Student 1: $\qquad$ Student 2: $\qquad$

Student No 1: $\qquad$ Student No 2: $\qquad$

1. Suppose that the population (in thousands) of a certain kind of insect after $t$ months is given by the following formula.

$$
F(t)=\pi / 8 t+\cos (\pi / 4 t)+10
$$

Determine the absolute minimum and maximum population in the first month. You may need to know that $\sqrt{2} \simeq 1.4$ and $\sqrt{3} \simeq 1.7$.

Solution: We want to find absolute minimum and absolute maximum of $F(t)$. Since $F(t)$ is a nice function, it is continuous everywhere, so we can use method of closed interval. The interval of interest in this problem is $[0,1]$.

- evaluate end points

$$
\begin{aligned}
& F(0)=0+\cos (0)+10=11 \\
& F(1)=\pi / 8+\cos (\pi / 4)+10=\pi / 8+\sqrt{2} / 2+10 \simeq \frac{3.14}{8}+\frac{1.4}{2}+10= \\
& \frac{3.14+5.6}{8}+10=\frac{8.56}{8}+10=11.07
\end{aligned}
$$

- Find the critical points. Note that derivative exists everywhere.

$$
\begin{aligned}
& F^{\prime}(t)=\pi / 8-\pi / 4 \sin (\pi / 4 t) \\
& F^{\prime}(t)=0 \Rightarrow \pi / 8-\pi / 4 \sin (\pi / 4 t)=0 \\
& \Rightarrow \pi / 4 \sin (\pi / 4 t)=\pi / 8 \Rightarrow \sin (\pi / 4 t)=\frac{1}{2} \Rightarrow \pi / 4 t=\pi / 6 \Rightarrow t=\frac{4}{6}=\frac{2}{3} .
\end{aligned}
$$

- evaluate the critical point

$$
\begin{aligned}
& f(2 / 3)=\pi / 12+\cos (\pi / 6)+10=\pi / 12+\frac{\sqrt{3}}{2}+10 \simeq \frac{3.14}{12}+\frac{1.7}{2}+10= \\
& \frac{3.14+10.2}{12}+10=\frac{13.24}{12}+10 \simeq 11.10
\end{aligned}
$$

- therefore absolute max is $\pi / 12+\frac{\sqrt{3}}{2}+10$ and absolute min is 11 .

