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a b s t r a c t

Host–parasite interactions in the form of infectious diseases are a topic of interest in both evolutionary
biology and public health. Both fields have relied on mathematical models to predict and understand
the dynamics and consequences of these interactions. Yet few models explicitly incorporate both epi-
demiological and coevolutionary dynamics, allowing for genetic variation in both hosts and parasites.
By comparing a matching-alleles model of coevolution, a susceptible–infected–recovered–susceptible
compartmental model from epidemiology, and a combined coevolutionary–epidemiology model we
assess the effect of the coevolutionary feedback on the epidemiological dynamics and vice versa. We
find that Red-Queen cycles are not robust in an epidemiological framework and that coevolutionary
interactions can alter the conditions under which epidemic cycles arise. Incorporating both explicit
epidemiology and genetic diversity may have important implications for the maintenance of sexual
reproduction as well as disease management.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Host–parasite interactions and their relationship to infectious
diseases is a topic of great interest in both public health and
evolutionary biology. The cost of infection is evident from death
tolls from the black death of 1346 and the Spanish influenza in
1918. Indeed genomic data confirms that pathogen load is perhaps
a keydriver in humanadaptation (Fumagalli et al., 2011). Similarly,
as an analysis of the fitness landscape of P. falciparum reveals,
pathogens experience strong selection from a variety of sources
including host immune responses, host death, and vector avail-
ability (Mackinnon and Marsh, 2010). Strong selection on genetic
variants in hosts and pathogens can have major implications, from
the maintenance of deleterious recessive mutations such as the
Hbs allele for sickle cell anemia (Allison, 1956) to the mainte-
nance of sexual reproduction (Hamilton et al., 1990). Since the
classic papers by Kermack and McKendrick (1927) and Hamilton
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(1980), epidemiologists and evolutionary biologists have used
mathematical models to understand and predict the outcomes of
these interactions.While both coevolutionary and epidemiological
models capture important dynamics of host–pathogen interactions
they are often not integrated with one another to capture realistic
feedback between evolutionary and population dynamics when
both hosts and parasites are genetically variable.

Most epidemiological models of pathogen spread are compart-
mental models in which a host population is divided into a series
of compartments depending on each individual’s disease status,
for example susceptible (S), infectious (I), or resistant (R) in an SIR
epidemiological model. Models tracking transitions among com-
partments can then be described by a set of differential equations,
which can be analyzed to predict the incidence of the disease over
time. Such compartmental models have succeeded in producing
a number of interesting and realistic phenomena, of particular
interest here is the appearance of sustained cyclic outbreaks (epi-
demics). Many infectious diseases such as measles exhibit well
characterized periodic outbreaks thought to be consistent with SIR
dynamics (Fine and Clarkson, 1982; Hethcote and Levin, 1989;
London and Yorke, 1973).
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On the other hand, evolutionary models of host–pathogen in-
teractions typically ignore population and epidemiological dynam-
ics by assuming a constant rate of exposure, focusing instead on
genetically variable host and pathogen populations. The simplest
coevolutionary models consider a host and pathogen interaction
mediated by a single di-allelic locus from each species. In the
matching-alleles model (MAM) each pathogen genotype prefer-
entially infects a corresponding host genotype and either fails to
infect or has reduced infectivity on alternative host genotypes.
Matching-allele models are motivated by systems of self/non-self
recognition present inmany animals (Luijckx et al., 2013;Grosberg
and Hart, 2000). In contrast, in the gene-for-gene model, which
was developed to reflect plant resistance (Flor, 1955), there are
resistant and susceptible host varieties interacting with virulent
and avirulent pathogens. Susceptible hosts succumb to infection
by both pathogen types whereas resistant hosts resist infection
by avirulent pathogens but are susceptible to pathogens carrying
the virulence gene. Here we focus on matching-allele type models
where, even in the simplest case when infection is determined by
a single locus, important dynamics arise. Specifically, thesemodels
exhibit neutrally stable host and pathogen allele frequency cycles
over time. Such cycles are an important cornerstone of the Red
Queen hypothesis for the evolution and maintenance of sexual re-
production (Hamilton, 1980; Lively, 1987). These cycles are, how-
ever, known to be very sensitive to model assumptions (Agrawal
and Lively, 2003) and are affected by the inclusion of realistic
population dynamics (Gokhale et al., 2013; Song et al., 2015).

Despite the conceptual overlap between infectious disease
spread and host–parasite coevolution, models of coevolution with
variable hosts and parasites in an epidemiologically realistic
framework are limited. Here we present such an integrated model
focusing on how the combined dynamics differ from those of
coevolutionary and epidemiologicalmodels considered separately.
We begin by summarizing the few previous coevolution–epidem-
iological models that have analyzed the evolutionary dynamics
of host–pathogen interactions. Building on this work, we ana-
lyze host–parasite interactions in a SIRS (Susceptible–Infectious–
Resistant–Susceptible) compartmental model with the specific
aim of understanding how epidemiology shapes coevolutionary
dynamics and vice versa. We then review two models, a model
of coevolution in the absence of epidemiology and a model of
epidemiological dynamics in the absence of coevolution that donot
incorporate this feedback. Finally, we build upon these background
models to analyze a combined model of coevolution with explicit
epidemiological dynamics. Using a combination of analytical and
numerical techniqueswe characterize the dynamics of eachmodel.
We will focus on describing when epidemiological cycles and
allele frequency cycles are maintained. This comparison across
models reveals that incorporating genetic variability in epidemi-
ological contexts can produce substantially different dynamical
behavior than compartmental or coevolutionary models alone.
In particular we find that the Red Queen coevolutionary cycles
present in matching-alleles models dissipate when accounting for
epidemiological dynamics and that the conditions for epidemic
versus endemic disease dynamics are altered by genetic variability
in hosts and parasites.

2. Theoretical background

Many compartmental models used in epidemiology incorpo-
rate either host variability or pathogen variability by following
either multiple host types or multiple pathogen types. Few of
these models, however, introduce both the multiple host and
multiple pathogen types necessary to capture coevolution in an
epidemiological context. The few models that have done so have
reached different conclusions about the nature of Red Queen allele

frequency dynamics, depending on the assumptionsmade,making
it difficult to determine the general impact that incorporating
epidemiological dynamics has on convolution.

The earliest such model, by May and Anderson (1983), exam-
ined coevolution between two host and two pathogen types with
a perfect matching-alleles infection where each pathogen type can
infect only one host type. In each non-overlapping host generation,
a pathogen epidemic occurs with infected hosts experiencing in-
creased mortality. Once the epidemic has subsided the remaining
hosts give birth to the next generation of susceptible hosts. Three
different types of allele frequency dynamics can arise, depending
on the pathogen growth rates. First, for slowly growing pathogens,
those with low transmissibility and short duration infections, the
evolutionary change per generation is small and as a result the host
and pathogen allele frequencies gradually approach a polymorphic
equilibrium. The value of this equilibrium is determined by the
epidemic size within a generation for each pathogen (long-term
relative growth rate), favoring the pathogen with higher epidemic
sizes. As the growth rates of both pathogens increase, however,
a second dynamic arises. The discrete host life history generates a
two point allele frequency oscillation about the polymorphic equi-
librium. Finally for rapidly growing pathogens, the allele frequency
dynamics become chaotic.

There are two important assumptions in May and Anderson’s
model: first that pathogens are specialists, leading to a perfect
matching model, and second that each discrete host generation
is long enough for the pathogen outbreak to completely subside.
Together these two assumptions have several important conse-
quences on the epidemiological and coevolutionary dynamics.
First, assuming long non-overlapping host generations, pathogen
fitness is determined by the long-term epidemic size rather than
by the basic reproductive rate, as in the case of models with over-
lapping generations. Hence, unintuitively, the epidemiological and
therefore coevolutionary dynamics are insensitive to the initial
number of infections per generation and the mode of transmission
between discrete host generations. Together these two assump-
tions uncouple the evolution of the two host–pathogen pairs, in
effect removing coevolutionary feedback. This would no longer be
the case if recovery were only temporary, if hosts had overlapping
generations, or if any cross infection between host types were
allowed. Many aspects of the observed allele frequency dynamics
are a consequence of these assumptions, for example the two-
point allele frequency cycles, and may have few implications for
continuously reproducing hosts.

One such model of coevolution with explicit epidemiology in
continuous time was proposed by Beck (1984). She considered a
single locusmodel with a diploid host and haploid pathogen. Using
a susceptible–infectious–susceptible (SIS)model, the virulence, in-
fection, and recovery rates were dependent on the host–pathogen
pair. However, to facilitate model analyses she assumed that the
strain-specific effects were small. Under this assumption the sys-
tem exhibits several types of equilibria: a set of equilibria where
both the host and pathogen populations fix one allele, a set of
equilibria where one species remains polymorphic while the other
fixes, and lastly an internal equilibrium at which both the host and
pathogen are polymorphic. Using perturbation theory (Karlin and
McGregor, 1972) assuming the strain-specific effects are small, she
was able to conclude the system will approach the fully polymor-
phic equilibriumwith damped cycles. Hence, coevolutionary allele
frequency cycles do not exist when epidemiological dynamics are
included. However, since this stability analysis only applies when
strain-specific effects are small, the results may not hold in cases
where pathogens can differ markedly in their host preferences. In
a rederivation of Beck’s results (still assuming small differences
between strains), Andreasen and Christiansen (1995) show that
the dampening of these coevolutionary cycles does not extend to
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more complex ecological models, for example when a free living
pathogen population is introduced.

Providing an important intermediate between May and An-
derson’s (1983) model with long discrete host generations and
Beck’s (1984) continuous-timemodel,Morand et al. (1996) present
a discrete-time epidemiological model in which multiple time
steps occur within each host and parasite generation. Infection
depends on a single diploid locus in the host and pathogen where
each host genotype can only be infected by the corresponding
genotype in the pathogen. Importantly their susceptible–infected
(SI) model, which is motivated by the infection of snails of the
genera Biomphalaria and Bulinus by their castrating Schistosoma
parasites, assumes that hosts are castrated upon infection and
never recover imposing a strong fitness cost to infection. They
show that, in comparison to Beck’s (1984) results, such castrating
infections can generate sustained limit cycles in overall infection
prevalence as well as host and pathogen allele frequencies. In
the supplementary Mathematica notebook we demonstrate that
indeed this result holds only in epidemiologicalmodelswith strong
selection (castrating or highly-virulent infections).

In addition to considering allele frequency dynamics, host–
parasite interactions can also lead to cycles in host genotype
frequencies. In particular if host susceptibility is determined by
its genotype at two or more loci, coevolution can drive cycles in
the linkage disequilibrium between loci even in the absence of
changes in allele frequencies (Nee, 1989). Penman et al. (2013)
analyzed the effect of SI-type epidemiological dynamics on such
genotype frequency cycles. Motivated by the evolution of HLA loci,
the genotype of the two-locus haploid pathogen must differ at
each locus from that of the host for infection to occur in their
model. This in turn favors host genotype combinations that match
the most abundant pathogen genotypes, favoring the buildup of
linkage disequilibrium. They observe that linkage disequilibrium
between loci can cycle even though allele frequencies need not.
These linkage disequilibrium cycles are facilitated by epistasis in
fitness between loci (Gandon and Otto, 2007) and/or rare recom-
bination (Kouyos et al., 2009), as well as the existence of immune
system memory (Penman et al., 2013).

These epidemiologically explicit models of coevolution empha-
size the need to better understand the interplay between host–
parasite coevolution, Red Queen dynamics, and epidemiology.
Building on these previous models, we generalize previous results
by using a continuous-time SIRS model that exhibits a wide range
of epidemiological dynamics and a general coevolutionary model.
Our coevolutionary model requires neither the pathogens to be
specialists (as in May and Anderson (1983)) nor the strain specific
effects to be small (as in the models by Beck (1984) and Andreasen
and Christiansen (1995)). In addition our epidemiological model
allows for arbitrary virulence from benign to complete loss of
fitness for infected individuals, as in Morand’s model with par-
asitic castration (Morand et al., 1996). Although we focus on
coevolutionary dynamics at a single locus, the results of Penman
et al. (2013) suggest that linkage disequilibrium cycles can be
maintained when immune system memory is included, but future
extensions are needed to determine the nature of genotypic cycles
across a variety of multi-locus epidemiological and coevolutionary
models. We conclude with a discussion of the implications of our
results on disease dynamics and on the evolution of sex.

3. Background: Matching-Alleles coevolution model

Here we present a classic coevolutionary model with a haploid
host and pathogen interaction involving a single di-allelic locus in
each species. Such a model can be described by a 2 × 2 matrix

where element βij determines the rate at which pathogens of type
j infect hosts of type i:

β =

[
β11 β12

β21 β22

]
. (1)

In particular, we will focus on a matching-alleles type interaction
where pathogens preferentially infect hosts with the same geno-
type. For coevolution to ensue, infected hosts must experience
a fitness cost due to infection and successful parasites a relative
fitness benefit, which we denote by ξH and ξP respectively. The
resulting allele frequency changes of type 1 hosts, pH , and type 1
pathogens, pP , are given by
dpH
dt

= −ξHpH (t)(1 − pH (t)) (pP (t) (β11 − β21)

+ (1 − pP (t)) (β12 − β22))

dpP
dt

= ξPpP (t)(1 − pP (t)) (pH (t) (β11 − β12)

+ (1 − pH (t)) (β21 − β22)) .

(2)

When β12 = β21 this system is a special case of Gavrilets and
Hasting’s general coevolutionary model (see Eq. (3) in Gavrilets
and Hastings (1998)). Reiterating their results, system (2) has five
equilibria. Four of these equilibria describe the possible combina-
tions of allele fixation in the host and pathogen. To simplify the
presentation of these equilibria we assume that the interaction
is symmetric, β11 = β22 = X and β12 = β21 = Y , where
the matching alleles model assumes X > Y . Denoting the equi-
librium allele frequencies by p̂H and p̂p, the fifth equilibrium in
this symmetric case is p̂H =

1
2 and p̂P =

1
2 (see Mathematica

file for more general results). The dynamics of system (2) are
shown in Fig. 1. Both species experience allele frequency cycles
about the polymorphic equilibrium. The frequency of these cycles
is determined by two quantities, ξHξP and (X − Y ). Specifically, the
frequency increases as the interactions become more costly to the
host or more beneficial to the pathogen, in other words as ξHξP
increases, and as pathogens become more specialized, as denoted
by increases in (X − Y ). The amplitude of these cycles, on the other
hand, is determined entirely by the initial conditions of the system.

The properties of these cycles are evident from the linear stabil-
ity analysis of the polymorphic equilibrium. Specifically, the two
eigenvalues of the Jacobian matrix of this system evaluated at the
polymorphic equilibrium are both purely imaginary,

λ = ±
i
2

√(
(X − Y )2ξHξP

)
. (3)

Hence the system exhibits neutrally stable cycles with frequency
1
2

√
((X−Y )2ξH ξP)

2π . As illustrated by Song et al. (2015) and Gokhale
et al. (2013), such neutrally stable cycles are often sensitive to
model assumptions, and the dynamics may be disrupted by the
inclusion of population dynamics. In the following sections we
demonstrate that these cycles may also be disrupted by inclusion
of epidemiological dynamics, which are a natural consequence of
disease spread. We show that the neutrally stable cycles of (2)
no longer exist even in cases where epidemiological dynamics
approach a stable endemic equilibrium, a case that one might
initially expect to leave the cycles of (2) untouched (Fig. 5).

4. Background: SIRS model without coevolution

Compartmental models of pathogen spread can exhibit a wide
range of dynamics. To begin with, there is the possibility of disease
extinction. If each initially infected host fails, on average, to spread
the infection to at least one other host before the host recovers,
then the basic reproduction number of the pathogen, R0, is less
than 1, and the diseasewill die out. Long-term pathogen extinction
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Fig. 1. MAM dynamics. A heat map showing the frequency of oscillations in the coevolutionary matching-alleles model. Panels A, B, and C show allele frequency dynamics
for the host (black solid) and pathogen (green dashed) for three combinations of ξHξP (A:0.9, B:0.5, C:0.1) and (X − Y ) (A:0.45, B:0.25, C:0.05). The initial host and pathogen
allele frequencies, pH (0) = 0.2 and pP (0) = 0.5, determine cycle amplitude.

may occur even when R0 is greater than 1. This can occur if the
susceptible host population is depleted through infection and/or
immunity to such an extent that the reproductive capacity of the
pathogen drops below1 eventually leading to extinction. Compart-
mental models without life-long immunity and/or with host birth,
however, often sustain infections over the long term. Inmany cases
such endemic infections persist at a constant level, a stable balance
between the depletion of susceptible hosts through infection and
the restoration of the susceptible host population through the loss
of immunity and birth (see Hethcote and Levin, 1989; Keeling and
Rohani, 2007 for review of epidemiological models and their long-
term dynamics).

Many diseases, as noted in the introduction, exhibit another
long-term dynamic: cyclic disease outbreaks. The conditions
for generating epidemiological cycles in compartmental mod-
els in continuous time have been explored rigorously (Hethcote
and Levin, 1989). The first requirement is temporary immu-
nity such as in a ‘‘Susceptible–Infected–Recovered–Susceptible’’
(SIRS) model or a ‘‘Susceptible–Exposed–Infected–Recovered–
Susceptible’’ (SEIRS) model. In addition, long-term cycles require
stringent conditions on the duration of infection and immunity.
Gonçalves et al. (2011) pinpoint these conditions using a SIRS
model where the length of infections and duration of immunity
among individuals are described by two gamma delay distribu-
tions. By manipulating the shape parameter of these distributions,
n, which ranges from 1 to ∞, they captured a range of infection
and immunity periods. When n = 1 the delays are shaped like
an exponential distribution. This is analogous to the classic com-
partmental model where individuals recover and lose immunity
at a constant rate. As n increases the variance in infection and
immunity durations decreases. Finally, when n = ∞ the gamma
distribution becomes a fixed time delay, where all individuals
experience the same duration of infection and recovery. As a broad
generalization, Goncalves et al. find that cycles are facilitated by
long immunity times relative to the length of infection and bydelay
distributions with low variance (i.e. n sufficiently large).

As our goal in this paper is to understand the effect of coevo-
lution on epidemiological dynamics (see next section), we chose
to build upon a model that can exhibit the full range of long-term
dynamics, from disease extinction to an endemic equilibrium to
stable limit cycles such as the one presented by Gonçalves et al.

(2011). For coevolution to ensue, infection must come at a fitness
cost to the host, resulting in an increased death rate. Because
Goncalves et al. assumed the host was long lived relative to the
pathogen and therefore that host birth and death were negligible,
we begin by extending their results to include these processes,
which are necessary for coevolution. Distributed time delays from
the infected to the recovered compartments and from the recov-
ered to the susceptible compartments can be included by replacing
the single infected and single recovered compartments by chains
of nI and nR stages respectively. If individuals transition between
adjacent stages in these chains at a constant rate of nI

τI
and nR

τR
, the

resulting distribution of infection lengths and immunity times will
be gamma distributed with shape parameter nI and nR and means
τI and τR. New infections arise at a rate βs (t)

∑nI
j=1i (j, t), where β

is the transmission rate, s (t) is the size of susceptible compartment
at time t , and i (j, t) is the number of individuals in the jth stage in
the infected chain at time t . Host birth is included through logistic
growth with a natural birth rate b and intensity of intraspecific
competition κ (all individuals are allowed to reproduce). Hosts die
naturally at a rate d and at a rate δ during infection, δ > d. Because
the average length of infection is τI , the expected fitness cost of
infection is given by τI (δ − d), a term that is equivalent to ξH in
the matching-alleles coevolution model. The resulting system of
differential equations (4) is given in Box I.

As designed, system (4) exhibits several types of long-term
epidemiological dynamics. This system has three biologically valid
equilibria, the first of which is host extinction. This equilibrium
is only stable when the natural host death rate is greater than
the birth rate, d > b. For the remainder of the analysis we will
assume that this is not true. The second, disease free, equilibrium
describes pathogen extinction. Letting ŝ be the equilibrium value
of the susceptible compartment and î (c) and r̂ (c) the value of the
cth infected and recovered stage at equilibrium, the disease-free
equilibrium is given by î(c) = 0, r̂(c) = 0 ∀ c , and ŝ =

b−d
bκ .

Note that the disease free equilibrium population size ranges from
0 to 1

κ
depending on the ratio of host birth and death rates. In the

supplementary Mathematica notebook we show that this disease-
free equilibrium is stable only when net disease spread is not
possible, i.e. R0 = β

(b−d)((nI+δτI )
nI −nI nI )

bδκ(nI+δτI )
nI < 1. Finally, when R0 > 1

there exists an equilibrium that allows host–pathogen coexistence.
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Fig. 2. SIRS epidemiological dynamicswithout coevolution. Curves depict bifurcation points of system (4) (see Box I). The disease either goes extinct, reaches a stable endemic
level, or exhibits stable limit cycles. Parameter values unless otherwise noted: nI = 20, nR = 20, b = 0.02, κ = 1, d = 0.001, δ = 0.01, β = 0.5.

d
dt

s (t) = b

⎛⎝s (t) +

nI∑
j=1

(i (j, t)) +

nR∑
j=1

(r (j, t))

⎞⎠⎛⎝1 − κ

⎛⎝s (t) +

nI∑
j=1

(i (j, t)) +

nR∑
j=1

(r (j, t))

⎞⎠⎞⎠
  

Density dependent growth

−ds (t)  
Death

+
nR

τR
r (nR, t)  

Loss of immunity

−βs (t)
nI∑
j=1

i (j, t)  
Infection

d
dt

i (1, t) = βs (t)
nI∑
j=1

i (j, t)  
Infection

−δi (1, t)  
Death

−
nI

τI
i (1, t)  

Transition to next stage

d
dt

i (j, t) =
nI

τI
i (j − 1, t)  

Transition from prior stage

−δi (j, t)  
Death

−
nI

τI
i (j, t)  

Transition to next stage

∀j > 1

d
dt

r (1, t) =
nI

τI
i (nI , t)  

Recovery

−dr (1, t)  
Death

−
nR

τR
r (1, t)  

Transition to next stage

d
dt

r (j, t) =
nR

τR
r (j − 1, t)  

Transition from prior stage

−dr (j, t)  
Death

−
nR

τR
r (j, t)  

Transition to next stage

∀j > 1

(4)

Box I.

Focusing on the dynamics of the coexistence equilibrium, the
system may either asymptotically approach this equilibrium (en-
demic case) or exhibit stable limit cycles about it (epidemic case).

Although there exists other uses of the terms ‘‘epidemic’’ and
‘‘endemic’’, we will use them throughout to distinguish between
cases where the interior equilibrium is stable (endemic) versus
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Fig. 3. SIRS epidemiological dynamics with coevolution. Curves depict bifurcation points of system (5) (see Box II). The disease either goes extinct, reaches a stable endemic
level, or exhibits stable limit cycles. Parameter values are the same as in Fig. 2 except where X = β and Y = 0.25.

unstable with cyclic increases in the disease (epidemic). Given the
high dimensionality of system (4) (see Box I), for the epidemic
case the existence of the limit cycles was confirmed numerically
rather than through a formal proof (Fig. 2). Some of the key pa-
rameters determining when limit cycles can arise are the host
birth and death rates. There exists a critical birth rate belowwhich
cycles are not possible, similarly there exists a critical host death
rate above which cycles are not possible. Similarly, the parame-
ter space in which cycles occur decreases with increasing host
death through virulence. Lastly, cycles can only occur for highly
infectious pathogenswhere the duration of infection τI is relatively
short compared to the length of the recovery period τR.

5. SIRS model with coevolution

Using a similar epidemiological framework as in system (4)
(see Box I) in the absence of coevolution, we now incorporate
genetic variation in both hosts and parasites exhibiting a MAM
coevolutionary interaction, equation (5) (see Box II) . Each of two
host types, h = {1, 2}, can become infected by one of two pathogen
strains, p = {1, 2}. Upon infection a host of type h infected with a
pathogen of type p progresses through a chain of infected stages,
with each transition occurring at a rate nI

τI
. As with system (4) (see

Box I) this results in a gamma distributed delay between the time
of infection and time of recovery, with the shape of the distribution
given by nI and the expected time to recovery τI . We further
assume that hosts currently infected with one parasite cannot be
infected by the other (no co-infection). Similarly, recovered hosts,
which are assumed to have complete cross immunity to both
pathogen strains, progress through a chain of recovered stages
each at a rate nR

τR
. As with the matching-alleles coevolution model,

host–pathogen specificity is captured by the infection matrix β
(see Eq. (1)). We once again focus on the symmetric case where
β11 = β22 = X and β12 = β21 = Y > 0. The resulting system of
(2 + 4nI + 2nR) differential equations is given in Box II:

This system has four different types of equilibria. As with sys-
tem (4) (see Box I), if d > b the host, and therefore the pathogen,
will go extinct. Assuming that this is not the case, if R0 < 1
the system will reach a disease-free state. Finally, there are two
possible types of equilibria with host–pathogen coexistence. First,
one host and one pathogen type may go extinct leaving only one
host and one pathogen type at equilibrium. This monomorphic
equilibrium is, however, never stable as the other host or pathogen
type can always invade. The second coexistence equilibrium is
characterized by a polymorphic host and both pathogens (see
Appendix). The stability of this equilibrium is similar to that of the
coexistence equilibrium of system (4) (see Box I) and can either
be stable or approach a stable limit cycle. The conditions under
which each of these equilibrium dynamics arises are shown in
Fig. 3 and show similar characteristics to system (4) (see Box I).
Once again, the existence of limit cycles was confirmed through
numerical integration of system (5) (see Box II) rather than through
a formal proof.

6. Model comparison

Comparing the dynamics of systems (2), (4) (see Box I), and
(5) (see Box II) we can describe the effect of coevolution on the
epidemiological dynamics and vice versa. The inclusion of host and
pathogen variation into the SIRS epidemiological model can alter
the conditions under which the systemwill reach a stable endemic
equilibrium or a limit cycle, as shown in Fig. 4. When there is
little difference between the two host or pathogen strains, i.e. X ≈

Y , coevolution has little effect on the epidemiological dynamics
(Panels A, B). This is no longer the case when large differences
exist (Panel C). Depending on the original pair of host and pathogen
strains in the population (red forβ = X and blue forβ = Y curves),
introduction of variation in both host and pathogen (black curve)
can either stabilize the system at the endemic equilibrium or drive
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Fig. 4. Comparison of epidemiological dynamicswith andwithout coevolution. Curves depict bifurcation points of system (4) (see Box I) (red-dotted:β = X and blue-dashed:
β = Y ) and (5) (see Box II) (black-solid). Points 1, 2, and 3 correspond to columns of Fig. 5. Parameters: nI = 20, nR = 20, b = 0.02, d = 0.001, δ = 0.01. Panel A: X = 0.5,
Y = 0.45, B: X = 0.3, Y = 0.25, C: X = 0.5, Y = 0.25.
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(5)

Box II.

it toward an epidemic limit cycle. These changes to the dynamics
illustrate the importance of incorporating genetic diversity and
host–pathogen coevolution into epidemiological models.

Epidemiological dynamics have an even more drastic effect
on the coevolutionary allele-frequency dynamics. Specifically the
neutrally stable MAM cycles are dampened with the inclusion of
explicit epidemiology as, for example, shown in Fig. 5. Although
it is difficult to demonstrate analytically the generality of this
dampening, we confirmed numerically for one million randomly
chosen parameter combinations that, except in the special case
where Y = 0, the system either exhibits a stable endemic equilib-
rium with equal allele frequencies or, when this point is unstable,
the system moves away from the equilibrium via shifts in host
numbers but remains on the plane where pH = 0.5 and pP = 0.5
(as determined by the eigenvectors associated with any positive
eigenvalue, see details in the Supplementary Mathematica file).
In a perfect matching model where Y = 0, as studied by May
and Anderson (1983), the dynamics of each host and parasite pair

are independent except for their interaction through the logistic
growth of hosts. In this particular case allele frequency cycles can
now occur but only when there are periodic disease outbreaks;
these cycles are a consequence of the epidemic cycles for the host
types remaining unsynchronized by cross infection when Y = 0.
By contrast, whenever Y > 0, epidemics in the different host
genotypes are temporally synchronized by cross infection, which
keeps the allele frequencies at 1/2. Of particular interest, for all
values of Y ≥ 0 allele frequency cycles are damped when the
endemic disease equilibrium is stable. This is surprising, given that
the constant force of infection at an endemic equilibrium should
closely reflect the assumptions of the constant infection rates
made in a purely coevolutionary version of the matching-alleles
model. The sensitivity of RedQueen allele-frequency cyclesmay be
attributed to the fact that the cycles are neutrally stable rather than
limit cycles, arising in systems with a purely imaginary leading
eigenvalue. In such cases, small perturbations to the system can
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Fig. 5. Effect of SIRS epidemiological dynamics on allele-frequency cycles. Allele-frequency dynamics from the matching-alleles model (Row 1), epidemiological dynamics
without (Row 2: β = X , Row 3: β = Y ) andwith coevolution (Row 4), and allele-frequency dynamics in an SIRS epidemiological model (Row 5) for three different parameter
conditions as shown in Fig. 4. In allele frequency plots, host-allele frequencies are shown in green and pathogen allele frequencies in black. Epidemiological dynamics show
the abundance of susceptible hosts in red (solid), infected hosts in blue (dashed), and recovered hosts in purple (dotted). Parameters: nI = 20, nR = 20, b = 0.02, d = 0.001,
δ = 0.01, X = 0.5, and Y = 0.25. Column 1: τI = 7, τR = 20, column 2: τI = 7 and τR = 35, and column 3: τI = 15, τR = 35. The initial conditions were chosen such that
pH (0) = 0.55 and pP (0) = 0.49, in the epidemiological model we instead added a proportionally similar perturbation to the endemic equilibrium.

lead to large shifts in the resulting dynamics (Karlin and Mc-
Gregor, 1972). To test whether the disruption of allele-frequency
cycles is a more wide-spread phenomenon we next assess the im-
pact of epidemiological dynamics on an alternative coevolutionary
model that exhibits allele-frequency stable limit cycles in allele
frequencies.

7. Coevolution in an SEIRS model

Although there are several coevolutionary models that exhibit
stable limit cycles in discrete time due to the inherent time de-
lays (for example Agrawal and Lively, 2002), these cycles are
often not maintained in continuous time. We therefore begin by
deriving a coevolutionary model with which to test the effect of
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continuous time epidemiological dynamics on limit cycles. We
do so by introducing a time delay into the coevolutionary model
in (2). Upon infecting a host, pathogens must first pass through
an immature stage during which they are not infectious them-
selves. In addition to introducing this immature stage the main-
tenance of allele-frequency limit cycles requires that we introduce
pathogen mutation at rate µ to prevent the system from cycling
out until one allele fixes in each species. The resulting differential
equations describing the change of allele frequencies in the host
pH , immature pathogen pP , and mature pathogen pM are given
by:
dpH
dt

= −ξHpH (t)(1 − pH (t))((β11 − β21)pM (t)

+ (β12 − β22)(1 − pM (t)))
dpP
dt

= γ ξPpM (t)(1 − pM (t))((β11 − β12)pH (t)

+ (1 − pH (t))(β21 − β22)) + (1 − 2pP (t))µ
dpM
dt

= γ pP (t) − γ pM (t).

(6)

The differential equation for the change in pathogen allele
frequency is similar to that of system (2) except now infection
depends only on the frequency of mature pathogens pM . Immature
pathogens mature at a rate γ and are replaced by new infections.
Finally, the change in the frequency of mature pathogens is de-
termined by pathogen maturation and mature pathogen death,
both of which occur at rate γ (held at the same rate to avoid
accumulation in one maturation phase or the other). Deriving this
model as the continuous time limit of a discrete time model we
must ensure that the change in allele frequencies over any one
time step is small (see supplementary Mathematica notebook).
This in turn requires that the rate of pathogen maturation and
mature pathogen death, γ , is large. Once again assuming infection
is symmetric, β11 = β22 = X, β12 = β21 = Y , this coevolutionary
model without epidemiological dynamics exhibits stable allele-
frequency limit cycles (Fig. 6) as long as the mutation rate is not
too high, µ < 1

4

(
−γ +

√
γ 2 + (X − Y )2ξHξP

)
.

Introducing an immature pathogen stage is analogous to in-
corporating an ‘‘exposed’’ compartment into the epidemiological
model duringwhich hosts are infected but not yet infectious them-
selves. The resulting system of differential equations without and
with coevolution is very similar to systems (4) (see Box I) and (5)
(see Box II) and exhibits the same range of dynamics (see Math-
ematica file). Comparing the allele-frequency dynamics between
themodifiedmatching-allelesmodel and the SEIRSmodel with co-
evolution demonstrates that once again the allele-frequency cycles
are disrupted by epidemiological feedback (Fig. 6), confirming that
the loss of these cycles extends beyond cases of neutrally stable
coevolutionary cycles.

8. Discussion

Despite the conceptual overlap of epidemiology and host–
pathogen coevolution, few models have included both. The few
examples where this has been done (Andreasen and Christiansen,
1995; May and Anderson, 1983; Beck, 1984; Morand et al., 1996)
have made stringent assumptions that prevent the generaliza-
tion of their results to a broad range of coevolutionary and epi-
demiological scenarios. By incorporating multiple infectious and
recovered stages into a SIRS model, we are able to explore the
effect of coevolution on a wide range of epidemiological scenarios
from disease extinction to epidemic limit cycles. We find that in
the presence of matching-allele type coevolution, epidemiological
dynamics are typically intermediate between those expected in the
absence of genetic variability when β = X and β = Y . Importantly

however, there exist parameter conditions under which the intro-
duction of coevolution can lead to epidemic limit cycles thatwould
not persist in the absence of genetic variability (Fig. 4). In addition
to affecting the type of epidemiological dynamics, genetic variation
in the host and parasite, along with the distribution of infection
and recovery times (as specified by nI , τI , nR and τR), determine the
relative abundance of susceptible and infected hosts at equilibrium
(see Appendix) extending the results obtained previously without
genetic variation (Gonçalves et al., 2011). Importantly however,
when all host and pathogen types are present, the allele frequency
of the host and the parasite is 1/2 at equilibrium regardless of
infection and recovery times.

Although the equilibrium allele frequencies are the same in the
matching-allelesmodel with andwithout epidemiological dynam-
ics, including epidemiology has a dramatic effect on the predicted
allele frequency dynamics. In comparison to the neutrally stable al-
lele frequency cycles observed in the classic coevolutionary model
(Fig. 1), ‘‘Red Queen’’ cycles do not persist in the epidemiological
models explored regardless of the disease outcome (disease ex-
tinction, endemic equilibrium, or epidemic limit cycles). Instead
the allele frequency dynamics are forced to equilibrate by the epi-
demiological dynamics, quickly dampening to an allele frequency
of 0.5 in both the host and pathogen. This finding is consistent with
previouswork showing that RedQueen cycles are sensitive to other
ecological effects, such as competition and predation (Gokhale et
al., 2013; Song et al., 2015) as well as epidemiological feedback
such as parasite castration (Ashby and Gupta, 2014). Importantly,
this dampening of allele frequency cycles is in contrast with the
sustained allele frequency limit cycles found by Morand et al.
(1996). A numerical analysis of the robustness of Morand et al.’s
model illustrates that allele frequency cycles are only maintained
in cases of very strong selection, with parasites that kill or castrate
infected hosts at high rates. In addition, their model differs from
ours in assuming sexually reproducing hosts and parasites using a
discrete-timemodel. In the supplementaryMathematica notebook,
we explore models that span the differences between the Morand
et al. model and ours, finding that sex and discrete-time steps both
increased the parameter space in which cycles were observed; but
in every case strong selection (through castration and/or virulence)
was required.

One potential argument for the sensitivity of allele frequency
cycles is that they are neutrally stable in the pure co-evolutionary
model (Fig. 1),with a purely imaginary leading eigenvalue (e.g. Sec-
tion 3). Small perturbations to such systems canhavedrastic effects
on the dynamics (Karlin and McGregor, 1972). In contrast, a Red
Queenmodel that generates stable limit cycles would be predicted
to be more robust to population or epidemiological dynamics. We
thus developed a coevolutionary model that generates stable limit
cycles by incorporating an immature pathogen stage and pathogen
mutation. Nevertheless by comparing these coevolutionary limit
cycles to a SEIRS epidemiological model in which newly infected
hosts must progress through an exposed but non-infectious stage
we find that, at least in the cases tested, allele frequencies are
damped by the inclusion of epidemiological dynamics, as shown in
Fig. 6. This confirms that the disruption of allele-frequency cycles
is not restricted to coevolutionarymodelswith neutral limit cycles.

The sensitivity of Red Queen cycles has several important bi-
ological implications. For example these cycles form the basis for
the ‘‘Red Queen hypothesis’’ for the evolution and maintenance of
sexual reproduction (Hamilton, 1980). The inability of these cycles
to persist in the face of ecological and epidemiological dynamics
suggests that, at least in the absence of other cyclical drivers such as
seasonal forcing of parameters, othermechanisms are necessary to
explain the abundance of sexual reproduction. For example allele
frequency cycles can sometimes be maintained with strong selec-
tion as with castrating parasites (Morand et al., 1996). Although
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Fig. 6. Effect of SEIRS epidemiological dynamics on allele-frequency cycles. Allele-frequency and epidemiological dynamics for the SEIRS model and alternative matching-
allele model in Section 7. Rows are the same as in Fig. 5. Parameters: nE = 1, nI = 2, nR = 60, b = 0.2, d = 0.001, δ = 0.06, X = 0.5, Y = 0.35, τI = 5, and µ = 0.001.
Column 1:τR = 40, column 2: τR = 50, and column 3: τR = 65. The initial conditions were chosen such that pH (0) = 0.55 and pP (0) = 0.49, in the epidemiological model we
instead added a small perturbation to the endemic equilibrium. In epidemiological dynamic plots the density of susceptible hosts are shown in red (solid), exposed hosts in
green (dash-dotted), infected hosts in blue (dashed), and recovered hosts in purple (dotted). Host allele frequencies are given in black (solid) while parasite allele frequencies
are shown in green (dashed).

we have demonstrated here that host epidemiological dynamics
prevent the long-term persistence of ‘‘trench-warfare’’ type Red-
Queen cycles, this result may not extend to other forms of coevo-
lution such as host–pathogen arms races,where coevolution favors
the fixation of progressivelymore virulent pathogens and resistant
hosts. Ifmaintained despite epidemiological dynamics, the ensuing
genetic arms race could provide one viable alternative mechanism
selecting for sex. A second potential alternative is where common
pathogen types select specific allelic combinations in hosts in
a manner that fluctuates over time and generates cycles in the fre-

quency of each genotype, as seen in the explicitly epidemiological
model of Penman et al. (2013). Addressing if and when such geno-
typic cycles can occur would require extending model (5) (see
Box II) to include multiple host and pathogen loci. Finally, sex
may be maintained to relieve selective interference among loci,
including loci subject to host–parasite interactions (Hodgson and
Otto, 2012).

In addition to the evolution of sex, models of host–pathogen
coevolution in the absence of explicit epidemiological dynamics
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have been used to formulate predictions for a wide-range of phe-
nomena including the evolution of self-fertilization (Agrawal and
Lively, 2001), non-random mating (Nuismer et al., 2008), gene
expression (Nuismer and Otto, 2005), and ploidy (Nuismer and
Otto, 2004; M’Gonigle and Otto, 2011). Extending our results to
determine whether or not these implications hold in the presence
of epidemiological dynamics is an important next step. Never-
theless, we demonstrate that epidemiological processes can have
important implications on host–parasite coevolution. Hence to
understand the interaction between hosts and their pathogens we
need to consider both the genetic and epidemiological features of
species interactions.
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Appendix. Equilibria of SIRS model with coevolution

We begin by setting the equations in (5) (see Box II) to zero to
give equilibrium conditions of the SIRS model with coevolution.
Denoting the value of the variables at equilibrium with hats we
can derive expressions for each recovered class and each infected
class in terms of only the first infected class î(h, p, 1)

î(h, p, c) =

(
nI

δτI + nI

)c−1

î(h, p, 1) ∀ h, p, c

r̂(h, c) =

(
nR

dτR + nR

)c−1 ( nIτR

τI (dτR + nR)

)(
nI

δτI + nI

)nI−1

×

∑
p

î(h, p, 1) ∀ h, c.

(A.7)

Given these expressions we can reduce the equilibrium conditions
of system (5) (see Box II) to the following 6 equations:

0 = b

(
ŝ(h) + (zI + zR)

∑
p

(î(h, p))

)

×

(
1 − κ
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k

(
ŝ(k) + (zI + zR)
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p

(î(k, p))
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nR

τR
znR
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p

(î(h, p)) − ŝ(h)zI
∑
k,p

(
βk,p î(k, p, 1)

)
∀ h

0 = ŝ(h)zIβhp

∑
k

(î(k, p, 1)) −

(
δ +

nI

τI

)
î(h, p, 1) ∀ h, p

(A.8)

where

zI =

(nI + δτI)

(
1 −

(
nI

δτI+nI

)nI)
δτI

zR =

nI

(
nI

δτI+nI

)nI−1 (
1 −

(
nR

dτR+nR
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dτI

znR =

nIτR

(
nI

δτI+nI

)nI−1(
nR

dτR+nR

)nR
nRτI

.

(A.9)

As shown in the supplementary Mathematica file equations (A.8)
can be satisfied if there is disease extinction (no infections present),
extinction of one host and one pathogen type (a single combination
of host and parasite present), extinction of one pathogen type (two
host–parasite combinations present), or all types present (all four
host–parasite combinations present). Here we will focus on this
latter equilibrium. Although it was not possible to solve Eqs. (A.8)
in general we can do so if we make a number of assumptions. First
we assume the infection matrix is symmetric, with equal trans-
mission rates betweenmatching hosts and parasites (and between
non-matching hosts and parasites): β11 = β22 = X, β12 = β21 =

Y . We then inquire whether there is an equilibrium, where the
density of susceptible hosts is given by Ŝ, the density of infected
hosts by Î , the host allele frequency is pH , and the probability a host
is infected by the matching parasite type is pX .

ŝ(1) = pH Ŝ, ŝ(2) = (1 − p)H Ŝ

î(1, 1, 1) = pXpH Î, î(2, 2, 1) = pX (1 − pH )Î

î(1, 2, 1) = (1 − pX )pH Î, î(2, 1, 1) = (1 − pX )(1 − pH )Î.

(A.10)

Constrained to this form there are only two equilibria of (A.8),
which are the two roots of a quadratic in Î and satisfy:

Ŝ =
2(nI + δτI )
(X + Y )zIτI

pX =
X

X + Y

pH =
1
2
.

(A.11)

Numerically we confirmed (see supplementaryMathematica note-
book) that only a single one of these two roots gives a biologically
valid equilibrium. In addition, numerical analysis of cases where
the infection matrix, β , is neither symmetric nor the equilibrium
constrained to the form in Eqs. (A.10) confirmed that all biolog-
ically valid equilibria of system (5) (see Box II) have host and
pathogen allele frequencies of 1

2 . Finally, equilibrium (A.11) can be
reduced to those given by Gonçalves et al. (2011) (Eq. (6) or (11))
if there is only one host/pathogen type and birth and death are
negligible.
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