Sen, 2009; Conte et al., 2015), whereas initial allele

frequencies can be estimated by measuring the allele fre-

quencies in the ancestral population. Accurate

Effect size

∥

=

=

=

Fig. 2 The probability of parallel evolution as a function of allelic

effect size, b. For a given strength of selection the probability of

fixation, and hence parallel evolution, increases with allelic effect

size. The rate of increase is nonlinear and depends on the strength

of selection s and the population size N which are given by the

compound parameter g = Ns. The initial allele frequency for the

three curves was held constant at p0 = 0.01.
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estimation of the genetic data D, the allelic effect sizes

and the initial allele frequencies will require sufficient

sample sizes from each descendent population and the

ancestral population. We will later address the conse-

quences of uncertainty in the estimation of the initial

allele frequencies and allelic effect sizes using individual-

based simulations. Given estimates for these parameters,

the likelihood expression consists of a product of terms,

one for each locus of the focal trait in each population.

If the A allele has fixed at a locus it contributes a term

Pfix, as defined by eqn (5). Alternatively, if the A allele

is lost, it contributes a term (1 - Pfix). Thus, for m popu-

lations and n loci, the likelihood of observing the data,

D, is given by the following product

LðDÞ ¼
Ym

j¼1

Yn

i¼1
Pfixðg; iÞDij 1� Pfixðg; iÞð Þ1�Di;j ; (9)

where i is an index over loci and j an index over popu-

lations. The likelihood for g as a function of the genetic

data D and the genetic architecture of the trait under

selection is based on principles similar to those devel-

oped by Rice & Townsend (2012). A key difference,

however, is that here the likelihood of parallel genetic

evolution is based on only the loci influencing a single

phenotypic trait, rather than the entire mutational

effect distribution.

The likelihood, (9), can be used in a Bayesian setting

to estimate a posterior distribution for the key

Probability of parallel evolution at exactly loci

Fr
eq
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nc

y

Effect Size, 

loci

≈ = .

= = .

= = .

≈ = .
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Fig. 3 The probability of parallel

evolution at n loci. For a trait

determined by the effects of 10 total

loci, the probability of observing

parallel evolution at exactly n loci

depends on the strength of selection,

which varies from near 0 to a value of

g = 50, and the initial allele frequency,

which is either low (0.01) or high (0.1).

The probability of parallel evolution

may also depend on the underlying

effect size distribution depicted here

(top panel) as three different gamma

probability distributions with different

shape and scale parameters (red: k = 1,

h ¼ 1
2
, blue: k = 2, h ¼ 1

4
, green: k = 5,

h ¼ 1
5
,) but with the same mean effect

size (l ¼ 1
2
).
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parameter g. Specifically, Bayes’ theorem enables us to

formulate estimates for g in the form of the posterior

distribution p(g|D) that is biologically meaningful for all

possible genetic outcomes, D,

pðgjDÞ ¼ LðDjgÞpðgÞR
g LðDjgÞpðgÞ ; (10)

where p(g) is our prior distribution for the parameter g.
The denominator of this expression is the integral over

the likelihood surface and cannot be easily evaluated.

For this reason, we use a Markov Chain Monte Carlo

algorithm to sample from the posterior distribution and

generate an estimate of the most probable value of g
for the given genetic data D. We label this estimate ĝ.
We take two approaches to evaluating the performance

of this estimator. First, we analyse its performance

under the assumptions of the analytical model by gen-

erating the genetic data D under the Wright–Fisher
model. Next, we test the robustness of the estimator to

violations of the assumptions of our analytical model

by generating the genetic data D using multilocus

individual-based simulations.

Wright–fisher simulation

We simulated the data D for two populations under the

Wright–Fisher model by drawing a random number

between 0 and 1 for each locus and population and set-

ting Di;j to 1 if the random number was less than pfix
from eqn (5) and to 0 otherwise. The value of pfix
depends on the initial allele frequency at each locus,

P0i , the allelic effect sizes of each locus, bi, as well as

the parameter g. For each simulation, we drew the val-

ues of these parameters independently and at random.

Initial allele frequencies were drawn independently at

each locus from a uniform distribution between 0 and

0.1. Because our model envisions divergence of descen-

dent populations from a common ancestor, we assumed

that the initial frequency at any one locus was the

same in both populations. Allelic effect sizes were

drawn independently for each locus from a uniform

distribution between 0 and 1. The value of g for each

run was drawn from a uniform distribution ranging

between 0 and 50. The genetic outcome D simulated in

this manner may not, however, resemble what would

be measured using experimental methods. For example,

using current genomic techniques it is not possible to

identify loci that have not diverged from the ancestral

state. To address how experimental methodologies

affect our Bayesian estimates, we considered two modi-

fied forms of D that resemble sampling under the two

experimental methods described previously (see Fig. 1).

The first of these methods, the candidate gene method

(Fig. 1b), assesses parallel genetic evolution at candi-

date genes which are known to have generated the

phenotypic divergence in the first descendent popula-

tion. This is often done by performing a cross between

individuals from one of the divergent populations with

the ancestral population and assessing the genetic vari-

ation in the F1s. As the second divergent population is

not independently assessed for divergent QTLs, under

this method we only consider the columns of D (i.e.

loci) where the A allele has fixed in the first popula-

tion. The second experimental method, the QTL

method (Fig. 1c), independently assesses divergent loci

in all descendent populations. Under this method, D
therefore contains all columns (loci) which have fixed

in at least one population. Hence, the effective number

of loci identified using this method will always be

greater than or equal to the number found by the less

thorough candidate gene method.

For each simulated D, as well as for D modified by

the two experimental methods, we estimated g using a

Metropolis–Hastings algorithm as described in the Data

S1. For the prior p(g), we used a uniform distribution

on the interval g = �80. To analyse the performance of

the estimator, we ran a regression of the estimated val-

ues of ĝ on the true values g, using 200 data points.

Overall, this analysis revealed that the estimator was

quite accurate, explaining between 80% and 85% of

the variation (see Table S1). In addition, our analysis

showed that the accuracy of the estimates increases

with the number of loci. This trend holds regardless of

the experimental method used. However, the effective

number of loci under the QTL method is always greater

than when candidate genes are first identified in one

population and then subsequently searched for in the

other. The results of these simulations suggest our esti-

mator performs quite well when the data meet the

assumptions of our analytical model; however, this

may not be the case for real data. In the next section,

we explore the performance of our estimator using

individual-based simulations. These simulations allow

us to evaluate the consequences of violating key

assumptions of our analytical model such as the weak

selection and frequent recombination required for our

quasi-linkage equilibrium approximation.

Individual-based simulation

Our individual-based simulations consider two allopa-

tric populations, each of which has a constant size of

N = 1000 individuals. Initial allele frequencies and

effect sizes at each locus, as well as the value of g, were

drawn randomly as described above under the Wright–
Fisher model. Individuals within each population

undergo a two-stage life cycle. During the first stage,

‘selection’, the probability that an individual survives is

given by its fitness, with fitness computed using either

eqn (2) which describes linear selection or an expres-

sion for stabilizing selection described below. Surviving

individuals then enter the second life cycle stage, ‘re-

production’, which consists of generating an offspring

population from the surviving parental population. This
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is done by drawing a pair of parents at random from

the pool of surviving individuals and producing an off-

spring from these parents by recombining the parental

genomes at a specified rate r and allowing mutation

between the two allelic states at a per locus mutation

rate of l = 10�6. This process is continued with replace-

ment of parents until the offspring population reaches

the preselection size of N. This life cycle is repeated

until all loci approach fixation or loss (allele frequencies

>0.99 or <0.01) at which point the simulations were

terminated and the matrix of genetic data D filled by

rounding the allele frequency to 1 or 0. As in the previ-

ous section, we formulate modified versions of D that

resemble sampling under the two experimental meth-

ods. Then, using the Metropolis–Hastings algorithm, we

compute estimates for the value of g using the original

outcome D as well as the two modified forms of D (see

Data S1).

We used the simulations to test the robustness of the

estimator when selection is strong and/or nonlinear. To

test the effect of nonlinear selection, simulations were

run where an individual’s fitness was determined by

one of two alternative forms of selection: linear direc-

tional selection described by (2), or stabilizing selection

towards a phenotypic optimum:

WðzÞ ¼ e�cðz�hÞ2 ; (11)

where h is the phenotypic optimum and c is the

strength of stabilizing selection. Including simulations

where selection is stabilizing is important because it

relaxes our previous assumption that loci evolve inde-

pendently. Stabilizing selection is particularly useful in

testing this assumption because the relative importance

of interdependence between loci can be manipulated

by changing the value of the phenotypic optimum.

Specifically, the relative importance of interactions

between loci will depend on the value of the optimum

relative to the largest possible phenotype zmax = Σibi.
When h is greater than the largest possible phenotype,

zmax, loci remain relatively independent as directional

selection predominates over epistatic selection. How-

ever, when h < zmax, this is no longer true as epistatic

selection now dominates. Therefore, when h > zmax,

evolution is much more likely to resemble linear selec-

tion as our analytical model assumes. We simulated sta-

bilizing selection under these two different scenarios,

by either requiring that h be larger than zmax or slightly

smaller than zmax (see Data S1). Under stabilizing selec-

tion g changes as the population adapts, decreasing as

the population approaches the optimum (Chevin &

Hospital, 2008; Matuszewski et al., 2015). Therefore, we

computed a ‘realized’ strength of linear selection by

averaging the selection gradient,
covðz;wÞ
var(z) , over all time

points for which var(z) 6¼ 0.

As expected, analysis of simulated data shows that

the accuracy of our estimates depends on the form of

selection. Specifically, estimates for g are most accurate

under linear selection, somewhat less accurate under

stabilizing selection towards a distant optimum,

h > zmax, and least accurate under stabilizing selection

towards a close optimum, h < zmax (see Fig. 4 and

Table S2). In addition to assuming that selection is lin-

ear, we also assumed that selection is weak. By com-

puting the variance about the regression line as g
increased, we were able to confirm that, for the data

shown in Fig. 4, the accuracy of our estimates decreases

with increasing selection. Next, we used our simula-

tions to explore the sensitivity of our estimator to infre-

quent recombination among candidate loci (see

Table S3). Not surprisingly, these simulations revealed

that our estimator performs better when recombination

is frequent (r = 0.5) than when recombination is rare

(r = 0.05). The effect of infrequent recombination is

more drastic for stabilizing selection than linear selec-

tion and is particularly pronounced when h < zmax. This

is expected as this latter scenario generates the stron-

gest epistatic selection and thus has the greatest poten-

tial to cause linkage disequilibrium to accumulate.

Finally, we used the individual-based simulations to

test the accuracy of our estimator when several

assumptions of the biological scenario envisioned above

are violated. These violations included recurrent gene

flow from the ancestral to the descendent populations,

gene flow among descendent populations, selection that

differs in strength across descendent populations and

estimates of the parameters p0 and bi that are imprecise

(see Data S1 and Tables S4–S6 and Figure S1). These

simulations reveal that our estimates of g are robust to

violations in many of these assumptions. Specifically,

the estimator performs well when migration occurs

between descendent populations or from the ancestral

population as long as rates remain below two migrants

per generation. In addition, estimates for the average g
in the descendent populations remain robust even

when the selection gradients differ among descendent

populations by up to 20%. Lastly, estimates for g are

relatively insensitive to modest levels of error (<10%)

in the estimated values of the parameters p0 and bi. Up

to this point, we have focused on using the Bayesian

estimator to provide single-point estimates for g. Having
access to the full posterior distribution, however, allows

us to calculate a 95% credible interval for the parame-

ter g and determine whether or not it overlaps with

zero. From an empirical standpoint, being able to rule

out g = 0 allows us to reject the hypothesis that

observed levels of parallel genetic evolution can be

explained by random genetic drift alone. The open vs.

closed circles in Fig. 4 represent data points for which

credible intervals drawn from the posterior distribution

do, or do not, overlap zero, respectively. Figure 5

shows how the probability of rejecting 0 (filled bars)

increases with g.
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Discussion

It has long been understood that natural selection, par-

allel genetic evolution and genomic architecture are

inherently linked (Orr, 2005; Schluter, 2009; Chevin

et al., 2010). Previous theoretical work has focused on

repeated genetic evolution from new mutation and

found that key components of genetic architecture,

such as the number of possible beneficial mutations

(Orr, 2005) and the distribution of mutational effects

(Chevin et al., 2010), influence the probability of paral-

lel evolution. Here, we have used a multilocus model

of parallel evolution from standing genetic variation to

further formalize these connections. We began our
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time averaged values of g and the Bayesian estimate ĝ for 200 replicates of the individual-based simulation. Open (filled) points indicate
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investigation by calculating the probability of parallel

evolution at a single locus and showed that parallel

evolution is most likely when phenotypic selection is

strong, standing genetic variation for adaptive alleles is

appreciable, adaptive alleles have large phenotypic

effects, and population sizes are large. Next, we used a

quasi-linkage equilibrium approximation to extend our

analyses to multiple loci, demonstrating that the num-

ber of loci that evolve in parallel depends on the pro-

duct of phenotypic selection and local population size

(g). If selection is relatively weak, or if population sizes

are small, we expect parallel evolution at no more than

a single locus. In contrast, when selection is relatively

strong, or population sizes are very large, parallel evo-

lution may occur across multiple loci. These results

demonstrate that without information on the strength

of phenotypic selection and population size, we have

no way to assess whether the amount of parallel

genetic evolution we observe in an empirical study is

beyond what would be expected under neutrality. To

remedy this problem, and better connect studies of par-

allel genetic evolution to the evolutionary processes

they imply, we developed a Bayesian approach that

capitalizes on available genetic data to estimate the pro-

duct of phenotypic selection and local population size

(g). In the following paragraphs, we explore several of

the key results in more detail and discuss their implica-

tions for past, present and future studies of parallel

genetic evolution.

The first important result that emerges from all of

our models is that parallel evolution is most likely to

be observed at loci with large phenotypic effects on

traits experiencing strong phenotypic selection in novel

environments. This result receives at least some support

from empirical studies of parallel genetic evolution. For

example, the large effect gene Eda has been found in

eight freshwater descendent populations of threespine

stickleback, Gasterosteus aculeatus, and is largely respon-

sible for the parallel reduction in lateral plate number

in these populations. In contrast, the small effect locus

LG7 has been confirmed in only two of the eight

descendent populations (Colosimo et al., 2004; Schluter

et al., 2004; Conte et al., 2012). It seems likely that this

example – where a stark ecological shift from salt to

fresh water has occurred – corresponds to a case where

natural selection is quite strong. Another important,

albeit unsurprising, result of eqn (6) is that the proba-

bility of parallel evolution at a single locus also depends

on effect size and initial allele frequency. This may help

explain why, contrary to the results described above, a

recent comprehensive survey of allelic effects involved

in parallel adaptation in two stickleback populations

found no correlation between effect size and probabil-

ity of repeated gene use (Conte et al., 2015). Our

results suggest that the lack of correlation may be the

result of highly variable initial allele frequencies among

loci.

By integrating multilocus genetics into a model of

adaptation, we were also able to derive expressions for

the probability of observing parallel genetic evolution

at various numbers of loci over the course of adapta-

tion. The most important result to emerge from this

analysis is that in the absence of information about the

likely strength of phenotypic selection in derived popu-

lations and the number of individuals composing these

derived populations, there is no way to assess the sig-

nificance of observing parallel evolution at any particu-

lar number of loci. Put differently, if natural selection

in novel environments is quite strong or population

sizes in novel environments quite large, observing par-

allel evolution at multiple genetic loci is not too sur-

prising. If, however, natural selection is weak or

population sizes very small, observing this same level of

genetic parallelism would be rather unexpected. This

suggests that if we are to more rigorously interpret the

results of empirical studies of parallel genetic evolution,

we must do better than simply counting up the number

of parallel genetic changes observed. Our Bayesian tool

accomplishes this goal by providing a methodology for

tying information on the extent of parallel genetic

information to underlying evolutionary processes.

For our Bayesian approach to be broadly useful, it

must produce reliable estimates across a broad range of

parameter space. For this reason, we used individual-

based simulations to assess the accuracy and robustness

of our approach when key assumptions of the underly-

ing model are violated. These simulations demonstrate

that our estimator is indeed both accurate and robust,

although there are limitations. For example, accurate

estimation requires data from at least eight total loci, be

that four loci in two populations, two loci in four popu-

lations, or some intermediate combination. Whether

data are gathered at fewer loci in many populations or

many loci in few populations should, in principle, have

no effect on the accuracy or efficiency of the estimator.

Many of the studies discussed above, however, have far

fewer than this. For example, studies of parallel pig-

mentation changes in a variety of species, from beach

mice (Hoekstra et al., 2006) to cave fish (Protas et al.,

2006; Gross et al., 2009), focus primarily on one or two

loci in somewhere between two and six populations.

Therefore, if future studies hope to understand the role

of natural selection in driving parallel evolution, it is

important that they focus on acquiring data from as

many loci and as many populations as possible. Because

increasing the number of loci at which parallel genetic

evolution is assessed will almost certainly require

studying loci with smaller phenotypic effects on the

focal trait, there may be hard limits to the number of

loci that can be usefully included. Fortunately, no such

limitation exists with respect to the number of popula-

tions that can be included.

The demonstration that increasing the number of loci

at which parallel evolution is assessed is important
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suggests that some experimental approaches may per-

form better than others. For instance, we explored two

alternative experimental methods (see Fig. 1b,c) that

differ predictably in the number of loci that are

detected: the QTL method and the candidate gene

method. Because the QTL method always detects paral-

lel evolution at an equal or larger number of loci, we

recommend its use over the candidate gene method.

Finally, our results show that the accuracy of the Baye-

sian estimate is influenced not only by the amount of

available data but by the accuracy of the estimated

parameter values bi and p0i . Fortunately, however, as

long as error in these parameters remains modest, our

Bayesian approach continues to produce reliable esti-

mates (see Table S1). Alternatively, because the

approach we have developed is Bayesian, it is also pos-

sible to input a prior distribution for the parameter p0i
rather than a single-point estimate in cases where the

exact value of p0i is in doubt due to sampling error or

stochastic variation in small populations (Hermisson &

Pennings, 2005).

In addition to requiring information on parallel

genetic evolution drawn from a reasonably large num-

ber of loci or populations, our estimator relies on sev-

eral key assumptions that affect its accuracy. The most

important of these assumptions is that selection is weak

and linear. When combined with the assumption that

recombination is frequent, these key assumptions

allowed us to utilize a quasi-linkage equilibrium

approximation. Another potentially important assump-

tion of our approach is that population size is constant

across time. As a result, we implicitly ignore potentially

important impacts of sporadic population bottlenecks or

founder effects. This assumption may prove particularly

important in cases of repeated evolution of reduced

skin pigmentation in European and Asian human pop-

ulations for which there is evidence for extensive bot-

tlenecks (Schmegner et al., 2005; Amos & Hoffman,

2010). Finally, our approach assumes that selection/

population size is identical in each population and that

recurrent gene flow does not occur. Although these

assumptions may ultimately prove important in some

cases, our individual-based simulations show that they

have only a limited impact on the accuracy of estimates

in most cases (see Table S1).

Combined, our analyses of single- and multilocus

models show that it is difficult to draw conclusions

about the biological significance of parallel genetic evo-

lution without information on the strength of parallel

phenotypic selection and local population size. We have

overcome this hurdle by developing a robust statistical

methodology for translating observed levels of genetic

parallelism into an estimate of the product of pheno-

typic selection and local population size. This statistical

approach provides a much needed tool for distinguish-

ing between adaptive and nonadaptive hypotheses for

observed levels of parallel genetic evolution. Applying

this method to existing and emerging data from multi-

ple populations with common ancestry may thus offers

novel insights into the importance of adaptive evolu-

tion in natural populations.
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