EXAMPLES:
(a) Find the critical numbers of $f(x)=2 x^{3}-9 x^{2}+12 x-5$.

Solution: We have

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{2}-18 x+12 \\
& =6\left(x^{2}-3 x+2\right) \\
& =6(x-1)(x-2)
\end{aligned}
$$

thus $f^{\prime}(x)=0$ at $x=1$ and $x=2$. Since $f^{\prime}(x)$ exists everywhere, $x=1$ and $x=2$ are the only critical numbers.
(b) Find the critical numbers of $f(x)=2 x+3 \sqrt[3]{x^{2}}$.

Solution: We have

$$
\begin{aligned}
f^{\prime}(x) & =\left(2 x+3 x^{2 / 3}\right)^{\prime} \\
& =2 x^{\prime}+3\left(x^{2 / 3}\right)^{\prime} \\
& =2 \cdot 1+3 \cdot \frac{2}{3} x^{2 / 3-1} \\
& =2+2 x^{-1 / 3}=\left\{\frac{2}{1}+\frac{2}{\sqrt[3]{x}}=\frac{2 \sqrt[3]{x}}{\sqrt[3]{x}}+\frac{2}{\sqrt[3]{x}}=\frac{2 \sqrt[3]{x}+2}{\sqrt[3]{x}}\right\}=\frac{2(\sqrt[3]{x}+1)}{\sqrt[3]{x}}
\end{aligned}
$$

or

$$
=2+2 x^{-1 / 3}=\left\{2 x^{-1 / 3} \cdot x^{1 / 3}+2 x^{-1 / 3} \cdot 1=2 x^{-1 / 3}\left(x^{1 / 3}+1\right)\right\}=\frac{2(\sqrt[3]{x}+1)}{\sqrt[3]{x}}
$$

In short,

$$
f^{\prime}(x)=2+2 x^{-1 / 3}=2 x^{-1 / 3}\left(x^{1 / 3}+1\right)=\frac{2(\sqrt[3]{x}+1)}{\sqrt[3]{x}}
$$

It follows that $f^{\prime}(x)$ equals 0 when $\sqrt[3]{x}+1=0$, which is at $x=-1 ; f^{\prime}(x)$ does not exist when $\sqrt[3]{x}=0$, which is at $x=0$. Thus the critical numbers are -1 and 0 .

EXAMPLE: Find the critical numbers of $f(x)=x^{1 / 3}(2-x)$.

EXAMPLE: Find the critical numbers of $f(x)=x^{1 / 3}(2-x)$.
Solution: We have

$$
\begin{aligned}
f^{\prime}(x) & =\left[x^{1 / 3}(2-x)\right]^{\prime} \\
& =\left(x^{1 / 3}\right)^{\prime}(2-x)+x^{1 / 3}(2-x)^{\prime} \\
& =\frac{1}{3} x^{-2 / 3}(2-x)+x^{1 / 3} \cdot(-1) \\
& =\frac{2-x}{3 x^{2 / 3}}-x^{1 / 3} \\
& =\left\{\frac{2-x}{3 x^{2 / 3}}-\frac{x^{1 / 3} \cdot 3 x^{2 / 3}}{3 x^{2 / 3}}=\frac{2-x}{3 x^{2 / 3}}-\frac{3 x}{3 x^{2 / 3}}=\frac{2-x-3 x}{3 x^{2 / 3}}=\frac{2-4 x}{3 x^{2 / 3}}\right\}=\frac{2(1-2 x)}{3 x^{2 / 3}}
\end{aligned}
$$

In short,

$$
f^{\prime}(x)=\left(x^{1 / 3}\right)^{\prime}(2-x)+x^{1 / 3}(2-x)^{\prime}=\frac{2-x}{3 x^{2 / 3}}-x^{1 / 3}=\frac{2(1-2 x)}{3 x^{2 / 3}}
$$

Here is an other way to get the same result:

$$
\begin{aligned}
& f^{\prime}(x)=\left[x^{1 / 3}(2-x)\right]^{\prime} \\
&=\left(2 x^{1 / 3}-x^{4 / 3}\right)^{\prime} \\
&=2\left(x^{1 / 3}\right)^{\prime}-\left(x^{4 / 3}\right)^{\prime} \\
&=2 \cdot \frac{1}{3} x^{1 / 3-1}-\frac{4}{3} x^{4 / 3-1} \\
&=\frac{2}{3} x^{-2 / 3}-\frac{4}{3} x^{1 / 3}=\left\{\frac{2}{3 x^{2 / 3}}-\frac{4 x^{1 / 3}}{3}=\frac{2}{3 x^{2 / 3}}-\frac{4 x^{1 / 3} \cdot x^{2 / 3}}{3 \cdot x^{2 / 3}}=\frac{2}{3 x^{2 / 3}}-\frac{4 x}{3 x^{2 / 3}}=\frac{2-4 x}{3 x^{2 / 3}}\right\} \\
&=\frac{2(1-2 x)}{3 x^{2 / 3}}
\end{aligned}
$$

or

$$
=\frac{2}{3} x^{-2 / 3}-\frac{4}{3} x^{1 / 3}=\left\{\frac{2}{3} x^{-2 / 3} \cdot 1-\frac{2}{3} x^{-2 / 3} \cdot 2 x=\frac{2}{3} x^{-2 / 3}(1-2 x)\right\}=\frac{2(1-2 x)}{3 x^{2 / 3}}
$$

In short,

$$
f^{\prime}(x)=\left(2 x^{1 / 3}-x^{4 / 3}\right)^{\prime}=\frac{2}{3} x^{-2 / 3}-\frac{4}{3} x^{1 / 3}=\frac{2}{3} x^{-2 / 3}(1-2 x)=\frac{2(1-2 x)}{3 x^{2 / 3}}
$$

It follows that $f^{\prime}(x)$ equals 0 when $1-2 x=0$, which is at $x=\frac{1}{2} ; f^{\prime}(x)$ does not exist when $x^{2 / 3}=0$, which is at $x=0$. Thus the critical numbers are $\frac{1}{2}$ and 0 .

THE CLOSED INTERVAL METHOD: To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$:

1. Find the values of f at the critical numbers of f in (a, b).
2. Find the values of f at the endpoints of the interval.
3. The largest of the values from Step 1 and 2 is the absolute maximum value; the smallest value of these values is the absolute minimum value.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=2 x^{3}-15 x^{2}+36 x$ on the interval $[1,5]$ and determine where these values occur.

Solution:
Step 1: Since

$$
f^{\prime}(x)=6 x^{2}-30 x+36=6\left(x^{2}-5 x+6\right)=6(x-2)(x-3)
$$

there are two critical numbers $x=2$ and $x=3$.
Step 2: We now evaluate f at these critical numbers and at the endpoints $x=1$ and $x=5$. We have

$$
f(1)=23, \quad f(2)=28, \quad f(3)=27, \quad f(5)=55
$$

Step 3: The largest value is 55 and the smallest value is 23 . Therefore the absolute maximum of f on $[1,5]$ is 55 , occurring at $x=5$ and the absolute minimum of f on $[1,5]$ is 23 , occurring at $x=1$.

EXAMPLES:
(a) Find the absolute maximum and minimum values of $f(x)=2 x^{3}-15 x^{2}+24 x+2$ on $[0,2]$ and determine where these values occur.
(b) Find the absolute maximum and minimum values of $f(x)=6 x^{4 / 3}-3 x^{1 / 3}$ on the interval $[-1,1]$ and determine where these values occur.

EXAMPLES:
(a) Find the absolute maximum and minimum values of $f(x)=2 x^{3}-15 x^{2}+24 x+2$ on $[0,2]$ and determine where these values occur.

Solution:
Step 1: Since

$$
f^{\prime}(x)=6 x^{2}-30 x+24=6\left(x^{2}-5 x+4\right)=6(x-4)(x-1)
$$

there are two critical numbers $x=1$ and $x=4$.
Step 2: Since $x=4$ is not from $[0,2]$, we evaluate f only at $x=1$ and at the endpoints $x=0$ and $x=2$. We have

$$
f(0)=2, \quad f(1)=13, \quad f(2)=6
$$

Step 3: The largest value is 13 and the smallest value is 2 . Therefore the absolute maximum of f on $[0,2]$ is 13 , occurring at $x=1$ and the absolute minimum of f on $[0,2]$ is 2 , occurring at $x=0$.
(b) Find the absolute maximum and minimum values of $f(x)=6 x^{4 / 3}-3 x^{1 / 3}$ on the interval $[-1,1]$ and determine where these values occur.

Solution:
Step 1: Since

$$
\begin{aligned}
f^{\prime}(x)=\left(6 x^{4 / 3}-3 x^{1 / 3}\right)^{\prime}=6\left(x^{4 / 3}\right)^{\prime}-3\left(x^{1 / 3}\right)^{\prime} & =6 \cdot \frac{4}{3} x^{4 / 3-1}-3 \cdot \frac{1}{3} x^{1 / 3-1} \\
& =8 x^{1 / 3}-x^{-2 / 3} \\
& =8 x^{-2 / 3} \cdot x-1 \cdot x^{-2 / 3} \\
& =x^{-2 / 3}(8 x-1) \\
& =\frac{8 x-1}{x^{2 / 3}}
\end{aligned}
$$

there are two critical numbers $x=0$ and $x=\frac{1}{8}$.
Step 2: We now evaluate f at these critical numbers and at the endpoints $x=-1$ and $x=1$. We have

$$
f(-1)=9, \quad f(0)=0, \quad f\left(\frac{1}{8}\right)=-\frac{9}{8}, \quad f(1)=3
$$

Step 3: The largest value is 9 and the smallest value is $-\frac{9}{8}$. Therefore the absolute maximum of f on $[-1,1]$ is 9 , occurring at $x=-1$ and the absolute minimum of f on $[-1,1]$ is $-\frac{9}{8}$, occurring at $x=\frac{1}{8}$.

Appendix

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=2 x+3$ on $[-1,4]$ and determine where these values occur.

Solution:
Step 1: Since

$$
f^{\prime}(x)=(2 x+3)^{\prime}=(2 x)^{\prime}-3^{\prime}=2(x)^{\prime}-3^{\prime}=2 \cdot 1-0=2
$$

there are no critical numbers.
Step 2: Since there are no critical numbers, we evaluate f at the endpoints $x=-1$ and $x=4$ only. We have

$$
\begin{aligned}
& f(-1)=2(-1)+3=-2+3=1 \\
& f(4)=2(4)+3=8+3=11
\end{aligned}
$$

Step 3: The largest value is 11 and the smallest value is 1 . Therefore the absolute maximum of f on $[-1,4]$ is 11 , occurring at $x=4$ and the absolute minimum of f on $[-1,4]$ is 1 , occurring at $x=-1$.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=2 x^{2}-8 x+1$ on $[-1,3]$ and determine where these values occur.

Solution:
Step 1: Since
$f^{\prime}(x)=\left(2 x^{2}-8 x+1\right)^{\prime}=\left(2 x^{2}\right)^{\prime}-(8 x)^{\prime}+1^{\prime}=2\left(x^{2}\right)^{\prime}-8(x)^{\prime}+1^{\prime}=2 \cdot 2 x-8 \cdot 1+0=4 x-8$
the number at which f^{\prime} is zero is 2 . Therefore $x=2$ is the critical number.
Step 2: We evaluate f at the critical number $x=2$ and at the endpoints $x=-1,3$. We have

$$
\begin{aligned}
& f(2)=2 \cdot 2^{2}-8 \cdot 2+1=2 \cdot 4-8 \cdot 2+1=8-16+1=-7 \\
& f(-1)=2(-1)^{2}-8(-1)+1=2+8+1=11 \\
& f(3)=2 \cdot 3^{2}-8 \cdot 3+1=2 \cdot 9-8 \cdot 3+1=18-24+1=-5
\end{aligned}
$$

Step 3: The largest value is 11 and the smallest value is -7 . Therefore the absolute maximum of f on $[-1,3]$ is 11 , occurring at $x=-1$ and the absolute minimum of f on $[-1,3]$ is -7 , occurring at $x=2$.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=5-x^{3}$ on $[-2,1]$ and determine where these values occur.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=5-x^{3}$ on $[-2,1]$ and determine where these values occur.

Solution:
Step 1: Since

$$
f^{\prime}(x)=\left(5-x^{3}\right)^{\prime}=5^{\prime}-\left(x^{3}\right)^{\prime}=0-3 x^{2}=-3 x^{2}
$$

the critical number is $x=0$.
Step 2: We evaluate f at the critical number $x=0$ and at the endpoints $x=-2,1$. We have

$$
\begin{aligned}
& f(0)=5-0^{3}=5-0=5 \\
& f(-2)=5-(-2)^{3}=5-(-8)=5+8=13 \\
& f(1)=5-1^{3}=5-1=4
\end{aligned}
$$

Step 3: The largest value is 13 and the smallest value is 4. Therefore the absolute maximum of f on $[-2,1]$ is 13 , occurring at $x=-2$ and the absolute minimum of f on $[-2,1]$ is 4 , occurring at $x=1$.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=x^{3}+3 x^{2}-1$ on $[-3,2]$ and determine where these values occur.

Solution:
Step 1: Since

$$
\begin{aligned}
f^{\prime}(x)=\left(x^{3}+3 x^{2}-1\right)^{\prime}=\left(x^{3}\right)^{\prime}+\left(3 x^{2}\right)^{\prime}-1^{\prime}=\left(x^{3}\right)^{\prime}+3\left(x^{2}\right)^{\prime}-1^{\prime}=3 x^{2}+3 \cdot 2 x-0 & =3 x^{2}+6 x \\
& =3 x(x+2)
\end{aligned}
$$

the critical numbers are $x=0$ and $x=-2$.
Step 2: We evaluate f at the critical numbers $x=0,-2$ and at the endpoints $x=-3,2$. We have

$$
\begin{aligned}
& f(0)=0^{3}+3 \cdot 0^{2}-1=0+0-1=-1 \\
& f(-2)=(-2)^{3}+3 \cdot(-2)^{2}-1=-8+12-1=3 \\
& f(-3)=(-3)^{3}+3 \cdot(-3)^{2}-1=-27+27-1=-1 \\
& f(2)=2^{3}+3 \cdot 2^{2}-1=8+12-1=19
\end{aligned}
$$

Step 3: The largest value is 19 and the smallest value is -1 . Therefore the absolute maximum of f on $[-3,2]$ is 19 , occurring at $x=2$ and the absolute minimum of f on $[-3,2]$ is -1 , occurring at $x=0$ and $x=-3$.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=3 x^{4}+4 x^{3}-36 x^{2}$ on $[-2,3]$ and determine where these values occur.
Solution:
Step 1: Since

$$
\begin{aligned}
f^{\prime}(x)=\left(3 x^{4}+4 x^{3}-36 x^{2}\right)^{\prime}=\left(3 x^{4}\right)^{\prime}+\left(4 x^{3}\right)^{\prime}-\left(36 x^{2}\right)^{\prime} & =3\left(x^{4}\right)^{\prime}+4\left(x^{3}\right)^{\prime}-36\left(x^{2}\right)^{\prime} \\
& =3 \cdot 4 x^{3}+4 \cdot 3 x^{2}-36 \cdot 2 x \\
& =12 x^{3}+12 x^{2}-72 x \\
& =12 x\left(x^{2}+x-6\right) \\
& =12 x(x-2)(x+3)
\end{aligned}
$$

the critical numbers are $x=0, x=2$, and $x=-3$.
Step 2: Since $-3 \notin[-2,3]$, we evaluate f only at the critical numbers $x=0,2$ and at the endpoints $x=-2,3$. We have

$$
\begin{aligned}
& f(0)=3 \cdot 0^{4}+4 \cdot 0^{3}-36 \cdot 0^{2}=0+0-0=0 \\
& f(2)=3 \cdot 2^{4}+4 \cdot 2^{3}-36 \cdot 2^{2}=48+32-144=-64 \\
& f(-2)=3 \cdot(-2)^{4}+4 \cdot(-2)^{3}-36 \cdot(-2)^{2}=48-32-144=-128 \\
& f(3)=3 \cdot 3^{4}+4 \cdot 3^{3}-36 \cdot 3^{2}=243+108-324=27
\end{aligned}
$$

Step 3: The largest value is 27 and the smallest value is -128 . Therefore the absolute maximum of f on $[-2,3]$ is 27 , occurring at $x=3$ and the absolute minimum of f on $[-2,3]$ is -128 , occurring at $x=-2$.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=-\frac{1}{x^{2}}$ on $[0.4,5]$ and determine where these values occur.

Solution:
Step 1: We have

$$
f^{\prime}(x)=\left(-\frac{1}{x^{2}}\right)^{\prime}=-\left(\frac{1}{x^{2}}\right)^{\prime}=-\left(x^{-2}\right)^{\prime}=-(-2) x^{-2-1}=2 x^{-3}=\frac{2}{x^{3}}
$$

Note that there are no numbers at which f^{\prime} is zero. The number at which f^{\prime} does not exist is $x=0$, but this number is not from the domain of f. Therefore f does not have critical numbers.

Step 2: Since f does not have critical numbers, we evaluate it only at the endpoints $x=0.4$ and $x=5$. We have

$$
f(0.4)=-\frac{1}{(0.4)^{2}}=-\frac{1}{0.16}=-6.25 \quad f(5)=-\frac{1}{5^{2}}=-\frac{1}{25}=-0.04
$$

Step 3: The largest value is -0.04 and the smallest value is -6.25 . Therefore the absolute maximum of f on $[0.4,5]$ is -0.04 , occurring at $x=5$ and the absolute minimum of f on $[0.4,5]$ is -6.25 , occurring at $x=0.4$.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=20-3 x-\frac{12}{x}$ on $[2,4]$ and determine where these values occur.

Solution:
Step 1: We have

$$
\begin{aligned}
f^{\prime}(x)=\left(20-3 x-\frac{12}{x}\right)^{\prime}=\left(20-3 x-12 x^{-1}\right)^{\prime} & =20^{\prime}-(3 x)^{\prime}-\left(12 x^{-1}\right)^{\prime} \\
& =20^{\prime}-3 \cdot x^{\prime}-12\left(x^{-1}\right)^{\prime} \\
& =0-3 \cdot 1-12(-1) x^{-1-1} \\
& =-3+12 x^{-2}
\end{aligned}
$$

Since

$$
\begin{aligned}
-3+12 x^{-2}=-3+12 \cdot \frac{1}{x^{2}}=-3+\frac{12}{x^{2}}=\frac{-3 x^{2}}{x^{2}}+\frac{12}{x^{2}} & =\frac{-3 x^{2}+12}{x^{2}} \\
& =\frac{-3\left(x^{2}-4\right)}{x^{2}} \\
& =\frac{-3\left(x^{2}-2^{2}\right)}{x^{2}} \\
& =\frac{-3(x-2)(x+2)}{x^{2}}
\end{aligned}
$$

we have

$$
f^{\prime}(x)=-\frac{3(x-2)(x+2)}{x^{2}}
$$

The numbers at which f^{\prime} is zero are $x=2$ and $x=-2$. The number at which f^{\prime} does not exist is $x=0$. But f is not defined at $x=0$, therefore the critical numbers of f are $x=-2$ and $x=2$ only.

Step 2: Since $-2 \notin[2,4]$, we evaluate f only at the critical number $x=2$ (which is also one of the endpoints) and at the second endpoint $x=4$. We have

$$
\begin{aligned}
& f(2)=20-3 \cdot 2-\frac{12}{2}=20-6-6=8 \\
& f(4)=20-3 \cdot 4-\frac{12}{4}=20-12-3=5
\end{aligned}
$$

Step 3: The largest value is 8 and the smallest value is 5 . Therefore the absolute maximum of f on $[2,4]$ is 8 , occurring at $x=2$ and the absolute minimum of f on $[2,4]$ is 5 , occurring at $x=4$.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=2 \sqrt[3]{x}$ on $[-8,1]$ and determine where these values occur.

Solution:
Step 1: We have

$$
f^{\prime}(x)=\left(2 x^{1 / 3}\right)^{\prime}=2\left(x^{1 / 3}\right)^{\prime}=2 \cdot \frac{1}{3} x^{1 / 3-1}=\frac{2}{3} x^{-2 / 3}=\frac{2}{3 x^{2 / 3}}
$$

Note that there are no numbers at which f^{\prime} is zero. The number at which f^{\prime} does not exist is $x=0$, so the critical number is $x=0$.

Step 2: We evaluate f at the critical number $x=0$ and at the endpoints $x=-8$ and $x=1$. We have

$$
\begin{aligned}
& f(0)=2 \sqrt[3]{0}=2 \cdot 0=0 \\
& f(-8)=2 \sqrt[3]{-8}=2 \cdot(-2)=-4 \\
& f(1)=2 \sqrt[3]{1}=2 \cdot 1=2
\end{aligned}
$$

Step 3: The largest value is 2 and the smallest value is -4 . Therefore the absolute maximum of f on $[-8,1]$ is 2 , occurring at $x=1$ and the absolute minimum of f on $[-8,1]$ is -4 , occurring at $x=-8$.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=-5 x^{2 / 3}$ on $[-1,1]$ and determine where these values occur.

Solution:
Step 1: We have

$$
f^{\prime}(x)=\left(-5 x^{2 / 3}\right)^{\prime}=-5\left(x^{2 / 3}\right)^{\prime}=-5 \cdot \frac{2}{3} x^{2 / 3-1}=-\frac{10}{3} x^{-1 / 3}=-\frac{10}{3 x^{1 / 3}}
$$

Note that there are no numbers at which f^{\prime} is zero. The number at which f^{\prime} does not exist is $x=0$, so the critical number is $x=0$.

Step 2: We evaluate f at the critical number $x=0$ and at the endpoints $x=-1$ and $x=1$. We have

$$
\begin{aligned}
& f(0)=-5(0)^{2 / 3}=-5 \cdot 0=0 \\
& f(-1)=-5(-1)^{2 / 3}=-5\left((-1)^{2}\right)^{1 / 3}=-5(1)^{1 / 3}=-5 \cdot 1=-5 \\
& f(1)=-5(1)^{2 / 3}=-5 \cdot 1=-5
\end{aligned}
$$

Step 3: The largest value is 0 and the smallest value is -5 . Therefore the absolute maximum of f on $[-1,1]$ is 0 , occurring at $x=0$ and the absolute minimum of f on $[-1,1]$ is -5 , occurring at $x= \pm 1$.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=x^{4 / 3}$ on $[-27,27]$ and determine where these values occur.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=x^{4 / 3}$ on $[-27,27]$ and determine where these values occur.

Solution:
Step 1: We have

$$
f^{\prime}(x)=\left(x^{4 / 3}\right)^{\prime}=\frac{4}{3} x^{4 / 3-1}=\frac{4}{3} x^{1 / 3}
$$

Note that there are no numbers at which f^{\prime} does not exist. The number at which f^{\prime} is zero is $x=0$, so the critical number is $x=0$.

Step 2: We evaluate f at the critical number $x=0$ and at the endpoints $x=-27$ and $x=27$. We have

$$
\begin{aligned}
& f(0)=0^{4 / 3}=0 \\
& f(-27)=(-27)^{4 / 3}=\left((-27)^{1 / 3}\right)^{4}=(-3)^{4}=81 \\
& f(27)=27^{4 / 3}=\left(27^{1 / 3}\right)^{4}=3^{4}=81
\end{aligned}
$$

Step 3: The largest value is 81 and the smallest value is 0 . Therefore the absolute maximum of f on $[-27,27]$ is 81 , occurring at $x= \pm 27$ and the absolute minimum of f on $[-27,27]$ is 0 , occurring at $x=0$.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=\sqrt{4-x^{2}}$ on $[-2,1]$ and determine where these values occur.

Solution:
Step 1: We have

$$
\begin{aligned}
f^{\prime}(x) & =\left(\left(4-x^{2}\right)^{1 / 2}\right)^{\prime}=\frac{1}{2}\left(4-x^{2}\right)^{1 / 2-1} \cdot\left(4-x^{2}\right)^{\prime}=\frac{1}{2}\left(4-x^{2}\right)^{-1 / 2} \cdot\left(4^{\prime}-\left(x^{2}\right)^{\prime}\right) \\
& =\frac{1}{2}\left(4-x^{2}\right)^{-1 / 2} \cdot(0-2 x)=\frac{1}{2}\left(4-x^{2}\right)^{-1 / 2} \cdot(-2 x)=-x\left(4-x^{2}\right)^{-1 / 2} \\
& =-\frac{x}{\left(4-x^{2}\right)^{1 / 2}}=-\frac{x}{\sqrt{4-x^{2}}}
\end{aligned}
$$

Note that the number at which f^{\prime} is zero is $x=0$ and the numbers at which f^{\prime} does not exist are $x= \pm 2$. Therefore the critical numbers are $x=0,-2,2$.

Step 2: Since $2 \notin[-2,1]$, we evaluate f only at the critical numbers $x=0,-2$ (which is also one of the endpoints) and at the second endpoint $x=1$. We have

$$
\begin{aligned}
& f(0)=\sqrt{4-0^{2}}=\sqrt{4-0}=\sqrt{4}=2 \\
& f(-2)=\sqrt{4-(-2)^{2}}=\sqrt{4-4}=\sqrt{0}=0 \\
& f(1)=\sqrt{4-1^{2}}=\sqrt{4-1}=\sqrt{3}
\end{aligned}
$$

Step 3: The largest value is 2 and the smallest value is 0 . Therefore the absolute maximum of f on $[-2,1]$ is 2 , occurring at $x=0$ and the absolute minimum of f on $[-2,1]$ is 0 , occurring at $x=-2$.

EXAMPLE: Find the absolute maximum and minimum values of $f(x)=\cos x$ on $\left[-\frac{\pi}{2}, \frac{5 \pi}{2}\right]$ and determine where these values occur.

Solution:
Step 1: We have

$$
f^{\prime}(x)=-\sin x
$$

Note that there are no numbers at which f^{\prime} does not exist. The numbers in $\left[-\frac{\pi}{2}, \frac{5 \pi}{2}\right]$ at which f^{\prime} is zero on are $x=0, \pi, 2 \pi$, so the critical number is $x=0, \pi, 2 \pi$.
Step 2: We evaluate f at the critical numbers $x=0, \pi, 2 \pi$ and at the endpoints $x=-\frac{\pi}{2}, \frac{5 \pi}{2}$. We have

$$
\begin{aligned}
& f(0)=\cos 0=1 \\
& f(\pi)=\cos \pi=-1 \\
& f(2 \pi)=\cos (2 \pi)=1 \\
& f\left(-\frac{\pi}{2}\right)=\cos \left(-\frac{\pi}{2}\right)=0 \\
& f\left(\frac{5 \pi}{2}\right)=\cos \left(\frac{5 \pi}{2}\right)=0
\end{aligned}
$$

Step 3: The largest value is 1 and the smallest value is -1 . Therefore the absolute maximum of f on $\left[-\frac{\pi}{2}, \frac{5 \pi}{2}\right]$ is 1 , occurring at $x=0,2 \pi$ and the absolute minimum of f on $\left[-\frac{\pi}{2}, \frac{5 \pi}{2}\right]$ is -1 , occurring at $x=\pi$.

