1. Find all local extrema of the function

$$
f(x)=\frac{x}{x^{2}+4}
$$

The derivative of f is

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}+4\right)(x)^{\prime}-x\left(x^{2}+4\right)^{\prime}}{\left(x^{2}+4\right)^{2}} \\
& =\frac{x^{2}+4-2 x^{2}}{\left(x^{2}+4\right)^{2}} \\
& =\frac{4-x^{2}}{\left(x^{2}+4\right)^{2}}
\end{aligned}
$$

Solution:

The expression for f^{\prime} shows that $f^{\prime}(x)$ exists everywhere and so the critical numbers and hence the local extrema occur where $f^{\prime}(x)=0$. From the derivative this happens when $4-x^{2}=0$, that is, at $x=-2$ and $x=2$.
To determine which of these are local maxs or local mins, we need to do either of the following calculations:
First Derivative Test: From the expression for $f^{\prime}(x)$ we see that $f^{\prime}(x)>0$ on $(-2,2)$ and $f^{\prime}(x)<0$ on $(-\infty,-2)$ and $(2, \infty)$. This implies that f is increasing on $(-2,2)$ and decreasing on $(-\infty,-2)$ and $(2, \infty)$. By the first derivative test, $x=-2$ is a local min and $x=2$ is a local max.
Second Derivative Test: The second derivative of f is

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(x^{2}+4\right)^{2}\left(4-x^{2}\right)^{\prime}-\left(4-x^{2}\right)\left(\left(x^{2}+4\right)^{2}\right)^{\prime}}{\left(x^{2}+4\right)^{4}} \\
& =\frac{\left(x^{2}+4\right)^{2}(-2 x)-\left(4-x^{2}\right) 2\left(x^{2}+4\right)(2 x)}{\left(x^{2}+4\right)^{4}} \\
& =\frac{\left(x^{2}+4\right)(-2 x)-\left(4-x^{2}\right) 2(2 x)}{\left(x^{2}+4\right)^{3}} \\
& =\frac{-2 x^{3}-8 x-16 x+4 x^{3}}{\left(x^{2}+4\right)^{3}} \\
& =\frac{2 x^{3}-24 x}{\left(x^{2}+4\right)^{3}} \\
& =\frac{2 x\left(x^{2}-12\right)}{\left(x^{2}+4\right)^{3}}
\end{aligned}
$$

Thus $f^{\prime \prime}(2)=2 \cdot 2 \cdot(-8) /(8)^{3}<0$ and so $x=2$ is a local max. Similarly $f^{\prime \prime}(-2)=2 \cdot(-2) \cdot(-8) /(8)^{3}>0$ and so $x=-2$ is a local min.
2. Determine the intervals where the graph of

$$
g(x)=x^{3}-9 x^{2}+2 x-1
$$

is concave up and concave down. Express your answer in interval notation. Is there an inflection point?
Solution: The derivative of g is

$$
g^{\prime}(x)=3 x^{2}-18 x+2
$$

Therefore the second derivative of g is

$$
\begin{aligned}
g^{\prime \prime}(x) & =6 x-18 \\
& =6(x-3)
\end{aligned}
$$

We see that $g^{\prime \prime}(x)>0$ on $(3, \infty)$ and $g^{\prime \prime}(x)<0$ on $(-\infty, 3)$. This implies that g is concave up on $(3, \infty)$ and concave down on $(-\infty, 3)$. This also shows that $(3, g(3))$ is an inflection point.

Here are a few examples of this method.
Example 4.5. Find the absolute extrema of $f(x)=x^{2 / 5}\left(x^{1 / 5}-1\right)$ on $[0,32]$.
Solution. First, compute the derivative with the power rule as follows.

$$
\begin{aligned}
f(x) & =x^{3 / 5}-x^{2 / 5} \\
f^{\prime}(x) & =\frac{3}{5} x^{-2 / 5}-\frac{2}{5} x^{-3 / 5}
\end{aligned}
$$

Note that this is defined everywhere except at $x=0$, so 0 is one critical number. To find the others, solve $f^{\prime}(x)=0$ as follows.

$$
\begin{aligned}
\frac{3}{5} x^{-2 / 5}-\frac{2}{5} x^{-3 / 5} & =0 \\
\frac{3}{5} x^{-2 / 5} & =\frac{2}{5} x^{-3 / 5} \\
\frac{x^{-2 / 5}}{x^{-3 / 5}} & =\frac{2 / 5}{3 / 5} \\
x^{1 / 5} & =\frac{2}{3} \\
x & =\left(\frac{2}{3}\right)^{5}
\end{aligned}
$$

So there are two critical numbers: $x=0$ and $x=\left(\frac{2}{3}\right)^{5}$.
Now, the two endpoints are 0 and 32 . So evaluate $f(x)$ on the critical values and the endpoints (note that 0 is both a critical number and an endpoint).

$$
\begin{aligned}
f(0) & =0^{2 / 5}\left(0^{1 / 5}-1\right) \\
& =0 \\
f\left(\left(\frac{2}{3}\right)^{5}\right) & =\left(\left(\frac{2}{3}\right)^{5}\right)^{2 / 5}\left(\left(\left(\frac{2}{3}\right)^{5}\right)^{1 / 5}-1\right) \\
& =\left(\frac{2}{3}\right)^{2}\left(\frac{2}{3}-1\right) \\
& =-\frac{4}{27} \\
f(32) & =32^{2 / 5}\left(32^{1 / 5}-1\right) \\
& =4(2-1) \\
& =4
\end{aligned}
$$

So the three values we compute in step 2 of the closed interval method are $0,-\frac{4}{27}$, and 4 . The maximum of these is the absolute maximum: $f(32)=4$. The smallest is the absolute minimum: $f\left(\left(\frac{2}{3}\right)^{5}\right)=-4 / 27$.

5 Sign diagrams

In this section, I just explore a bit exactly how much you can know about a function if you just know where it is increasing and decreasing. For example, suppose that you have a function $f(x)$ on $[1,4]$, and all you know about it is that it has critical numbers 2 and 3 , it is increasing on $[1,2]$, decreasing on $[2,3]$, and increasing on $[3,4]$. This information can be denoted by a "sign diagram."

