First Name: \qquad Last Name: \qquad

Student-No: \qquad Section: \qquad

Short answer questions

1. 2 marks Each part is worth 1 mark.
(a) A company manufactures bicycles. The figure below shows Cost, Revenue and Profit as a function of number of bikes sold. Mark these functions appropriately (for example, What does graph A represent? Cost, Revenue or Profit? and so on for graph B and C).

(b) Compute $\lim _{t \rightarrow 0} \frac{\sqrt[3]{-1-t^{2}}}{t^{3}-e^{t}}$. If limit does not exist, write DNE.

Answer:

Long answer questions - you must show your work

2. 2 marks Amir has an offer from his bank to change his current investment plan with annual interest rate of 12% compounded continuously to a new plan with annual interest rate of r compounded semi-annually. What should the minimum r be so that he at least makes the same amount of money?

Answer:
3. 2 marks Compute the limit $\lim _{x \rightarrow 1} \frac{x^{4}-1}{2 x^{2}+4 x-6}$

Answer:
4. EatPumpkin is a new chain restaurant with its famous pumpkin appetizer. It is found that if the price of pumpkin appetizer is $\$ 8$ each, an average of 60 people order the dish each day. When it drops the price of the appetizer to $\$ 5$, the number ordering it rises to 75 . Assume that the demand q is a linear function of the price p and each appetizer costs the restaurant $\$ 3$ (neglect constant cost).
(a) 2 marks Find the linear demand equation as a function of price (p)

Answer:
(b) 2 marks Find the weekly profit function $P(q)$.

> Answer:
(c) bonus 1 marks What is the optimized price for the pumpkin appetizer?
Answer:

