Limits Involving Infinity

I. Infinite Limits

DEFINITION: The notation

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that the values of $f(x)$ can be made arbitrary large (as large as we like) by taking x sufficiently close to a (on either side of a) but not equal to a.

Similarly,

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

means that the values of $f(x)$ can be made as large negative as we like by taking x sufficiently close to a (on either side of a) but not equal to a.

Similar definitions can be given for the one-sided infinite limits

$$
\begin{array}{|ll}
\lim _{x \rightarrow a^{-}} f(x)=\infty & \lim _{x \rightarrow a^{+}} f(x)=\infty \\
\lim _{x \rightarrow a^{-}} f(x)=-\infty & \lim _{x \rightarrow a^{+}} f(x)=-\infty
\end{array}
$$

(a) $\lim _{x \rightarrow a^{-}} f(x)=\infty$

(b) $\lim _{+} f(x)=\infty$

(c) $\lim _{-a^{-}} f(x)=-\infty$

(d) $\lim _{x \rightarrow a^{+}} f(x)=-\infty$

EXAMPLES:

1. The limits $\lim _{x \rightarrow 0} \frac{1}{x^{2}}, \lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}, \lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}$ D.N.E., moreover

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}=\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=\infty
$$

x	$f(x)$
± 0.1	100
± 0.01	10000
± 0.001	1000000
± 0.0001	100000000
± 0.00001	10000000000

2. The limits $\lim _{x \rightarrow 5^{-}} \frac{1}{5-x}$ and $\lim _{x \rightarrow 5^{+}} \frac{1}{5-x}$ D.N.E., moreover

$$
\lim _{x \rightarrow 5^{-}} \frac{1}{5-x}=\left[\begin{array}{l}
\text { WORK: } \\
\left.\frac{1}{5-4.99}=\frac{1}{0.01}=\frac{+ \text { "NOT SMALL" }}{+ \text { "SMALL" }}=+" \mathrm{BIG} "\right]=\infty, ~=\infty, ~
\end{array}\right.
$$

and

Therefore $\lim _{x \rightarrow 5} \frac{1}{5-x}$ D.N.E. and neither ∞ nor $-\infty$ (see the Figure below (left)).

3. The limits $\lim _{x \rightarrow-7^{-}} \frac{2 x+1}{x+7}$ and $\lim _{x \rightarrow-7^{+}} \frac{2 x+1}{x+7}$ D.N.E., moreover

$$
\lim _{x \rightarrow-7^{-}} \frac{2 x+1}{x+7}=\left[\begin{array}{l}
\text { WORK: } \\
\frac{2(-7.01)+1}{-7.01+7} \approx \frac{-13}{-0.01}=\frac{- \text { "NOT SMALL" }}{-" \mathrm{SMALL} "}=+" \mathrm{BIG} "
\end{array}\right]=\infty
$$

and

$$
\lim _{x \rightarrow-7^{+}} \frac{2 x+1}{x+7}=\left[\begin{array}{l}
\text { WORK: } \\
\frac{2(-6.99)+1}{-6.99+7} \approx \frac{-13}{0.01}=\frac{-" \text { NOT SMALL" }}{+ \text { "SMALL" }}=-" \mathrm{BIG} "
\end{array}\right]=-\infty
$$

Therefore $\lim _{x \rightarrow-7} \frac{2 x+1}{x+7}$ D.N.E. and neither ∞ nor $-\infty$ (see the Figure above (right)).

REMARK: Recall that even if the denominator of a function f goes to 0 , it does not necessary mean that the limit of f is ∞ or $-\infty$. In fact,

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} \frac{x^{2}-x-2}{x-2}=\left[\frac{0}{0}\right] & =\lim _{x \rightarrow 2^{+}} \frac{x^{2}-x-2}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(x+1)}{x-2} \\
& =\lim _{x \rightarrow 2}(x+1)=3
\end{aligned}
$$

DEFINITION: The line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following statements is true:

$\lim _{x \rightarrow a} f(x)=\infty$	$\lim _{x \rightarrow a^{-}} f(x)=\infty$	$\lim _{x \rightarrow a^{+}} f(x)=\infty$
$\lim _{x \rightarrow a} f(x)=-\infty$	$\lim _{x \rightarrow a^{-}} f(x)=-\infty$	$\lim _{x \rightarrow a^{+}} f(x)=-\infty$

EXAMPLES:

1. Find all vertical asymptotes of $f(x)=-\frac{8}{x^{2}-4}$.

Solution: There are potential vertical asymptotes where $x^{2}-4=0$, that is where $x= \pm 2$. In fact, we have

$$
\lim _{x \rightarrow-2^{-}} \frac{-8}{x^{2}-4}=\left[\begin{array}{c}
\text { WORK: } \\
\left.\frac{-8}{(-2.01)^{2}-4} \approx \frac{-8}{4.04-4}=\frac{-8}{0.04}=\frac{- \text { "NOT SMALL" }}{+ \text { "SMALL" }}=- \text { "BIG" }\right]=-\infty, ~=\infty, ~
\end{array}\right.
$$

and

$$
\lim _{x \rightarrow 2^{+}} \frac{-8}{x^{2}-4}=\left[\begin{array}{l}
\text { WORK: } \\
\left.\frac{-8}{(2.01)^{2}-4} \approx \frac{-8}{4.04-4}=\frac{-8}{0.04}=\frac{- \text { "NOT SMALL" }}{+" S M A L L "}=-" \mathrm{BIG} "\right]=-\infty, ~
\end{array}\right]
$$

This shows that the lines $x= \pm 2$ are the vertical asymptotes of f.

2. Find all vertical asymptotes of $f(x)=\frac{x^{2}-1}{x+1}$.

Solution: There is a potential vertical asymptote where $x+1=0$, that is where $x=-1$. Moreover, if $x=-1$ is a vertical asymptote, it is the only one. However,

$$
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=\lim _{x \rightarrow-1} \frac{(x-1)(x+1)}{x+1}=\lim _{x \rightarrow-1}(x-1)=-2
$$

and therefore $\lim _{x \rightarrow-1^{ \pm}} \frac{x^{2}-1}{x+1}=-2$. This shows that f does not have vertical asymptotes (see the Figure below (left)).

3. Find all vertical asymptotes of $f(x)=\frac{x^{2}-3 x+2}{x^{2}-4 x+3}$.

Solution: There are potential vertical asymptotes where $x^{2}-4 x+3=0$, that is where $x=1,3$. However,

$$
\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}-4 x+3}=\lim _{x \rightarrow 1} \frac{(x-1)(x-2)}{(x-1)(x-3)}=\lim _{x \rightarrow 1} \frac{x-2}{x-3}=\frac{1}{2}
$$

and therefore $\lim _{x \rightarrow 1^{ \pm}} \frac{x^{2}-3 x+2}{x^{2}-4 x+3}=\frac{1}{2}$. Hence $x=1$ is not a vertical asymptote. On the other hand,

$$
\begin{aligned}
\lim _{x \rightarrow 3^{+}} \frac{x^{2}-3 x+2}{x^{2}-4 x+3} & =\lim _{x \rightarrow 3^{+}} \frac{(x-1)(x-2)}{(x-1)(x-3)} \\
& =\lim _{x \rightarrow 3^{+}} \frac{x-2}{x-3}=\left[\begin{array}{l}
\text { WORK: } \\
\frac{3.01-2}{3.01-3}=\frac{1.01}{0.01}=\frac{+ \text { "NOT SMALL" }}{+ \text { "SMALL" }}=+ \text { "BIG" }
\end{array}\right]=\infty
\end{aligned}
$$

This shows that the line $x=3$ is the only vertical asymptote of f (see the Figure above (right)).
4. Find all vertical asymptotes of $f(x)=\cot 2 x$.

Solution: Because

$$
\cot 2 x=\frac{\cos 2 x}{\sin 2 x}
$$

there are potential vertical asymptotes where $\sin 2 x=0$. In fact, $\operatorname{since} \sin 2 x \rightarrow 0^{+}$as $x \rightarrow 0^{+}$ and $\sin 2 x \rightarrow 0^{-}$as $x \rightarrow 0^{-}$, whereas $\cos 2 x$ is positive (and not near 0) when x is near 0 , we have

$$
\lim _{x \rightarrow 0^{+}} \cot 2 x=\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} \cot 2 x=-\infty
$$

This shows that the line $x=0$ is a vertical asymptote. Similar reasoning shows that the lines $x=n \pi / 2$, where n is an integer, are all vertical asymptotes of $f(x)=\cot 2 x$. The graph confirms that.

II. Limits at Infinity

DEFINITION: Let f be a function defined on some interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means that the values of $f(x)$ can be made as close to L as we like by taking x sufficiently large.

Similarly, the notation

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

means that the values of $f(x)$ can be made arbitrary close to L by taking x sufficiently large negative.

DEFINITION: The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

EXAMPLE: Find the horizontal asymptote of $f(x)=\frac{x^{2}-1}{x^{2}+1}$.
Solution: We have

$$
\lim _{x \rightarrow \pm \infty} \frac{x^{2}-1}{x^{2}+1}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow \pm \infty} \frac{\frac{x^{2}-1}{\frac{x^{2}}{x}}}{\frac{x^{2}+1}{x^{2}}} \stackrel{A}{=} \lim _{x \rightarrow \pm \infty} \frac{\frac{x^{2}}{x^{2}}-\frac{1}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}} \xlongequal{A} \lim _{x \rightarrow \pm \infty} \frac{1-\frac{1}{x^{2}}}{1+\frac{C}{x^{2}}} \xlongequal[=]{1-0}=1
$$

It follows that $y=1$ is the horizontal asymptote of $f(x)=\frac{x^{2}-1}{x^{2}+1}$. The graph below confirms that:

EXAMPLE: Find all horizontal asymptotes of $f(x)=\frac{x}{\sqrt{x^{2}+1}}$.
Solution: We have

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{x}{\sqrt{x^{2}}}}{\frac{\sqrt{x^{2}+1}}{\sqrt{x^{2}}}} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{x}{x}}{\sqrt{\frac{x^{2}+1}{x^{2}}}} \xlongequal{A} \\
& \lim _{x \rightarrow \infty} \frac{1}{\sqrt{\frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}}} \\
& \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x^{2}}}} \stackrel{C}{=} \frac{1}{\sqrt{1+0}}=1
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+1}}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{\frac{x}{\sqrt{x^{2}}}}{\frac{\sqrt{x^{2}+1}}{\sqrt{x^{2}}}} \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{\frac{x}{-x}}{\sqrt{\frac{x^{2}+1}{x^{2}}}} \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{-1}{\sqrt{\frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}}} \\
& \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{-1}{\sqrt{1+\frac{1}{x^{2}}}} \stackrel{C}{=} \frac{-1}{\sqrt{1+0}}=-1
\end{aligned}
$$

It follows that $y= \pm 1$ are the horizontal asymptotes of $f(x)=\frac{x}{\sqrt{x^{2}+1}}$. The graph below confirms that:

EXAMPLES:

1. $\lim _{x \rightarrow \infty} \frac{2 x^{3}-x+5}{x^{3}+x^{2}-1}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{2 x^{3}-x+5}{x^{3}}}{\frac{x^{3}+x^{2}-1}{x^{3}}} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{2 x^{3}}{x^{3}}-\frac{x}{x^{3}}+\frac{5}{x^{3}}}{\frac{x^{3}}{x^{3}}+\frac{x^{2}}{x^{3}}-\frac{1}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{2-\frac{1}{x^{2}}+\frac{5}{x^{3}}}{1+\frac{1}{x}-\frac{1}{x^{3}}}$

$$
\stackrel{C}{=} \frac{2-0+0}{1+0-0}=2
$$

2. $\lim _{x \rightarrow \pm \infty} \frac{3 x+3 x^{2}-7}{x+1-5 x^{2}}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow \pm \infty} \frac{\frac{3 x+3 x^{2}-7}{x^{2}}}{\frac{x+1-5 x^{2}}{x^{2}}} \xlongequal{A} \lim _{x \rightarrow \pm \infty} \frac{\frac{3 x}{x^{2}}+\frac{3 x^{2}}{x^{2}}-\frac{7}{x^{2}}}{\frac{x}{x^{2}}+\frac{1}{x^{2}}-\frac{5 x^{2}}{x^{2}}} \stackrel{A}{=} \lim _{x \rightarrow \pm \infty} \frac{\frac{3}{x}+3-\frac{7}{x^{2}}}{\frac{1}{x}+\frac{1}{x^{2}}-5}$

$$
\stackrel{C}{=} \frac{0+3-0}{0+0-5}=-\frac{3}{5}
$$

3. $\lim _{x \rightarrow \infty} \frac{4 \sqrt[3]{x}-\sqrt[2]{x}-1}{2 \sqrt[3]{x}-9 \sqrt[2]{x}+1}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{4 x^{1 / 3}-x^{1 / 2}-1}{2 x^{1 / 3}-9 x^{1 / 2}+1} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{4 x^{1 / 3}-x^{1 / 2}-1}{x^{1 / 2}}}{\frac{2 x^{1 / 3}-9 x^{1 / 2}+1}{x^{1 / 2}}}$

$$
\begin{aligned}
& \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{4 x^{1 / 3}}{x^{1 / 2}}-\frac{x^{1 / 2}}{x^{1 / 2}}-\frac{1}{x^{1 / 2}}}{\frac{2 x^{1 / 3}}{x^{1 / 2}}-\frac{9 x^{1 / 2}}{x^{1 / 2}}+\frac{1}{x^{1 / 2}}} \lim _{x \rightarrow \infty} \frac{4 x^{1 / 3-1 / 2}-1-\frac{1}{x^{1 / 2}}}{2 x^{1 / 3-1 / 2}-9+\frac{1}{x^{1 / 2}}} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{4 x^{-1 / 6}-1-\frac{1}{x^{1 / 2}}}{2 x^{-1 / 6}-9+\frac{1}{x^{1 / 2}}} \\
& \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{4}{x^{1 / 6}}-1-\frac{1}{x^{1 / 2}}}{\frac{C}{x^{1 / 6}}-9+\frac{1}{x^{1 / 2}}} \xlongequal[=]{0-1-0} \frac{-1}{0-9+0}=\frac{1}{-9}=\frac{1}{9}
\end{aligned}
$$

4. $\lim _{x \rightarrow-\infty} \frac{7 x^{2}+10 x+20}{x^{3}-10 x^{2}-1}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{\frac{7 x^{2}+10 x+20}{x^{3}}}{\frac{x^{3}-10 x^{2}-1}{x^{3}}} \xlongequal{A} \lim _{x \rightarrow-\infty} \frac{\frac{7 x^{2}}{x^{3}}+\frac{10 x}{x^{3}}+\frac{20}{x^{3}}}{\frac{x^{3}}{x^{3}}-\frac{10 x^{2}}{x^{3}}-\frac{1}{x^{3}}}$

$$
\stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{\frac{7}{x}+\frac{10}{x^{2}}+\frac{20}{x^{3}}}{1-\frac{10}{x}-\frac{1}{x^{3}}} \stackrel{C}{=} \frac{0+0+0}{1-0-0}=0
$$

or

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{7 x^{2}+10 x+20}{x^{3}-10 x^{2}-1}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{\frac{7 x^{2}+10 x+20}{x^{2}}}{\frac{x^{3}-10 x^{2}-1}{x^{2}}} \xlongequal[=]{=} \lim _{x \rightarrow-\infty} \frac{\frac{7 x^{2}}{x^{2}}+\frac{10 x}{x^{2}}+\frac{20}{x^{2}}}{x^{3}}-\frac{10 x^{2}}{x^{2}}-\frac{1}{x^{2}} \\
& \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{7+\frac{10}{x}+\frac{20}{x^{2}}}{x-10-\frac{1}{x^{2}}} \xlongequal[=]{=} \lim _{x \rightarrow-\infty} \frac{7+0+0}{x-10-0} \stackrel{C}{=} \lim _{x \rightarrow-\infty} \frac{7}{x-10} \stackrel{C}{=} 0
\end{aligned}
$$

5. $\lim _{x \rightarrow-\infty} \frac{11 x^{5}+1}{4-x^{4}}$
6. $\lim _{x \rightarrow-\infty} \frac{11 x^{5}+1}{4-x^{4}}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{\frac{11 x^{5}+1}{x^{4}}}{\frac{4-x^{4}}{x^{4}}} \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{\frac{11 x^{5}}{x^{4}}+\frac{1}{x^{4}}}{\frac{4}{x^{4}}-\frac{x^{4}}{x^{4}}}$
$\stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{11 x+\frac{1}{x^{4}}}{\frac{4}{x^{4}}-1} \stackrel{C}{=}\left[\frac{-\infty}{-1}\right]=\infty$ (D.N.E)
or

$$
\lim _{x \rightarrow-\infty} \frac{11 x^{5}+1}{4-x^{4}}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{\frac{11 x^{5}+1}{x^{5}}}{\frac{4-x^{4}}{x^{5}}} \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{\frac{11 x^{5}}{x^{5}}+\frac{1}{x^{5}}}{\frac{4}{x^{5}}-\frac{x^{4}}{x^{5}}}
$$

$\stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{11+\frac{1}{x^{5}}}{\frac{4}{x^{5}}-\frac{1}{x}} \stackrel{C}{=}\left[\frac{11}{0^{+}}\right]=\infty($ D.N.E)
6. $\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+5}{\sqrt{2+x+7 x^{4}}}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{x^{2}+2 x+5}{\sqrt{x^{4}}}}{\frac{\sqrt{2+x+7 x^{4}}}{\sqrt{x^{4}}}} \xlongequal{=} \lim _{x \rightarrow \infty} \frac{\frac{x^{2}+2 x+5}{x^{2}}}{\sqrt{\frac{2+x+7 x^{4}}{x^{4}}}}$
$\stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{x^{2}}{x^{2}}+\frac{2 x}{x^{2}}+\frac{5}{x^{2}}}{\sqrt{\frac{2}{x^{4}}+\frac{x}{x^{4}}+\frac{7 x^{4}}{x^{4}}}} \xlongequal[A]{=} \lim _{x \rightarrow \infty} \frac{1+\frac{2}{x}+\frac{5}{x^{2}}}{\sqrt{\frac{2}{x^{4}}+\frac{1}{x^{3}}+7}} \stackrel{C}{=} \frac{1+0+0}{\sqrt{0+0+7}}=\frac{1}{\sqrt{7}}$
7. $\lim _{x \rightarrow \infty} \frac{\sqrt{2 x^{5}-1}}{\sqrt{3 x^{5}+2}}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow \infty} \sqrt{\frac{2 x^{5}-1}{3 x^{5}+2}} \stackrel{C}{=} \sqrt{\lim _{x \rightarrow \infty} \frac{2 x^{5}-1}{3 x^{5}+2}} \stackrel{A}{=} \sqrt{\lim _{x \rightarrow \infty}^{\frac{\frac{2 x^{5}-1}{x^{5}}}{\frac{3 x^{5}+2}{x^{5}}}}}$
$\stackrel{A}{=} \sqrt{\lim _{x \rightarrow \infty} \frac{\frac{2 x^{5}}{x^{5}}-\frac{1}{x^{5}}}{\frac{3 x^{5}}{x^{5}}+\frac{2}{x^{5}}}} \stackrel{A}{=} \sqrt{\lim _{x \rightarrow \infty} \frac{2-\frac{1}{x^{5}}}{3+\frac{2}{x^{5}}}} \stackrel{C}{=} \sqrt{\frac{2-0}{3+0}}=\sqrt{\frac{2}{3}}$
REMARK: For more examples of this type, see Appendix I.
8. $\lim _{x \rightarrow \infty} \sin \left(\frac{x+3}{6 x^{2}-5}\right) \stackrel{C}{=} \sin \left(\lim _{x \rightarrow \infty} \frac{x+3}{6 x^{2}-5}\right)=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \sin \left(\lim _{x \rightarrow \infty} \frac{\frac{x+3}{x^{2}}}{\frac{6 x^{2}-5}{x^{2}}}\right) \stackrel{A}{=} \sin \left(\lim _{x \rightarrow \infty} \frac{\frac{x}{x^{2}}+\frac{3}{x^{2}}}{\frac{6 x^{2}}{x^{2}}-\frac{5}{x^{2}}}\right)$
$\stackrel{A}{=} \sin \left(\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{3}{x^{2}}}{6-\frac{5}{x^{2}}}\right) \stackrel{C}{=} \sin \left(\frac{0+0}{6-0}\right)=\sin \left(\frac{0}{6}\right)=\sin 0=0$
9. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4}-x\right)=[\infty-\infty] \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+4}-x}{1} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+4}-x\right)\left(\sqrt{x^{2}+4}+x\right)}{1 \cdot\left(\sqrt{x^{2}+4}+x\right)}$ $\stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+4}\right)^{2}-x^{2}}{\sqrt{x^{2}+4}+x} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{x^{2}+4-x^{2}}{\sqrt{x^{2}+4}+x} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{4}{\sqrt{x^{2}+4}+x} \stackrel{C}{=} 0$
10. $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+4}-x\right)$
10. $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+4}-x\right)=[\infty+\infty]=\infty$ (D.N.E)

REMARK: For more examples of this type, see Appendix II.
11. $\lim _{x \rightarrow \infty}(x-\sqrt{x})$
12. $\lim _{x \rightarrow \infty}\left(x^{3}-x^{8}\right)$
13. $\lim _{x \rightarrow \infty}\left(x^{3}+x^{8}\right)$
14. $\lim _{x \rightarrow \infty} \sin x$
15. $\lim _{x \rightarrow \infty} \frac{1+\sin 5 x}{\sqrt{1+x}}$
11. $\lim _{x \rightarrow \infty}(x-\sqrt{x})=[\infty-\infty] \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{x-\sqrt{x}}{1} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{(x-\sqrt{x})(x+\sqrt{x})}{1 \cdot(x+\sqrt{x})} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{x^{2}-(\sqrt{x})^{2}}{x+\sqrt{x}}$

$$
\stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{x^{2}-x}{x+\sqrt{x}} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{x^{2}-x}{x}}{\frac{x+\sqrt{x}}{x}} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{x^{2}}{x}-\frac{x}{x}}{\frac{x}{x}+\frac{\sqrt{x}}{x}} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{x-1}{1+\frac{1}{\sqrt{x}}} \stackrel{C}{=}\left[\frac{\infty}{1}\right]=\infty \text { (D.N.E) }
$$

or

$$
\lim _{x \rightarrow \infty}(x-\sqrt{x})=[\infty-\infty] \stackrel{A}{=} \lim _{x \rightarrow \infty}(\sqrt{x} \cdot \sqrt{x}-1 \cdot \sqrt{x}) \stackrel{A}{=} \lim _{x \rightarrow \infty}[\sqrt{x}(\sqrt{x}-1)] \stackrel{C}{=}[\infty \cdot \infty] \underset{\text { (D.N.H }}{=}
$$

(D.N.E)
12. $\lim _{x \rightarrow \infty}\left(x^{3}-x^{8}\right)=[\infty-\infty] \stackrel{A}{=} \lim _{x \rightarrow \infty} x^{3}\left(1-x^{5}\right) \stackrel{C}{=}[\infty \cdot(-\infty)]=-\infty$ (D.N.E)
13. $\lim _{x \rightarrow \infty}\left(x^{3}+x^{8}\right)=[\infty+\infty]=\infty$ (D.N.E)
14. $\lim _{x \rightarrow \infty} \sin x$ D.N.E

15. $\lim _{x \rightarrow \infty} \frac{1+\sin 5 x}{\sqrt{1+x}}=0$

Solution: We first note that

$$
0 \leq 1+\sin 5 x \leq 2
$$

Dividing all three parts of this inequality by $\sqrt{1+x}$, we get

$$
0 \leq \frac{1+\sin 5 x}{\sqrt{1+x}} \leq \frac{2}{\sqrt{1+x}}
$$

Since

$$
\lim _{x \rightarrow \infty} \frac{2}{\sqrt{1+x}}=0
$$

it follows that

$$
\lim _{x \rightarrow \infty} \frac{1+\sin 5 x}{\sqrt{1+x}}=0
$$

by the Squeeze Theorem.

Appendix I

1. Find $\lim _{x \rightarrow \infty} \frac{\sqrt[3]{x+5}}{\sqrt{x+7}}$.

Solution: We have

$$
\begin{array}{r}
\lim _{x \rightarrow \infty} \frac{\sqrt[3]{x+5}}{\sqrt{x+7}}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{\sqrt[3]{x+5}}{\sqrt{x}}}{\frac{\sqrt{x+7}}{\sqrt{x}}}=\left\{\sqrt{x}=x^{\frac{1}{2}}=x^{\frac{3}{2} \cdot \frac{1}{3}}=\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}=\sqrt[3]{x^{3 / 2}}\right\} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{\sqrt[3]{x+5}}{\sqrt[3]{x^{3 / 2}}}}{\frac{\sqrt{x+7}}{\sqrt{x}}} \\
\stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\sqrt[3]{\frac{x+5}{x^{3 / 2}}}}{\sqrt{\frac{x+7}{x}}} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\sqrt[3]{\frac{x}{x^{3 / 2}}+\frac{5}{x^{3 / 2}}}}{\sqrt{\frac{x}{x}+\frac{7}{x}}} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\sqrt[3]{\frac{1}{x^{1 / 2}+\frac{5}{x^{3 / 2}}}}}{\sqrt{1+\frac{7}{x}}} \xlongequal[=]{\sqrt[3]{0+0}} \frac{\sqrt{1+0}}{\sqrt{1+0}}=\frac{0}{1}=0
\end{array}
$$

2. Find $\lim _{x \rightarrow \infty} \frac{\sqrt[6]{3 x^{2}+4}}{\sqrt[9]{1-2 x^{3}}}$.

Solution: We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt[6]{3 x^{2}+4}}{\sqrt[9]{1-2 x^{3}}}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{\sqrt[6]{3 x^{2}+4}}{\sqrt[9]{x^{3}}}}{\frac{\sqrt[9]{1-2 x^{3}}}{\sqrt[9]{x^{3}}}}=\left\{\sqrt[9]{x^{3}}=x^{\frac{3}{9}}=x^{\frac{1}{3}}=x^{2 \cdot \frac{1}{6}}=\left(x^{2}\right)^{\frac{1}{6}}=\sqrt[6]{x^{2}}\right\} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{\sqrt[6]{3 x^{2}+4}}{\sqrt[6]{x^{2}}}}{\frac{\sqrt[9]{1-2 x^{3}}}{\sqrt[9]{x^{3}}}} \\
\stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\sqrt[6]{\frac{3 x^{2}+4}{x^{2}}}}{\sqrt[9]{\frac{1-2 x^{3}}{x^{3}}}} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\sqrt[6]{\frac{3 x^{2}+\frac{4}{x^{2}}}{x^{2}}}}{\sqrt[9]{\frac{1}{x^{3}}-\frac{2 x^{3}}{x^{3}}}}=\lim _{x \rightarrow \infty} \frac{\sqrt[6]{3+\frac{4}{x^{2}}}}{\sqrt[9]{\frac{1}{x^{3}}-2}} \stackrel{C}{\sqrt[6]{3+0}} \\
\sqrt[9]{0-2}
\end{aligned}=-\frac{\sqrt[6]{3}}{\sqrt[9]{2}}
$$

Appendix II

1. Find $\lim _{x \rightarrow \infty}\left[x\left(\sqrt{x^{2}+4}-x\right)\right]$.

Solution: Since

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4}-x\right)=0
$$

by Example 9 from page 8 , it follows that $\lim _{x \rightarrow \infty}\left[x\left(\sqrt{x^{2}+4}-x\right)\right]$ is $\infty \cdot 0$ type of an indeterminate form. We have

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left[x\left(\sqrt{x^{2}+4}-x\right)\right]=[\infty \cdot 0] \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{x\left(\sqrt{x^{2}+4}-x\right)}{1} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{x\left(\sqrt{x^{2}+4}-x\right)\left(\sqrt{x^{2}+4}+x\right)}{1 \cdot\left(\sqrt{x^{2}+4}+x\right)} \\
& \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{x\left[\left(\sqrt{x^{2}+4}\right)^{2}-x^{2}\right]}{\sqrt{x^{2}+4}+x} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{x\left[x^{2}+4-x^{2}\right]}{\sqrt{x^{2}+4}+x} \\
& \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{4 x}{\sqrt{x^{2}+4}+x}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{\frac{4 x}{x}}{\frac{\sqrt{x^{2}+4}+x}{x}} \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{4}{\frac{\sqrt{x^{2}+4}}{x}+\frac{x}{x}} \\
& \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{4}{\frac{4}{\sqrt{x^{2}+4}}} \sqrt{\sqrt{x^{2}}}+1 \\
&=\lim _{x \rightarrow \infty} \frac{4}{\sqrt{\frac{x^{2}+4}{x^{2}}}+1} \xlongequal{=} \lim _{x \rightarrow \infty} \frac{4}{\sqrt{\frac{x^{2}}{x^{2}}+\frac{4}{x^{2}}}+1} \\
& \stackrel{A}{=} \lim _{x \rightarrow \infty} \frac{4}{\sqrt{1+\frac{4}{x^{2}}}+1} \stackrel{C}{=} \frac{4}{\sqrt{1+0}+1}=2
\end{aligned}
$$

2. Find $\lim _{x \rightarrow-\infty}\left[x\left(\sqrt{x^{2}+4}+x\right)\right]$.

Solution: We have

$$
\begin{aligned}
\lim _{x \rightarrow-\infty}\left[x\left(\sqrt{x^{2}+4}+x\right)\right]=[\infty \cdot 0] & \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{x\left(\sqrt{x^{2}+4}+x\right)}{1} \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{x\left(\sqrt{x^{2}+4}+x\right)\left(\sqrt{x^{2}+4}-x\right)}{1 \cdot\left(\sqrt{x^{2}+4}-x\right)} \\
& \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{x\left[\left(\sqrt{x^{2}+4}\right)^{2}-x^{2}\right]}{\sqrt{x^{2}+4}-x} \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{x\left[x^{2}+4-x^{2}\right]}{\sqrt{x^{2}+4}-x} \\
& \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{4 x}{\sqrt{x^{2}+4}-x}=\left[\frac{\infty}{\infty}\right] \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{\frac{4 x}{x}}{\sqrt{x^{2}+4-x}} \frac{A}{x} \lim _{x \rightarrow-\infty} \frac{4}{\frac{\sqrt{x^{2}+4}}{x}-\frac{x}{x}} \\
& \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{4}{\frac{\sqrt{x^{2}+4}}{-\sqrt{x^{2}}}-1} \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{4}{-\sqrt{\frac{x^{2}+4}{x^{2}}}-1} \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{4}{-\sqrt{\frac{x^{2}}{x^{2}}+\frac{4}{x^{2}}}-1} \\
& \stackrel{A}{=} \lim _{x \rightarrow-\infty} \frac{4}{-\sqrt{1+\frac{4}{x^{2}}}-1} \xlongequal{=} \frac{4}{-\sqrt{1+0}-1}=-2
\end{aligned}
$$

