First Name: \qquad Last Name: \qquad

Student-No: \qquad Section: \qquad

Short answer questions

1. 3 marks In reference to the graph of function y provided, determine if the statements below are true or false on $[a, s]$. Each part is worth 0.5 mark.
(a) The function has three points of discontinuity.

Solution: False, there are two discontinuity points at $x=b, x=c$.
(b) The function is not differentiable at three points.

Solution: True, the function is not differentiable at $x=b, x=c$ and $x=r$.
(c) The function has an absolute minimum and an absolute maximum, therefore Extreme Value theorem can be applied to it.

Solution: False, the function is not continuous, so EVT does not apply.
(d) The function has two local minima.

Solution: False, only $x=d$ is the local minima.
(e) $x=c$ is a local maximum.

Solution: False, $f(c)$ is smaller than points on its left
(f) The function has four critical points.

Solution: True, The critical points are $x=b, c, d, r$

Long answer questions - you must show your work

2. 3 marks Show that for any $-2 \leq t \leq 2$, the inequality $-2 \leq t \sqrt{4-t^{2}} \leq 2$ holds. Hint: How does this question translate in terms of absolute maximum and absolute minimum?

Solution: We basically want to show that the absolute minimum and absolute maximum of the function $f(t)=t \sqrt{4-t^{2}}$ on the closed interval of $[-2,2]$ are -2 and 2 respectively. First of all, the function is continuous on the closed interval. so

- evaluate end points

$$
f(-2)=-2 \sqrt{4-(-2)^{2}}=-2 \sqrt{4-4}=0, \quad f(2)=-2 \sqrt{4-(-2)^{2}}=-2 \sqrt{4-4}=0
$$

- find the critical points.

$$
f^{\prime}(t)=\sqrt{4-t^{2}}+t \frac{-2 t}{2 \sqrt{4-t^{2}}}=\sqrt{4-t^{2}}-\frac{t^{2}}{\sqrt{4-t^{2}}}=\frac{4-t^{2}-t^{2}}{\sqrt{4-t^{2}}}=\frac{4-2 t^{2}}{\sqrt{4-t^{2}}}
$$

Now let's solve

$$
f^{\prime}(t)=0 \Rightarrow \frac{4-2 t^{2}}{\sqrt{4-t^{2}}}=0 \Rightarrow 4-2 t^{2}=0 \Rightarrow t= \pm \sqrt{2}
$$

You can try that solving $f^{\prime}(t)$ not defined leads to finding the end points which we do not count as critical points.

- Evaluate the end points:

$$
f(\sqrt{2}=\sqrt{2} \sqrt{4-2}=2, \quad f(-\sqrt{2})=-\sqrt{2} \sqrt{4-2}=-2 .
$$

- Therefore the absolute maximum is $\max (0,2,-2)=2$ and absolute minimum is $\min (0,2,-2)=-2$

Marking scheme: 1 pt for evaluating end points, 1 pt for finding critical points, 1 pt for complete answer.
3. (a) 1 mark The cost function of a bicycle manufacturing company is given by $C=10+$ $0.1 q^{2}-0.001 q^{3}$ in thousand dollars where q is the number of bicycles manufactured. Using marginal cost, approximate the cost of manufacturing the 11th bicycle.

Solution:

$$
M C=\frac{\mathrm{d} C}{\mathrm{~d} q}=0.2 q-0.003 q^{2} \Rightarrow
$$

$M C(10)=0.2(10)-0.003(10)^{2}=2-0.03=1970$ thousand dollars $=1970$ dollars
Marking scheme: 1 pt for a correct answer
(b) 3 marks The relation between the demand (q) and price (p) of a product can by estimated by $p^{2}+2 q^{2}=900$. Find the price elasticity of when $p=10$ and recommend if the price has to be lowered or raised.

Solution: we take the derivative

$$
2 p+4 q \frac{\mathrm{~d} q}{\mathrm{~d} p}=0 \Rightarrow \frac{\mathrm{~d} q}{\mathrm{~d} p}=-\frac{p}{2 q}
$$

therefore,

$$
E_{D}=\frac{p}{q} \frac{\mathrm{~d} q}{\mathrm{~d} p}=-\frac{p}{q} \frac{p}{2 q}=-\frac{p^{2}}{2 q^{2}}
$$

We substitute $p=10$ to find

$$
100+2 q^{2}=900 \Rightarrow 2 q^{2}=800 \Rightarrow q^{2}=400 \Rightarrow q=20
$$

We find

$$
E_{D}=-\frac{10^{2}}{2(20)^{2}}=-\frac{1}{8}
$$

We see $\left|E_{D}\right|<1$, so system is inelastic, increase the price.
Marking scheme: 1 pt for correct implicit differentiation, 1 pt for finding the Elasticity, 1 pt for correct recommendation based on their value of Elasticity.

