Example: MaxMin 2

Find All Extrema ${ }^{1}$:

$$
f(x)=x^{3}-3 x
$$

[^0]
Find All Extrema ${ }^{1}$:

$$
f(x)=x^{3}-3 x
$$

Since there are no endpoints, we only need to find critical points and singular points. $f^{\prime}(x)=3 x^{2}-3=3\left(x^{2}-1\right)=3(x+1)(x-1)$. So there are no singular points, and the critical points are ± 1.
We know that cubic functions grow hugely positive in one direction, and hugely negative in the other. So, there's no global max or min. We need only decide whether $x=1$ and $x=-1$ are local extrema.
We can easily graph $f^{\prime}(x)$, and we see it is an upwards-pointing parabola. It is positive to the left of $x=-1$ and positive to its right, so f is increasing up till $x=-1$, then decreasing after; so $x=1$ is a local max.
Likewise, $f^{\prime}(x)$ is negative to the left of $x=1$ and positive to the right of it; so it's decreasing till $x=1$ and increasing after. Thus $x=1$ is a local min.

[^1]
Example: MaxMin 3

Find All Extrema

$$
f(x)=\sqrt[3]{x^{2}-64}, \quad x \text { in }[-1,10]
$$

Find All Extrema

$$
f(x)=\sqrt[3]{x^{2}-64}, \quad x \text { in }[-1,10]
$$

The endpoints are -1 and 10 . We differentiate to identify critical points and singular points:
$f^{\prime}(x)=\frac{1}{3}\left(x^{2}-64\right)^{-2 / 3}(2 x)=\frac{2}{3} x\left(x^{2}-64\right)^{-2 / 3}$. So the critical point is $x=0$ and the singular points are $x= \pm 8$; but since $x=-8$ is not our domain, we don't have to worry about it.
The global extrema are found by simply comparing the value of the function at the various interesting points.
$f(0)=\sqrt[3]{-64}=-4 ; f(8)=0 ; f(-1)=-\sqrt[3]{63}$; and $f(10)=\sqrt[3]{100-64}=\sqrt[3]{36}$. Of these, -4 is the smallest and $\sqrt[3]{36}$ is the largest, so the global max is $\sqrt[3]{36}$ at $x=10$, and the global \min is -4 at $x=0$.
Then it's pretty clear that $x=0$ is a local min. Since -1 and 10 are endpoints, they can't be local mins. So, what of $x=8$? When x is slightly smaller than 8 , or slightly larger than $8, f^{\prime}(x)$ is positive; so $f(x)$ is increasing to the left of 8 and also to the right of 8 . Then 8 is neither a local max nor a local min.

Find the largest and smallest value of $f(x)=x^{4}-18 x^{2}$.

Find the largest and smallest value of $f(x)=x^{4}-18 x^{2}$.

There are no endpoints given, so we take the domain to be the domain of the function, which is all real numbers. As x goes to infinity or negative infinity, $f(x)$ goes to infinity, so there is no global max, hence no largest value.
To find the global min, we differentiate: $f^{\prime}(x)=4 x^{3}-36 x=4 x\left(x^{2}-9\right)$. So the critical points are 0 and ± 3, and there are no singular points.
$f(0)=0$, and $f(3)=f(-3)=-81$, so the smallest value (and global min) is -81 , and it occurs twice (which is fine): at 3 and -3 .

[^0]: ${ }^{1}$ Extrema: local and global maxima and minima

[^1]: ${ }^{1}$ Extrema: local and global maxima and minima

