THE FIRST DERIVATIVE TEST: Suppose c is a critical number of a continuous function f.
(a) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(b) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
(c) If f^{\prime} does not change sign at c (that is, f^{\prime} is positive on both sides of c or negative on both sides), then f has no local maximum or minimum at c.

(a) Local maximum

(b) Local minimum

(c) No maximum or minimum

(d) No maximum or minimum

EXAMPLE: Find where

$$
f(x)=x^{4}-4 x^{3}+4 x^{2}
$$

is increasing and where it is decreasing. Find the local maximum and minimum values of f. Solution: Since

$$
\begin{aligned}
f^{\prime}(x)=\left(x^{4}-4 x^{3}+4 x^{2}\right)^{\prime} & =\left(x^{4}\right)^{\prime}-\left(4 x^{3}\right)^{\prime}+\left(4 x^{2}\right)^{\prime} \\
& =\left(x^{4}\right)^{\prime}-4\left(x^{3}\right)^{\prime}+4\left(x^{2}\right)^{\prime} \\
& =\left(4 x^{3}\right)-4\left(3 x^{2}\right)+4(2 x) \\
& =4 x^{3}-12 x^{2}+8 x \\
& =4 x\left(x^{2}-3 x+2\right) \\
& =4 x(x-1)(x-2)
\end{aligned}
$$

the critical numbers are $x=0,1$ and 2 . We have

Therefore f is increasing on $(0,1)$ and $(2, \infty)$; it is decreasing on $(-\infty, 0)$ and $(1,2)$. Because $f^{\prime}(x)$ changes from negative to positive at 0 and 2, the First Derivative Test tells us that $f(0)=0$ and $f(2)=0$ are local minimum values. Similarly, since $f^{\prime}(x)$ changes from positive to negative at $1, f(1)=1$ is a local maximum value.

EXAMPLE: Let $f(x)=2 x+3 \sqrt[3]{x^{2}}$.
(a) Find the critical numbers of f, if any.
(b) Find the intervals on which f is increasing and decreasing.
(c) Find the local extreme values of f, if any.

Solution:
(a) We have

$$
\begin{aligned}
f^{\prime}(x) & =\left(2 x+3 x^{2 / 3}\right)^{\prime} \\
& =(2 x)^{\prime}+\left(3 x^{2 / 3}\right)^{\prime} \\
& =2(x)^{\prime}+3\left(x^{2 / 3}\right)^{\prime} \\
& =2(1)+3 \cdot \frac{2}{3} x^{2 / 3-1} \\
& =2+2 x^{-1 / 3}
\end{aligned}
$$

This can be rewritten as $\frac{2(\sqrt[3]{x}+1)}{\sqrt[3]{x}}$ in two different ways. Either

$$
2+2 x^{-1 / 3}=\frac{2}{1}+\frac{2}{\sqrt[3]{x}}=\frac{2 \sqrt[3]{x}}{\sqrt[3]{x}}+\frac{2}{\sqrt[3]{x}}=\frac{2 \sqrt[3]{x}+2}{\sqrt[3]{x}}=\frac{2 \sqrt[3]{x}+2 \cdot 1}{\sqrt[3]{x}}=\frac{2(\sqrt[3]{x}+1)}{\sqrt[3]{x}}
$$

or

$$
2+2 x^{-1 / 3}=2 x^{-1 / 3} \cdot x^{1 / 3}+2 x^{-1 / 3} \cdot 1=2 x^{-1 / 3}\left(x^{1 / 3}+1\right)=\frac{2(\sqrt[3]{x}+1)}{\sqrt[3]{x}}
$$

So,

$$
f^{\prime}(x)=\frac{2(\sqrt[3]{x}+1)}{\sqrt[3]{x}}
$$

therefore the critical numbers are $x=-1$ (where the top is equal to 0) and 0 (where the bottom is equal to 0).
(b) We have

Therefore f is increasing on $(-\infty,-1)$ and $(0, \infty)$; it is decreasing on $(-1,0)$.
(c) Because $f^{\prime}(x)$ changes from positive to negative at -1 , the First Derivative Test tells us that $f(-1)=1$ is a local maximum value. Similarly, since $f^{\prime}(x)$ changes from negative to positive at $0, f(0)=0$ is a local minimum value.

EXAMPLE: Let $f(x)=(x-2) e^{-x}$.
(a) Find the critical numbers of f.
(b) Find the intervals on which f is increasing and decreasing.
(c) Find the local extreme values of f.

Solution:
(a) We have

$$
\begin{aligned}
f^{\prime}(x)=\left((x-2) e^{-x}\right)^{\prime} & =(x-2)^{\prime} e^{-x}+(x-2)\left(e^{-x}\right)^{\prime} \\
& =\left(x^{\prime}-2^{\prime}\right) e^{-x}+(x-2) e^{-x} \cdot(-x)^{\prime} \\
& =(1-0) e^{-x}+(x-2) e^{-x} \cdot(-1) \\
& =1 \cdot e^{-x}-(x-2) e^{-x} \\
& =e^{-x}(1-(x-2)) \\
& =e^{-x}(1-x+2) \\
& =e^{-x}(3-x)
\end{aligned}
$$

Since

$$
e^{-x}(3-x)=0 \quad \Longleftrightarrow 3-x=0 \quad \Longleftrightarrow \quad x=3
$$

it follows that $f^{\prime}=0$ at $x=3$. Therefore the critical number of f is $x=3$.
(b) We have

Therefore f is increasing on $(-\infty, 3)$; it is decreasing on $(3, \infty)$.
(c) Because $f^{\prime}(x)$ changes from positive to negative at 3 , the First Derivative Test tells us that

$$
f(3)=(3-2) e^{-3}=1 \cdot e^{-3}=e^{-3}
$$

is a local maximum value.

Applications

EXAMPLE: Sales (in thousands of dollars) for Huttig Building Products, Inc. can be approximated by

$$
S(x)=8 x^{3}-180 x^{2}+1170 x-1260 \quad(3 \leq x \leq 11)
$$

where $x=3$ corresponds to the year 2003. Determine when sales were increasing and when sales were decreasing. Also find all local extrema of the sales function. (Data from: www.morningstar.com.) Solution: To determine the critical numbers, we find the derivative

$$
\begin{aligned}
S^{\prime}(x) & =\left(8 x^{3}-180 x^{2}+1170 x-1260\right)^{\prime} \\
& =\left(8 x^{3}\right)^{\prime}-\left(180 x^{2}\right)^{\prime}+(1170 x)^{\prime}-(1260)^{\prime} \\
& =8\left(x^{3}\right)^{\prime}-180\left(x^{2}\right)^{\prime}+1170(x)^{\prime}-(1260)^{\prime} \\
& =8\left(3 x^{2}\right)-180(2 x)+1170(1)-0 \\
& =24 x^{2}-360 x+1170
\end{aligned}
$$

Since the derivative exists for every x, the only critical numbers occur where the derivative is zero. Solve $S^{\prime}(x)=0$ using the quadratic formula:

$$
24 x^{2}-360 x+1170=0
$$

hence

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-360) \pm \sqrt{(-360)^{2}-4(24)(1170)}}{2(24)} \approx 4.8,10.2
$$

Since the domain of the sales function is $[3,11]$, both critical numbers lie within the domain. We choose the interval $[4,5]$ to test the critical number 4.8, and the interval $[5,11]$ to test the critical number 10.2:

$$
\begin{aligned}
S^{\prime}(4) & =114>0 \\
S^{\prime}(5) & =-30<0 \\
S^{\prime}(11) & =114>0
\end{aligned}
$$

Therefore, sales are increasing on the intervals $(3,4.8)$ and $(10.2,11)$ and decreasing on the interval $(4.8,10.2)$. By the first-derivative test, there is a local maximum at $x=4.8$ and a local minimum at $x=10.2$. In other words, sales reach a local maximum toward the end of 2004 and a local minimum near the beginning of 2010 . The local maximum value is $S(4.8) \approx 1093.5$ (sales of approximately $\$ 1,093,500$) and the local minimum value is $S(10.2) \approx 436.5$ (sales of approximately $\$ 436,500$), as can be seen in the Figure below.

