Business Problem

$$
p=200 \$ \longrightarrow q=\underline{5000}
$$

$\rightarrow P$ increases $1 \$ \rightarrow 9$ decreases 50

$$
\begin{aligned}
C=100000 & \leftarrow \text { fixed cost } \\
759 & \leftarrow \text { variable }
\end{aligned}
$$

a)

$$
\begin{aligned}
& q=q(p)=m_{p}^{p}+b_{k} \\
& m=-50
\end{aligned}
$$

$$
P=201 \rightarrow q=4950
$$

$$
\left\{\begin{array}{l}
5000=m(200)+b \\
4950=m(201)+b
\end{array}\right.
$$

Subtraction

$$
-50=m(1) \rightarrow m=-50
$$

$\frac{\text { replace } M=-501}{\longrightarrow 5000}$

$$
q=-50 p+15000
$$

b)
c)

$$
\begin{aligned}
& C=100000+759 \\
& R=P \cdot P=P(-50 p+15000) \\
& q=-50 p+15000 \rightarrow P=\frac{q-15000}{-50} \\
& \rightarrow P=\frac{-1}{50} q+300 \\
& R=\left(\frac{-1}{50} q+300\right) \cdot q=\frac{-1}{50} q^{2}+300 q
\end{aligned}
$$

d)
break-even Points.

$$
\begin{gathered}
C=R \\
\downarrow \\
75 q+100000=\frac{-1}{50} q^{2}+300 q \\
\frac{1}{50} q^{2}+75 q-300 q+100000=0 \\
\frac{1}{50} q^{2}-225 q+100000=0 \\
q=\frac{-(-225) \pm \sqrt{(-225)^{2}-4\left(\frac{1}{50}\right)(100000)}}{2\left(\frac{1}{50}\right)}\left\{\begin{array}{l}
\text { quadratic } \\
\text { Formula } \\
A x^{2}+B x+C=0 \\
x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
\end{array}\right.
\end{gathered}
$$

$\simeq 463.5,810786.45$
expensive product cheap Not selling too many cheap Product selling a lot
To draw the function of cost,
I find a point Ifinda point on hat line. The
point I choose is is a 9 =lonna find Ca t this point

$$
\begin{gathered}
q=10000 \\
\forall \\
C=100000 \\
+ \\
75(10000) \\
= \\
\\
850000
\end{gathered}
$$

Negohtite

$$
R=\frac{-1}{50} q^{2}+300 q=q\left(-\frac{1}{50} q+300\right)
$$

$$
\text { roots, } q=0, \quad q=\begin{gathered}
15000 \\
\downarrow
\end{gathered}
$$

$$
\begin{aligned}
P=C R-C & =\frac{-1}{50} q^{2}+300 q-(75 q+100000) \\
& =\frac{-1}{50} q^{2}+225 q-100000
\end{aligned}
$$

Interest.

$$
\$ 1000 \quad r=0.1 \text { Annually }
$$

1) Intest never converts to principle

$$
1000(1+0.1)=1100 \$
$$

$$
\begin{aligned}
& 1000(1+0.1)=1100 \\
& 1000(1+0.1)+1000(0.1)=1200 \$ \\
& 100
\end{aligned}
$$

2) Compounded Interest, Annually

$$
\begin{array}{lc}
\text { mounded Interest, Annually } & 0.1(100)= \\
1000(1+0.1)=1100 & 0 \\
1100(1+0.1)=1210 & 10
\end{array}
$$

$$
\begin{aligned}
& P=\frac{-1}{50} q^{2}+225 q-100000 \\
& p^{\prime}=\frac{-1}{50}(2 q)+225 \\
& =\frac{-1}{25} q+225 \\
& P^{\prime}=0 \rightarrow \frac{-1}{25} q+225=0 \\
& =(225)(257
\end{aligned}
$$

