First Name: \qquad Last Name: \qquad

Student-No: \qquad Section: \qquad

1. 3 marks Differentiate the function $f(x)=(\arcsin x)^{\arccos x}$. Assume $0<x<1$.

Solution: We use logarithmic differentiation:

$$
\begin{aligned}
& y=(\arcsin x)^{\arccos x} \Rightarrow \\
& \ln (y)=\ln \left((\arcsin x)^{\arccos x}\right)=\arccos x \ln (\arcsin x) \Rightarrow \\
& \frac{\mathrm{d}}{\mathrm{~d} x}(\ln (y))=\frac{\mathrm{d}}{\mathrm{~d} x}(\arccos x \ln (\arcsin x)) \Rightarrow \\
& \frac{y^{\prime}}{y}=\frac{-1}{\sqrt{1-x^{2}}} \cdot \ln (\arcsin x)+\arccos (x) \cdot \frac{1}{\sqrt{1-x^{2}}} \frac{1}{\arcsin x} \Rightarrow \\
& y^{\prime}=y\left(\frac{-1}{\sqrt{1-x^{2}}} \cdot \ln (\arcsin x)+\arccos (x) \cdot \frac{1}{\sqrt{1-x^{2}}} \frac{1}{\arcsin x}\right)= \\
& (\arcsin x)^{\arccos x}\left(\frac{-1}{\sqrt{1-x^{2}}} \cdot \ln (\arcsin x)+\arccos (x) \cdot \frac{1}{\sqrt{1-x^{2}}} \frac{1}{\arcsin x}\right)
\end{aligned}
$$

Marking scheme: 1 pt for taking $\ln , 1 \mathrm{pt}$ for taking derivative correctly, 1 pt for a complete solution
2. $f(x)=\arctan x$ is the inverse of function $g(x)=\tan x$.
(a) 2 marks Using properties of inverse functions, show that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\arctan x)=\frac{1}{1+x^{2}} .
$$

You may need to use this identity $\sec ^{2} x=1+\tan ^{2} x$.
Solution: $\tan x$ is the inverse of $\arctan x$ therefore we can write:

$$
\begin{gathered}
y=\arctan x \Rightarrow \tan y=\tan (\arctan x)=x \Rightarrow \\
y^{\prime} \sec ^{2} y=1 \Rightarrow y^{\prime}=\frac{1}{\sec ^{2} y}=\frac{1}{1+\tan ^{2} y}=\frac{1}{1+x^{2}}
\end{gathered}
$$

Marking scheme: 1 pt for each line of proof.
(b) 1 mark Find the derivative of

$$
k(x)=2^{\arctan x}
$$

Solution:

$$
k^{\prime}(x)=\frac{2^{\arctan x}(\ln 2)}{1+x^{2}}
$$

Marking scheme: 1 pt for correct derivative
3. A hot air balloon is attached to a spool of rope that is 40 meters away from the balloon when it is on the ground. The hot air balloon rises straight up in such a way that the length of rope increases at a rate of 5 meters $/ \mathrm{sec}$.
(a) 4 marks How fast is the balloon rising when the length of rope is 50 m . Do not forget to write its unit. Sketch a graph that explains the problem.

Solution: Graph below is a schematic view of the problem. The balloon rises up and

therefore it stretches the rope.
Parameters we have are: The height of balloon (x), Rate of change of height of balloon $\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right.$, the length of rope (y) and the rate of change of length of rope $\frac{\mathrm{d} y}{\mathrm{~d} t}$. We have y and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ and we want to find $\frac{\mathrm{d} x}{\mathrm{~d} t}$ The third length of the right angle triangle is constant and equal to 40 m . We need to relate x and y, we do so by writing the Pythagoras equation:

$$
x^{2}+40^{2}=y^{2} \Rightarrow 2 x \frac{\mathrm{~d} x}{\mathrm{~d} t}=2 y \frac{\mathrm{~d} y}{\mathrm{~d} t} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{y}{x} \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

we also know
$y=50$, then $x=\sqrt{50^{2}-40^{2}}=30$ therefore

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{50}{30} 5=\frac{25}{3} \mathrm{~m} / \mathrm{s}
$$

Marking scheme: 1 pt for a correct graph, 1 pt for listing the parameters correctly, 1 pt for writing the equations and 1 pt for finding the answer.
(b) bonus 2 marks What is the rate at which the angle that the rope makes with the ground changes? You may need to use results of problem 2.

Solution:

$$
\begin{aligned}
& \theta=\arctan \left(\frac{x}{40}\right) \Rightarrow \frac{\mathrm{d} \theta}{\mathrm{~d} t}=\frac{1}{40} \frac{1}{1+\left(\frac{x}{40}\right)^{2}} \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{1}{40} \frac{40^{2}}{40^{2}+x^{2}} \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{40}{1600+x^{2}} \frac{\mathrm{~d} x}{\mathrm{~d} t} \Rightarrow \\
& \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=\frac{40}{1600+900}(25 / 3)=0.133 \frac{r a d}{s}=7.6^{\circ} / \mathrm{s}
\end{aligned}
$$

Marking scheme: 1 pt for for writing the relation equation and 1 pt for finding the answer.

