oct 4, 2016
chair rule:
composition of function Review.

$$
x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x))
$$

$$
\begin{aligned}
& f(x)=x^{2}+\operatorname{Sin} x \\
& g(x)=e^{x} \\
& f(g(x))= f\left(e^{x}\right)=\left(e^{x}\right)^{2}+\operatorname{Sin}\left(e^{x}\right)=e^{2 x}+\operatorname{Sin}\left(e^{x}\right) \\
& g(f(x))= g\left(x^{2}+\operatorname{Sin} x\right)=e^{2}+\operatorname{Sin} x
\end{aligned}
$$

$$
\begin{aligned}
& f(g(x))=f\left(e^{2}\right)=g\left(x^{2}+\operatorname{Sin} x\right)=e^{x^{2}+\operatorname{Sin} x} \\
& g(f(x))=g
\end{aligned}
$$

$$
\begin{aligned}
& f(f(x))=f\left(x^{2}+\sin x\right)= \\
& \left(x^{2}+\sin x\right)^{2}+\sin \left(x^{2}+\sin x\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Chain rule. } \\
& {[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)} \\
& \frac{d}{d x}[f(g(x))]=\left.\left.\frac{d f}{d x}\right|_{g(x)} \cdot \frac{d g}{d x}\right|_{x} \\
& d u=\frac{d u}{d} \cdot \frac{d y}{d x} \quad u \xi=u(y) \\
& y=y(x) \\
& \frac{d u}{d x}=\frac{d u}{d z} \frac{d r}{d w} \frac{d w}{d x} \quad \rightarrow \text { Leibniz Notation }
\end{aligned}
$$

$$
\begin{aligned}
& y=u^{99} \\
& y(u(x))=y(2 x+1)=(2 x+1)^{99} \\
& \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=99 u^{98} \cdot 2=198(2 x+1)^{98} \\
& (2 x+1)^{2}=4 x^{2}+4 x+1 \\
& .3 \text { ~ }
\end{aligned}
$$

$$
(f(g(x)))^{\prime}=\begin{array}{cc}
f^{\prime}(g(x)) \cdot & \left.g^{\prime}(x)\right) \\
\downarrow
\end{array}
$$

derivative of \downarrow
outer func derivative of evaluted at In Inner fund. inner function. 99

$$
\begin{aligned}
& y(x)=(2 x+1)^{91} \\
& y^{\prime}(x)=99(2 x+1)^{98} \\
& y=f(x)=\sqrt{13 x^{2}-5 x+8} u
\end{aligned} \quad \begin{aligned}
& \quad=198(2 x+1)^{98}-5 x+8 \\
& \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=
\end{aligned}
$$

derivative of evaluated at inner funk

$$
\frac{26 x^{2}-5}{2 \sqrt{13 x^{2}-5 x+8}}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{d y}{d x}=\frac{\frac{d y}{d u} \cdot \frac{d u}{d x}=}{\frac{1}{2 \sqrt{u}} \cdot(26 x-5)=} \begin{array}{l}
26 x-5 \\
13 x^{2}-5 x+8
\end{array} \\
\text { outer fuse. }
\end{array} \\
& \text { der. outer june. }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\sin (5 x) \Rightarrow \\
& f^{\prime}(x)=5 \cos (5 x) \\
& f(x)=\sin \left(5 \ln \left(x^{2}\right)\right) \\
& f^{\prime}(x)=(2 x)\left(5 \frac{1}{x^{2}}\right) \cos \left(5 \ln \left(x^{2}\right)\right)=\frac{10}{x} \cos \left(\sin \left(x^{2}\right)\right.
\end{aligned}
$$

or more clearly, we could first simplify $\mathrm{f}(\mathrm{x})$ and then differentiate.

$$
\begin{aligned}
& f(x)=\sin (10 \ln (x)) \\
& f^{\prime}(x)=\frac{10 \cos (10 \ln (x))}{x} \\
& f(x)=\tan \sqrt{x} \quad \begin{aligned}
(\tan (x))^{\prime} & =1+\tan ^{2} x \\
& =\sec ^{2} x \\
& =\left(\frac{1}{\cos)^{2}}\right. \\
f^{\prime}(x) & =\sec ^{2} \sqrt{x} \cdot\left(\frac{1}{2 \sqrt{x}}\right.
\end{aligned} \\
& f(x)=\sqrt{\sin ^{\tan \left(e^{2}\right)}} \\
& f^{\prime}(x)=\sec ^{2} x \cdot e^{\tan x} \cdot \cos \left(e^{\tan x}\right) \cdot \frac{1}{2 \sqrt{\sin \left(e^{\tan x}\right)}}
\end{aligned}
$$

$$
\begin{aligned}
& y=\ln (\ln (\ln (\cos x)))) \\
& y^{\prime}=-\sin x \cdot \frac{1}{\cos x} \cdot \frac{1}{\ln (\cos x)} \cdot \frac{1}{\ln (\ln (\cos x))}
\end{aligned}
$$

gaussian distribution function

find where $f^{\prime \prime}(x)$ is positive

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(-2 x)}{\sqrt{2 \pi}} e^{-x^{2}} \\
& f^{\prime \prime} \\
&= \frac{1}{\sqrt{2 \pi}}\left[(-2 x)^{\prime} e^{-x^{2}}+(-2 x)\left(e^{-x^{2}}\right)^{\prime}\right]= \\
& \frac{1}{\sqrt{2 \pi}}\left[-2 e^{-x^{2}}-(2 x)(-2 x) e^{-x^{2}}\right]= \\
&=\frac{1}{\sqrt{2 \pi}} e^{-x^{2}}\left(4 x^{2}-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi}} \underbrace{e^{-x^{2}}}_{>0}\left(4 x^{2}-2\right) \\
& 4 x^{2}-2>0 \Rightarrow \\
& 4 x^{2}>2 \Rightarrow x^{2}>\frac{1}{2} \rightarrow \\
& \sqrt{x^{2}}-|x|>\sqrt{\frac{1}{2}} \rightarrow x>\sqrt{\frac{1}{2}} \\
& x<-\sqrt{\frac{1}{2}}
\end{aligned}
$$

$$
x^{2}+y^{2}=1
$$

$x^{2}+y^{2}=R^{2} \rightarrow$ circle with Radius R. centered at origin

For $y \geqslant 0$ this graph is half circle. find tangent line and nomal line at $x=\frac{\sqrt{2}}{2}$ on the curve

$$
\begin{aligned}
& y^{2}+x^{2}=1 \xrightarrow{\text { Solve for } y} \\
& y^{2}=1-x^{2} \rightarrow \sqrt{y^{2}}=\sqrt{1-x^{2}} \rightarrow y= \pm \sqrt{1-x^{2}} \\
& y=+\sqrt{1-x^{2}} \Rightarrow \text { slope of tangent line }=\frac{d y}{d x}=\frac{-2 x}{2 \sqrt{1-x^{2}}}
\end{aligned}
$$

slope of tangent line

$$
\begin{aligned}
& \text { ope of tangent line }=\frac{-2 \cdot \frac{\sqrt{2}}{2}}{2 \sqrt{1-\left(\frac{\sqrt{2}}{2}\right)^{2}}}= \\
& \text { at } x=\frac{\sqrt{2}}{2} \\
& =\frac{-\sqrt{2}}{\left.2 \sqrt{1-\frac{1}{2}}=\frac{-\sqrt{2}}{2 \sqrt{\frac{1}{2}}}=\frac{-\sqrt{2}}{2 \cdot \frac{1}{\sqrt{2}}}\right)}=\frac{-\sqrt{2}}{2}=-1 \\
& \begin{array}{l}
y=\sqrt{1-x^{2}} \\
\\
x=\frac{1}{\sqrt{2}}
\end{array} \quad \begin{array}{l}
1-\left(\frac{1}{\sqrt{2}}\right)^{2}
\end{array}=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}} \\
& \quad 1=-\left(x-\frac{1}{\sqrt{7}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{1}{\sqrt{2}} \\
& \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \rightarrow \begin{array}{c}
\text { tangent } \operatorname{live} \\
\text { equation }
\end{array} \quad y-\frac{1}{\sqrt{2}}=-\left(x-\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

$$
x=\frac{1}{\sqrt{2}}
$$ equation

$m=-1$

$$
y=-x+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=-x+\frac{2}{\sqrt{2}}=-x+\sqrt{2}
$$

$$
\text { Slope of neral line }=\frac{-1}{\text { Slope of tangent line }}
$$

$$
=\frac{-1}{-1}=1
$$

$$
\begin{gathered}
\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\
m=1
\end{gathered}
$$

normal line
$\rightarrow \quad$ formation

$$
y-\frac{1}{\sqrt{2}}=x-\frac{1}{\sqrt{2}}
$$

$$
y=x
$$

This agrees well with our geometry course. In geometry, we know radius is always perpendicular to the circle. in this case, $\mathrm{y}=\mathrm{x}$ is the radius of the circle that is passing through (1/sqrt(2), $1 /$ sqrt(2)) .

Implicit differentiation.

$$
x^{2}+y^{2}=1
$$

y is give Implicitly as
 a function of x

$$
\begin{aligned}
& x^{2}+(y(x))^{2}=1 \\
& \left(x^{2}+(y(x))^{2}\right)^{\prime}=(1)^{\prime}=0 \\
& \left(x^{2}\right)^{\prime}+\left((y(x))^{2}\right)^{\prime}=0 \\
& 2 x+2 y(x) \cdot y^{\prime}(x)=0 \\
& \frac{d}{d x}\left(x^{2}+(y(x))^{2}\right)=\frac{d}{d x}=1=0 \\
& \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left((y(x))^{2}\right)=0 \\
& 2 x+2 y \cdot y^{\prime}=0 \\
& 2 y y^{\prime}=-2 x \rightarrow y^{\prime}=\frac{-2 x}{2 y}=\frac{-x}{y}
\end{aligned}
$$

Generalized differentiation.

$$
\frac{d}{d x}\left(f(x)^{n}\right)=n \cdot f(x)^{n} \cdot f^{\prime}(x)
$$

$$
\begin{aligned}
& \frac{d}{d x}(f(x))= \\
& \frac{d}{d x}(\sin (f(x)))=\cos (f(x)) \cdot f^{\prime}(x) \\
& f(x) \cdot f^{\prime}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(\operatorname{lin}(f(x))=e^{f(x)} \cdot f^{\prime}(x)\right. \\
& \frac{d}{d x}\left(e^{f(x)}\right)=1 \cdot f^{\prime}(x)
\end{aligned}
$$

$$
\frac{d}{d x}\left(e, \frac{1}{f(x)} \cdot f^{\prime}(x)\right.
$$

$$
\begin{aligned}
& \frac{d \phi}{d x}(\ln (f(x))) \quad f(x) \\
& \frac{d}{d x}(\sqrt[n]{f(x)})=\frac{d}{d x}\left(\left(f(x)^{\frac{1}{n}}\right)=\frac{1}{n} f^{\frac{1}{n}-1} f^{\prime}(x) \cdot f^{\prime}(x)\right.
\end{aligned}
$$

$$
x^{4}+x y^{3}+y x^{3}=1
$$

$$
\frac{d}{d x}\left(x^{4}+x y^{3}+y x^{3}\right)=\frac{d}{d x}(1)=0
$$

$$
\frac{d}{d x}\left(x^{4}\right)+\frac{\frac{d}{d x}\left(x y^{3}\right)}{d x}+\frac{d}{d x}\left(y x^{3}\right)=0
$$

$$
\frac{\frac{d}{d x}(x)+\frac{d x}{4 x^{3}}}{\frac{d}{d x}(x) \cdot y^{3}+x \frac{d}{d x}\left(y^{3}\right)} \underbrace{\left.\frac{d}{d x}\right) \cdot x^{3}+y \frac{d}{d x}\left(x^{3}\right)=0}
$$

$$
\begin{gathered}
4 x^{3}+10 y^{3}+x\left(3 y^{2} y^{\prime}\right)+y^{\prime} x^{3}+y\left(3 x^{2}\right)=0 \\
y^{\prime}\left(3 y^{2}+x^{3}\right)=-\left(4 x^{3}+y^{3}+3 y x^{2}\right) \\
y^{\prime}=-\frac{4 x^{3}+y^{3}+3 y x^{2}}{3 x y^{2}+x^{3}}
\end{gathered}
$$

